Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data
Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI). We applied a Support Vector Machine (SVM) classifier to D...
Saved in:
Published in | Journal of neuroimaging Vol. 25; no. 5; p. 738 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.09.2015
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI).
We applied a Support Vector Machine (SVM) classifier to DTI and volumetric magnetic resonance imaging data from 35 amyloid-β42 negative MCI subjects (MCI-Aβ42-), 35 positive MCI subjects (MCI-Aβ42+), and 25 healthy controls (HC) retrieved from the European DTI Study on Dementia. The SVM was applied to DTI-derived fractional anisotropy, mean diffusivity (MD), and mode of anisotropy (MO) maps. For comparison, we studied classification based on gray matter (GM) and WM volume.
We obtained accuracies of up to 68% for MO and 63% for GM volume when it came to distinguishing between MCI-Aβ42- and MCI-Aβ42+. When it came to separating MCI-Aβ42+ from HC we achieved an accuracy of up to 77% for MD and a significantly lower accuracy of 68% for GM volume. The accuracy of multimodal classification was not higher than the accuracy of the best single modality.
Our results suggest that DTI data provide better prediction accuracy than GM volume in predementia AD. |
---|---|
AbstractList | Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in assessing WM alterations in the predementia stage of mild cognitive impairment (MCI).
We applied a Support Vector Machine (SVM) classifier to DTI and volumetric magnetic resonance imaging data from 35 amyloid-β42 negative MCI subjects (MCI-Aβ42-), 35 positive MCI subjects (MCI-Aβ42+), and 25 healthy controls (HC) retrieved from the European DTI Study on Dementia. The SVM was applied to DTI-derived fractional anisotropy, mean diffusivity (MD), and mode of anisotropy (MO) maps. For comparison, we studied classification based on gray matter (GM) and WM volume.
We obtained accuracies of up to 68% for MO and 63% for GM volume when it came to distinguishing between MCI-Aβ42- and MCI-Aβ42+. When it came to separating MCI-Aβ42+ from HC we achieved an accuracy of up to 77% for MD and a significantly lower accuracy of 68% for GM volume. The accuracy of multimodal classification was not higher than the accuracy of the best single modality.
Our results suggest that DTI data provide better prediction accuracy than GM volume in predementia AD. |
Author | Filippi, Massimo Fellgiebel, Andreas Hausner, Lucrezia Barkhof, Frederik Teipel, Stefan J Hauenstein, Karlheinz Kirste, Thomas Dyrba, Martin |
Author_xml | – sequence: 1 givenname: Martin surname: Dyrba fullname: Dyrba, Martin organization: German Center for Neurodegenerative Diseases, Rostock, Germany – sequence: 2 givenname: Frederik surname: Barkhof fullname: Barkhof, Frederik organization: Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands – sequence: 3 givenname: Andreas surname: Fellgiebel fullname: Fellgiebel, Andreas organization: Department of Psychiatry, University Medical Center Mainz, Mainz, Germany – sequence: 4 givenname: Massimo surname: Filippi fullname: Filippi, Massimo organization: Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy – sequence: 5 givenname: Lucrezia surname: Hausner fullname: Hausner, Lucrezia organization: Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany – sequence: 6 givenname: Karlheinz surname: Hauenstein fullname: Hauenstein, Karlheinz organization: Department of Radiology, University Medicine Rostock, Rostock, Germany – sequence: 7 givenname: Thomas surname: Kirste fullname: Kirste, Thomas organization: Mobile Multimedia Information Systems Group, University of Rostock, Rostock, Germany – sequence: 8 givenname: Stefan J surname: Teipel fullname: Teipel, Stefan J organization: Clinic for Psychosomatic and Psychotherapeutic Medicine, University Medicine Rostock, Rostock, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25644739$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kM1OwzAQhC0EorRw4AWQb5xSEsdOm2PV8lOpFRW052pjb1JXiV3ZKQiekMfC4WcvsxrNfiNtn5waa5CQ6yQeJmHu9tYME8YSfkIuEiFYlIks75G-9_s4DjZLz0mPiYzzUZpfkK-VQ6Vlq01FV84qZxuo6aT-3KFu0N16OtMewSPVhr4eiz3K1tN33e7oUteKTm1ldKvfkM6bA2jXoGnpxne4JcidNkgXCM50xrQG73WpJbTaGmpLujzWrW6sCpU_qwzX6EJlWR59yERrNN46CkYFXGUwROgLemvAyK4Sqg48gxYuyVkJtcerPx2QzcP9evoULZ4f59PJIpI85zxKcgFFysYlixXkYygYZgxGgJiOy_CpcaoyyTlmUKAUApJEYBDIhErLmEs2IDe_3MOxaFBtD0434D62_y9l30qnfNc |
CitedBy_id | crossref_primary_10_3390_electronics10030249 crossref_primary_10_1016_j_dscb_2021_100005 crossref_primary_10_1016_j_neuroimage_2016_03_067 crossref_primary_10_1088_1361_6560_aa5dbe crossref_primary_10_3389_fnagi_2022_866230 crossref_primary_10_13066_kspm_2023_18_3_65 crossref_primary_10_3389_fnagi_2016_00244 crossref_primary_10_1016_j_neuroscience_2016_06_025 crossref_primary_10_1586_14737175_2016_1146590 crossref_primary_10_1109_ACCESS_2023_3328331 crossref_primary_10_3233_JAD_180063 crossref_primary_10_3389_fnagi_2021_708932 crossref_primary_10_3389_fnagi_2020_602510 crossref_primary_10_1016_j_trci_2019_10_006 crossref_primary_10_1016_j_arr_2024_102497 crossref_primary_10_1016_j_nicl_2017_07_020 crossref_primary_10_1002_ana_24674 crossref_primary_10_1093_jamia_ocac168 crossref_primary_10_1097_MOO_0000000000000387 crossref_primary_10_1007_s12021_020_09469_5 crossref_primary_10_1017_S1355617715000995 crossref_primary_10_1016_j_mri_2024_02_013 crossref_primary_10_3233_JAD_200445 crossref_primary_10_1016_j_neulet_2017_12_009 crossref_primary_10_1186_s13195_017_0281_7 crossref_primary_10_3390_brainsci14121266 crossref_primary_10_1002_14651858_CD009628_pub2 crossref_primary_10_1038_s41598_019_49970_9 crossref_primary_10_1016_j_nicl_2019_101929 crossref_primary_10_31590_ejosat_1136855 crossref_primary_10_3389_fnagi_2017_00304 crossref_primary_10_3390_ijerph17249467 crossref_primary_10_3233_JAD_180106 crossref_primary_10_1007_s00415_019_09429_3 crossref_primary_10_1007_s11517_024_03097_w crossref_primary_10_1007_s15005_017_2085_5 crossref_primary_10_1186_s13024_025_00819_y crossref_primary_10_1088_1674_1056_27_8_088702 crossref_primary_10_1002_hipo_23456 crossref_primary_10_1017_S0033291719000151 crossref_primary_10_3390_life12020275 crossref_primary_10_1016_j_neuroscience_2022_06_025 crossref_primary_10_1016_j_nicl_2017_01_018 crossref_primary_10_3233_JAD_181049 crossref_primary_10_1002_hbm_23147 crossref_primary_10_1002_hbm_24874 crossref_primary_10_1016_j_neuroscience_2017_05_048 crossref_primary_10_3389_fnagi_2021_711579 crossref_primary_10_1371_journal_pone_0203246 crossref_primary_10_1016_j_neuroimage_2017_03_057 crossref_primary_10_1038_s41598_021_86114_4 crossref_primary_10_29328_journal_apmh_1001011 crossref_primary_10_1002_hbm_24554 crossref_primary_10_1109_TVCG_2021_3137174 crossref_primary_10_3390_ijms22052761 crossref_primary_10_3233_JAD_191169 crossref_primary_10_1093_cercor_bhac084 crossref_primary_10_1016_j_arr_2022_101614 crossref_primary_10_1016_j_neucom_2020_12_097 crossref_primary_10_1186_s12877_016_0281_7 crossref_primary_10_1177_1533317520927163 crossref_primary_10_57197_JDR_2024_0103 crossref_primary_10_1007_s10072_016_2764_x crossref_primary_10_1002_jmri_29189 crossref_primary_10_1038_s41598_020_74399_w crossref_primary_10_3233_JAD_160773 crossref_primary_10_3233_JAD_190446 crossref_primary_10_1016_j_jneumeth_2017_12_010 crossref_primary_10_1007_s13365_020_00930_4 crossref_primary_10_1021_acschemneuro_1c00472 crossref_primary_10_57062_ijpem_st_2023_0066 |
ContentType | Journal Article |
Copyright | Copyright © 2015 by the American Society of Neuroimaging. |
Copyright_xml | – notice: Copyright © 2015 by the American Society of Neuroimaging. |
CorporateAuthor | EDSD study group |
CorporateAuthor_xml | – name: EDSD study group |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1111/jon.12214 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1552-6569 |
ExternalDocumentID | 25644739 |
Genre | Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29L 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCUV ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG CGR COF CS3 CUY CVF D-6 D-7 D-E D-F DCZOG DPXWK DRFUL DRMAN DRSTM DU5 EBD EBS ECM EIF EJD EMB EMOBN F00 F01 F04 F5P FEDTE FUBAC FYBCS G-S G.N GODZA H.X HF~ HGLYW HVGLF HZ~ J0M KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N04 N05 N9A NF~ NPM O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WVDHM WXSBR XG1 ZZTAW ~IA ~WT |
ID | FETCH-LOGICAL-c4944-195ab328f20da98ab2e62a7aee38f56983d6c44e6abec55a115e55aa65d3f04c2 |
IngestDate | Thu Apr 03 07:02:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | mild cognitive impairment (MCI) Alzheimer's disease (AD) multicenter study multiple kernels Support Vector Machine (MK-SVM) diffusion tensor imaging (DTI) |
Language | English |
License | Copyright © 2015 by the American Society of Neuroimaging. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4944-195ab328f20da98ab2e62a7aee38f56983d6c44e6abec55a115e55aa65d3f04c2 |
PMID | 25644739 |
ParticipantIDs | pubmed_primary_25644739 |
PublicationCentury | 2000 |
PublicationDate | September/October 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September/October 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neuroimaging |
PublicationTitleAlternate | J Neuroimaging |
PublicationYear | 2015 |
SSID | ssj0021423 |
Score | 2.3835392 |
Snippet | Alzheimer's disease (AD) patients show early changes in white matter (WM) structural integrity. We studied the use of diffusion tensor imaging (DTI) in... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 738 |
SubjectTerms | Aged Algorithms Alzheimer Disease - etiology Alzheimer Disease - pathology Cognitive Dysfunction - complications Cognitive Dysfunction - pathology Diffusion Tensor Imaging - methods Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Machine Learning Male Multimodal Imaging - methods Prodromal Symptoms Reproducibility of Results Sensitivity and Specificity |
Title | Predicting Prodromal Alzheimer's Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25644739 |
Volume | 25 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3JbtRAEIZbE5AQF8QeVtUBiZPR2G5vRwRECZJRDhMpt6jb7p4YvIyc5JA8YR6HR6Cqu70wShBw8YzsGc9Sn8pV5fqrGXuXpXHBCy09oeIlJigy8mTqFx7mGmno80SLiLTD-bd4_4h_PY6OF4ufs66li3P5obi6UVfyP1bFfWhXUsn-g2XHk-IOfI72xS1aGLd_ZePDnm6zmMblQ3SEfdfQH15fnarKLIqSnNF0TboBQ2UN9BHfTe-Gqb3mVV2iNxiahw7QLVS96QywXQS56bJUwwDWtV0-kxqLxiDTiHebriR5r5niQfM9e_xIrS-oCOetMEd2TZq5WLeklzT3C1qjUzho7ApJn6087qYY2UzbrOzrxpD7spfCyYyGueGmFNv_OO20DcZpQkY1apD2VF2vK-SoHls4xSR7oYLSprInxB_YdPNCiB-NnV54HXPOOwo8jE-zuXe3smpHcTRz1YmdKnPbJQRJ8YPAClxnKG0awxIGipwndgzTn49uTfMeDu2wHcxraKFWqi65AoGPsa2bfmW6zYbvQBOr3fu2sh8TBa0esgfONPDRsviILVT7mN3LXYPGE3Y9IQkjkjAi-f4MHJBQtTAACQQkEJAwAgkTkGCABAckDEDC70BCp2ECEmZAwjaQgEDCACSMQIIDEgjIp-xo78vq077nFgvxCp5x7vlZJGQYpDpYliJLhQxUHIhEKBWmGplIwxK9ElexQK8VRQIzIYUPIo7KUC95ETxjd9quVbsMYqESzGT8RArNuZYyVnQ7PFSYDCRFGbxgz60NTjZ2IszJYJ2Xtx55xe5PzL5mdzW6IPUG49lz-dZA8Atrhq1M |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Prodromal+Alzheimer%27s+Disease+in+Subjects+with+Mild+Cognitive+Impairment+Using+Machine+Learning+Classification+of+Multimodal+Multicenter+Diffusion-Tensor+and+Magnetic+Resonance+Imaging+Data&rft.jtitle=Journal+of+neuroimaging&rft.au=Dyrba%2C+Martin&rft.au=Barkhof%2C+Frederik&rft.au=Fellgiebel%2C+Andreas&rft.au=Filippi%2C+Massimo&rft.date=2015-09-01&rft.eissn=1552-6569&rft.volume=25&rft.issue=5&rft.spage=738&rft_id=info:doi/10.1111%2Fjon.12214&rft_id=info%3Apmid%2F25644739&rft_id=info%3Apmid%2F25644739&rft.externalDocID=25644739 |