Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data

Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI). We applied a Support Vector Machine (SVM) classifier to D...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroimaging Vol. 25; no. 5; p. 738
Main Authors Dyrba, Martin, Barkhof, Frederik, Fellgiebel, Andreas, Filippi, Massimo, Hausner, Lucrezia, Hauenstein, Karlheinz, Kirste, Thomas, Teipel, Stefan J
Format Journal Article
LanguageEnglish
Published United States 01.09.2015
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI). We applied a Support Vector Machine (SVM) classifier to DTI and volumetric magnetic resonance imaging data from 35 amyloid-β42 negative MCI subjects (MCI-Aβ42-), 35 positive MCI subjects (MCI-Aβ42+), and 25 healthy controls (HC) retrieved from the European DTI Study on Dementia. The SVM was applied to DTI-derived fractional anisotropy, mean diffusivity (MD), and mode of anisotropy (MO) maps. For comparison, we studied classification based on gray matter (GM) and WM volume. We obtained accuracies of up to 68% for MO and 63% for GM volume when it came to distinguishing between MCI-Aβ42- and MCI-Aβ42+. When it came to separating MCI-Aβ42+ from HC we achieved an accuracy of up to 77% for MD and a significantly lower accuracy of 68% for GM volume. The accuracy of multimodal classification was not higher than the accuracy of the best single modality. Our results suggest that DTI data provide better prediction accuracy than GM volume in predementia AD.
AbstractList Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI). We applied a Support Vector Machine (SVM) classifier to DTI and volumetric magnetic resonance imaging data from 35 amyloid-β42 negative MCI subjects (MCI-Aβ42-), 35 positive MCI subjects (MCI-Aβ42+), and 25 healthy controls (HC) retrieved from the European DTI Study on Dementia. The SVM was applied to DTI-derived fractional anisotropy, mean diffusivity (MD), and mode of anisotropy (MO) maps. For comparison, we studied classification based on gray matter (GM) and WM volume. We obtained accuracies of up to 68% for MO and 63% for GM volume when it came to distinguishing between MCI-Aβ42- and MCI-Aβ42+. When it came to separating MCI-Aβ42+ from HC we achieved an accuracy of up to 77% for MD and a significantly lower accuracy of 68% for GM volume. The accuracy of multimodal classification was not higher than the accuracy of the best single modality. Our results suggest that DTI data provide better prediction accuracy than GM volume in predementia AD.
Author Filippi, Massimo
Fellgiebel, Andreas
Hausner, Lucrezia
Barkhof, Frederik
Teipel, Stefan J
Hauenstein, Karlheinz
Kirste, Thomas
Dyrba, Martin
Author_xml – sequence: 1
  givenname: Martin
  surname: Dyrba
  fullname: Dyrba, Martin
  organization: German Center for Neurodegenerative Diseases, Rostock, Germany
– sequence: 2
  givenname: Frederik
  surname: Barkhof
  fullname: Barkhof, Frederik
  organization: Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
– sequence: 3
  givenname: Andreas
  surname: Fellgiebel
  fullname: Fellgiebel, Andreas
  organization: Department of Psychiatry, University Medical Center Mainz, Mainz, Germany
– sequence: 4
  givenname: Massimo
  surname: Filippi
  fullname: Filippi, Massimo
  organization: Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
– sequence: 5
  givenname: Lucrezia
  surname: Hausner
  fullname: Hausner, Lucrezia
  organization: Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
– sequence: 6
  givenname: Karlheinz
  surname: Hauenstein
  fullname: Hauenstein, Karlheinz
  organization: Department of Radiology, University Medicine Rostock, Rostock, Germany
– sequence: 7
  givenname: Thomas
  surname: Kirste
  fullname: Kirste, Thomas
  organization: Mobile Multimedia Information Systems Group, University of Rostock, Rostock, Germany
– sequence: 8
  givenname: Stefan J
  surname: Teipel
  fullname: Teipel, Stefan J
  organization: Clinic for Psychosomatic and Psychotherapeutic Medicine, University Medicine Rostock, Rostock, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25644739$$D View this record in MEDLINE/PubMed
BookMark eNo1kM1OwzAQhC0EorRw4AWQb5xSEsdOm2PV8lOpFRW052pjb1JXiV3ZKQiekMfC4WcvsxrNfiNtn5waa5CQ6yQeJmHu9tYME8YSfkIuEiFYlIks75G-9_s4DjZLz0mPiYzzUZpfkK-VQ6Vlq01FV84qZxuo6aT-3KFu0N16OtMewSPVhr4eiz3K1tN33e7oUteKTm1ldKvfkM6bA2jXoGnpxne4JcidNkgXCM50xrQG73WpJbTaGmpLujzWrW6sCpU_qwzX6EJlWR59yERrNN46CkYFXGUwROgLemvAyK4Sqg48gxYuyVkJtcerPx2QzcP9evoULZ4f59PJIpI85zxKcgFFysYlixXkYygYZgxGgJiOy_CpcaoyyTlmUKAUApJEYBDIhErLmEs2IDe_3MOxaFBtD0434D62_y9l30qnfNc
CitedBy_id crossref_primary_10_3390_electronics10030249
crossref_primary_10_1016_j_dscb_2021_100005
crossref_primary_10_1016_j_neuroimage_2016_03_067
crossref_primary_10_1088_1361_6560_aa5dbe
crossref_primary_10_3389_fnagi_2022_866230
crossref_primary_10_13066_kspm_2023_18_3_65
crossref_primary_10_3389_fnagi_2016_00244
crossref_primary_10_1016_j_neuroscience_2016_06_025
crossref_primary_10_1586_14737175_2016_1146590
crossref_primary_10_1109_ACCESS_2023_3328331
crossref_primary_10_3233_JAD_180063
crossref_primary_10_3389_fnagi_2021_708932
crossref_primary_10_3389_fnagi_2020_602510
crossref_primary_10_1016_j_trci_2019_10_006
crossref_primary_10_1016_j_arr_2024_102497
crossref_primary_10_1016_j_nicl_2017_07_020
crossref_primary_10_1002_ana_24674
crossref_primary_10_1093_jamia_ocac168
crossref_primary_10_1097_MOO_0000000000000387
crossref_primary_10_1007_s12021_020_09469_5
crossref_primary_10_1017_S1355617715000995
crossref_primary_10_1016_j_mri_2024_02_013
crossref_primary_10_3233_JAD_200445
crossref_primary_10_1016_j_neulet_2017_12_009
crossref_primary_10_1186_s13195_017_0281_7
crossref_primary_10_3390_brainsci14121266
crossref_primary_10_1002_14651858_CD009628_pub2
crossref_primary_10_1038_s41598_019_49970_9
crossref_primary_10_1016_j_nicl_2019_101929
crossref_primary_10_31590_ejosat_1136855
crossref_primary_10_3389_fnagi_2017_00304
crossref_primary_10_3390_ijerph17249467
crossref_primary_10_3233_JAD_180106
crossref_primary_10_1007_s00415_019_09429_3
crossref_primary_10_1007_s11517_024_03097_w
crossref_primary_10_1007_s15005_017_2085_5
crossref_primary_10_1186_s13024_025_00819_y
crossref_primary_10_1088_1674_1056_27_8_088702
crossref_primary_10_1002_hipo_23456
crossref_primary_10_1017_S0033291719000151
crossref_primary_10_3390_life12020275
crossref_primary_10_1016_j_neuroscience_2022_06_025
crossref_primary_10_1016_j_nicl_2017_01_018
crossref_primary_10_3233_JAD_181049
crossref_primary_10_1002_hbm_23147
crossref_primary_10_1002_hbm_24874
crossref_primary_10_1016_j_neuroscience_2017_05_048
crossref_primary_10_3389_fnagi_2021_711579
crossref_primary_10_1371_journal_pone_0203246
crossref_primary_10_1016_j_neuroimage_2017_03_057
crossref_primary_10_1038_s41598_021_86114_4
crossref_primary_10_29328_journal_apmh_1001011
crossref_primary_10_1002_hbm_24554
crossref_primary_10_1109_TVCG_2021_3137174
crossref_primary_10_3390_ijms22052761
crossref_primary_10_3233_JAD_191169
crossref_primary_10_1093_cercor_bhac084
crossref_primary_10_1016_j_arr_2022_101614
crossref_primary_10_1016_j_neucom_2020_12_097
crossref_primary_10_1186_s12877_016_0281_7
crossref_primary_10_1177_1533317520927163
crossref_primary_10_57197_JDR_2024_0103
crossref_primary_10_1007_s10072_016_2764_x
crossref_primary_10_1002_jmri_29189
crossref_primary_10_1038_s41598_020_74399_w
crossref_primary_10_3233_JAD_160773
crossref_primary_10_3233_JAD_190446
crossref_primary_10_1016_j_jneumeth_2017_12_010
crossref_primary_10_1007_s13365_020_00930_4
crossref_primary_10_1021_acschemneuro_1c00472
crossref_primary_10_57062_ijpem_st_2023_0066
ContentType Journal Article
Copyright Copyright © 2015 by the American Society of Neuroimaging.
Copyright_xml – notice: Copyright © 2015 by the American Society of Neuroimaging.
CorporateAuthor EDSD study group
CorporateAuthor_xml – name: EDSD study group
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1111/jon.12214
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1552-6569
ExternalDocumentID 25644739
Genre Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29L
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CGR
COF
CS3
CUY
CVF
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
ECM
EIF
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZ~
J0M
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N04
N05
N9A
NF~
NPM
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WVDHM
WXSBR
XG1
ZZTAW
~IA
~WT
ID FETCH-LOGICAL-c4944-195ab328f20da98ab2e62a7aee38f56983d6c44e6abec55a115e55aa65d3f04c2
IngestDate Thu Apr 03 07:02:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords mild cognitive impairment (MCI)
Alzheimer's disease (AD)
multicenter study
multiple kernels Support Vector Machine (MK-SVM)
diffusion tensor imaging (DTI)
Language English
License Copyright © 2015 by the American Society of Neuroimaging.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4944-195ab328f20da98ab2e62a7aee38f56983d6c44e6abec55a115e55aa65d3f04c2
PMID 25644739
ParticipantIDs pubmed_primary_25644739
PublicationCentury 2000
PublicationDate September/October 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September/October 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neuroimaging
PublicationTitleAlternate J Neuroimaging
PublicationYear 2015
SSID ssj0021423
Score 2.3835392
Snippet Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in...
SourceID pubmed
SourceType Index Database
StartPage 738
SubjectTerms Aged
Algorithms
Alzheimer Disease - etiology
Alzheimer Disease - pathology
Cognitive Dysfunction - complications
Cognitive Dysfunction - pathology
Diffusion Tensor Imaging - methods
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Machine Learning
Male
Multimodal Imaging - methods
Prodromal Symptoms
Reproducibility of Results
Sensitivity and Specificity
Title Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data
URI https://www.ncbi.nlm.nih.gov/pubmed/25644739
Volume 25
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JbtRAEIZbE5AQF8QeVtUBiZPR2G5vRwRECZJRDhMpt6jb7p4YvIyc5JA8YR6HR6Cqu70wShBw8YzsGc9Sn8pV5fqrGXuXpXHBCy09oeIlJigy8mTqFx7mGmno80SLiLTD-bd4_4h_PY6OF4ufs66li3P5obi6UVfyP1bFfWhXUsn-g2XHk-IOfI72xS1aGLd_ZePDnm6zmMblQ3SEfdfQH15fnarKLIqSnNF0TboBQ2UN9BHfTe-Gqb3mVV2iNxiahw7QLVS96QywXQS56bJUwwDWtV0-kxqLxiDTiHebriR5r5niQfM9e_xIrS-oCOetMEd2TZq5WLeklzT3C1qjUzho7ApJn6087qYY2UzbrOzrxpD7spfCyYyGueGmFNv_OO20DcZpQkY1apD2VF2vK-SoHls4xSR7oYLSprInxB_YdPNCiB-NnV54HXPOOwo8jE-zuXe3smpHcTRz1YmdKnPbJQRJ8YPAClxnKG0awxIGipwndgzTn49uTfMeDu2wHcxraKFWqi65AoGPsa2bfmW6zYbvQBOr3fu2sh8TBa0esgfONPDRsviILVT7mN3LXYPGE3Y9IQkjkjAi-f4MHJBQtTAACQQkEJAwAgkTkGCABAckDEDC70BCp2ECEmZAwjaQgEDCACSMQIIDEgjIp-xo78vq077nFgvxCp5x7vlZJGQYpDpYliJLhQxUHIhEKBWmGplIwxK9ElexQK8VRQIzIYUPIo7KUC95ETxjd9quVbsMYqESzGT8RArNuZYyVnQ7PFSYDCRFGbxgz60NTjZ2IszJYJ2Xtx55xe5PzL5mdzW6IPUG49lz-dZA8Atrhq1M
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Prodromal+Alzheimer%27s+Disease+in+Subjects+with+Mild+Cognitive+Impairment+Using+Machine+Learning+Classification+of+Multimodal+Multicenter+Diffusion-Tensor+and+Magnetic+Resonance+Imaging+Data&rft.jtitle=Journal+of+neuroimaging&rft.au=Dyrba%2C+Martin&rft.au=Barkhof%2C+Frederik&rft.au=Fellgiebel%2C+Andreas&rft.au=Filippi%2C+Massimo&rft.date=2015-09-01&rft.eissn=1552-6569&rft.volume=25&rft.issue=5&rft.spage=738&rft_id=info:doi/10.1111%2Fjon.12214&rft_id=info%3Apmid%2F25644739&rft_id=info%3Apmid%2F25644739&rft.externalDocID=25644739