Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice

ABSTRACT Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21–28 were randomly assigned to either a group or is...

Full description

Saved in:
Bibliographic Details
Published inHippocampus Vol. 25; no. 4; pp. 474 - 485
Main Authors Chang, Chih-Hua, Hsiao, Ya-Hsin, Chen, Yu-Wen, Yu, Yang-Jung, Gean, Po-Wu
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.04.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21–28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole‐cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input‐output relationship of NMDAR‐EPSCs as compared to the GH mice. Application of the NR2B‐specific antagonist ifenprodil produced a greater attenuating effect on NMDAR‐EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK‐801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress‐induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress‐induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation‐induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. © 2014 Wiley Periodicals, Inc.
AbstractList Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21–28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR 2A and NR 2B levels in the hippocampus as compared to the GH mice. Whole‐cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input‐output relationship of NMDAR‐EPSCs as compared to the GH mice. Application of the NR 2B ‐specific antagonist ifenprodil produced a greater attenuating effect on NMDAR‐EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK‐801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress‐induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress‐induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR 2B expression. These results suggest that social isolation‐induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. © 2014 Wiley Periodicals, Inc.
Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B-specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. © 2014 Wiley Periodicals, Inc.
ABSTRACT Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21–28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole‐cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input‐output relationship of NMDAR‐EPSCs as compared to the GH mice. Application of the NR2B‐specific antagonist ifenprodil produced a greater attenuating effect on NMDAR‐EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK‐801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress‐induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress‐induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation‐induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. © 2014 Wiley Periodicals, Inc.
Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children.Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children.
Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children.
Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR sub(2A) and NR sub(2B) levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR sub(2B)-specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR sub(2B) expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. copyright 2014 Wiley Periodicals, Inc.
Author Chen, Yu-Wen
Chang, Chih-Hua
Hsiao, Ya-Hsin
Gean, Po-Wu
Yu, Yang-Jung
Author_xml – sequence: 1
  givenname: Chih-Hua
  surname: Chang
  fullname: Chang, Chih-Hua
  organization: Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
– sequence: 2
  givenname: Ya-Hsin
  surname: Hsiao
  fullname: Hsiao, Ya-Hsin
  organization: Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
– sequence: 3
  givenname: Yu-Wen
  surname: Chen
  fullname: Chen, Yu-Wen
  organization: Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
– sequence: 4
  givenname: Yang-Jung
  surname: Yu
  fullname: Yu, Yang-Jung
  organization: Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
– sequence: 5
  givenname: Po-Wu
  surname: Gean
  fullname: Gean, Po-Wu
  email: powu@mail.ncku.edu.tw
  organization: Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25348768$$D View this record in MEDLINE/PubMed
BookMark eNqNkctv1DAQhy1URB9w4Q9AkbigSikeP5L4WFr6kJaWpzhaXmeWuiRxsBO1-9_jbLocKoQ4eTT6vp81M_tkp_MdEvIS6BFQyt7euN4fMcYr8YTsAVVVDrTgO1Mtaa4KDrtkP8ZbSgEkpc_ILpNcVGVR7ZHwxVtnmsxF35jB-S53XT1arDPX2YAmYiqyqw-nx1lAi_3gQ5w6ww1m6d_eW9P2Y8zw3lgMSzNgqls_JaXUeh0D_hjn5ElrncXn5OnKNBFfPLwH5NvZ-68nF_ni-vzy5HiRW6GEyLEUqiwBuERulVWSApMgFApYoTWSw6ouKlpQWxpRAmN2iamVHFWhUsgPyJs5tw_-14hx0K2LFpvGdOjHqKEoKibLQsn_QSUwykSV0NeP0Fs_hjTshhKCKlaJRL16oMZli7Xug2tNWOvt4hNAZ8AGH9OSVtq6YbOmIRjXaKB6uq2ebqs3t03K4SNlm_pXGGb4zjW4_gepLy4_Xm-dfHZcHPD-j2PCT12UvJT6-9W5Plu8-8TgFPRn_hvYxsK-
CODEN HIPPEL
CitedBy_id crossref_primary_10_1002_ab_22022
crossref_primary_10_1016_j_bbr_2015_10_049
crossref_primary_10_1016_j_psychres_2017_10_018
crossref_primary_10_1038_s41598_024_62534_w
crossref_primary_10_3389_fnbeh_2020_583395
crossref_primary_10_1016_j_bbr_2017_03_017
crossref_primary_10_1016_j_ynstr_2023_100600
crossref_primary_10_1113_JP285875
crossref_primary_10_1002_hipo_23276
crossref_primary_10_1016_j_niox_2019_11_004
crossref_primary_10_1177_1179069518820323
crossref_primary_10_1016_j_biocel_2021_106120
crossref_primary_10_1016_j_neulet_2015_12_005
crossref_primary_10_1016_j_bbi_2024_12_025
crossref_primary_10_3892_ijmm_2016_2589
crossref_primary_10_2139_ssrn_3330814
crossref_primary_10_3390_cells11030379
crossref_primary_10_1016_j_neubiorev_2017_09_028
crossref_primary_10_1155_2017_3467805
crossref_primary_10_1002_dev_21887
crossref_primary_10_1016_j_celrep_2019_07_005
crossref_primary_10_3389_fnmol_2023_1313635
crossref_primary_10_1007_s00213_019_05368_z
crossref_primary_10_1016_j_neuropharm_2019_107667
crossref_primary_10_1016_j_bbr_2016_09_005
crossref_primary_10_1016_j_neures_2022_07_009
crossref_primary_10_1016_j_ynstr_2021_100337
crossref_primary_10_1038_s41386_021_00990_y
crossref_primary_10_1016_j_bbr_2022_113986
crossref_primary_10_1210_en_2017_03176
crossref_primary_10_3389_fendo_2021_638261
crossref_primary_10_1016_j_neuroscience_2015_12_024
crossref_primary_10_1016_j_neuroscience_2018_01_038
crossref_primary_10_3389_fnbeh_2022_938044
crossref_primary_10_3390_ijms20225599
crossref_primary_10_1016_j_pharmthera_2021_107875
crossref_primary_10_3389_fnins_2021_669075
crossref_primary_10_3390_ijms20061482
crossref_primary_10_1016_j_biopha_2018_05_086
crossref_primary_10_1016_j_ynstr_2024_100665
crossref_primary_10_3389_fnbeh_2018_00240
crossref_primary_10_1016_j_freeradbiomed_2023_11_006
crossref_primary_10_1016_j_ejphar_2024_176918
crossref_primary_10_3389_fendo_2022_817100
crossref_primary_10_1016_j_brainresbull_2016_01_013
crossref_primary_10_1016_j_intimp_2021_108488
crossref_primary_10_1177_1178646920928984
crossref_primary_10_3389_fnsys_2022_860847
crossref_primary_10_1016_j_neures_2023_11_005
crossref_primary_10_1016_j_ynstr_2024_100696
crossref_primary_10_3389_fphar_2021_700003
crossref_primary_10_3390_brainsci10080520
crossref_primary_10_1038_srep30743
crossref_primary_10_1016_j_nlm_2018_01_001
crossref_primary_10_1002_ajmg_b_32479
crossref_primary_10_1097_AAP_0000000000000808
crossref_primary_10_1093_cercor_bhz089
crossref_primary_10_1371_journal_pone_0165071
crossref_primary_10_1177_1744806916656635
crossref_primary_10_3389_fnagi_2017_00123
crossref_primary_10_1016_j_neuropharm_2018_09_019
crossref_primary_10_1002_brb3_929
crossref_primary_10_1002_ptr_7944
crossref_primary_10_1007_s10571_016_0388_6
crossref_primary_10_1002_ab_21912
crossref_primary_10_1016_j_omtn_2020_05_001
crossref_primary_10_1007_s00429_023_02705_z
Cites_doi 10.1111/j.1471-4159.2006.03843.x
10.1111/j.1601-183X.2010.00676.x
10.1016/j.tins.2011.11.004
10.1016/j.neubiorev.2008.03.003
10.1037/0735-7044.122.4.849
10.1016/j.neuron.2008.06.023
10.1007/s00213-009-1543-2
10.1002/(SICI)1098-2302(199903)34:2<129::AID-DEV6>3.0.CO;2-L
10.1097/00004583-199205000-00001
10.1016/S0145-2134(02)00341-1
10.1038/nature10130
10.1016/j.pbb.2011.07.008
10.1038/nrn2174
10.1016/S0006-8993(03)03042-7
10.1038/nn1969
10.1007/s00213-004-2048-7
10.1007/s00213-012-2734-9
10.1016/j.yfrne.2009.03.003
10.1038/nn.3093
10.1016/j.neuron.2007.09.035
10.1016/j.pnpbp.2009.06.016
10.1007/s00213-002-1139-6
10.1002/0471142301.ns0817s24
10.1002/0471142301.ns0116s42
10.1038/nrn3138
10.1016/j.bbr.2005.02.005
10.1016/j.cpr.2004.01.003
10.1111/j.1939-0025.1989.tb01671.x
10.1038/nature09736
10.1002/dev.10057
10.1016/j.bbi.2006.03.003
10.1038/nrn3042
10.1038/mp.2011.48
10.3389/fphar.2013.00161
10.1016/j.neuropharm.2011.08.044
10.1037/0003-066X.53.2.242
10.1002/hipo.20966
10.1016/j.biopsych.2007.09.019
10.1016/j.brainresbull.2011.03.027
10.1016/j.jad.2012.08.040
10.1038/nn.3214
10.1126/stke.2552004re16
10.1016/j.neuron.2011.05.022
10.1016/j.pnpbp.2005.08.006
10.1016/j.neuroscience.2010.11.033
10.1196/annals.1330.012
10.1016/j.conb.2011.04.003
10.1016/j.yhbeh.2011.02.003
10.1186/1471-2202-9-111
10.1016/j.chiabu.2007.01.003
10.1002/hipo.20744
10.1016/j.yhbeh.2010.03.021
10.1111/j.1601-183X.2006.00280.x
10.1126/science.2270481
10.1016/j.neubiorev.2004.06.009
10.1002/(SICI)1098-2337(1999)25:5<381::AID-AB6>3.0.CO;2-B
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7TK
K9.
7X8
DOI 10.1002/hipo.22384
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Animal Behavior Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
MEDLINE
Neurosciences Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1098-1063
EndPage 485
ExternalDocumentID 3628540671
25348768
10_1002_hipo_22384
HIPO22384
ark_67375_WNG_FLBQ21D1_R
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The National Science Council
  funderid: NSC99–2923‐B‐006‐001‐MY3; NSC100‐2321‐B‐006‐002; NSC101‐2321‐B‐006‐025
– fundername: The National Health Research Institute
  funderid: NHRI‐EX101–10117NI
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SUPJJ
SV3
TEORI
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XJT
XPP
XSW
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c4944-e749771135e3c9c950125149e41feca531fd68060c7a47122cbe1fd97798e99e3
IEDL.DBID DR2
ISSN 1050-9631
1098-1063
IngestDate Fri Jul 11 16:40:46 EDT 2025
Fri Jul 11 00:55:39 EDT 2025
Fri Jul 25 04:55:31 EDT 2025
Wed Feb 19 01:56:30 EST 2025
Thu Apr 24 23:04:35 EDT 2025
Tue Jul 01 02:05:57 EDT 2025
Wed Jan 22 16:38:14 EST 2025
Wed Oct 30 09:55:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords social isolation
aggression
depression
NMDA receptor
acute stress
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4944-e749771135e3c9c950125149e41feca531fd68060c7a47122cbe1fd97798e99e3
Notes ark:/67375/WNG-FLBQ21D1-R
ArticleID:HIPO22384
The National Health Research Institute - No. NHRI-EX101-10117NI
The National Science Council - No. NSC99-2923-B-006-001-MY3; No. NSC100-2321-B-006-002; No. NSC101-2321-B-006-025
istex:C6CA3FBA482CA180420609CE0A2AD59C08BCE2FA
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25348768
PQID 1664409284
PQPubID 996349
PageCount 12
ParticipantIDs proquest_miscellaneous_1668257695
proquest_miscellaneous_1665120248
proquest_journals_1664409284
pubmed_primary_25348768
crossref_citationtrail_10_1002_hipo_22384
crossref_primary_10_1002_hipo_22384
wiley_primary_10_1002_hipo_22384_HIPO22384
istex_primary_ark_67375_WNG_FLBQ21D1_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2015
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: April 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Boston
PublicationTitle Hippocampus
PublicationTitleAlternate Hippocampus
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A. 2011. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 12:400-413.
Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ. 2011. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221-226.
Cossenza M, Cadilhe DV, Coutinho RN, Paes-de-Carvalho R. 2006. Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: A new mechanism for the regulation of nitric oxide production. J Neurochem 97(5):1481-93.
Ho JM, Murray JH, Demas GE, Goodson JL. 2010. Vasopressin cell groups exhibit strongly divergent responses to copulation and male-male interactions in mice. Horm Behav 58:368-377.
Von Frijtag JC, Schot M, van den Bos R, Spruijt BM. 2002. Individual housing during the play period results in changed responses to and consequences of a psychosocial stress situation in rats. Dev Psychobiol 41:58-69.
Bibancos T, Jardim DL, Aneas I, Chiavegatto S. 2007. Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes Brain Behav 6:529-539.
Naert A, Callaerts-Vegh Z, D'Hooge R. 2011. Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain Res Bull 85:354-362.
Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C. 2011. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16:1177-1188.
Geyer MA, Dulawa SC. 2003. Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8:Unit 8.17.
Goosens KA. 2011. Hippocampal regulation of aversive memories. Curr Opin Neurobiol 21:460-466.
Bartolomucci A, Palanza P, Sacerdote P, Panerai AE, Sgoifo A, Dantzer R, Parmigiani S. 2005. Social factors and individual vulnerability to chronic stress exposure. Neurosci Biobehav Rev 29:67-81.
Davidson RJ, McEwen BS. 2012. Social influences on neuroplasticity: Stress and interventions to promote well-being. Nat Neurosci 15:689-695.
Workman JL, Fonken LK, Gusfa J, Kassouf KM, Nelson RJ. 2011. Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 100:25-32.
Belozertseva IV, Bespalov AY. 1999. Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggressive Behav 25:381-396.
Papolos DF, Teicher MH, Faedda GL, Murphy P, Mattis S. 2013. Clinical experience using intranasal ketamine in the treatment of pediatric bipolar disorder/fear of harm phenotype. J Affect Disord 147:431-436.
Toth M, Halasz J, Mikics E, Barsy B, Haller J. 2008. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci 122:849-854.
Carrillo M, Ricci LA, Coppersmith GA, Melloni RH Jr. 2009. The effect of increased serotonergic neurotransmission on aggression: A critical meta-analytical review of preclinical studies. Psychopharmacology (Berl) 205:349-368.
Veenema AH. 2009. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models? Front Neuroendocrinol 30:497-518.
Magarinos AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS. 2011. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21:253-264.
Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, Bassel-Duby R, Parada LF. 2008. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59:399-412.
Popoli M, Yan Z, McEwen BS, Sanacora G. 2012. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22-37.
Lewis DO. 1992. From abuse to violence: Psychophysiological consequences of maltreatment. J Am Acad Child Adolesc Psychiatry 31:383-391.
Cull-Candy SG, Leszkiewicz DN. 2004. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004:re16.
Sahay A, Hen R. 2007. Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110-1105.
Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. 2012. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35-41.
Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. 2008. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642-649.
Hildyard KL, Wolfe DA. 2002. Child neglect: Developmental issues and outcomes. Child Abuse Negl 26:679-695.
Newman EL, Chu A, Bahamon B, Takahashi A, Debold JF, Miczek KA. 2012. NMDA receptor antagonism: Escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology (Berl) 224:167-77.
Rodenas-Ruano A, Chavez AE, Cossio MJ, Castillo PE, Zukin RS. 2012. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15:1382-1390.
Springer KW, Sheridan J, Kuo D, Carnes M. 2007. Long-term physical and mental health consequences of childhood physical abuse: Results from a large population-based sample of men and women. Child Abuse Negl 31:517-530.
Herman JP, Ostrander MM, Mueller NK, Figueiredo H. 2005. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201-1213.
Fonagy P. 2004. Early-life trauma and the psychogenesis and prevention of violence. Ann N Y Acad Sci 1036:181-200.
Luecken LJ, Lemery KS. 2004. Early caregiving and physiological stress responses. Clin Psychol Rev 24:171-191.
Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. 2007. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56:823-837.
van den Berg CL, Hol T, Van Ree JM, Spruijt BM, Everts H, Koolhaas JM. 1999. Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol 34:129-138.
Silva-Gomez AB, Rojas D, Juarez I, Flores G. 2003. Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128-136.
Petit-Demouliere B, Chenu F, Bourin M. 2005. Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology (Berl) 177:245-255.
Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91-95.
Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S. 2009. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1173-1177.
Fone KC, Porkess MV. 2008. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087-1102.
Widom CS. 1989. Child abuse, neglect, and adult behavior: Research design and findings on criminality, violence, and child abuse. Am J Orthopsychiatry 59:355-367.
McCormick CM, Thomas CM, Sheridan CS, Nixon F, Flynn JA, Mathews IZ. 2012. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood. Hippocampus 22:1300-1312.
Duman RS, Voleti B. 2012. Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents. Trends Neurosci 35:47-56.
Loeber R, Stouthamer-Loeber M. 1998. Development of juvenile aggression and violence. Some common misconceptions and controversies. Am Psychol 53:242-259.
Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J. 2011. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 60:28-36.
Christian KM, Miracle AD, Wellman CL, Nakazawa K. 2011. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174:26-36.
Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, Leonardo ED, Hen R. 2011. Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908-923.
Ito W, Chehab M, Thakur S, Li J, Morozov A. 2011. BDNF-restricted knockout mice as an animal model for aggression. Genes Brain Behav 10:365-374.
Renault J, Aubert A. 2006. Immunity and emotions: Lipopolysaccharide increases defensive behaviours and potentiates despair in mice. Brain Behav Immun 20:517-526.
Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG. 2008. Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111.
Nelson RJ, Trainor BC. 2007. Neural mechanisms of aggression. Nat Rev Neurosci 8:536-546.
Browne CA, Lucki I. 2013. Antidepressant effects of ketamine: Mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161.
Miczek KA, Fish EW, De Bold JF, De Almeida RM. 2002. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl) 163:434-458.
Dodge KA, Bates JE, Pettit GS. 1990. Mechanisms in the cycle of violence. Science 250:1678-1683.
Marino MD, Bourdelat-Parks BN, Cameron Liles L, Weinshenker D. 2005. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197-203.
Hallett PJ, Collins TL, Standaert DG, Dunah AW. 2008. Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. Curr Protoc Neurosci Chapter 1:Unit 1.16.
2013; 4
2010; 58
2005; 177
2011; 60
2004; 24
2008; 9
2011; 10
2008; 32
2011; 12
2012; 15
2008; 1
2007; 31
2011; 470
2012; 13
2011; 16
2005; 29
2011; 475
2006; 20
2002; 41
2011; 70
2003; 8
2007; 8
2007; 6
2011; 21
2008; 63
1998; 53
2012; 22
2009; 205
1990; 250
2012; 62
1999; 25
2008; 59
2013; 147
2011; 174
1992; 31
2012; 224
2012; 35
2007; 10
2008; 122
2007; 56
2006; 97(5)
2009; 33
2002; 26
2005; 161
2009; 30
2002; 163
2011; 85
1999; 34
2004; 2004
2004; 1036
1989; 59
2003; 983
2011; 100
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_51_1
e_1_2_5_28_1
Loeber R (e_1_2_5_31_1) 1998; 53
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_2_1
e_1_2_5_18_1
e_1_2_5_52_1
e_1_2_5_50_1
References_xml – reference: Belozertseva IV, Bespalov AY. 1999. Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggressive Behav 25:381-396.
– reference: Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. 2008. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642-649.
– reference: Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG. 2008. Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111.
– reference: Bibancos T, Jardim DL, Aneas I, Chiavegatto S. 2007. Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes Brain Behav 6:529-539.
– reference: Widom CS. 1989. Child abuse, neglect, and adult behavior: Research design and findings on criminality, violence, and child abuse. Am J Orthopsychiatry 59:355-367.
– reference: Newman EL, Chu A, Bahamon B, Takahashi A, Debold JF, Miczek KA. 2012. NMDA receptor antagonism: Escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology (Berl) 224:167-77.
– reference: Naert A, Callaerts-Vegh Z, D'Hooge R. 2011. Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain Res Bull 85:354-362.
– reference: Hildyard KL, Wolfe DA. 2002. Child neglect: Developmental issues and outcomes. Child Abuse Negl 26:679-695.
– reference: Fone KC, Porkess MV. 2008. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087-1102.
– reference: Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S. 2009. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1173-1177.
– reference: Cull-Candy SG, Leszkiewicz DN. 2004. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004:re16.
– reference: Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. 2007. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56:823-837.
– reference: Von Frijtag JC, Schot M, van den Bos R, Spruijt BM. 2002. Individual housing during the play period results in changed responses to and consequences of a psychosocial stress situation in rats. Dev Psychobiol 41:58-69.
– reference: Toth M, Halasz J, Mikics E, Barsy B, Haller J. 2008. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci 122:849-854.
– reference: Sahay A, Hen R. 2007. Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110-1105.
– reference: Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91-95.
– reference: Springer KW, Sheridan J, Kuo D, Carnes M. 2007. Long-term physical and mental health consequences of childhood physical abuse: Results from a large population-based sample of men and women. Child Abuse Negl 31:517-530.
– reference: Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A. 2011. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 12:400-413.
– reference: Veenema AH. 2009. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models? Front Neuroendocrinol 30:497-518.
– reference: Dodge KA, Bates JE, Pettit GS. 1990. Mechanisms in the cycle of violence. Science 250:1678-1683.
– reference: Marino MD, Bourdelat-Parks BN, Cameron Liles L, Weinshenker D. 2005. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197-203.
– reference: Workman JL, Fonken LK, Gusfa J, Kassouf KM, Nelson RJ. 2011. Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 100:25-32.
– reference: Ho JM, Murray JH, Demas GE, Goodson JL. 2010. Vasopressin cell groups exhibit strongly divergent responses to copulation and male-male interactions in mice. Horm Behav 58:368-377.
– reference: McCormick CM, Thomas CM, Sheridan CS, Nixon F, Flynn JA, Mathews IZ. 2012. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood. Hippocampus 22:1300-1312.
– reference: Luecken LJ, Lemery KS. 2004. Early caregiving and physiological stress responses. Clin Psychol Rev 24:171-191.
– reference: Cossenza M, Cadilhe DV, Coutinho RN, Paes-de-Carvalho R. 2006. Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: A new mechanism for the regulation of nitric oxide production. J Neurochem 97(5):1481-93.
– reference: Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J. 2011. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 60:28-36.
– reference: Davidson RJ, McEwen BS. 2012. Social influences on neuroplasticity: Stress and interventions to promote well-being. Nat Neurosci 15:689-695.
– reference: Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, Leonardo ED, Hen R. 2011. Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908-923.
– reference: Lewis DO. 1992. From abuse to violence: Psychophysiological consequences of maltreatment. J Am Acad Child Adolesc Psychiatry 31:383-391.
– reference: Duman RS, Voleti B. 2012. Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents. Trends Neurosci 35:47-56.
– reference: Rodenas-Ruano A, Chavez AE, Cossio MJ, Castillo PE, Zukin RS. 2012. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15:1382-1390.
– reference: Browne CA, Lucki I. 2013. Antidepressant effects of ketamine: Mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161.
– reference: Christian KM, Miracle AD, Wellman CL, Nakazawa K. 2011. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174:26-36.
– reference: Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, Bassel-Duby R, Parada LF. 2008. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59:399-412.
– reference: Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ. 2011. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221-226.
– reference: Popoli M, Yan Z, McEwen BS, Sanacora G. 2012. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22-37.
– reference: Herman JP, Ostrander MM, Mueller NK, Figueiredo H. 2005. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201-1213.
– reference: Petit-Demouliere B, Chenu F, Bourin M. 2005. Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology (Berl) 177:245-255.
– reference: Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. 2012. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35-41.
– reference: Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C. 2011. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16:1177-1188.
– reference: Nelson RJ, Trainor BC. 2007. Neural mechanisms of aggression. Nat Rev Neurosci 8:536-546.
– reference: Silva-Gomez AB, Rojas D, Juarez I, Flores G. 2003. Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128-136.
– reference: Hallett PJ, Collins TL, Standaert DG, Dunah AW. 2008. Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. Curr Protoc Neurosci Chapter 1:Unit 1.16.
– reference: Papolos DF, Teicher MH, Faedda GL, Murphy P, Mattis S. 2013. Clinical experience using intranasal ketamine in the treatment of pediatric bipolar disorder/fear of harm phenotype. J Affect Disord 147:431-436.
– reference: Geyer MA, Dulawa SC. 2003. Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8:Unit 8.17.
– reference: Goosens KA. 2011. Hippocampal regulation of aversive memories. Curr Opin Neurobiol 21:460-466.
– reference: van den Berg CL, Hol T, Van Ree JM, Spruijt BM, Everts H, Koolhaas JM. 1999. Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol 34:129-138.
– reference: Miczek KA, Fish EW, De Bold JF, De Almeida RM. 2002. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl) 163:434-458.
– reference: Carrillo M, Ricci LA, Coppersmith GA, Melloni RH Jr. 2009. The effect of increased serotonergic neurotransmission on aggression: A critical meta-analytical review of preclinical studies. Psychopharmacology (Berl) 205:349-368.
– reference: Renault J, Aubert A. 2006. Immunity and emotions: Lipopolysaccharide increases defensive behaviours and potentiates despair in mice. Brain Behav Immun 20:517-526.
– reference: Fonagy P. 2004. Early-life trauma and the psychogenesis and prevention of violence. Ann N Y Acad Sci 1036:181-200.
– reference: Loeber R, Stouthamer-Loeber M. 1998. Development of juvenile aggression and violence. Some common misconceptions and controversies. Am Psychol 53:242-259.
– reference: Magarinos AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS. 2011. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21:253-264.
– reference: Ito W, Chehab M, Thakur S, Li J, Morozov A. 2011. BDNF-restricted knockout mice as an animal model for aggression. Genes Brain Behav 10:365-374.
– reference: Bartolomucci A, Palanza P, Sacerdote P, Panerai AE, Sgoifo A, Dantzer R, Parmigiani S. 2005. Social factors and individual vulnerability to chronic stress exposure. Neurosci Biobehav Rev 29:67-81.
– volume: 15
  start-page: 689
  year: 2012
  end-page: 695
  article-title: Social influences on neuroplasticity: Stress and interventions to promote well‐being
  publication-title: Nat Neurosci
– volume: 10
  start-page: 365
  year: 2011
  end-page: 374
  article-title: BDNF‐restricted knockout mice as an animal model for aggression
  publication-title: Genes Brain Behav
– volume: 177
  start-page: 245
  year: 2005
  end-page: 255
  article-title: Forced swimming test in mice: A review of antidepressant activity
  publication-title: Psychopharmacology (Berl)
– volume: 8
  start-page: 536
  year: 2007
  end-page: 546
  article-title: Neural mechanisms of aggression
  publication-title: Nat Rev Neurosci
– volume: 174
  start-page: 26
  year: 2011
  end-page: 36
  article-title: Chronic stress‐induced hippocampal dendritic retraction requires CA3 NMDA receptors
  publication-title: Neuroscience
– volume: 1036
  start-page: 181
  year: 2004
  end-page: 200
  article-title: Early‐life trauma and the psychogenesis and prevention of violence
  publication-title: Ann N Y Acad Sci
– volume: 205
  start-page: 349
  year: 2009
  end-page: 368
  article-title: The effect of increased serotonergic neurotransmission on aggression: A critical meta‐analytical review of preclinical studies
  publication-title: Psychopharmacology (Berl)
– volume: 15
  start-page: 1382
  year: 2012
  end-page: 1390
  article-title: REST‐dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors
  publication-title: Nat Neurosci
– volume: 10
  start-page: 1110
  year: 2007
  end-page: 1105
  article-title: Adult hippocampal neurogenesis in depression
  publication-title: Nat Neurosci
– volume: 122
  start-page: 849
  year: 2008
  end-page: 854
  article-title: Early social deprivation induces disturbed social communication and violent aggression in adulthood
  publication-title: Behav Neurosci
– volume: 62
  start-page: 35
  year: 2012
  end-page: 41
  article-title: Signaling pathways underlying the rapid antidepressant actions of ketamine
  publication-title: Neuropharmacology
– volume: 41
  start-page: 58
  year: 2002
  end-page: 69
  article-title: Individual housing during the play period results in changed responses to and consequences of a psychosocial stress situation in rats
  publication-title: Dev Psychobiol
– volume: 25
  start-page: 381
  year: 1999
  end-page: 396
  article-title: Effects of NMDA receptor channel blockade on aggression in isolated male mice
  publication-title: Aggressive Behav
– volume: 470
  start-page: 221
  year: 2011
  end-page: 226
  article-title: Functional identification of an aggression locus in the mouse hypothalamus
  publication-title: Nature
– volume: 224
  start-page: 167
  year: 2012
  end-page: 77
  article-title: NMDA receptor antagonism: Escalation of aggressive behavior in alcohol‐drinking mice
  publication-title: Psychopharmacology (Berl)
– volume: 32
  start-page: 1087
  year: 2008
  end-page: 1102
  article-title: Behavioural and neurochemical effects of post‐weaning social isolation in rodents‐relevance to developmental neuropsychiatric disorders
  publication-title: Neurosci Biobehav Rev
– volume: 12
  start-page: 400
  year: 2011
  end-page: 413
  article-title: Cognitive and neurobiological mechanisms of alcohol‐related aggression
  publication-title: Nat Rev Neurosci
– volume: 21
  start-page: 253
  year: 2011
  end-page: 264
  article-title: Effect of brain‐derived neurotrophic factor haploinsufficiency on stress‐induced remodeling of hippocampal neurons
  publication-title: Hippocampus
– volume: 100
  start-page: 25
  year: 2011
  end-page: 32
  article-title: Post‐weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity
  publication-title: Pharmacol Biochem Behav
– volume: 983
  start-page: 128
  year: 2003
  end-page: 136
  article-title: Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats
  publication-title: Brain Res
– volume: 21
  start-page: 460
  year: 2011
  end-page: 466
  article-title: Hippocampal regulation of aversive memories
  publication-title: Curr Opin Neurobiol
– volume: 63
  start-page: 642
  year: 2008
  end-page: 649
  article-title: Selective loss of brain‐derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy
  publication-title: Biol Psychiatry
– volume: 4
  start-page: 161
  year: 2013
  article-title: Antidepressant effects of ketamine: Mechanisms underlying fast‐acting novel antidepressants
  publication-title: Front Pharmacol
– volume: 60
  start-page: 28
  year: 2011
  end-page: 36
  article-title: Post‐weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses
  publication-title: Horm Behav
– volume: 22
  start-page: 1300
  year: 2012
  end-page: 1312
  article-title: Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood
  publication-title: Hippocampus
– volume: 1
  year: 2008
  article-title: Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking
  publication-title: Curr Protoc Neurosci Chapter
– volume: 475
  start-page: 91
  year: 2011
  end-page: 95
  article-title: NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses
  publication-title: Nature
– volume: 33
  start-page: 1173
  year: 2009
  end-page: 1177
  article-title: Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment‐related gene expression in rats
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 8
  year: 2003
  article-title: Assessment of murine startle reactivity, prepulse inhibition, and habituation
  publication-title: Curr Protoc Neurosci Chapter
– volume: 85
  start-page: 354
  year: 2011
  end-page: 362
  article-title: Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post‐weaning socially isolated mice
  publication-title: Brain Res Bull
– volume: 34
  start-page: 129
  year: 1999
  end-page: 138
  article-title: Play is indispensable for an adequate development of coping with social challenges in the rat
  publication-title: Dev Psychobiol
– volume: 35
  start-page: 47
  year: 2012
  end-page: 56
  article-title: Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid‐acting agents
  publication-title: Trends Neurosci
– volume: 13
  start-page: 22
  year: 2012
  end-page: 37
  article-title: The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission
  publication-title: Nat Rev Neurosci
– volume: 56
  start-page: 823
  year: 2007
  end-page: 837
  article-title: Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK
  publication-title: Neuron
– volume: 58
  start-page: 368
  year: 2010
  end-page: 377
  article-title: Vasopressin cell groups exhibit strongly divergent responses to copulation and male‐male interactions in mice
  publication-title: Horm Behav
– volume: 16
  start-page: 1177
  year: 2011
  end-page: 1188
  article-title: Antidepressants recruit new neurons to improve stress response regulation
  publication-title: Mol Psychiatry
– volume: 161
  start-page: 197
  year: 2005
  end-page: 203
  article-title: Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice
  publication-title: Behav Brain Res
– volume: 31
  start-page: 383
  year: 1992
  end-page: 391
  article-title: From abuse to violence: Psychophysiological consequences of maltreatment
  publication-title: J Am Acad Child Adolesc Psychiatry
– volume: 97(5)
  start-page: 1481
  year: 2006
  end-page: 93
  article-title: Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: A new mechanism for the regulation of nitric oxide production
  publication-title: J Neurochem
– volume: 29
  start-page: 67
  year: 2005
  end-page: 81
  article-title: Social factors and individual vulnerability to chronic stress exposure
  publication-title: Neurosci Biobehav Rev
– volume: 53
  start-page: 242
  year: 1998
  end-page: 259
  article-title: Development of juvenile aggression and violence. Some common misconceptions and controversies
  publication-title: Am Psychol
– volume: 70
  start-page: 908
  year: 2011
  end-page: 923
  article-title: Experience dictates stem cell fate in the adult hippocampus
  publication-title: Neuron
– volume: 59
  start-page: 399
  year: 2008
  end-page: 412
  article-title: TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment
  publication-title: Neuron
– volume: 20
  start-page: 517
  year: 2006
  end-page: 526
  article-title: Immunity and emotions: Lipopolysaccharide increases defensive behaviours and potentiates despair in mice
  publication-title: Brain Behav Immun
– volume: 6
  start-page: 529
  year: 2007
  end-page: 539
  article-title: Social isolation and expression of serotonergic neurotransmission‐related genes in several brain areas of male mice
  publication-title: Genes Brain Behav
– volume: 29
  start-page: 1201
  year: 2005
  end-page: 1213
  article-title: Limbic system mechanisms of stress regulation: Hypothalamo‐pituitary‐adrenocortical axis
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 26
  start-page: 679
  year: 2002
  end-page: 695
  article-title: Child neglect: Developmental issues and outcomes
  publication-title: Child Abuse Negl
– volume: 147
  start-page: 431
  year: 2013
  end-page: 436
  article-title: Clinical experience using intranasal ketamine in the treatment of pediatric bipolar disorder/fear of harm phenotype
  publication-title: J Affect Disord
– volume: 31
  start-page: 517
  year: 2007
  end-page: 530
  article-title: Long‐term physical and mental health consequences of childhood physical abuse: Results from a large population‐based sample of men and women
  publication-title: Child Abuse Negl
– volume: 163
  start-page: 434
  year: 2002
  end-page: 458
  article-title: Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma‐aminobutyric acid systems
  publication-title: Psychopharmacology (Berl)
– volume: 250
  start-page: 1678
  year: 1990
  end-page: 1683
  article-title: Mechanisms in the cycle of violence
  publication-title: Science
– volume: 9
  start-page: 111
  year: 2008
  article-title: Imaging the neural circuitry and chemical control of aggressive motivation
  publication-title: BMC Neurosci
– volume: 2004
  start-page: re16
  year: 2004
  article-title: Role of distinct NMDA receptor subtypes at central synapses
  publication-title: Sci STKE
– volume: 59
  start-page: 355
  year: 1989
  end-page: 367
  article-title: Child abuse, neglect, and adult behavior: Research design and findings on criminality, violence, and child abuse
  publication-title: Am J Orthopsychiatry
– volume: 30
  start-page: 497
  year: 2009
  end-page: 518
  article-title: Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models?
  publication-title: Front Neuroendocrinol
– volume: 24
  start-page: 171
  year: 2004
  end-page: 191
  article-title: Early caregiving and physiological stress responses
  publication-title: Clin Psychol Rev
– ident: e_1_2_5_10_1
  doi: 10.1111/j.1471-4159.2006.03843.x
– ident: e_1_2_5_27_1
  doi: 10.1111/j.1601-183X.2010.00676.x
– ident: e_1_2_5_15_1
  doi: 10.1016/j.tins.2011.11.004
– ident: e_1_2_5_19_1
  doi: 10.1016/j.neubiorev.2008.03.003
– ident: e_1_2_5_50_1
  doi: 10.1037/0735-7044.122.4.849
– ident: e_1_2_5_29_1
  doi: 10.1016/j.neuron.2008.06.023
– ident: e_1_2_5_8_1
  doi: 10.1007/s00213-009-1543-2
– ident: e_1_2_5_52_1
  doi: 10.1002/(SICI)1098-2302(199903)34:2<129::AID-DEV6>3.0.CO;2-L
– ident: e_1_2_5_28_1
  doi: 10.1097/00004583-199205000-00001
– ident: e_1_2_5_25_1
  doi: 10.1016/S0145-2134(02)00341-1
– ident: e_1_2_5_3_1
  doi: 10.1038/nature10130
– ident: e_1_2_5_56_1
  doi: 10.1016/j.pbb.2011.07.008
– ident: e_1_2_5_38_1
  doi: 10.1038/nrn2174
– ident: e_1_2_5_47_1
  doi: 10.1016/S0006-8993(03)03042-7
– ident: e_1_2_5_45_1
  doi: 10.1038/nn1969
– ident: e_1_2_5_41_1
  doi: 10.1007/s00213-004-2048-7
– ident: e_1_2_5_39_1
  doi: 10.1007/s00213-012-2734-9
– ident: e_1_2_5_53_1
  doi: 10.1016/j.yfrne.2009.03.003
– ident: e_1_2_5_12_1
  doi: 10.1038/nn.3093
– ident: e_1_2_5_46_1
  doi: 10.1016/j.neuron.2007.09.035
– ident: e_1_2_5_57_1
  doi: 10.1016/j.pnpbp.2009.06.016
– ident: e_1_2_5_36_1
  doi: 10.1007/s00213-002-1139-6
– ident: e_1_2_5_20_1
  doi: 10.1002/0471142301.ns0817s24
– ident: e_1_2_5_22_1
  doi: 10.1002/0471142301.ns0116s42
– ident: e_1_2_5_42_1
  doi: 10.1038/nrn3138
– ident: e_1_2_5_34_1
  doi: 10.1016/j.bbr.2005.02.005
– ident: e_1_2_5_32_1
  doi: 10.1016/j.cpr.2004.01.003
– ident: e_1_2_5_55_1
  doi: 10.1111/j.1939-0025.1989.tb01671.x
– ident: e_1_2_5_30_1
  doi: 10.1038/nature09736
– ident: e_1_2_5_54_1
  doi: 10.1002/dev.10057
– ident: e_1_2_5_43_1
  doi: 10.1016/j.bbi.2006.03.003
– ident: e_1_2_5_23_1
  doi: 10.1038/nrn3042
– ident: e_1_2_5_49_1
  doi: 10.1038/mp.2011.48
– ident: e_1_2_5_7_1
  doi: 10.3389/fphar.2013.00161
– ident: e_1_2_5_16_1
  doi: 10.1016/j.neuropharm.2011.08.044
– volume: 53
  start-page: 242
  year: 1998
  ident: e_1_2_5_31_1
  article-title: Development of juvenile aggression and violence. Some common misconceptions and controversies
  publication-title: Am Psychol
  doi: 10.1037/0003-066X.53.2.242
– ident: e_1_2_5_35_1
  doi: 10.1002/hipo.20966
– ident: e_1_2_5_2_1
  doi: 10.1016/j.biopsych.2007.09.019
– ident: e_1_2_5_37_1
  doi: 10.1016/j.brainresbull.2011.03.027
– ident: e_1_2_5_40_1
  doi: 10.1016/j.jad.2012.08.040
– ident: e_1_2_5_44_1
  doi: 10.1038/nn.3214
– ident: e_1_2_5_11_1
  doi: 10.1126/stke.2552004re16
– ident: e_1_2_5_14_1
  doi: 10.1016/j.neuron.2011.05.022
– ident: e_1_2_5_24_1
  doi: 10.1016/j.pnpbp.2005.08.006
– ident: e_1_2_5_9_1
  doi: 10.1016/j.neuroscience.2010.11.033
– ident: e_1_2_5_18_1
  doi: 10.1196/annals.1330.012
– ident: e_1_2_5_21_1
  doi: 10.1016/j.conb.2011.04.003
– ident: e_1_2_5_51_1
  doi: 10.1016/j.yhbeh.2011.02.003
– ident: e_1_2_5_17_1
  doi: 10.1186/1471-2202-9-111
– ident: e_1_2_5_48_1
  doi: 10.1016/j.chiabu.2007.01.003
– ident: e_1_2_5_33_1
  doi: 10.1002/hipo.20744
– ident: e_1_2_5_26_1
  doi: 10.1016/j.yhbeh.2010.03.021
– ident: e_1_2_5_6_1
  doi: 10.1111/j.1601-183X.2006.00280.x
– ident: e_1_2_5_13_1
  doi: 10.1126/science.2270481
– ident: e_1_2_5_4_1
  doi: 10.1016/j.neubiorev.2004.06.009
– ident: e_1_2_5_5_1
  doi: 10.1002/(SICI)1098-2337(1999)25:5<381::AID-AB6>3.0.CO;2-B
SSID ssj0011500
Score 2.4101436
Snippet ABSTRACT Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in...
Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence,...
Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence,...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 474
SubjectTerms acute stress
Affective Symptoms - etiology
Affective Symptoms - pathology
aggression
Aggression - physiology
Animals
Animals, Newborn
depression
Dizocilpine Maleate - pharmacology
Excitatory Amino Acid Antagonists - pharmacology
Excitatory Postsynaptic Potentials - drug effects
Exploratory Behavior - physiology
Gene Expression Regulation - physiology
Hippocampus - cytology
Hippocampus - metabolism
Male
Membrane Potentials - drug effects
Membrane Potentials - physiology
Mice
Mice, Inbred C57BL
Neurons - drug effects
Neurons - physiology
NMDA receptor
Piperidines - pharmacology
Prepulse Inhibition - drug effects
Prepulse Inhibition - physiology
Random Allocation
Receptors, N-Methyl-D-Aspartate - metabolism
Reflex, Startle - physiology
social isolation
Social Isolation - psychology
Swimming - psychology
Synaptosomes - drug effects
Synaptosomes - metabolism
Title Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice
URI https://api.istex.fr/ark:/67375/WNG-FLBQ21D1-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhipo.22384
https://www.ncbi.nlm.nih.gov/pubmed/25348768
https://www.proquest.com/docview/1664409284
https://www.proquest.com/docview/1665120248
https://www.proquest.com/docview/1668257695
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELamISG-8LLxUhjICDQJpHSxY6exxJfCKAXRAhMT-zJZjuNANZpGayttfOIn8Bv5JdzZaaahaRJ8i5Jz5Jfz3XPO5TlCnhZcmLgsWWR6LonAX5eRSUsZORXzQkleJhaPBkbjdLgv3h3IgzXyYvUvTOCHaA_ccGd4e40b3OTznTPS0G-TetYF55YhGSgmayEi2mu5oxDpBCoCGUegZazlJuU7Z03PeaMrOLEnF0HN88jVu57BDXK46nTIODnqLhd51_74i8_xf0d1k1xvMCntByW6RdZctUE2-xXE49NTuk19lqg_ft8gV0fNx_hNsgi_9tIJqK9f398_f0GED7pS0EmFaHTu4IKOR7t9CobV1VjZB-8A6KTQhRr86LRezqk7MRaWF2EvdaGuELy3OIUJ-9qUF8NmUzBqt8n-4PXnV8OoKeIQWaGEiFxPAMRkLJEuscoqGSOkEsoJVjprwASURZrFaWx7Bhwl5zZ3cAvaqMwp5ZI7ZL2aVe4eoQ5iw5SVwgLkE3nMTcqsKlheJMJkZS_tkGerxdS2YTjHQhvfdeBm5hpnV_vZ7ZAnrWwdeD0ulNr2OtGKmOMjzITrSf1l_EYP3r_8xNku03sdsrVSGt0YgblmKYDNWHF8z-P2MWxf_CZjKjdbehmAXEgsd6lMhnGhkh1yNyhk2yEuEwg5U2j93KvVJYPRw7cfP_ir-_8i_IBcA5AoQ7bSFllfHC_dQwBii_yR33B_AOYWLwY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgk4AX_mz8KQwwAk0CKV3s2En8WBilg7bAtIm9WY7jQDWaRmsrbTzxEfiMfBLunCzT0DQJ3qLkbDn2-e53zuV3hLzIuTBhUbDAJC4KwF8XgYkLGTgV8lxJXkQWjwZG43iwL94fyIMmNwf_han5IdoDN9wZ3l7jBscD6a0z1tBvk2rWBe-WiqtkFUt6-4hqt2WPQqxTkxHIMAA9Yy07Kd86a3vOH63i1B5fBDbPY1fvfPq36gqrc89ZiDknh93lIuvaH38xOv73e90mNxtYSnu1Ht0hV1y5RtZ7JYTk0xO6SX2iqD-BXyPXRs33-HWyqP_upRPQYL_Ev3_-giAf1CWnkxIB6dzBBR2PtnsUbKursLgP3gHcSWEIFbjSabWcU3dsLKwwIl_q6tJC0G9-AjP2takwhs2mYNfukv3-2703g6Cp4xBYoYQIXCIAZTIWSRdZZZUMEVUJ5QQrnDVgBYo8TsM4tIkBX8m5zRzcgjYqdUq56B5ZKWele0Cog_AwZoWwgPpEFnITM6tyluWRMGmRxB3y8nQ1tW1IzrHWxndd0zNzjbOr_ex2yPNWtqqpPS6U2vRK0YqYo0NMhkuk_jJ-p_vD158522Z6t0M2TrVGN3ZgrlkMeDNUHPt51j6GHYyfZUzpZksvA6gLueUulUkxNFSyQ-7XGtkOiMsIos4YWr_yenXJy-jBzqeP_urhvwg_JdcHe6OhHu6MPzwiNwAzyjp5aYOsLI6W7jHgskX2xO--P7RaMyE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJk3cDNj4KQwwAk0CKV3s2EkscVMopYO1jGkTu0GW4zijGk2jtZU2rngEnpEn4dhOMw1Nk-Auco4t_xyf8x3H-Q5CL3LKVFgUJFCJiQLw10Wg4oIHRoQ0F5wWkbZHA4Nh3D9kH4740RJ6vfgXxvNDNAdudmc4e203eJUX2xekod9G1aQNzi1lN9AKi8PU6nR3vyGPslDHcxHwMAA1Iw05Kd2-qHvJHa3YmT27Cmtehq7O9_Ruoa-LXvsrJyft-Sxr6x9_ETr-77Buo7UalOKO16I7aMmU62ijU0JAPj7HW9hdE3Xn7-todVB_jd9AM_9vLx6B_roF_v3zF4T4oCw5HpUWjk4NPODhoNvBYFlNZVP72BJAnRi6UIEjHVfzKTZnSsP6WtyLjU8sBO3m5zBhx3V-MVttDFbtLjrsvTt42w_qLA6BZoKxwCQMMCYhETeRFlrw0GIqJgwjhdEKbECRx2kYhzpR4Ckp1ZmBIqgjUiOEie6h5XJSmgcIGwgOY1IwDZiPZSFVMdEiJ1keMZUWSdxCLxeLKXVNcW4zbXyXnpyZSju70s1uCz1vZCtP7HGl1JbTiUZEnZ7Yq3AJl1-G72Vv981nSrpE7rfQ5kJpZG0FppLEgDZDQW07z5rXsH_tRxlVmsncyQDmssxy18qkNjAUvIXue4VsOkR5BDFnDLVfObW6ZjCyv7P3yT09_Bfhp2h1r9uTuzvDj4_QTQCM3N9c2kTLs9O5eQygbJY9cXvvDxa4Mdk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+isolation-induced+increase+in+NMDA+receptors+in+the+hippocampus+exacerbates+emotional+dysregulation+in+mice&rft.jtitle=Hippocampus&rft.au=Chang%2C+Chih-Hua&rft.au=Hsiao%2C+Ya-Hsin&rft.au=Chen%2C+Yu-Wen&rft.au=Yu%2C+Yang-Jung&rft.date=2015-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1050-9631&rft.eissn=1098-1063&rft.volume=25&rft.issue=4&rft.spage=474&rft.epage=485&rft_id=info:doi/10.1002%2Fhipo.22384&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FLBQ21D1_R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon