gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia
SUMMARY Gonadal soma‐derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf‐deficient XY fish with high mutation rate (≥58%) dev...
Saved in:
Published in | Molecular reproduction and development Vol. 83; no. 6; pp. 497 - 508 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1040-452X 1098-2795 1098-2795 |
DOI | 10.1002/mrd.22642 |
Cover
Loading…
Abstract | SUMMARY
Gonadal soma‐derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf‐deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex‐reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf+/− fish developed as males with normal testes. In F2 XY gsdf−/− fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase‐inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf−/− with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose‐dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497–508, 2016. © 2016 Wiley Periodicals, Inc. |
---|---|
AbstractList | Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf(+/-) fish developed as males with normal testes. In F2 XY gsdf(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc. Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf(+/-) fish developed as males with normal testes. In F2 XY gsdf(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc.Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf(+/-) fish developed as males with normal testes. In F2 XY gsdf(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc. SUMMARY Gonadal soma‐derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf‐deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex‐reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf+/− fish developed as males with normal testes. In F2 XY gsdf−/− fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase‐inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf−/− with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose‐dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497–508, 2016. © 2016 Wiley Periodicals, Inc. Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate ( greater than or equal to 58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240dah. Those individuals with a low mutation rate (<58%) and XY gsdf super(+/-) fish developed as males with normal testes. In F2 XY gsdf super(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18dah, shifted to the female pathway expressing only Cyp19a1a at 36dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35dah, however, rescued the phenotype, resulting in XY gsdf super(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. copyright 2016 Wiley Periodicals, Inc. SUMMARY Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240dah. Those individuals with a low mutation rate (<58%) and XY gsdf+/- fish developed as males with normal testes. In F2 XY gsdf-/- fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18dah, shifted to the female pathway expressing only Cyp19a1a at 36dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35dah, however, rescued the phenotype, resulting in XY gsdf-/- with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc. |
Author | Shi, Hong-Juan Li, Ming-Hui Wang, De-Shou Zhang, Xian-Bo Yang, Hui-Hui Jiang, Dong-Neng |
Author_xml | – sequence: 1 givenname: Dong-Neng surname: Jiang fullname: Jiang, Dong-Neng organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China – sequence: 2 givenname: Hui-Hui surname: Yang fullname: Yang, Hui-Hui organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China – sequence: 3 givenname: Ming-Hui surname: Li fullname: Li, Ming-Hui organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China – sequence: 4 givenname: Hong-Juan surname: Shi fullname: Shi, Hong-Juan organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China – sequence: 5 givenname: Xian-Bo surname: Zhang fullname: Zhang, Xian-Bo organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China – sequence: 6 givenname: De-Shou surname: Wang fullname: Wang, De-Shou email: Corresponding author:Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of ChongqingSchool of Life SciencesSouthwest UniversityNo. 1 Tianshen Road, BeibeiChongqing 400715, China., wdeshou@swu.edu.cn organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27027772$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vFCEAxYmpsX_04BcwJF70MC0wMMDRVK3GWlOj2d4IA0xLO8OswGS7316mu-uh0XiC8H7vJbx3CPbCGBwALzE6xgiRkyHaY0IaSp6AA4ykqAiXbG--U1RRRq72wWFKtwghKQV6BvYJR4RzTg7A3XWyHfQJamjHVUg5Oj3AaxccHDtoh5gxzDc6w24KJvsxJOhDeXFw0L2Dyd1D67KLgw96luFS55uVXs_umbrwhcq-10uvn4Onne6Te7E9j8DPjx9-nH6qzr-dfT59d14ZKimpWsKZobTmQlsqGilw7UgRGLUEzyKxkjemtYK2iGmDkW0YdVJTgUyrUX0E3mxyl3H8NbmU1eCTcX2vgxunpLDAWKK6btj_US4lQZJIXNDXj9DbcYqhfGSmBBECsTnw1Zaa2sFZtYx-0HGtdo0X4GQDmDimFF2njM8P1eWofa8wUvOmqmyqHjYtjrePHLvQv7Hb9FXpff1vUH39_n7nqDYOn7K7_-PQ8U41vOZMLS7O1CW9Wlxy9kUt6t9uBr0- |
CODEN | MREDEE |
CitedBy_id | crossref_primary_10_2903_sp_efsa_2023_EN_8311 crossref_primary_10_1016_j_ydbio_2017_05_017 crossref_primary_10_1007_s10695_018_0519_8 crossref_primary_10_1016_j_aquaculture_2023_739381 crossref_primary_10_3390_genes15091238 crossref_primary_10_1016_j_aaf_2024_05_005 crossref_primary_10_1111_1755_0998_13369 crossref_primary_10_1111_jfb_15284 crossref_primary_10_3389_fendo_2022_813320 crossref_primary_10_1002_etc_5353 crossref_primary_10_1371_journal_pgen_1010288 crossref_primary_10_1016_j_ygcen_2021_113893 crossref_primary_10_3390_ijms19041154 crossref_primary_10_1016_j_ygcen_2017_09_011 crossref_primary_10_1074_mcp_RA120_002306 crossref_primary_10_1016_j_aqrep_2023_101691 crossref_primary_10_3389_fcell_2021_684352 crossref_primary_10_3389_fendo_2021_674954 crossref_primary_10_1016_j_aquaculture_2018_06_009 crossref_primary_10_1016_j_mce_2019_110593 crossref_primary_10_1016_j_cbd_2022_101052 crossref_primary_10_1242_dev_199380 crossref_primary_10_1002_mrd_23237 crossref_primary_10_1016_j_ecoenv_2023_115654 crossref_primary_10_1371_journal_pone_0268140 crossref_primary_10_1016_j_jsbmb_2018_04_011 crossref_primary_10_1101_gr_275962_121 crossref_primary_10_1111_jwas_12815 crossref_primary_10_1016_j_cbpb_2019_04_002 crossref_primary_10_1016_j_aqrep_2021_100754 crossref_primary_10_1016_j_aquaculture_2024_741455 crossref_primary_10_1152_physrev_00044_2019 crossref_primary_10_1016_j_aaf_2020_09_004 crossref_primary_10_3389_fmars_2022_962534 crossref_primary_10_3390_fishes10020040 crossref_primary_10_1016_j_cub_2023_10_044 crossref_primary_10_1111_are_15633 crossref_primary_10_1210_endocr_bqab068 crossref_primary_10_3390_biology10100973 crossref_primary_10_1016_j_theriogenology_2017_12_016 crossref_primary_10_1016_j_gene_2018_11_016 crossref_primary_10_1007_s00018_020_03725_2 crossref_primary_10_1016_j_ygcen_2018_03_005 crossref_primary_10_1038_s41598_021_83891_w crossref_primary_10_1007_s11802_021_4772_6 crossref_primary_10_1186_s13293_024_00643_x crossref_primary_10_1111_raq_12369 crossref_primary_10_1016_j_aqrep_2021_100982 crossref_primary_10_1016_j_watbs_2025_100370 crossref_primary_10_1016_j_jsbmb_2019_105379 crossref_primary_10_1007_s10695_019_00693_8 crossref_primary_10_1016_j_aaf_2022_03_004 crossref_primary_10_1038_s41598_020_69421_0 crossref_primary_10_3390_ani11041042 crossref_primary_10_3390_ijms21165893 crossref_primary_10_1534_g3_118_200883 crossref_primary_10_1016_j_aqrep_2024_102218 crossref_primary_10_1016_j_bbrc_2024_150227 crossref_primary_10_1016_j_aquaculture_2020_735656 crossref_primary_10_1007_s10126_020_09956_5 crossref_primary_10_1002_bies_202000161 crossref_primary_10_1073_pnas_2121469119 crossref_primary_10_3390_ijms24032468 crossref_primary_10_1038_s41598_018_35553_7 crossref_primary_10_1016_j_jgg_2024_08_008 crossref_primary_10_1016_j_jsbmb_2019_105517 crossref_primary_10_1016_j_cbpb_2021_110668 crossref_primary_10_3390_genes10121035 crossref_primary_10_1016_j_anireprosci_2023_107373 crossref_primary_10_1016_j_aquaculture_2024_740974 crossref_primary_10_1159_000452362 crossref_primary_10_1371_journal_pgen_1011210 crossref_primary_10_1210_endocr_bqab205 crossref_primary_10_1007_s13258_019_00914_7 crossref_primary_10_1111_age_12989 crossref_primary_10_1007_s10750_020_04414_8 crossref_primary_10_1016_j_aquaculture_2021_737147 crossref_primary_10_3390_ijms20215487 crossref_primary_10_1016_j_aaf_2023_04_002 crossref_primary_10_1016_j_aquatox_2024_107022 crossref_primary_10_1007_s13353_024_00924_6 crossref_primary_10_1098_rsob_230257 crossref_primary_10_3389_fgene_2021_791179 crossref_primary_10_1016_j_ygcen_2023_114395 crossref_primary_10_3390_fishes10020084 crossref_primary_10_1038_s41598_018_26841_3 crossref_primary_10_3390_cells10113007 crossref_primary_10_1007_s42995_021_00091_1 crossref_primary_10_1007_s10126_024_10340_w crossref_primary_10_1007_s13205_023_03891_7 crossref_primary_10_31083_j_fbl2902063 crossref_primary_10_1111_jwas_12479 crossref_primary_10_1016_j_aquaculture_2023_740279 crossref_primary_10_1038_s42003_024_06853_8 crossref_primary_10_1016_j_aquaculture_2019_734535 crossref_primary_10_1016_j_scib_2017_01_003 crossref_primary_10_1016_j_tig_2019_06_006 crossref_primary_10_1039_D3AY01646C crossref_primary_10_1016_j_aquaculture_2021_736832 crossref_primary_10_3390_ani11051327 crossref_primary_10_1111_1755_0998_13273 crossref_primary_10_1016_j_aqrep_2021_100802 crossref_primary_10_1016_j_jare_2023_11_030 crossref_primary_10_1007_s11427_018_9415_7 crossref_primary_10_2478_s11756_020_00677_7 crossref_primary_10_1016_j_mod_2016_12_006 crossref_primary_10_1007_s11427_021_2075_x crossref_primary_10_1016_j_aquaculture_2024_741036 crossref_primary_10_1186_s12864_020_6513_4 crossref_primary_10_1016_j_cbd_2020_100708 crossref_primary_10_1111_raq_12571 crossref_primary_10_1186_s12864_018_4756_0 crossref_primary_10_1016_j_ygcen_2018_11_015 crossref_primary_10_1186_s43170_021_00066_3 crossref_primary_10_1002_dvdy_24579 |
Cites_doi | 10.1095/biolreprod.111.091892 10.1016/j.mce.2015.08.008 10.1038/nature751 10.1210/en.2009-0999 10.1002/dvdy.20158 10.1210/me.2006-0248 10.1095/biolreprod.114.121418 10.1016/j.bbrc.2015.09.112 10.1002/jez.1108 10.1210/jcem.82.6.3967 10.1530/JOE-15-0432 10.1016/j.ygcen.2015.02.018 10.1073/pnas.182314699 10.1534/genetics.114.163667 10.1016/S0092-8674(03)00432-X 10.1159/000074351 10.1016/j.ygcen.2012.01.019 10.1016/j.gep.2010.06.005 10.1186/1471-2164-14-452 10.1242/dev.120.10.2787 10.1095/biolreprod.107.064246 10.1534/genetics.111.137497 10.1371/journal.pgen.1005678 10.1186/1471-2199-8-58 10.1016/j.ydbio.2006.10.001 10.1093/nar/gkt658 10.1016/j.cell.2015.10.071 10.1038/srep19738 10.1016/j.aquaculture.2014.05.035 10.1073/pnas.1018392109 10.1016/j.ygcen.2009.03.002 10.1371/journal.pgen.1002798 10.1038/srep19480 10.1210/me.8.5.643 10.1016/j.cytogfr.2003.10.004 10.1002/dvdy.23929 10.1371/journal.pone.0063604 10.1210/me.2014-1256 10.1210/en.2013-1959 |
ContentType | Journal Article |
Copyright | 2016 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2016 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TM 8FD FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/mrd.22642 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology Anatomy & Physiology Zoology |
EISSN | 1098-2795 |
EndPage | 508 |
ExternalDocumentID | 4095288751 27027772 10_1002_mrd_22642 MRD22642 ark_67375_WNG_Q4XWQ75K_W |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Chongqing Postdoctoral Science Foundation funderid: Xm2015028 – fundername: Fundamental Research Funds for the Central Universities in China funderid: XDJK2013D019 – fundername: 863 program of China funderid: 2011AA100404 – fundername: China Postdoctoral Science Foundation funderid: 2015M570765 – fundername: NSFC of China funderid: 91331119; 31030063 – fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China funderid: 20130182130003 – fundername: Chongqing Science and Technology Commission funderid: cstc2015jcyjB80001; cstc2013kjrc‐tdjs80003 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XJT XV2 ZXP ZZTAW ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ BQCPF AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7TM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4942-b275c44378ad4869813e294254d21b2752d976cbd84b05ac10d654e9a480cba03 |
IEDL.DBID | DR2 |
ISSN | 1040-452X 1098-2795 |
IngestDate | Fri Jul 11 15:34:26 EDT 2025 Fri Jul 11 06:15:44 EDT 2025 Fri Jul 25 12:19:59 EDT 2025 Thu Apr 03 07:02:56 EDT 2025 Tue Jul 01 03:34:47 EDT 2025 Thu Apr 24 23:06:15 EDT 2025 Wed Jan 22 16:17:50 EST 2025 Wed Oct 30 09:48:44 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4942-b275c44378ad4869813e294254d21b2752d976cbd84b05ac10d654e9a480cba03 |
Notes | China Postdoctoral Science Foundation - No. 2015M570765 Fundamental Research Funds for the Central Universities in China - No. XDJK2013D019 ArticleID:MRD22642 Chongqing Postdoctoral Science Foundation - No. Xm2015028 Chongqing Science and Technology Commission - No. cstc2015jcyjB80001; No. cstc2013kjrc-tdjs80003 863 program of China - No. 2011AA100404 ark:/67375/WNG-Q4XWQ75K-W istex:565CBFB79CC28456B6140D2390DF5DDFA8C7E74C Specialized Research Fund for the Doctoral Program of Higher Education of China - No. 20130182130003 NSFC of China - No. 91331119; No. 31030063 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27027772 |
PQID | 1798288055 |
PQPubID | 1006435 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1811903365 proquest_miscellaneous_1799209291 proquest_journals_1798288055 pubmed_primary_27027772 crossref_citationtrail_10_1002_mrd_22642 crossref_primary_10_1002_mrd_22642 wiley_primary_10_1002_mrd_22642_MRD22642 istex_primary_ark_67375_WNG_Q4XWQ75K_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2016 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: June 2016 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Molecular reproduction and development |
PublicationTitleAlternate | Mol. Reprod. Dev |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M. 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559-563. Shibata Y, Paul-Prasanth B, Suzuki A, Usami T, Nakamoto M, Matsuda M, Nagahama Y. 2010. Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr Patterns 10:283-289. Chakraborty T, Zhou LY, Chaudhari A, Iguchi T, Nagahama Y. 2016. Dmy initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka (Oryzias latipes). Sci Rep 6:19480. Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma JM, Kraus F, Schmid S, Priebe T, Liehr M, Gorlach ME, Than M, Hiller HA, Kestler V, Volff JN, Schartl M, Cellerino A, Englert C, Platzer M. 2015. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163:1527-1538. Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, Jiang D, Zhou L, Sun L, Tao W, Nagahama Y, Kocher TD, Wang D. 2015. A tandem duplicate of anti-mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet 11:e1005678. Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M. 2012. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:163-170. D'Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF. 2001. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticusa. J Exp Zool 290:574-585. Doghman M, Figueiredo BC, Volante M, Papotti M, Lalli E. 2013. Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation. Nucleic Acids Res 41:8896-8907. Gautier A, Sohm F, Joly JS, Le Gac F, Lareyre JJ. 2011. The proximal promoter region of the zebrafish gsdf gene is sufficient to mimic the spatio-temporal expression pattern of the endogenous gene in Sertoli and granulosa cells. Biol Reprod 85:1240-1251. Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, Morohashi K. 1994. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120:2787-2797. Sun LN, Jiang XL, Xie QP, Yuan J, Huang BF, Tao WJ, Zhou LY, Nagahama Y, Wang DS. 2014a. Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile tilapia. Endocrinology 155:1476-1488. Kaneko H, Ijiri S, Kobayashi T, Izumi H, Kuramochi Y, Wang DS, Mizuno S, Nagahama Y. 2015. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol Cell Endocrinol 415:87-99. Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nagahama Y, Nakamura M. 2013. Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev Dyn 242:388-399. Sawatari E, Shikina S, Takeuchi T, Yoshizaki G. 2007. A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol 301:266-275. Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y. 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78:333-341. Nakamoto M, Fukasawa M, Tanaka S, Shimamori K, Suzuki A, Matsuda M, Kobayashi T, Nagahama Y, Shibata N. 2012. Expression of 3β-hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf-1 during gonadal development in medaka (Oryzias latipes). Gen Comp Endocrinol 176:222-230. Zhang Z, Zhu B, Ge W. 2015. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 29:76-98. Murphy MW, Zarkower D, Bardwell VJ. 2007. Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA. BMC Mol Biol 8:58. Ramayya MS, Zhou J, Kino T, Segars JH, Bondy CA, Chrousos GP. 1997. Steroidogenic factor 1 messenger ribonucleic acid expression in steroidogenic and nonsteroidogenic human tissues: Northern blot and in situ hybridization studies. J Clin Endocr Metab 82:1799-1806. Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. 2013. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS ONE 8:e63604. Zhang X, Wang H, Li M, Cheng Y, Jiang D, Sun L, Tao W, Zhou L, Wang Z, Wang D. 2014. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod 91:1-10. Li M, Yang H, Zhao J, Fang L, Shi H, Sun Y, Zhang X, Jiang D, Zhou L, Wang D. 2014. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197:591-599. Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y. 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21:712-725. Zhang X, Guan G, Li M, Zhu F, Liu Q, Naruse K, Herpin A, Nagahama Y, Li J, Hong Y. 2016. Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep 6:19738. Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y. 2010. Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology 151:1331-1340. Chen L, Jiang X, Feng H, Shi H, Sun L, Tao W, Xie Q, Wang D. 2016. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J Endocrinol 228:205-218. Guiguen Y, Fostier A, Piferrer F, Chang CF. 2010. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165:352-366. Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. 2003. Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet Genome Res 101:289-294. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M. 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99:11778-11783. Chen Y, Hong WS, Wang Q, Chen SX. 2015. Cloning and expression pattern of gsdf during the first maleness reproductive phase in the protandrous Acanthopagrus latus. Gen Comp Endocrinol 217-218:71-80. Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K. 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8:e1002798. Sun YL, Jiang DN, Zeng S, Hu CJ, Ye K, Yang C, Yang SJ, Li MH, Wang DS. 2014b. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus). Aquaculture 433:19-27. De Caestecker M. 2004. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev 15:1-11. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA. 2012. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109:2955-2959. Rondeau EB, Messmer AM, Sanderson DS, Jantzen SG, von Schalburg KR, Minkley DR, Leong JS, Macdonald GM, Davidsen AE, Parker WA, Mazzola RS, Campbell B, Koop BF. 2013. Genomics of sablefish (Anoplopoma fimbria): Expressed genes, mitochondrial phylogeny, linkage map, and identification of a putative sex gene. BMC Genomics 14:452. Morohashi K, Iida H, Nomura M, Hatano O, Honda S-i, Tsukiyama T, Niwa O, Hara T, Takakusu A, Shibata Y. 1994. Functional difference between Ad4BP and ELP, and their distributions in steroidogenic tissues. Mol Endocrinol 8:643-653. Shi Y, Massagué J. 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685-700. Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y. 2004. Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn 231:518-526. Imai T, Saino K, Matsuda M. 2015. Mutation of Gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development. Biochem Bioph Res Commun 467:109-114. 2007; 301 2015; 163 2010; 10 2014; 91 1997; 82 2015; 467 2015; 217–218 2016; 228 2015; 11 2013; 41 2002; 99 2010; 165 2008; 78 2014a; 155 2013; 242 2002; 417 2013; 8 2003; 113 2014; 197 2012; 109 1994; 8 2016; 6 2004; 231 2012; 176 2013; 14 2015; 29 2001; 290 2000 2004; 15 1994; 120 2012; 191 2007; 8 2011; 85 2010; 151 2015; 415 2007; 21 2014b; 433 2003; 101 2012; 8 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_26_1 e_1_2_8_27_1 Nagahama Y (e_1_2_8_25_1) 2000 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – reference: Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y. 2010. Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology 151:1331-1340. – reference: Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. 2013. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS ONE 8:e63604. – reference: Imai T, Saino K, Matsuda M. 2015. Mutation of Gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development. Biochem Bioph Res Commun 467:109-114. – reference: Sun YL, Jiang DN, Zeng S, Hu CJ, Ye K, Yang C, Yang SJ, Li MH, Wang DS. 2014b. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus). Aquaculture 433:19-27. – reference: Rondeau EB, Messmer AM, Sanderson DS, Jantzen SG, von Schalburg KR, Minkley DR, Leong JS, Macdonald GM, Davidsen AE, Parker WA, Mazzola RS, Campbell B, Koop BF. 2013. Genomics of sablefish (Anoplopoma fimbria): Expressed genes, mitochondrial phylogeny, linkage map, and identification of a putative sex gene. BMC Genomics 14:452. – reference: Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA. 2012. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109:2955-2959. – reference: Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma JM, Kraus F, Schmid S, Priebe T, Liehr M, Gorlach ME, Than M, Hiller HA, Kestler V, Volff JN, Schartl M, Cellerino A, Englert C, Platzer M. 2015. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163:1527-1538. – reference: Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M. 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99:11778-11783. – reference: Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. 2003. Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet Genome Res 101:289-294. – reference: Chen Y, Hong WS, Wang Q, Chen SX. 2015. Cloning and expression pattern of gsdf during the first maleness reproductive phase in the protandrous Acanthopagrus latus. Gen Comp Endocrinol 217-218:71-80. – reference: Gautier A, Sohm F, Joly JS, Le Gac F, Lareyre JJ. 2011. The proximal promoter region of the zebrafish gsdf gene is sufficient to mimic the spatio-temporal expression pattern of the endogenous gene in Sertoli and granulosa cells. Biol Reprod 85:1240-1251. – reference: Morohashi K, Iida H, Nomura M, Hatano O, Honda S-i, Tsukiyama T, Niwa O, Hara T, Takakusu A, Shibata Y. 1994. Functional difference between Ad4BP and ELP, and their distributions in steroidogenic tissues. Mol Endocrinol 8:643-653. – reference: Chakraborty T, Zhou LY, Chaudhari A, Iguchi T, Nagahama Y. 2016. Dmy initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka (Oryzias latipes). Sci Rep 6:19480. – reference: D'Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF. 2001. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticusa. J Exp Zool 290:574-585. – reference: Zhang X, Guan G, Li M, Zhu F, Liu Q, Naruse K, Herpin A, Nagahama Y, Li J, Hong Y. 2016. Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep 6:19738. – reference: Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, Morohashi K. 1994. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120:2787-2797. – reference: Sun LN, Jiang XL, Xie QP, Yuan J, Huang BF, Tao WJ, Zhou LY, Nagahama Y, Wang DS. 2014a. Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile tilapia. Endocrinology 155:1476-1488. – reference: Murphy MW, Zarkower D, Bardwell VJ. 2007. Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA. BMC Mol Biol 8:58. – reference: Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M. 2012. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:163-170. – reference: Kaneko H, Ijiri S, Kobayashi T, Izumi H, Kuramochi Y, Wang DS, Mizuno S, Nagahama Y. 2015. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol Cell Endocrinol 415:87-99. – reference: Shibata Y, Paul-Prasanth B, Suzuki A, Usami T, Nakamoto M, Matsuda M, Nagahama Y. 2010. Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr Patterns 10:283-289. – reference: Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y. 2004. Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn 231:518-526. – reference: Chen L, Jiang X, Feng H, Shi H, Sun L, Tao W, Xie Q, Wang D. 2016. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J Endocrinol 228:205-218. – reference: Zhang Z, Zhu B, Ge W. 2015. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 29:76-98. – reference: De Caestecker M. 2004. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev 15:1-11. – reference: Guiguen Y, Fostier A, Piferrer F, Chang CF. 2010. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165:352-366. – reference: Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y. 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78:333-341. – reference: Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M. 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559-563. – reference: Li M, Yang H, Zhao J, Fang L, Shi H, Sun Y, Zhang X, Jiang D, Zhou L, Wang D. 2014. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197:591-599. – reference: Shi Y, Massagué J. 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685-700. – reference: Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nagahama Y, Nakamura M. 2013. Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev Dyn 242:388-399. – reference: Nakamoto M, Fukasawa M, Tanaka S, Shimamori K, Suzuki A, Matsuda M, Kobayashi T, Nagahama Y, Shibata N. 2012. Expression of 3β-hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf-1 during gonadal development in medaka (Oryzias latipes). Gen Comp Endocrinol 176:222-230. – reference: Zhang X, Wang H, Li M, Cheng Y, Jiang D, Sun L, Tao W, Zhou L, Wang Z, Wang D. 2014. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod 91:1-10. – reference: Doghman M, Figueiredo BC, Volante M, Papotti M, Lalli E. 2013. Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation. Nucleic Acids Res 41:8896-8907. – reference: Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y. 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21:712-725. – reference: Sawatari E, Shikina S, Takeuchi T, Yoshizaki G. 2007. A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol 301:266-275. – reference: Ramayya MS, Zhou J, Kino T, Segars JH, Bondy CA, Chrousos GP. 1997. Steroidogenic factor 1 messenger ribonucleic acid expression in steroidogenic and nonsteroidogenic human tissues: Northern blot and in situ hybridization studies. J Clin Endocr Metab 82:1799-1806. – reference: Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, Jiang D, Zhou L, Sun L, Tao W, Nagahama Y, Kocher TD, Wang D. 2015. A tandem duplicate of anti-mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet 11:e1005678. – reference: Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K. 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8:e1002798. – volume: 11 start-page: e1005678 year: 2015 article-title: A tandem duplicate of anti‐mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia, publication-title: PLoS Genet – start-page: 211 year: 2000 end-page: 222 – volume: 163 start-page: 1527 year: 2015 end-page: 1538 article-title: Insights into sex chromosome evolution and aging from the genome of a short‐lived fish publication-title: Cell – volume: 228 start-page: 205 year: 2016 end-page: 218 article-title: Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption publication-title: J Endocrinol – volume: 10 start-page: 283 year: 2010 end-page: 289 article-title: Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka publication-title: Gene Expr Patterns – volume: 176 start-page: 222 year: 2012 end-page: 230 article-title: Expression of 3β‐hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf‐1 during gonadal development in medaka ( ) publication-title: Gen Comp Endocrinol – volume: 21 start-page: 712 year: 2007 end-page: 725 article-title: Foxl2 up‐regulates aromatase gene transcription in a female‐specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1 publication-title: Mol Endocrinol – volume: 191 start-page: 163 year: 2012 end-page: 170 article-title: Tracing the emergence of a novel sex‐determining gene in medaka, publication-title: Genetics – volume: 467 start-page: 109 year: 2015 end-page: 114 article-title: Mutation of Gonadal soma‐derived factor induces medaka XY gonads to undergo ovarian development publication-title: Biochem Bioph Res Commun – volume: 8 start-page: 58 year: 2007 article-title: Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA publication-title: BMC Mol Biol – volume: 8 start-page: 643 year: 1994 end-page: 653 article-title: Functional difference between Ad4BP and ELP, and their distributions in steroidogenic tissues publication-title: Mol Endocrinol – volume: 29 start-page: 76 year: 2015 end-page: 98 article-title: Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN‐mediated gene disruption publication-title: Mol Endocrinol – volume: 165 start-page: 352 year: 2010 end-page: 366 article-title: Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish publication-title: Gen Comp Endocrinol – volume: 109 start-page: 2955 year: 2012 end-page: 2959 article-title: A Y‐linked anti‐Mullerian hormone duplication takes over a critical role in sex determination publication-title: Proc Natl Acad Sci USA – volume: 91 start-page: 1 year: 2014 end-page: 10 article-title: Isolation of doublesex‐ and mab‐3‐related transcription factor 6 and its involvement in spermatogenesis in tilapia publication-title: Biol Reprod – volume: 301 start-page: 266 year: 2007 end-page: 275 article-title: A novel transforming growth factor‐beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout ( ) publication-title: Dev Biol – volume: 78 start-page: 333 year: 2008 end-page: 341 article-title: Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia publication-title: Biol Reprod – volume: 231 start-page: 518 year: 2004 end-page: 526 article-title: Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, publication-title: Dev Dyn – volume: 15 start-page: 1 year: 2004 end-page: 11 article-title: The transforming growth factor‐β superfamily of receptors publication-title: Cytokine Growth Factor Rev – volume: 14 start-page: 452 year: 2013 article-title: Genomics of sablefish ( ): Expressed genes, mitochondrial phylogeny, linkage map, and identification of a putative sex gene publication-title: BMC Genomics – volume: 197 start-page: 591 year: 2014 end-page: 599 article-title: Efficient and heritable gene targeting in tilapia by CRISPR/Cas9 publication-title: Genetics – volume: 82 start-page: 1799 year: 1997 end-page: 1806 article-title: Steroidogenic factor 1 messenger ribonucleic acid expression in steroidogenic and nonsteroidogenic human tissues: Northern blot and in situ hybridization studies publication-title: J Clin Endocr Metab – volume: 6 start-page: 19738 year: 2016 article-title: Autosomal acts as a male sex initiator in the fish medaka publication-title: Sci Rep – volume: 290 start-page: 574 year: 2001 end-page: 585 article-title: Search for genes involved in the temperature‐induced gonadal sex differentiation in the tilapia, a publication-title: J Exp Zool – volume: 242 start-page: 388 year: 2013 end-page: 399 article-title: Characterization of gonadal soma‐derived factor expression during sex change in the protogynous wrasse, publication-title: Dev Dyn – volume: 8 start-page: e1002798 year: 2012 article-title: A trans‐species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, (fugu) publication-title: PLoS Genet – volume: 41 start-page: 8896 year: 2013 end-page: 8907 article-title: Integrative analysis of SF‐1 transcription factor dosage impact on genome‐wide binding and gene expression regulation publication-title: Nucleic Acids Res – volume: 8 start-page: e63604 year: 2013 article-title: Characterization of gonadal transcriptomes from Nile tilapia ( ) reveals differentially expressed genes publication-title: PLoS ONE – volume: 85 start-page: 1240 year: 2011 end-page: 1251 article-title: The proximal promoter region of the zebrafish gene is sufficient to mimic the spatio‐temporal expression pattern of the endogenous gene in Sertoli and granulosa cells publication-title: Biol Reprod – volume: 433 start-page: 19 year: 2014b end-page: 27 article-title: Screening and characterization of sex‐linked DNA markers and marker‐assisted selection in the Nile tilapia ( ) publication-title: Aquaculture – volume: 101 start-page: 289 year: 2003 end-page: 294 article-title: Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia publication-title: Cytogenet Genome Res – volume: 155 start-page: 1476 year: 2014a end-page: 1488 article-title: Transdifferentiation of differentiated ovary into functional testis by long‐term treatment of aromatase inhibitor in Nile tilapia publication-title: Endocrinology – volume: 120 start-page: 2787 year: 1994 end-page: 2797 article-title: Sex‐dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P‐450 genes in the gonads during prenatal and postnatal rat development publication-title: Development – volume: 6 start-page: 19480 year: 2016 article-title: Dmy initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka ( ) publication-title: Sci Rep – volume: 217–218 start-page: 71 year: 2015 end-page: 80 article-title: Cloning and expression pattern of gsdf during the first maleness reproductive phase in the protandrous publication-title: Gen Comp Endocrinol – volume: 417 start-page: 559 year: 2002 end-page: 563 article-title: DMY is a Y‐specific DM‐domain gene required for male development in the medaka fish publication-title: Nature – volume: 99 start-page: 11778 year: 2002 end-page: 11783 article-title: A duplicated copy of DMRT1 in the sex‐determining region of the Y chromosome of the medaka, publication-title: Proc Natl Acad Sci USA – volume: 415 start-page: 87 year: 2015 end-page: 99 article-title: Gonadal soma‐derived factor ( ), a TGF‐beta superfamily gene, induces testis differentiation in the teleost fish publication-title: Mol Cell Endocrinol – volume: 151 start-page: 1331 year: 2010 end-page: 1340 article-title: Doublesex‐ and Mab‐3‐related transcription factor‐1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia publication-title: Endocrinology – volume: 113 start-page: 685 year: 2003 end-page: 700 article-title: Mechanisms of TGF‐beta signaling from cell membrane to the nucleus publication-title: Cell – ident: e_1_2_8_8_1 doi: 10.1095/biolreprod.111.091892 – ident: e_1_2_8_16_1 doi: 10.1016/j.mce.2015.08.008 – ident: e_1_2_8_21_1 doi: 10.1038/nature751 – ident: e_1_2_8_38_1 doi: 10.1210/en.2009-0999 – ident: e_1_2_8_18_1 doi: 10.1002/dvdy.20158 – ident: e_1_2_8_37_1 doi: 10.1210/me.2006-0248 – ident: e_1_2_8_39_1 doi: 10.1095/biolreprod.114.121418 – ident: e_1_2_8_14_1 doi: 10.1016/j.bbrc.2015.09.112 – ident: e_1_2_8_5_1 doi: 10.1002/jez.1108 – ident: e_1_2_8_28_1 doi: 10.1210/jcem.82.6.3967 – ident: e_1_2_8_4_1 doi: 10.1530/JOE-15-0432 – ident: e_1_2_8_3_1 doi: 10.1016/j.ygcen.2015.02.018 – ident: e_1_2_8_27_1 doi: 10.1073/pnas.182314699 – start-page: 211 volume-title: Proc 6th international symposium on reproductive physiology of fish year: 2000 ident: e_1_2_8_25_1 – ident: e_1_2_8_19_1 doi: 10.1534/genetics.114.163667 – ident: e_1_2_8_32_1 doi: 10.1016/S0092-8674(03)00432-X – ident: e_1_2_8_17_1 doi: 10.1159/000074351 – ident: e_1_2_8_26_1 doi: 10.1016/j.ygcen.2012.01.019 – ident: e_1_2_8_33_1 doi: 10.1016/j.gep.2010.06.005 – ident: e_1_2_8_30_1 doi: 10.1186/1471-2164-14-452 – ident: e_1_2_8_10_1 doi: 10.1242/dev.120.10.2787 – ident: e_1_2_8_13_1 doi: 10.1095/biolreprod.107.064246 – ident: e_1_2_8_24_1 doi: 10.1534/genetics.111.137497 – ident: e_1_2_8_20_1 doi: 10.1371/journal.pgen.1005678 – ident: e_1_2_8_23_1 doi: 10.1186/1471-2199-8-58 – ident: e_1_2_8_31_1 doi: 10.1016/j.ydbio.2006.10.001 – ident: e_1_2_8_7_1 doi: 10.1093/nar/gkt658 – ident: e_1_2_8_29_1 doi: 10.1016/j.cell.2015.10.071 – ident: e_1_2_8_41_1 doi: 10.1038/srep19738 – ident: e_1_2_8_35_1 doi: 10.1016/j.aquaculture.2014.05.035 – ident: e_1_2_8_11_1 doi: 10.1073/pnas.1018392109 – ident: e_1_2_8_9_1 doi: 10.1016/j.ygcen.2009.03.002 – ident: e_1_2_8_15_1 doi: 10.1371/journal.pgen.1002798 – ident: e_1_2_8_2_1 doi: 10.1038/srep19480 – ident: e_1_2_8_22_1 doi: 10.1210/me.8.5.643 – ident: e_1_2_8_6_1 doi: 10.1016/j.cytogfr.2003.10.004 – ident: e_1_2_8_12_1 doi: 10.1002/dvdy.23929 – ident: e_1_2_8_36_1 doi: 10.1371/journal.pone.0063604 – ident: e_1_2_8_40_1 doi: 10.1210/me.2014-1256 – ident: e_1_2_8_34_1 doi: 10.1210/en.2013-1959 |
SSID | ssj0009980 |
Score | 2.510192 |
Snippet | SUMMARY
Gonadal soma‐derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation... Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is... SUMMARY Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 497 |
SubjectTerms | Animals Fish Proteins - genetics Fish Proteins - metabolism Male Oreochromis niloticus Sex Determination Processes - physiology Teleostei Testis - embryology Tilapia Tilapia - embryology Tilapia - genetics Transcription Factors - genetics Transcription Factors - metabolism Transforming Growth Factor beta - genetics Transforming Growth Factor beta - metabolism |
Title | gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia |
URI | https://api.istex.fr/ark:/67375/WNG-Q4XWQ75K-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrd.22642 https://www.ncbi.nlm.nih.gov/pubmed/27027772 https://www.proquest.com/docview/1798288055 https://www.proquest.com/docview/1799209291 https://www.proquest.com/docview/1811903365 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEA-lIvrFR-tjtUoUKX7Z624u2Qd-qtValB60WO4QIeR19rjuntzuYetf70z2USpVxG8hmcAmmZn8kp38hpBXgBJSXNtQJQpvq5wLtU54mLA8NXkCJua59A5HycEJ_zgRkzXypnsL0_BD9BduaBneX6OBK13tXJKGFks7wFeg6H8xVgsB0fEldRQcI1omgijkgk06VqGI7fQ9r-xFN3Baz68Dmldxq9949u-Sr90nN_Em88Gq1gPz8zc2x_8c0z1ypwWkdLfRoPtkzZUbZHO3hMN4cUG3qQ8R9XfvG-Tm2650a69LFAe1Xxa-dpPMv1V2SmcVVdTirTVGsRcUVNTRxZTaYlnHtD5VNcXd1Cs8nZVQ42gB-xSt3Dm1XXgONlPMl_xDXWBvlBrBoGg9wwd46gE52X__ee8gbLM5hIbnnIWapcJwPkwzZXmW5Fk8dAwaBLcsxkZmARoZbTOuI6FMHNlEcJcrnkVGq2j4kKyXi9I9JtRpE-VTK1QaGyR4y5Tg4Joip3WmGNMBed2tqzQt1Tlm3DiTDUkzkzDR0k90QF72ot8bfo_rhLa9cvQSajnHgLhUyPHogzzik_FRKj7JcUC2Ou2RrS-oJFLCMXCTQgTkRd8Ma4S_ZlTpFisvk7MIoGr8F5ksBvQ2BFUPyKNGM_sPwleFKRyUYORev_48Fnl4_M4Xnvy76FNyG3Bi0kTIbZH1erlyzwCL1fq5N7pfyG8r9g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELemTWh84bHxKAwwCE18SZc4dh4SX8bGKGyttGlTq0nIsmMXqpIUtanY-Ou5cx7T0ECIb5F9jmL7fP75cv4dIa8BJcQ4t56KFHqrrPW0jrgXsTTO0giWmOPS6w-i3hn_NBKjFfK2uQtT8UO0DjdcGc5e4wJHh_TOFWtoPjddvAYKBngNM3pj_oL9kyvyKDhI1FwEvscFGzW8Qj7baZte243WcGAvboKa15Gr23oO7pLPzUdXESfT7rLU3eznb3yO_9ure-ROjUnpbqVE98mKLTbI5m4B5_H8km5TFyXq3O8b5Na75ml9r8kVB6XnM1e6SaZfFmZMJwuqqEHHNQay5xS01NLZmJp8Xga0_KpKihuq03k6KaDE0hy2KrqwF9Q0ETpYTTFl8g91ia1RagC9ouUE7-CpB-Ts4P3pXs-rEzp4GU858zSLRcZ5GCfK8CRKkyC0DCoENyzASmYAHWXaJFz7QmWBbyLBbap44mda-eFDslrMCvuYUKszPx0boeIgQ463RAkO1sm3WieKMd0hb5qJlVnNdo5JN77JiqeZSRho6Qa6Q161ot8rio-bhLaddrQSaj7FmLhYyOHggzzmo-FxLA7lsEO2GvWRtTlYSGSFY2ApheiQl201zBH-nVGFnS2dTMp8QKvBX2SSAABcGEbwnkeVarYfhBcLYzgrQc-dgv25L7J_su8envy76Auy3jvtH8mjj4PDp-Q2wMaoCpjbIqvlfGmfATQr9XO3An8Bbs8wEA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFG4IxMuLF1BZRa3GEF9mmem0c4lPCK4oshEi2Q0xadppFzfrzJLd2Qj-es_pXAgGjfGtaU8nvZxz-rVz-pWQV4ASYpxbT0UKT6us9bSOuBexNM7SCEzMcekd9KO9Y_5xKIZL5E1zF6bih2gP3NAynL9GAz8zo61L0tB8Zrp4CxT87wqPwFgQER1dckfBPqKmIvA9LtiwoRXy2VZb9cpitILjen4d0rwKXN3K07tLvjZtrgJOJt1FqbvZz9_oHP-zU_fInRqR0u1Khe6TJVuskrXtAnbj-QXdpC5G1B2-r5Ibb5vUrZ3mpTjIPZm63DUyOZ2bER3PqaIGj60xjD2noKOWTkfU5LMyoOU3VVJcTp3G03EBOZbmsFDRuT2nponPwWKKDyb_UBdYG6X60ClajvEGnnpAjnvvvuzsefVzDl7GU848zWKRcR7GiTI8idIkCC2DAsENC7CQGcBGmTYJ175QWeCbSHCbKp74mVZ--JAsF9PCrhNqdeanIyNUHGTI8JYowcE3-VbrRDGmO-R1M68yq7nO8cmN77JiaWYSBlq6ge6Ql63oWUXwcZ3QplOOVkLNJhgRFws56L-Xh3w4OIzFvhx0yEajPbJ2BnOJnHAM_KQQHfKiLYY5wn8zqrDThZNJmQ9YNfiLTBIAfAvDCL7zqNLMtkF4rTCGnRL03OnXn_siD452XeLxv4s-Jzc_7_bkpw_9_SfkNmDGqIqW2yDL5WxhnwIuK_UzZ3-_ANNFLsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=gsdf+is+a+downstream+gene+of+dmrt1+that+functions+in+the+male+sex+determination+pathway+of+the+Nile+tilapia&rft.jtitle=Molecular+reproduction+and+development&rft.au=Jiang%2C+Dong%E2%80%90Neng&rft.au=Yang%2C+Hui%E2%80%90Hui&rft.au=Li%2C+Ming%E2%80%90Hui&rft.au=Shi%2C+Hong%E2%80%90Juan&rft.date=2016-06-01&rft.issn=1040-452X&rft.eissn=1098-2795&rft.volume=83&rft.issue=6&rft.spage=497&rft.epage=508&rft_id=info:doi/10.1002%2Fmrd.22642&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrd_22642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-452X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-452X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-452X&client=summon |