Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice
ABSTRACT Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21–28 were randomly assigned to either a group or is...
Saved in:
Published in | Hippocampus Vol. 25; no. 4; pp. 474 - 485 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.04.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21–28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole‐cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input‐output relationship of NMDAR‐EPSCs as compared to the GH mice. Application of the NR2B‐specific antagonist ifenprodil produced a greater attenuating effect on NMDAR‐EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK‐801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress‐induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress‐induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation‐induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. © 2014 Wiley Periodicals, Inc. |
---|---|
AbstractList | Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21–28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR
2A
and NR
2B
levels in the hippocampus as compared to the GH mice. Whole‐cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input‐output relationship of NMDAR‐EPSCs as compared to the GH mice. Application of the NR
2B
‐specific antagonist ifenprodil produced a greater attenuating effect on NMDAR‐EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK‐801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress‐induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress‐induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR
2B
expression. These results suggest that social isolation‐induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. © 2014 Wiley Periodicals, Inc. Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B-specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. © 2014 Wiley Periodicals, Inc. ABSTRACT Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21–28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole‐cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input‐output relationship of NMDAR‐EPSCs as compared to the GH mice. Application of the NR2B‐specific antagonist ifenprodil produced a greater attenuating effect on NMDAR‐EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK‐801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress‐induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress‐induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation‐induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. © 2014 Wiley Periodicals, Inc. Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children.Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR sub(2A) and NR sub(2B) levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR sub(2B)-specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR sub(2B) expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. copyright 2014 Wiley Periodicals, Inc. |
Author | Chen, Yu-Wen Chang, Chih-Hua Hsiao, Ya-Hsin Gean, Po-Wu Yu, Yang-Jung |
Author_xml | – sequence: 1 givenname: Chih-Hua surname: Chang fullname: Chang, Chih-Hua organization: Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan – sequence: 2 givenname: Ya-Hsin surname: Hsiao fullname: Hsiao, Ya-Hsin organization: Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan – sequence: 3 givenname: Yu-Wen surname: Chen fullname: Chen, Yu-Wen organization: Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan – sequence: 4 givenname: Yang-Jung surname: Yu fullname: Yu, Yang-Jung organization: Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan – sequence: 5 givenname: Po-Wu surname: Gean fullname: Gean, Po-Wu email: powu@mail.ncku.edu.tw organization: Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25348768$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctv1DAQhy1URB9w4Q9AkbigSikeP5L4WFr6kJaWpzhaXmeWuiRxsBO1-9_jbLocKoQ4eTT6vp81M_tkp_MdEvIS6BFQyt7euN4fMcYr8YTsAVVVDrTgO1Mtaa4KDrtkP8ZbSgEkpc_ILpNcVGVR7ZHwxVtnmsxF35jB-S53XT1arDPX2YAmYiqyqw-nx1lAi_3gQ5w6ww1m6d_eW9P2Y8zw3lgMSzNgqls_JaXUeh0D_hjn5ElrncXn5OnKNBFfPLwH5NvZ-68nF_ni-vzy5HiRW6GEyLEUqiwBuERulVWSApMgFApYoTWSw6ouKlpQWxpRAmN2iamVHFWhUsgPyJs5tw_-14hx0K2LFpvGdOjHqKEoKibLQsn_QSUwykSV0NeP0Fs_hjTshhKCKlaJRL16oMZli7Xug2tNWOvt4hNAZ8AGH9OSVtq6YbOmIRjXaKB6uq2ebqs3t03K4SNlm_pXGGb4zjW4_gepLy4_Xm-dfHZcHPD-j2PCT12UvJT6-9W5Plu8-8TgFPRn_hvYxsK- |
CODEN | HIPPEL |
CitedBy_id | crossref_primary_10_1002_ab_22022 crossref_primary_10_1016_j_bbr_2015_10_049 crossref_primary_10_1016_j_psychres_2017_10_018 crossref_primary_10_1038_s41598_024_62534_w crossref_primary_10_3389_fnbeh_2020_583395 crossref_primary_10_1016_j_bbr_2017_03_017 crossref_primary_10_1016_j_ynstr_2023_100600 crossref_primary_10_1113_JP285875 crossref_primary_10_1002_hipo_23276 crossref_primary_10_1016_j_niox_2019_11_004 crossref_primary_10_1177_1179069518820323 crossref_primary_10_1016_j_biocel_2021_106120 crossref_primary_10_1016_j_neulet_2015_12_005 crossref_primary_10_1016_j_bbi_2024_12_025 crossref_primary_10_3892_ijmm_2016_2589 crossref_primary_10_2139_ssrn_3330814 crossref_primary_10_3390_cells11030379 crossref_primary_10_1016_j_neubiorev_2017_09_028 crossref_primary_10_1155_2017_3467805 crossref_primary_10_1002_dev_21887 crossref_primary_10_1016_j_celrep_2019_07_005 crossref_primary_10_3389_fnmol_2023_1313635 crossref_primary_10_1007_s00213_019_05368_z crossref_primary_10_1016_j_neuropharm_2019_107667 crossref_primary_10_1016_j_bbr_2016_09_005 crossref_primary_10_1016_j_neures_2022_07_009 crossref_primary_10_1016_j_ynstr_2021_100337 crossref_primary_10_1038_s41386_021_00990_y crossref_primary_10_1016_j_bbr_2022_113986 crossref_primary_10_1210_en_2017_03176 crossref_primary_10_3389_fendo_2021_638261 crossref_primary_10_1016_j_neuroscience_2015_12_024 crossref_primary_10_1016_j_neuroscience_2018_01_038 crossref_primary_10_3389_fnbeh_2022_938044 crossref_primary_10_3390_ijms20225599 crossref_primary_10_1016_j_pharmthera_2021_107875 crossref_primary_10_3389_fnins_2021_669075 crossref_primary_10_3390_ijms20061482 crossref_primary_10_1016_j_biopha_2018_05_086 crossref_primary_10_1016_j_ynstr_2024_100665 crossref_primary_10_3389_fnbeh_2018_00240 crossref_primary_10_1016_j_freeradbiomed_2023_11_006 crossref_primary_10_1016_j_ejphar_2024_176918 crossref_primary_10_3389_fendo_2022_817100 crossref_primary_10_1016_j_brainresbull_2016_01_013 crossref_primary_10_1016_j_intimp_2021_108488 crossref_primary_10_1177_1178646920928984 crossref_primary_10_3389_fnsys_2022_860847 crossref_primary_10_1016_j_neures_2023_11_005 crossref_primary_10_1016_j_ynstr_2024_100696 crossref_primary_10_3389_fphar_2021_700003 crossref_primary_10_3390_brainsci10080520 crossref_primary_10_1038_srep30743 crossref_primary_10_1016_j_nlm_2018_01_001 crossref_primary_10_1002_ajmg_b_32479 crossref_primary_10_1097_AAP_0000000000000808 crossref_primary_10_1093_cercor_bhz089 crossref_primary_10_1371_journal_pone_0165071 crossref_primary_10_1177_1744806916656635 crossref_primary_10_3389_fnagi_2017_00123 crossref_primary_10_1016_j_neuropharm_2018_09_019 crossref_primary_10_1002_brb3_929 crossref_primary_10_1002_ptr_7944 crossref_primary_10_1007_s10571_016_0388_6 crossref_primary_10_1002_ab_21912 crossref_primary_10_1016_j_omtn_2020_05_001 crossref_primary_10_1007_s00429_023_02705_z |
Cites_doi | 10.1111/j.1471-4159.2006.03843.x 10.1111/j.1601-183X.2010.00676.x 10.1016/j.tins.2011.11.004 10.1016/j.neubiorev.2008.03.003 10.1037/0735-7044.122.4.849 10.1016/j.neuron.2008.06.023 10.1007/s00213-009-1543-2 10.1002/(SICI)1098-2302(199903)34:2<129::AID-DEV6>3.0.CO;2-L 10.1097/00004583-199205000-00001 10.1016/S0145-2134(02)00341-1 10.1038/nature10130 10.1016/j.pbb.2011.07.008 10.1038/nrn2174 10.1016/S0006-8993(03)03042-7 10.1038/nn1969 10.1007/s00213-004-2048-7 10.1007/s00213-012-2734-9 10.1016/j.yfrne.2009.03.003 10.1038/nn.3093 10.1016/j.neuron.2007.09.035 10.1016/j.pnpbp.2009.06.016 10.1007/s00213-002-1139-6 10.1002/0471142301.ns0817s24 10.1002/0471142301.ns0116s42 10.1038/nrn3138 10.1016/j.bbr.2005.02.005 10.1016/j.cpr.2004.01.003 10.1111/j.1939-0025.1989.tb01671.x 10.1038/nature09736 10.1002/dev.10057 10.1016/j.bbi.2006.03.003 10.1038/nrn3042 10.1038/mp.2011.48 10.3389/fphar.2013.00161 10.1016/j.neuropharm.2011.08.044 10.1037/0003-066X.53.2.242 10.1002/hipo.20966 10.1016/j.biopsych.2007.09.019 10.1016/j.brainresbull.2011.03.027 10.1016/j.jad.2012.08.040 10.1038/nn.3214 10.1126/stke.2552004re16 10.1016/j.neuron.2011.05.022 10.1016/j.pnpbp.2005.08.006 10.1016/j.neuroscience.2010.11.033 10.1196/annals.1330.012 10.1016/j.conb.2011.04.003 10.1016/j.yhbeh.2011.02.003 10.1186/1471-2202-9-111 10.1016/j.chiabu.2007.01.003 10.1002/hipo.20744 10.1016/j.yhbeh.2010.03.021 10.1111/j.1601-183X.2006.00280.x 10.1126/science.2270481 10.1016/j.neubiorev.2004.06.009 10.1002/(SICI)1098-2337(1999)25:5<381::AID-AB6>3.0.CO;2-B |
ContentType | Journal Article |
Copyright | 2014 Wiley Periodicals, Inc. 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7TK K9. 7X8 |
DOI | 10.1002/hipo.22384 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Animal Behavior Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1098-1063 |
EndPage | 485 |
ExternalDocumentID | 3628540671 25348768 10_1002_hipo_22384 HIPO22384 ark_67375_WNG_FLBQ21D1_R |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: The National Science Council funderid: NSC99–2923‐B‐006‐001‐MY3; NSC100‐2321‐B‐006‐002; NSC101‐2321‐B‐006‐025 – fundername: The National Health Research Institute funderid: NHRI‐EX101–10117NI |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SUPJJ SV3 TEORI TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XJT XPP XSW XV2 ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QG 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c4944-e749771135e3c9c950125149e41feca531fd68060c7a47122cbe1fd97798e99e3 |
IEDL.DBID | DR2 |
ISSN | 1050-9631 1098-1063 |
IngestDate | Fri Jul 11 16:40:46 EDT 2025 Fri Jul 11 00:55:39 EDT 2025 Fri Jul 25 04:55:31 EDT 2025 Wed Feb 19 01:56:30 EST 2025 Thu Apr 24 23:04:35 EDT 2025 Tue Jul 01 02:05:57 EDT 2025 Wed Jan 22 16:38:14 EST 2025 Wed Oct 30 09:55:38 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | social isolation aggression depression NMDA receptor acute stress |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4944-e749771135e3c9c950125149e41feca531fd68060c7a47122cbe1fd97798e99e3 |
Notes | ark:/67375/WNG-FLBQ21D1-R ArticleID:HIPO22384 The National Health Research Institute - No. NHRI-EX101-10117NI The National Science Council - No. NSC99-2923-B-006-001-MY3; No. NSC100-2321-B-006-002; No. NSC101-2321-B-006-025 istex:C6CA3FBA482CA180420609CE0A2AD59C08BCE2FA ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25348768 |
PQID | 1664409284 |
PQPubID | 996349 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1668257695 proquest_miscellaneous_1665120248 proquest_journals_1664409284 pubmed_primary_25348768 crossref_citationtrail_10_1002_hipo_22384 crossref_primary_10_1002_hipo_22384 wiley_primary_10_1002_hipo_22384_HIPO22384 istex_primary_ark_67375_WNG_FLBQ21D1_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2015 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: April 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Boston |
PublicationTitle | Hippocampus |
PublicationTitleAlternate | Hippocampus |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A. 2011. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 12:400-413. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ. 2011. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221-226. Cossenza M, Cadilhe DV, Coutinho RN, Paes-de-Carvalho R. 2006. Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: A new mechanism for the regulation of nitric oxide production. J Neurochem 97(5):1481-93. Ho JM, Murray JH, Demas GE, Goodson JL. 2010. Vasopressin cell groups exhibit strongly divergent responses to copulation and male-male interactions in mice. Horm Behav 58:368-377. Von Frijtag JC, Schot M, van den Bos R, Spruijt BM. 2002. Individual housing during the play period results in changed responses to and consequences of a psychosocial stress situation in rats. Dev Psychobiol 41:58-69. Bibancos T, Jardim DL, Aneas I, Chiavegatto S. 2007. Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes Brain Behav 6:529-539. Naert A, Callaerts-Vegh Z, D'Hooge R. 2011. Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain Res Bull 85:354-362. Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C. 2011. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16:1177-1188. Geyer MA, Dulawa SC. 2003. Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8:Unit 8.17. Goosens KA. 2011. Hippocampal regulation of aversive memories. Curr Opin Neurobiol 21:460-466. Bartolomucci A, Palanza P, Sacerdote P, Panerai AE, Sgoifo A, Dantzer R, Parmigiani S. 2005. Social factors and individual vulnerability to chronic stress exposure. Neurosci Biobehav Rev 29:67-81. Davidson RJ, McEwen BS. 2012. Social influences on neuroplasticity: Stress and interventions to promote well-being. Nat Neurosci 15:689-695. Workman JL, Fonken LK, Gusfa J, Kassouf KM, Nelson RJ. 2011. Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 100:25-32. Belozertseva IV, Bespalov AY. 1999. Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggressive Behav 25:381-396. Papolos DF, Teicher MH, Faedda GL, Murphy P, Mattis S. 2013. Clinical experience using intranasal ketamine in the treatment of pediatric bipolar disorder/fear of harm phenotype. J Affect Disord 147:431-436. Toth M, Halasz J, Mikics E, Barsy B, Haller J. 2008. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci 122:849-854. Carrillo M, Ricci LA, Coppersmith GA, Melloni RH Jr. 2009. The effect of increased serotonergic neurotransmission on aggression: A critical meta-analytical review of preclinical studies. Psychopharmacology (Berl) 205:349-368. Veenema AH. 2009. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models? Front Neuroendocrinol 30:497-518. Magarinos AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS. 2011. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21:253-264. Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, Bassel-Duby R, Parada LF. 2008. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59:399-412. Popoli M, Yan Z, McEwen BS, Sanacora G. 2012. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22-37. Lewis DO. 1992. From abuse to violence: Psychophysiological consequences of maltreatment. J Am Acad Child Adolesc Psychiatry 31:383-391. Cull-Candy SG, Leszkiewicz DN. 2004. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004:re16. Sahay A, Hen R. 2007. Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110-1105. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. 2012. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35-41. Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. 2008. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642-649. Hildyard KL, Wolfe DA. 2002. Child neglect: Developmental issues and outcomes. Child Abuse Negl 26:679-695. Newman EL, Chu A, Bahamon B, Takahashi A, Debold JF, Miczek KA. 2012. NMDA receptor antagonism: Escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology (Berl) 224:167-77. Rodenas-Ruano A, Chavez AE, Cossio MJ, Castillo PE, Zukin RS. 2012. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15:1382-1390. Springer KW, Sheridan J, Kuo D, Carnes M. 2007. Long-term physical and mental health consequences of childhood physical abuse: Results from a large population-based sample of men and women. Child Abuse Negl 31:517-530. Herman JP, Ostrander MM, Mueller NK, Figueiredo H. 2005. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201-1213. Fonagy P. 2004. Early-life trauma and the psychogenesis and prevention of violence. Ann N Y Acad Sci 1036:181-200. Luecken LJ, Lemery KS. 2004. Early caregiving and physiological stress responses. Clin Psychol Rev 24:171-191. Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. 2007. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56:823-837. van den Berg CL, Hol T, Van Ree JM, Spruijt BM, Everts H, Koolhaas JM. 1999. Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol 34:129-138. Silva-Gomez AB, Rojas D, Juarez I, Flores G. 2003. Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128-136. Petit-Demouliere B, Chenu F, Bourin M. 2005. Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology (Berl) 177:245-255. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91-95. Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S. 2009. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1173-1177. Fone KC, Porkess MV. 2008. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087-1102. Widom CS. 1989. Child abuse, neglect, and adult behavior: Research design and findings on criminality, violence, and child abuse. Am J Orthopsychiatry 59:355-367. McCormick CM, Thomas CM, Sheridan CS, Nixon F, Flynn JA, Mathews IZ. 2012. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood. Hippocampus 22:1300-1312. Duman RS, Voleti B. 2012. Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents. Trends Neurosci 35:47-56. Loeber R, Stouthamer-Loeber M. 1998. Development of juvenile aggression and violence. Some common misconceptions and controversies. Am Psychol 53:242-259. Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J. 2011. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 60:28-36. Christian KM, Miracle AD, Wellman CL, Nakazawa K. 2011. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174:26-36. Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, Leonardo ED, Hen R. 2011. Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908-923. Ito W, Chehab M, Thakur S, Li J, Morozov A. 2011. BDNF-restricted knockout mice as an animal model for aggression. Genes Brain Behav 10:365-374. Renault J, Aubert A. 2006. Immunity and emotions: Lipopolysaccharide increases defensive behaviours and potentiates despair in mice. Brain Behav Immun 20:517-526. Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG. 2008. Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111. Nelson RJ, Trainor BC. 2007. Neural mechanisms of aggression. Nat Rev Neurosci 8:536-546. Browne CA, Lucki I. 2013. Antidepressant effects of ketamine: Mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161. Miczek KA, Fish EW, De Bold JF, De Almeida RM. 2002. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl) 163:434-458. Dodge KA, Bates JE, Pettit GS. 1990. Mechanisms in the cycle of violence. Science 250:1678-1683. Marino MD, Bourdelat-Parks BN, Cameron Liles L, Weinshenker D. 2005. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197-203. Hallett PJ, Collins TL, Standaert DG, Dunah AW. 2008. Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. Curr Protoc Neurosci Chapter 1:Unit 1.16. 2013; 4 2010; 58 2005; 177 2011; 60 2004; 24 2008; 9 2011; 10 2008; 32 2011; 12 2012; 15 2008; 1 2007; 31 2011; 470 2012; 13 2011; 16 2005; 29 2011; 475 2006; 20 2002; 41 2011; 70 2003; 8 2007; 8 2007; 6 2011; 21 2008; 63 1998; 53 2012; 22 2009; 205 1990; 250 2012; 62 1999; 25 2008; 59 2013; 147 2011; 174 1992; 31 2012; 224 2012; 35 2007; 10 2008; 122 2007; 56 2006; 97(5) 2009; 33 2002; 26 2005; 161 2009; 30 2002; 163 2011; 85 1999; 34 2004; 2004 2004; 1036 1989; 59 2003; 983 2011; 100 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 Loeber R (e_1_2_5_31_1) 1998; 53 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – reference: Belozertseva IV, Bespalov AY. 1999. Effects of NMDA receptor channel blockade on aggression in isolated male mice. Aggressive Behav 25:381-396. – reference: Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. 2008. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 63:642-649. – reference: Ferris CF, Stolberg T, Kulkarni P, Murugavel M, Blanchard R, Blanchard DC, Febo M, Brevard M, Simon NG. 2008. Imaging the neural circuitry and chemical control of aggressive motivation. BMC Neurosci 9:111. – reference: Bibancos T, Jardim DL, Aneas I, Chiavegatto S. 2007. Social isolation and expression of serotonergic neurotransmission-related genes in several brain areas of male mice. Genes Brain Behav 6:529-539. – reference: Widom CS. 1989. Child abuse, neglect, and adult behavior: Research design and findings on criminality, violence, and child abuse. Am J Orthopsychiatry 59:355-367. – reference: Newman EL, Chu A, Bahamon B, Takahashi A, Debold JF, Miczek KA. 2012. NMDA receptor antagonism: Escalation of aggressive behavior in alcohol-drinking mice. Psychopharmacology (Berl) 224:167-77. – reference: Naert A, Callaerts-Vegh Z, D'Hooge R. 2011. Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post-weaning socially isolated mice. Brain Res Bull 85:354-362. – reference: Hildyard KL, Wolfe DA. 2002. Child neglect: Developmental issues and outcomes. Child Abuse Negl 26:679-695. – reference: Fone KC, Porkess MV. 2008. Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32:1087-1102. – reference: Zhao X, Sun L, Jia H, Meng Q, Wu S, Li N, He S. 2009. Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment-related gene expression in rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1173-1177. – reference: Cull-Candy SG, Leszkiewicz DN. 2004. Role of distinct NMDA receptor subtypes at central synapses. Sci STKE 2004:re16. – reference: Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. 2007. Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56:823-837. – reference: Von Frijtag JC, Schot M, van den Bos R, Spruijt BM. 2002. Individual housing during the play period results in changed responses to and consequences of a psychosocial stress situation in rats. Dev Psychobiol 41:58-69. – reference: Toth M, Halasz J, Mikics E, Barsy B, Haller J. 2008. Early social deprivation induces disturbed social communication and violent aggression in adulthood. Behav Neurosci 122:849-854. – reference: Sahay A, Hen R. 2007. Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110-1105. – reference: Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91-95. – reference: Springer KW, Sheridan J, Kuo D, Carnes M. 2007. Long-term physical and mental health consequences of childhood physical abuse: Results from a large population-based sample of men and women. Child Abuse Negl 31:517-530. – reference: Heinz AJ, Beck A, Meyer-Lindenberg A, Sterzer P, Heinz A. 2011. Cognitive and neurobiological mechanisms of alcohol-related aggression. Nat Rev Neurosci 12:400-413. – reference: Veenema AH. 2009. Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models? Front Neuroendocrinol 30:497-518. – reference: Dodge KA, Bates JE, Pettit GS. 1990. Mechanisms in the cycle of violence. Science 250:1678-1683. – reference: Marino MD, Bourdelat-Parks BN, Cameron Liles L, Weinshenker D. 2005. Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice. Behav Brain Res 161:197-203. – reference: Workman JL, Fonken LK, Gusfa J, Kassouf KM, Nelson RJ. 2011. Post-weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity. Pharmacol Biochem Behav 100:25-32. – reference: Ho JM, Murray JH, Demas GE, Goodson JL. 2010. Vasopressin cell groups exhibit strongly divergent responses to copulation and male-male interactions in mice. Horm Behav 58:368-377. – reference: McCormick CM, Thomas CM, Sheridan CS, Nixon F, Flynn JA, Mathews IZ. 2012. Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood. Hippocampus 22:1300-1312. – reference: Luecken LJ, Lemery KS. 2004. Early caregiving and physiological stress responses. Clin Psychol Rev 24:171-191. – reference: Cossenza M, Cadilhe DV, Coutinho RN, Paes-de-Carvalho R. 2006. Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: A new mechanism for the regulation of nitric oxide production. J Neurochem 97(5):1481-93. – reference: Toth M, Mikics E, Tulogdi A, Aliczki M, Haller J. 2011. Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm Behav 60:28-36. – reference: Davidson RJ, McEwen BS. 2012. Social influences on neuroplasticity: Stress and interventions to promote well-being. Nat Neurosci 15:689-695. – reference: Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, Leonardo ED, Hen R. 2011. Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908-923. – reference: Lewis DO. 1992. From abuse to violence: Psychophysiological consequences of maltreatment. J Am Acad Child Adolesc Psychiatry 31:383-391. – reference: Duman RS, Voleti B. 2012. Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid-acting agents. Trends Neurosci 35:47-56. – reference: Rodenas-Ruano A, Chavez AE, Cossio MJ, Castillo PE, Zukin RS. 2012. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci 15:1382-1390. – reference: Browne CA, Lucki I. 2013. Antidepressant effects of ketamine: Mechanisms underlying fast-acting novel antidepressants. Front Pharmacol 4:161. – reference: Christian KM, Miracle AD, Wellman CL, Nakazawa K. 2011. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 174:26-36. – reference: Li Y, Luikart BW, Birnbaum S, Chen J, Kwon CH, Kernie SG, Bassel-Duby R, Parada LF. 2008. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 59:399-412. – reference: Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ. 2011. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221-226. – reference: Popoli M, Yan Z, McEwen BS, Sanacora G. 2012. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22-37. – reference: Herman JP, Ostrander MM, Mueller NK, Figueiredo H. 2005. Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29:1201-1213. – reference: Petit-Demouliere B, Chenu F, Bourin M. 2005. Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology (Berl) 177:245-255. – reference: Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. 2012. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 62:35-41. – reference: Surget A, Tanti A, Leonardo ED, Laugeray A, Rainer Q, Touma C, Palme R, Griebel G, Ibarguen-Vargas Y, Hen R, Belzung C. 2011. Antidepressants recruit new neurons to improve stress response regulation. Mol Psychiatry 16:1177-1188. – reference: Nelson RJ, Trainor BC. 2007. Neural mechanisms of aggression. Nat Rev Neurosci 8:536-546. – reference: Silva-Gomez AB, Rojas D, Juarez I, Flores G. 2003. Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats. Brain Res 983:128-136. – reference: Hallett PJ, Collins TL, Standaert DG, Dunah AW. 2008. Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. Curr Protoc Neurosci Chapter 1:Unit 1.16. – reference: Papolos DF, Teicher MH, Faedda GL, Murphy P, Mattis S. 2013. Clinical experience using intranasal ketamine in the treatment of pediatric bipolar disorder/fear of harm phenotype. J Affect Disord 147:431-436. – reference: Geyer MA, Dulawa SC. 2003. Assessment of murine startle reactivity, prepulse inhibition, and habituation. Curr Protoc Neurosci Chapter 8:Unit 8.17. – reference: Goosens KA. 2011. Hippocampal regulation of aversive memories. Curr Opin Neurobiol 21:460-466. – reference: van den Berg CL, Hol T, Van Ree JM, Spruijt BM, Everts H, Koolhaas JM. 1999. Play is indispensable for an adequate development of coping with social challenges in the rat. Dev Psychobiol 34:129-138. – reference: Miczek KA, Fish EW, De Bold JF, De Almeida RM. 2002. Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma-aminobutyric acid systems. Psychopharmacology (Berl) 163:434-458. – reference: Carrillo M, Ricci LA, Coppersmith GA, Melloni RH Jr. 2009. The effect of increased serotonergic neurotransmission on aggression: A critical meta-analytical review of preclinical studies. Psychopharmacology (Berl) 205:349-368. – reference: Renault J, Aubert A. 2006. Immunity and emotions: Lipopolysaccharide increases defensive behaviours and potentiates despair in mice. Brain Behav Immun 20:517-526. – reference: Fonagy P. 2004. Early-life trauma and the psychogenesis and prevention of violence. Ann N Y Acad Sci 1036:181-200. – reference: Loeber R, Stouthamer-Loeber M. 1998. Development of juvenile aggression and violence. Some common misconceptions and controversies. Am Psychol 53:242-259. – reference: Magarinos AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS. 2011. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21:253-264. – reference: Ito W, Chehab M, Thakur S, Li J, Morozov A. 2011. BDNF-restricted knockout mice as an animal model for aggression. Genes Brain Behav 10:365-374. – reference: Bartolomucci A, Palanza P, Sacerdote P, Panerai AE, Sgoifo A, Dantzer R, Parmigiani S. 2005. Social factors and individual vulnerability to chronic stress exposure. Neurosci Biobehav Rev 29:67-81. – volume: 15 start-page: 689 year: 2012 end-page: 695 article-title: Social influences on neuroplasticity: Stress and interventions to promote well‐being publication-title: Nat Neurosci – volume: 10 start-page: 365 year: 2011 end-page: 374 article-title: BDNF‐restricted knockout mice as an animal model for aggression publication-title: Genes Brain Behav – volume: 177 start-page: 245 year: 2005 end-page: 255 article-title: Forced swimming test in mice: A review of antidepressant activity publication-title: Psychopharmacology (Berl) – volume: 8 start-page: 536 year: 2007 end-page: 546 article-title: Neural mechanisms of aggression publication-title: Nat Rev Neurosci – volume: 174 start-page: 26 year: 2011 end-page: 36 article-title: Chronic stress‐induced hippocampal dendritic retraction requires CA3 NMDA receptors publication-title: Neuroscience – volume: 1036 start-page: 181 year: 2004 end-page: 200 article-title: Early‐life trauma and the psychogenesis and prevention of violence publication-title: Ann N Y Acad Sci – volume: 205 start-page: 349 year: 2009 end-page: 368 article-title: The effect of increased serotonergic neurotransmission on aggression: A critical meta‐analytical review of preclinical studies publication-title: Psychopharmacology (Berl) – volume: 15 start-page: 1382 year: 2012 end-page: 1390 article-title: REST‐dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors publication-title: Nat Neurosci – volume: 10 start-page: 1110 year: 2007 end-page: 1105 article-title: Adult hippocampal neurogenesis in depression publication-title: Nat Neurosci – volume: 122 start-page: 849 year: 2008 end-page: 854 article-title: Early social deprivation induces disturbed social communication and violent aggression in adulthood publication-title: Behav Neurosci – volume: 62 start-page: 35 year: 2012 end-page: 41 article-title: Signaling pathways underlying the rapid antidepressant actions of ketamine publication-title: Neuropharmacology – volume: 41 start-page: 58 year: 2002 end-page: 69 article-title: Individual housing during the play period results in changed responses to and consequences of a psychosocial stress situation in rats publication-title: Dev Psychobiol – volume: 25 start-page: 381 year: 1999 end-page: 396 article-title: Effects of NMDA receptor channel blockade on aggression in isolated male mice publication-title: Aggressive Behav – volume: 470 start-page: 221 year: 2011 end-page: 226 article-title: Functional identification of an aggression locus in the mouse hypothalamus publication-title: Nature – volume: 224 start-page: 167 year: 2012 end-page: 77 article-title: NMDA receptor antagonism: Escalation of aggressive behavior in alcohol‐drinking mice publication-title: Psychopharmacology (Berl) – volume: 32 start-page: 1087 year: 2008 end-page: 1102 article-title: Behavioural and neurochemical effects of post‐weaning social isolation in rodents‐relevance to developmental neuropsychiatric disorders publication-title: Neurosci Biobehav Rev – volume: 12 start-page: 400 year: 2011 end-page: 413 article-title: Cognitive and neurobiological mechanisms of alcohol‐related aggression publication-title: Nat Rev Neurosci – volume: 21 start-page: 253 year: 2011 end-page: 264 article-title: Effect of brain‐derived neurotrophic factor haploinsufficiency on stress‐induced remodeling of hippocampal neurons publication-title: Hippocampus – volume: 100 start-page: 25 year: 2011 end-page: 32 article-title: Post‐weaning environmental enrichment alters affective responses and interacts with behavioral testing to alter nNOS immunoreactivity publication-title: Pharmacol Biochem Behav – volume: 983 start-page: 128 year: 2003 end-page: 136 article-title: Decreased dendritic spine density on prefrontal cortical and hippocampal pyramidal neurons in postweaning social isolation rats publication-title: Brain Res – volume: 21 start-page: 460 year: 2011 end-page: 466 article-title: Hippocampal regulation of aversive memories publication-title: Curr Opin Neurobiol – volume: 63 start-page: 642 year: 2008 end-page: 649 article-title: Selective loss of brain‐derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy publication-title: Biol Psychiatry – volume: 4 start-page: 161 year: 2013 article-title: Antidepressant effects of ketamine: Mechanisms underlying fast‐acting novel antidepressants publication-title: Front Pharmacol – volume: 60 start-page: 28 year: 2011 end-page: 36 article-title: Post‐weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses publication-title: Horm Behav – volume: 22 start-page: 1300 year: 2012 end-page: 1312 article-title: Social instability stress in adolescent male rats alters hippocampal neurogenesis and produces deficits in spatial location memory in adulthood publication-title: Hippocampus – volume: 1 year: 2008 article-title: Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking publication-title: Curr Protoc Neurosci Chapter – volume: 475 start-page: 91 year: 2011 end-page: 95 article-title: NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses publication-title: Nature – volume: 33 start-page: 1173 year: 2009 end-page: 1177 article-title: Isolation rearing induces social and emotional function abnormalities and alters glutamate and neurodevelopment‐related gene expression in rats publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 8 year: 2003 article-title: Assessment of murine startle reactivity, prepulse inhibition, and habituation publication-title: Curr Protoc Neurosci Chapter – volume: 85 start-page: 354 year: 2011 end-page: 362 article-title: Nocturnal hyperactivity, increased social novelty preference and delayed extinction of fear responses in post‐weaning socially isolated mice publication-title: Brain Res Bull – volume: 34 start-page: 129 year: 1999 end-page: 138 article-title: Play is indispensable for an adequate development of coping with social challenges in the rat publication-title: Dev Psychobiol – volume: 35 start-page: 47 year: 2012 end-page: 56 article-title: Signaling pathways underlying the pathophysiology and treatment of depression: Novel mechanisms for rapid‐acting agents publication-title: Trends Neurosci – volume: 13 start-page: 22 year: 2012 end-page: 37 article-title: The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission publication-title: Nat Rev Neurosci – volume: 56 start-page: 823 year: 2007 end-page: 837 article-title: Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK publication-title: Neuron – volume: 58 start-page: 368 year: 2010 end-page: 377 article-title: Vasopressin cell groups exhibit strongly divergent responses to copulation and male‐male interactions in mice publication-title: Horm Behav – volume: 16 start-page: 1177 year: 2011 end-page: 1188 article-title: Antidepressants recruit new neurons to improve stress response regulation publication-title: Mol Psychiatry – volume: 161 start-page: 197 year: 2005 end-page: 203 article-title: Genetic reduction of noradrenergic function alters social memory and reduces aggression in mice publication-title: Behav Brain Res – volume: 31 start-page: 383 year: 1992 end-page: 391 article-title: From abuse to violence: Psychophysiological consequences of maltreatment publication-title: J Am Acad Child Adolesc Psychiatry – volume: 97(5) start-page: 1481 year: 2006 end-page: 93 article-title: Inhibition of protein synthesis by activation of NMDA receptors in cultured retinal cells: A new mechanism for the regulation of nitric oxide production publication-title: J Neurochem – volume: 29 start-page: 67 year: 2005 end-page: 81 article-title: Social factors and individual vulnerability to chronic stress exposure publication-title: Neurosci Biobehav Rev – volume: 53 start-page: 242 year: 1998 end-page: 259 article-title: Development of juvenile aggression and violence. Some common misconceptions and controversies publication-title: Am Psychol – volume: 70 start-page: 908 year: 2011 end-page: 923 article-title: Experience dictates stem cell fate in the adult hippocampus publication-title: Neuron – volume: 59 start-page: 399 year: 2008 end-page: 412 article-title: TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment publication-title: Neuron – volume: 20 start-page: 517 year: 2006 end-page: 526 article-title: Immunity and emotions: Lipopolysaccharide increases defensive behaviours and potentiates despair in mice publication-title: Brain Behav Immun – volume: 6 start-page: 529 year: 2007 end-page: 539 article-title: Social isolation and expression of serotonergic neurotransmission‐related genes in several brain areas of male mice publication-title: Genes Brain Behav – volume: 29 start-page: 1201 year: 2005 end-page: 1213 article-title: Limbic system mechanisms of stress regulation: Hypothalamo‐pituitary‐adrenocortical axis publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 26 start-page: 679 year: 2002 end-page: 695 article-title: Child neglect: Developmental issues and outcomes publication-title: Child Abuse Negl – volume: 147 start-page: 431 year: 2013 end-page: 436 article-title: Clinical experience using intranasal ketamine in the treatment of pediatric bipolar disorder/fear of harm phenotype publication-title: J Affect Disord – volume: 31 start-page: 517 year: 2007 end-page: 530 article-title: Long‐term physical and mental health consequences of childhood physical abuse: Results from a large population‐based sample of men and women publication-title: Child Abuse Negl – volume: 163 start-page: 434 year: 2002 end-page: 458 article-title: Social and neural determinants of aggressive behavior: pharmacotherapeutic targets at serotonin, dopamine and gamma‐aminobutyric acid systems publication-title: Psychopharmacology (Berl) – volume: 250 start-page: 1678 year: 1990 end-page: 1683 article-title: Mechanisms in the cycle of violence publication-title: Science – volume: 9 start-page: 111 year: 2008 article-title: Imaging the neural circuitry and chemical control of aggressive motivation publication-title: BMC Neurosci – volume: 2004 start-page: re16 year: 2004 article-title: Role of distinct NMDA receptor subtypes at central synapses publication-title: Sci STKE – volume: 59 start-page: 355 year: 1989 end-page: 367 article-title: Child abuse, neglect, and adult behavior: Research design and findings on criminality, violence, and child abuse publication-title: Am J Orthopsychiatry – volume: 30 start-page: 497 year: 2009 end-page: 518 article-title: Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: What can we learn from animal models? publication-title: Front Neuroendocrinol – volume: 24 start-page: 171 year: 2004 end-page: 191 article-title: Early caregiving and physiological stress responses publication-title: Clin Psychol Rev – ident: e_1_2_5_10_1 doi: 10.1111/j.1471-4159.2006.03843.x – ident: e_1_2_5_27_1 doi: 10.1111/j.1601-183X.2010.00676.x – ident: e_1_2_5_15_1 doi: 10.1016/j.tins.2011.11.004 – ident: e_1_2_5_19_1 doi: 10.1016/j.neubiorev.2008.03.003 – ident: e_1_2_5_50_1 doi: 10.1037/0735-7044.122.4.849 – ident: e_1_2_5_29_1 doi: 10.1016/j.neuron.2008.06.023 – ident: e_1_2_5_8_1 doi: 10.1007/s00213-009-1543-2 – ident: e_1_2_5_52_1 doi: 10.1002/(SICI)1098-2302(199903)34:2<129::AID-DEV6>3.0.CO;2-L – ident: e_1_2_5_28_1 doi: 10.1097/00004583-199205000-00001 – ident: e_1_2_5_25_1 doi: 10.1016/S0145-2134(02)00341-1 – ident: e_1_2_5_3_1 doi: 10.1038/nature10130 – ident: e_1_2_5_56_1 doi: 10.1016/j.pbb.2011.07.008 – ident: e_1_2_5_38_1 doi: 10.1038/nrn2174 – ident: e_1_2_5_47_1 doi: 10.1016/S0006-8993(03)03042-7 – ident: e_1_2_5_45_1 doi: 10.1038/nn1969 – ident: e_1_2_5_41_1 doi: 10.1007/s00213-004-2048-7 – ident: e_1_2_5_39_1 doi: 10.1007/s00213-012-2734-9 – ident: e_1_2_5_53_1 doi: 10.1016/j.yfrne.2009.03.003 – ident: e_1_2_5_12_1 doi: 10.1038/nn.3093 – ident: e_1_2_5_46_1 doi: 10.1016/j.neuron.2007.09.035 – ident: e_1_2_5_57_1 doi: 10.1016/j.pnpbp.2009.06.016 – ident: e_1_2_5_36_1 doi: 10.1007/s00213-002-1139-6 – ident: e_1_2_5_20_1 doi: 10.1002/0471142301.ns0817s24 – ident: e_1_2_5_22_1 doi: 10.1002/0471142301.ns0116s42 – ident: e_1_2_5_42_1 doi: 10.1038/nrn3138 – ident: e_1_2_5_34_1 doi: 10.1016/j.bbr.2005.02.005 – ident: e_1_2_5_32_1 doi: 10.1016/j.cpr.2004.01.003 – ident: e_1_2_5_55_1 doi: 10.1111/j.1939-0025.1989.tb01671.x – ident: e_1_2_5_30_1 doi: 10.1038/nature09736 – ident: e_1_2_5_54_1 doi: 10.1002/dev.10057 – ident: e_1_2_5_43_1 doi: 10.1016/j.bbi.2006.03.003 – ident: e_1_2_5_23_1 doi: 10.1038/nrn3042 – ident: e_1_2_5_49_1 doi: 10.1038/mp.2011.48 – ident: e_1_2_5_7_1 doi: 10.3389/fphar.2013.00161 – ident: e_1_2_5_16_1 doi: 10.1016/j.neuropharm.2011.08.044 – volume: 53 start-page: 242 year: 1998 ident: e_1_2_5_31_1 article-title: Development of juvenile aggression and violence. Some common misconceptions and controversies publication-title: Am Psychol doi: 10.1037/0003-066X.53.2.242 – ident: e_1_2_5_35_1 doi: 10.1002/hipo.20966 – ident: e_1_2_5_2_1 doi: 10.1016/j.biopsych.2007.09.019 – ident: e_1_2_5_37_1 doi: 10.1016/j.brainresbull.2011.03.027 – ident: e_1_2_5_40_1 doi: 10.1016/j.jad.2012.08.040 – ident: e_1_2_5_44_1 doi: 10.1038/nn.3214 – ident: e_1_2_5_11_1 doi: 10.1126/stke.2552004re16 – ident: e_1_2_5_14_1 doi: 10.1016/j.neuron.2011.05.022 – ident: e_1_2_5_24_1 doi: 10.1016/j.pnpbp.2005.08.006 – ident: e_1_2_5_9_1 doi: 10.1016/j.neuroscience.2010.11.033 – ident: e_1_2_5_18_1 doi: 10.1196/annals.1330.012 – ident: e_1_2_5_21_1 doi: 10.1016/j.conb.2011.04.003 – ident: e_1_2_5_51_1 doi: 10.1016/j.yhbeh.2011.02.003 – ident: e_1_2_5_17_1 doi: 10.1186/1471-2202-9-111 – ident: e_1_2_5_48_1 doi: 10.1016/j.chiabu.2007.01.003 – ident: e_1_2_5_33_1 doi: 10.1002/hipo.20744 – ident: e_1_2_5_26_1 doi: 10.1016/j.yhbeh.2010.03.021 – ident: e_1_2_5_6_1 doi: 10.1111/j.1601-183X.2006.00280.x – ident: e_1_2_5_13_1 doi: 10.1126/science.2270481 – ident: e_1_2_5_4_1 doi: 10.1016/j.neubiorev.2004.06.009 – ident: e_1_2_5_5_1 doi: 10.1002/(SICI)1098-2337(1999)25:5<381::AID-AB6>3.0.CO;2-B |
SSID | ssj0011500 |
Score | 2.4101436 |
Snippet | ABSTRACT
Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in... Epidemiological studies have shown that early life adverse events have long‐term effects on the susceptibility to subsequent stress exposure in adolescence,... Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence,... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 474 |
SubjectTerms | acute stress Affective Symptoms - etiology Affective Symptoms - pathology aggression Aggression - physiology Animals Animals, Newborn depression Dizocilpine Maleate - pharmacology Excitatory Amino Acid Antagonists - pharmacology Excitatory Postsynaptic Potentials - drug effects Exploratory Behavior - physiology Gene Expression Regulation - physiology Hippocampus - cytology Hippocampus - metabolism Male Membrane Potentials - drug effects Membrane Potentials - physiology Mice Mice, Inbred C57BL Neurons - drug effects Neurons - physiology NMDA receptor Piperidines - pharmacology Prepulse Inhibition - drug effects Prepulse Inhibition - physiology Random Allocation Receptors, N-Methyl-D-Aspartate - metabolism Reflex, Startle - physiology social isolation Social Isolation - psychology Swimming - psychology Synaptosomes - drug effects Synaptosomes - metabolism |
Title | Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice |
URI | https://api.istex.fr/ark:/67375/WNG-FLBQ21D1-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhipo.22384 https://www.ncbi.nlm.nih.gov/pubmed/25348768 https://www.proquest.com/docview/1664409284 https://www.proquest.com/docview/1665120248 https://www.proquest.com/docview/1668257695 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELamISG-8LLxUhjICDQJpHSxY6exxJfCKAXRAhMT-zJZjuNANZpGayttfOIn8Bv5JdzZaaahaRJ8i5Jz5Jfz3XPO5TlCnhZcmLgsWWR6LonAX5eRSUsZORXzQkleJhaPBkbjdLgv3h3IgzXyYvUvTOCHaA_ccGd4e40b3OTznTPS0G-TetYF55YhGSgmayEi2mu5oxDpBCoCGUegZazlJuU7Z03PeaMrOLEnF0HN88jVu57BDXK46nTIODnqLhd51_74i8_xf0d1k1xvMCntByW6RdZctUE2-xXE49NTuk19lqg_ft8gV0fNx_hNsgi_9tIJqK9f398_f0GED7pS0EmFaHTu4IKOR7t9CobV1VjZB-8A6KTQhRr86LRezqk7MRaWF2EvdaGuELy3OIUJ-9qUF8NmUzBqt8n-4PXnV8OoKeIQWaGEiFxPAMRkLJEuscoqGSOkEsoJVjprwASURZrFaWx7Bhwl5zZ3cAvaqMwp5ZI7ZL2aVe4eoQ5iw5SVwgLkE3nMTcqsKlheJMJkZS_tkGerxdS2YTjHQhvfdeBm5hpnV_vZ7ZAnrWwdeD0ulNr2OtGKmOMjzITrSf1l_EYP3r_8xNku03sdsrVSGt0YgblmKYDNWHF8z-P2MWxf_CZjKjdbehmAXEgsd6lMhnGhkh1yNyhk2yEuEwg5U2j93KvVJYPRw7cfP_ir-_8i_IBcA5AoQ7bSFllfHC_dQwBii_yR33B_AOYWLwY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdgk4AX_mz8KQwwAk0CKV3s2En8WBilg7bAtIm9WY7jQDWaRmsrbTzxEfiMfBLunCzT0DQJ3qLkbDn2-e53zuV3hLzIuTBhUbDAJC4KwF8XgYkLGTgV8lxJXkQWjwZG43iwL94fyIMmNwf_han5IdoDN9wZ3l7jBscD6a0z1tBvk2rWBe-WiqtkFUt6-4hqt2WPQqxTkxHIMAA9Yy07Kd86a3vOH63i1B5fBDbPY1fvfPq36gqrc89ZiDknh93lIuvaH38xOv73e90mNxtYSnu1Ht0hV1y5RtZ7JYTk0xO6SX2iqD-BXyPXRs33-HWyqP_upRPQYL_Ev3_-giAf1CWnkxIB6dzBBR2PtnsUbKursLgP3gHcSWEIFbjSabWcU3dsLKwwIl_q6tJC0G9-AjP2takwhs2mYNfukv3-2703g6Cp4xBYoYQIXCIAZTIWSRdZZZUMEVUJ5QQrnDVgBYo8TsM4tIkBX8m5zRzcgjYqdUq56B5ZKWele0Cog_AwZoWwgPpEFnITM6tyluWRMGmRxB3y8nQ1tW1IzrHWxndd0zNzjbOr_ex2yPNWtqqpPS6U2vRK0YqYo0NMhkuk_jJ-p_vD158522Z6t0M2TrVGN3ZgrlkMeDNUHPt51j6GHYyfZUzpZksvA6gLueUulUkxNFSyQ-7XGtkOiMsIos4YWr_yenXJy-jBzqeP_urhvwg_JdcHe6OhHu6MPzwiNwAzyjp5aYOsLI6W7jHgskX2xO--P7RaMyE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbGJk3cDNj4KQwwAk0CKV3s2EkscVMopYO1jGkTu0GW4zijGk2jtZU2rngEnpEn4dhOMw1Nk-Auco4t_xyf8x3H-Q5CL3LKVFgUJFCJiQLw10Wg4oIHRoQ0F5wWkbZHA4Nh3D9kH4740RJ6vfgXxvNDNAdudmc4e203eJUX2xekod9G1aQNzi1lN9AKi8PU6nR3vyGPslDHcxHwMAA1Iw05Kd2-qHvJHa3YmT27Cmtehq7O9_Ruoa-LXvsrJyft-Sxr6x9_ETr-77Buo7UalOKO16I7aMmU62ijU0JAPj7HW9hdE3Xn7-todVB_jd9AM_9vLx6B_roF_v3zF4T4oCw5HpUWjk4NPODhoNvBYFlNZVP72BJAnRi6UIEjHVfzKTZnSsP6WtyLjU8sBO3m5zBhx3V-MVttDFbtLjrsvTt42w_qLA6BZoKxwCQMMCYhETeRFlrw0GIqJgwjhdEKbECRx2kYhzpR4Ckp1ZmBIqgjUiOEie6h5XJSmgcIGwgOY1IwDZiPZSFVMdEiJ1keMZUWSdxCLxeLKXVNcW4zbXyXnpyZSju70s1uCz1vZCtP7HGl1JbTiUZEnZ7Yq3AJl1-G72Vv981nSrpE7rfQ5kJpZG0FppLEgDZDQW07z5rXsH_tRxlVmsncyQDmssxy18qkNjAUvIXue4VsOkR5BDFnDLVfObW6ZjCyv7P3yT09_Bfhp2h1r9uTuzvDj4_QTQCM3N9c2kTLs9O5eQygbJY9cXvvDxa4Mdk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+isolation-induced+increase+in+NMDA+receptors+in+the+hippocampus+exacerbates+emotional+dysregulation+in+mice&rft.jtitle=Hippocampus&rft.au=Chang%2C+Chih-Hua&rft.au=Hsiao%2C+Ya-Hsin&rft.au=Chen%2C+Yu-Wen&rft.au=Yu%2C+Yang-Jung&rft.date=2015-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1050-9631&rft.eissn=1098-1063&rft.volume=25&rft.issue=4&rft.spage=474&rft.epage=485&rft_id=info:doi/10.1002%2Fhipo.22384&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_FLBQ21D1_R |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1050-9631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1050-9631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1050-9631&client=summon |