gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia

SUMMARY Gonadal soma‐derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf‐deficient XY fish with high mutation rate (≥58%) dev...

Full description

Saved in:
Bibliographic Details
Published inMolecular reproduction and development Vol. 83; no. 6; pp. 497 - 508
Main Authors Jiang, Dong-Neng, Yang, Hui-Hui, Li, Ming-Hui, Shi, Hong-Juan, Zhang, Xian-Bo, Wang, De-Shou
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1040-452X
1098-2795
1098-2795
DOI10.1002/mrd.22642

Cover

Loading…
Abstract SUMMARY Gonadal soma‐derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf‐deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex‐reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf+/− fish developed as males with normal testes. In F2 XY gsdf−/− fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase‐inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf−/− with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose‐dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497–508, 2016. © 2016 Wiley Periodicals, Inc.
AbstractList Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf(+/-) fish developed as males with normal testes. In F2 XY gsdf(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc.
Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf(+/-) fish developed as males with normal testes. In F2 XY gsdf(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc.Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf(+/-) fish developed as males with normal testes. In F2 XY gsdf(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc.
SUMMARY Gonadal soma‐derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf‐deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex‐reversed with ovaries at 180 and 240 dah. Those individuals with a low mutation rate (<58%) and XY gsdf+/− fish developed as males with normal testes. In F2 XY gsdf−/− fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10 dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18 dah, shifted to the female pathway expressing only Cyp19a1a at 36 dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase‐inhibitor treatment from 10 to 35 dah, however, rescued the phenotype, resulting in XY gsdf−/− with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose‐dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497–508, 2016. © 2016 Wiley Periodicals, Inc.
Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate ( greater than or equal to 58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240dah. Those individuals with a low mutation rate (<58%) and XY gsdf super(+/-) fish developed as males with normal testes. In F2 XY gsdf super(-/-) fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18dah, shifted to the female pathway expressing only Cyp19a1a at 36dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35dah, however, rescued the phenotype, resulting in XY gsdf super(-/-) with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. copyright 2016 Wiley Periodicals, Inc.
SUMMARY Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is lacking. In the present study, we knocked out tilapia gsdf using CRISPR/Cas9. F0 gsdf-deficient XY fish with high mutation rate (≥58%) developed as intersex, with ovotestes 90 days after hatching (dah), and become completely sex-reversed with ovaries at 180 and 240dah. Those individuals with a low mutation rate (<58%) and XY gsdf+/- fish developed as males with normal testes. In F2 XY gsdf-/- fish, the gonads first expressed Dmrt1, which initiated the male pathway at 10dah, then both male and female pathways were activated, as reflected by the simultaneous expression of Dmrt1 and Cyp19a1a in different cell populations at 18dah, shifted to the female pathway expressing only Cyp19a1a at 36dah, and finally developed into functional ovaries as adults. The male pathway and Dmrt1 expression was initiated, but failed to be maintained, in the absence of Gsdf. Aromatase-inhibitor treatment from 10 to 35dah, however, rescued the phenotype, resulting in XY gsdf-/- with normal testes that expressed Dmrt1 and Cyp11b2. In vitro promoter analyses demonstrated that Dmrt1 activated gsdf expression in a dose-dependent manner in the presence of Sf1, even though Dmrt1 alone could not. Taken together, our results demonstrated that gsdf is a downstream gene of dmrt1. Gsdf probably inhibits estrogen production to trigger testicular differentiation. Mol. Reprod. Dev. 83: 497-508, 2016. © 2016 Wiley Periodicals, Inc.
Author Shi, Hong-Juan
Li, Ming-Hui
Wang, De-Shou
Zhang, Xian-Bo
Yang, Hui-Hui
Jiang, Dong-Neng
Author_xml – sequence: 1
  givenname: Dong-Neng
  surname: Jiang
  fullname: Jiang, Dong-Neng
  organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China
– sequence: 2
  givenname: Hui-Hui
  surname: Yang
  fullname: Yang, Hui-Hui
  organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China
– sequence: 3
  givenname: Ming-Hui
  surname: Li
  fullname: Li, Ming-Hui
  organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China
– sequence: 4
  givenname: Hong-Juan
  surname: Shi
  fullname: Shi, Hong-Juan
  organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China
– sequence: 5
  givenname: Xian-Bo
  surname: Zhang
  fullname: Zhang, Xian-Bo
  organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China
– sequence: 6
  givenname: De-Shou
  surname: Wang
  fullname: Wang, De-Shou
  email: Corresponding author:Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education)Key Laboratory of Aquatic Science of ChongqingSchool of Life SciencesSouthwest UniversityNo. 1 Tianshen Road, BeibeiChongqing 400715, China., wdeshou@swu.edu.cn
  organization: Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, Beibei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27027772$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vFCEAxYmpsX_04BcwJF70MC0wMMDRVK3GWlOj2d4IA0xLO8OswGS7316mu-uh0XiC8H7vJbx3CPbCGBwALzE6xgiRkyHaY0IaSp6AA4ykqAiXbG--U1RRRq72wWFKtwghKQV6BvYJR4RzTg7A3XWyHfQJamjHVUg5Oj3AaxccHDtoh5gxzDc6w24KJvsxJOhDeXFw0L2Dyd1D67KLgw96luFS55uVXs_umbrwhcq-10uvn4Onne6Te7E9j8DPjx9-nH6qzr-dfT59d14ZKimpWsKZobTmQlsqGilw7UgRGLUEzyKxkjemtYK2iGmDkW0YdVJTgUyrUX0E3mxyl3H8NbmU1eCTcX2vgxunpLDAWKK6btj_US4lQZJIXNDXj9DbcYqhfGSmBBECsTnw1Zaa2sFZtYx-0HGtdo0X4GQDmDimFF2njM8P1eWofa8wUvOmqmyqHjYtjrePHLvQv7Hb9FXpff1vUH39_n7nqDYOn7K7_-PQ8U41vOZMLS7O1CW9Wlxy9kUt6t9uBr0-
CODEN MREDEE
CitedBy_id crossref_primary_10_2903_sp_efsa_2023_EN_8311
crossref_primary_10_1016_j_ydbio_2017_05_017
crossref_primary_10_1007_s10695_018_0519_8
crossref_primary_10_1016_j_aquaculture_2023_739381
crossref_primary_10_3390_genes15091238
crossref_primary_10_1016_j_aaf_2024_05_005
crossref_primary_10_1111_1755_0998_13369
crossref_primary_10_1111_jfb_15284
crossref_primary_10_3389_fendo_2022_813320
crossref_primary_10_1002_etc_5353
crossref_primary_10_1371_journal_pgen_1010288
crossref_primary_10_1016_j_ygcen_2021_113893
crossref_primary_10_3390_ijms19041154
crossref_primary_10_1016_j_ygcen_2017_09_011
crossref_primary_10_1074_mcp_RA120_002306
crossref_primary_10_1016_j_aqrep_2023_101691
crossref_primary_10_3389_fcell_2021_684352
crossref_primary_10_3389_fendo_2021_674954
crossref_primary_10_1016_j_aquaculture_2018_06_009
crossref_primary_10_1016_j_mce_2019_110593
crossref_primary_10_1016_j_cbd_2022_101052
crossref_primary_10_1242_dev_199380
crossref_primary_10_1002_mrd_23237
crossref_primary_10_1016_j_ecoenv_2023_115654
crossref_primary_10_1371_journal_pone_0268140
crossref_primary_10_1016_j_jsbmb_2018_04_011
crossref_primary_10_1101_gr_275962_121
crossref_primary_10_1111_jwas_12815
crossref_primary_10_1016_j_cbpb_2019_04_002
crossref_primary_10_1016_j_aqrep_2021_100754
crossref_primary_10_1016_j_aquaculture_2024_741455
crossref_primary_10_1152_physrev_00044_2019
crossref_primary_10_1016_j_aaf_2020_09_004
crossref_primary_10_3389_fmars_2022_962534
crossref_primary_10_3390_fishes10020040
crossref_primary_10_1016_j_cub_2023_10_044
crossref_primary_10_1111_are_15633
crossref_primary_10_1210_endocr_bqab068
crossref_primary_10_3390_biology10100973
crossref_primary_10_1016_j_theriogenology_2017_12_016
crossref_primary_10_1016_j_gene_2018_11_016
crossref_primary_10_1007_s00018_020_03725_2
crossref_primary_10_1016_j_ygcen_2018_03_005
crossref_primary_10_1038_s41598_021_83891_w
crossref_primary_10_1007_s11802_021_4772_6
crossref_primary_10_1186_s13293_024_00643_x
crossref_primary_10_1111_raq_12369
crossref_primary_10_1016_j_aqrep_2021_100982
crossref_primary_10_1016_j_watbs_2025_100370
crossref_primary_10_1016_j_jsbmb_2019_105379
crossref_primary_10_1007_s10695_019_00693_8
crossref_primary_10_1016_j_aaf_2022_03_004
crossref_primary_10_1038_s41598_020_69421_0
crossref_primary_10_3390_ani11041042
crossref_primary_10_3390_ijms21165893
crossref_primary_10_1534_g3_118_200883
crossref_primary_10_1016_j_aqrep_2024_102218
crossref_primary_10_1016_j_bbrc_2024_150227
crossref_primary_10_1016_j_aquaculture_2020_735656
crossref_primary_10_1007_s10126_020_09956_5
crossref_primary_10_1002_bies_202000161
crossref_primary_10_1073_pnas_2121469119
crossref_primary_10_3390_ijms24032468
crossref_primary_10_1038_s41598_018_35553_7
crossref_primary_10_1016_j_jgg_2024_08_008
crossref_primary_10_1016_j_jsbmb_2019_105517
crossref_primary_10_1016_j_cbpb_2021_110668
crossref_primary_10_3390_genes10121035
crossref_primary_10_1016_j_anireprosci_2023_107373
crossref_primary_10_1016_j_aquaculture_2024_740974
crossref_primary_10_1159_000452362
crossref_primary_10_1371_journal_pgen_1011210
crossref_primary_10_1210_endocr_bqab205
crossref_primary_10_1007_s13258_019_00914_7
crossref_primary_10_1111_age_12989
crossref_primary_10_1007_s10750_020_04414_8
crossref_primary_10_1016_j_aquaculture_2021_737147
crossref_primary_10_3390_ijms20215487
crossref_primary_10_1016_j_aaf_2023_04_002
crossref_primary_10_1016_j_aquatox_2024_107022
crossref_primary_10_1007_s13353_024_00924_6
crossref_primary_10_1098_rsob_230257
crossref_primary_10_3389_fgene_2021_791179
crossref_primary_10_1016_j_ygcen_2023_114395
crossref_primary_10_3390_fishes10020084
crossref_primary_10_1038_s41598_018_26841_3
crossref_primary_10_3390_cells10113007
crossref_primary_10_1007_s42995_021_00091_1
crossref_primary_10_1007_s10126_024_10340_w
crossref_primary_10_1007_s13205_023_03891_7
crossref_primary_10_31083_j_fbl2902063
crossref_primary_10_1111_jwas_12479
crossref_primary_10_1016_j_aquaculture_2023_740279
crossref_primary_10_1038_s42003_024_06853_8
crossref_primary_10_1016_j_aquaculture_2019_734535
crossref_primary_10_1016_j_scib_2017_01_003
crossref_primary_10_1016_j_tig_2019_06_006
crossref_primary_10_1039_D3AY01646C
crossref_primary_10_1016_j_aquaculture_2021_736832
crossref_primary_10_3390_ani11051327
crossref_primary_10_1111_1755_0998_13273
crossref_primary_10_1016_j_aqrep_2021_100802
crossref_primary_10_1016_j_jare_2023_11_030
crossref_primary_10_1007_s11427_018_9415_7
crossref_primary_10_2478_s11756_020_00677_7
crossref_primary_10_1016_j_mod_2016_12_006
crossref_primary_10_1007_s11427_021_2075_x
crossref_primary_10_1016_j_aquaculture_2024_741036
crossref_primary_10_1186_s12864_020_6513_4
crossref_primary_10_1016_j_cbd_2020_100708
crossref_primary_10_1111_raq_12571
crossref_primary_10_1186_s12864_018_4756_0
crossref_primary_10_1016_j_ygcen_2018_11_015
crossref_primary_10_1186_s43170_021_00066_3
crossref_primary_10_1002_dvdy_24579
Cites_doi 10.1095/biolreprod.111.091892
10.1016/j.mce.2015.08.008
10.1038/nature751
10.1210/en.2009-0999
10.1002/dvdy.20158
10.1210/me.2006-0248
10.1095/biolreprod.114.121418
10.1016/j.bbrc.2015.09.112
10.1002/jez.1108
10.1210/jcem.82.6.3967
10.1530/JOE-15-0432
10.1016/j.ygcen.2015.02.018
10.1073/pnas.182314699
10.1534/genetics.114.163667
10.1016/S0092-8674(03)00432-X
10.1159/000074351
10.1016/j.ygcen.2012.01.019
10.1016/j.gep.2010.06.005
10.1186/1471-2164-14-452
10.1242/dev.120.10.2787
10.1095/biolreprod.107.064246
10.1534/genetics.111.137497
10.1371/journal.pgen.1005678
10.1186/1471-2199-8-58
10.1016/j.ydbio.2006.10.001
10.1093/nar/gkt658
10.1016/j.cell.2015.10.071
10.1038/srep19738
10.1016/j.aquaculture.2014.05.035
10.1073/pnas.1018392109
10.1016/j.ygcen.2009.03.002
10.1371/journal.pgen.1002798
10.1038/srep19480
10.1210/me.8.5.643
10.1016/j.cytogfr.2003.10.004
10.1002/dvdy.23929
10.1371/journal.pone.0063604
10.1210/me.2014-1256
10.1210/en.2013-1959
ContentType Journal Article
Copyright 2016 Wiley Periodicals, Inc.
Copyright_xml – notice: 2016 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TM
8FD
FR3
K9.
P64
RC3
7X8
DOI 10.1002/mrd.22642
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Genetics Abstracts
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
Anatomy & Physiology
Zoology
EISSN 1098-2795
EndPage 508
ExternalDocumentID 4095288751
27027772
10_1002_mrd_22642
MRD22642
ark_67375_WNG_Q4XWQ75K_W
Genre article
Journal Article
GrantInformation_xml – fundername: Chongqing Postdoctoral Science Foundation
  funderid: Xm2015028
– fundername: Fundamental Research Funds for the Central Universities in China
  funderid: XDJK2013D019
– fundername: 863 program of China
  funderid: 2011AA100404
– fundername: China Postdoctoral Science Foundation
  funderid: 2015M570765
– fundername: NSFC of China
  funderid: 91331119; 31030063
– fundername: Specialized Research Fund for the Doctoral Program of Higher Education of China
  funderid: 20130182130003
– fundername: Chongqing Science and Technology Commission
  funderid: cstc2015jcyjB80001; cstc2013kjrc‐tdjs80003
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XJT
XV2
ZXP
ZZTAW
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
BQCPF
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c4942-b275c44378ad4869813e294254d21b2752d976cbd84b05ac10d654e9a480cba03
IEDL.DBID DR2
ISSN 1040-452X
1098-2795
IngestDate Fri Jul 11 15:34:26 EDT 2025
Fri Jul 11 06:15:44 EDT 2025
Fri Jul 25 12:19:59 EDT 2025
Thu Apr 03 07:02:56 EDT 2025
Tue Jul 01 03:34:47 EDT 2025
Thu Apr 24 23:06:15 EDT 2025
Wed Jan 22 16:17:50 EST 2025
Wed Oct 30 09:48:44 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4942-b275c44378ad4869813e294254d21b2752d976cbd84b05ac10d654e9a480cba03
Notes China Postdoctoral Science Foundation - No. 2015M570765
Fundamental Research Funds for the Central Universities in China - No. XDJK2013D019
ArticleID:MRD22642
Chongqing Postdoctoral Science Foundation - No. Xm2015028
Chongqing Science and Technology Commission - No. cstc2015jcyjB80001; No. cstc2013kjrc-tdjs80003
863 program of China - No. 2011AA100404
ark:/67375/WNG-Q4XWQ75K-W
istex:565CBFB79CC28456B6140D2390DF5DDFA8C7E74C
Specialized Research Fund for the Doctoral Program of Higher Education of China - No. 20130182130003
NSFC of China - No. 91331119; No. 31030063
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27027772
PQID 1798288055
PQPubID 1006435
PageCount 12
ParticipantIDs proquest_miscellaneous_1811903365
proquest_miscellaneous_1799209291
proquest_journals_1798288055
pubmed_primary_27027772
crossref_citationtrail_10_1002_mrd_22642
crossref_primary_10_1002_mrd_22642
wiley_primary_10_1002_mrd_22642_MRD22642
istex_primary_ark_67375_WNG_Q4XWQ75K_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2016
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Molecular reproduction and development
PublicationTitleAlternate Mol. Reprod. Dev
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M. 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559-563.
Shibata Y, Paul-Prasanth B, Suzuki A, Usami T, Nakamoto M, Matsuda M, Nagahama Y. 2010. Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr Patterns 10:283-289.
Chakraborty T, Zhou LY, Chaudhari A, Iguchi T, Nagahama Y. 2016. Dmy initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka (Oryzias latipes). Sci Rep 6:19480.
Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma JM, Kraus F, Schmid S, Priebe T, Liehr M, Gorlach ME, Than M, Hiller HA, Kestler V, Volff JN, Schartl M, Cellerino A, Englert C, Platzer M. 2015. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163:1527-1538.
Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, Jiang D, Zhou L, Sun L, Tao W, Nagahama Y, Kocher TD, Wang D. 2015. A tandem duplicate of anti-mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet 11:e1005678.
Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M. 2012. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:163-170.
D'Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF. 2001. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticusa. J Exp Zool 290:574-585.
Doghman M, Figueiredo BC, Volante M, Papotti M, Lalli E. 2013. Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation. Nucleic Acids Res 41:8896-8907.
Gautier A, Sohm F, Joly JS, Le Gac F, Lareyre JJ. 2011. The proximal promoter region of the zebrafish gsdf gene is sufficient to mimic the spatio-temporal expression pattern of the endogenous gene in Sertoli and granulosa cells. Biol Reprod 85:1240-1251.
Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, Morohashi K. 1994. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120:2787-2797.
Sun LN, Jiang XL, Xie QP, Yuan J, Huang BF, Tao WJ, Zhou LY, Nagahama Y, Wang DS. 2014a. Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile tilapia. Endocrinology 155:1476-1488.
Kaneko H, Ijiri S, Kobayashi T, Izumi H, Kuramochi Y, Wang DS, Mizuno S, Nagahama Y. 2015. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol Cell Endocrinol 415:87-99.
Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nagahama Y, Nakamura M. 2013. Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev Dyn 242:388-399.
Sawatari E, Shikina S, Takeuchi T, Yoshizaki G. 2007. A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol 301:266-275.
Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y. 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78:333-341.
Nakamoto M, Fukasawa M, Tanaka S, Shimamori K, Suzuki A, Matsuda M, Kobayashi T, Nagahama Y, Shibata N. 2012. Expression of 3β-hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf-1 during gonadal development in medaka (Oryzias latipes). Gen Comp Endocrinol 176:222-230.
Zhang Z, Zhu B, Ge W. 2015. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 29:76-98.
Murphy MW, Zarkower D, Bardwell VJ. 2007. Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA. BMC Mol Biol 8:58.
Ramayya MS, Zhou J, Kino T, Segars JH, Bondy CA, Chrousos GP. 1997. Steroidogenic factor 1 messenger ribonucleic acid expression in steroidogenic and nonsteroidogenic human tissues: Northern blot and in situ hybridization studies. J Clin Endocr Metab 82:1799-1806.
Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. 2013. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS ONE 8:e63604.
Zhang X, Wang H, Li M, Cheng Y, Jiang D, Sun L, Tao W, Zhou L, Wang Z, Wang D. 2014. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod 91:1-10.
Li M, Yang H, Zhao J, Fang L, Shi H, Sun Y, Zhang X, Jiang D, Zhou L, Wang D. 2014. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197:591-599.
Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y. 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21:712-725.
Zhang X, Guan G, Li M, Zhu F, Liu Q, Naruse K, Herpin A, Nagahama Y, Li J, Hong Y. 2016. Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep 6:19738.
Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y. 2010. Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology 151:1331-1340.
Chen L, Jiang X, Feng H, Shi H, Sun L, Tao W, Xie Q, Wang D. 2016. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J Endocrinol 228:205-218.
Guiguen Y, Fostier A, Piferrer F, Chang CF. 2010. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165:352-366.
Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. 2003. Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet Genome Res 101:289-294.
Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M. 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99:11778-11783.
Chen Y, Hong WS, Wang Q, Chen SX. 2015. Cloning and expression pattern of gsdf during the first maleness reproductive phase in the protandrous Acanthopagrus latus. Gen Comp Endocrinol 217-218:71-80.
Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K. 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8:e1002798.
Sun YL, Jiang DN, Zeng S, Hu CJ, Ye K, Yang C, Yang SJ, Li MH, Wang DS. 2014b. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus). Aquaculture 433:19-27.
De Caestecker M. 2004. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev 15:1-11.
Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA. 2012. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109:2955-2959.
Rondeau EB, Messmer AM, Sanderson DS, Jantzen SG, von Schalburg KR, Minkley DR, Leong JS, Macdonald GM, Davidsen AE, Parker WA, Mazzola RS, Campbell B, Koop BF. 2013. Genomics of sablefish (Anoplopoma fimbria): Expressed genes, mitochondrial phylogeny, linkage map, and identification of a putative sex gene. BMC Genomics 14:452.
Morohashi K, Iida H, Nomura M, Hatano O, Honda S-i, Tsukiyama T, Niwa O, Hara T, Takakusu A, Shibata Y. 1994. Functional difference between Ad4BP and ELP, and their distributions in steroidogenic tissues. Mol Endocrinol 8:643-653.
Shi Y, Massagué J. 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685-700.
Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y. 2004. Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn 231:518-526.
Imai T, Saino K, Matsuda M. 2015. Mutation of Gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development. Biochem Bioph Res Commun 467:109-114.
2007; 301
2015; 163
2010; 10
2014; 91
1997; 82
2015; 467
2015; 217–218
2016; 228
2015; 11
2013; 41
2002; 99
2010; 165
2008; 78
2014a; 155
2013; 242
2002; 417
2013; 8
2003; 113
2014; 197
2012; 109
1994; 8
2016; 6
2004; 231
2012; 176
2013; 14
2015; 29
2001; 290
2000
2004; 15
1994; 120
2012; 191
2007; 8
2011; 85
2010; 151
2015; 415
2007; 21
2014b; 433
2003; 101
2012; 8
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
Nagahama Y (e_1_2_8_25_1) 2000
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F, Nagahama Y. 2010. Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinology 151:1331-1340.
– reference: Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S, Huang B, Wang D. 2013. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS ONE 8:e63604.
– reference: Imai T, Saino K, Matsuda M. 2015. Mutation of Gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development. Biochem Bioph Res Commun 467:109-114.
– reference: Sun YL, Jiang DN, Zeng S, Hu CJ, Ye K, Yang C, Yang SJ, Li MH, Wang DS. 2014b. Screening and characterization of sex-linked DNA markers and marker-assisted selection in the Nile tilapia (Oreochromis niloticus). Aquaculture 433:19-27.
– reference: Rondeau EB, Messmer AM, Sanderson DS, Jantzen SG, von Schalburg KR, Minkley DR, Leong JS, Macdonald GM, Davidsen AE, Parker WA, Mazzola RS, Campbell B, Koop BF. 2013. Genomics of sablefish (Anoplopoma fimbria): Expressed genes, mitochondrial phylogeny, linkage map, and identification of a putative sex gene. BMC Genomics 14:452.
– reference: Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strussmann CA. 2012. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109:2955-2959.
– reference: Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma JM, Kraus F, Schmid S, Priebe T, Liehr M, Gorlach ME, Than M, Hiller HA, Kestler V, Volff JN, Schartl M, Cellerino A, Englert C, Platzer M. 2015. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163:1527-1538.
– reference: Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M. 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99:11778-11783.
– reference: Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. 2003. Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet Genome Res 101:289-294.
– reference: Chen Y, Hong WS, Wang Q, Chen SX. 2015. Cloning and expression pattern of gsdf during the first maleness reproductive phase in the protandrous Acanthopagrus latus. Gen Comp Endocrinol 217-218:71-80.
– reference: Gautier A, Sohm F, Joly JS, Le Gac F, Lareyre JJ. 2011. The proximal promoter region of the zebrafish gsdf gene is sufficient to mimic the spatio-temporal expression pattern of the endogenous gene in Sertoli and granulosa cells. Biol Reprod 85:1240-1251.
– reference: Morohashi K, Iida H, Nomura M, Hatano O, Honda S-i, Tsukiyama T, Niwa O, Hara T, Takakusu A, Shibata Y. 1994. Functional difference between Ad4BP and ELP, and their distributions in steroidogenic tissues. Mol Endocrinol 8:643-653.
– reference: Chakraborty T, Zhou LY, Chaudhari A, Iguchi T, Nagahama Y. 2016. Dmy initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka (Oryzias latipes). Sci Rep 6:19480.
– reference: D'Cotta H, Fostier A, Guiguen Y, Govoroun M, Baroiller JF. 2001. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticusa. J Exp Zool 290:574-585.
– reference: Zhang X, Guan G, Li M, Zhu F, Liu Q, Naruse K, Herpin A, Nagahama Y, Li J, Hong Y. 2016. Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep 6:19738.
– reference: Hatano O, Takayama K, Imai T, Waterman MR, Takakusu A, Omura T, Morohashi K. 1994. Sex-dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P-450 genes in the gonads during prenatal and postnatal rat development. Development 120:2787-2797.
– reference: Sun LN, Jiang XL, Xie QP, Yuan J, Huang BF, Tao WJ, Zhou LY, Nagahama Y, Wang DS. 2014a. Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile tilapia. Endocrinology 155:1476-1488.
– reference: Murphy MW, Zarkower D, Bardwell VJ. 2007. Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA. BMC Mol Biol 8:58.
– reference: Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, Naruse K, Hamaguchi S, Sakaizumi M. 2012. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:163-170.
– reference: Kaneko H, Ijiri S, Kobayashi T, Izumi H, Kuramochi Y, Wang DS, Mizuno S, Nagahama Y. 2015. Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol Cell Endocrinol 415:87-99.
– reference: Shibata Y, Paul-Prasanth B, Suzuki A, Usami T, Nakamoto M, Matsuda M, Nagahama Y. 2010. Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr Patterns 10:283-289.
– reference: Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, Nakamoto M, Shibata N, Nagahama Y. 2004. Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn 231:518-526.
– reference: Chen L, Jiang X, Feng H, Shi H, Sun L, Tao W, Xie Q, Wang D. 2016. Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption. J Endocrinol 228:205-218.
– reference: Zhang Z, Zhu B, Ge W. 2015. Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 29:76-98.
– reference: De Caestecker M. 2004. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev 15:1-11.
– reference: Guiguen Y, Fostier A, Piferrer F, Chang CF. 2010. Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165:352-366.
– reference: Ijiri S, Kaneko H, Kobayashi T, Wang DS, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y. 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78:333-341.
– reference: Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M. 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559-563.
– reference: Li M, Yang H, Zhao J, Fang L, Shi H, Sun Y, Zhang X, Jiang D, Zhou L, Wang D. 2014. Efficient and heritable gene targeting in tilapia by CRISPR/Cas9. Genetics 197:591-599.
– reference: Shi Y, Massagué J. 2003. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685-700.
– reference: Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nagahama Y, Nakamura M. 2013. Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev Dyn 242:388-399.
– reference: Nakamoto M, Fukasawa M, Tanaka S, Shimamori K, Suzuki A, Matsuda M, Kobayashi T, Nagahama Y, Shibata N. 2012. Expression of 3β-hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf-1 during gonadal development in medaka (Oryzias latipes). Gen Comp Endocrinol 176:222-230.
– reference: Zhang X, Wang H, Li M, Cheng Y, Jiang D, Sun L, Tao W, Zhou L, Wang Z, Wang D. 2014. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod 91:1-10.
– reference: Doghman M, Figueiredo BC, Volante M, Papotti M, Lalli E. 2013. Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation. Nucleic Acids Res 41:8896-8907.
– reference: Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F, Okubo K, Morohashi K, Nagahama Y. 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21:712-725.
– reference: Sawatari E, Shikina S, Takeuchi T, Yoshizaki G. 2007. A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol 301:266-275.
– reference: Ramayya MS, Zhou J, Kino T, Segars JH, Bondy CA, Chrousos GP. 1997. Steroidogenic factor 1 messenger ribonucleic acid expression in steroidogenic and nonsteroidogenic human tissues: Northern blot and in situ hybridization studies. J Clin Endocr Metab 82:1799-1806.
– reference: Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, Jiang D, Zhou L, Sun L, Tao W, Nagahama Y, Kocher TD, Wang D. 2015. A tandem duplicate of anti-mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet 11:e1005678.
– reference: Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, Fujita M, Suetake H, Suzuki S, Hosoya S, Tohari S, Brenner S, Miyadai T, Venkatesh B, Suzuki Y, Kikuchi K. 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8:e1002798.
– volume: 11
  start-page: e1005678
  year: 2015
  article-title: A tandem duplicate of anti‐mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia,
  publication-title: PLoS Genet
– start-page: 211
  year: 2000
  end-page: 222
– volume: 163
  start-page: 1527
  year: 2015
  end-page: 1538
  article-title: Insights into sex chromosome evolution and aging from the genome of a short‐lived fish
  publication-title: Cell
– volume: 228
  start-page: 205
  year: 2016
  end-page: 218
  article-title: Simultaneous exposure to estrogen and androgen resulted in feminization and endocrine disruption
  publication-title: J Endocrinol
– volume: 10
  start-page: 283
  year: 2010
  end-page: 289
  article-title: Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka
  publication-title: Gene Expr Patterns
– volume: 176
  start-page: 222
  year: 2012
  end-page: 230
  article-title: Expression of 3β‐hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf‐1 during gonadal development in medaka ( )
  publication-title: Gen Comp Endocrinol
– volume: 21
  start-page: 712
  year: 2007
  end-page: 725
  article-title: Foxl2 up‐regulates aromatase gene transcription in a female‐specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1
  publication-title: Mol Endocrinol
– volume: 191
  start-page: 163
  year: 2012
  end-page: 170
  article-title: Tracing the emergence of a novel sex‐determining gene in medaka,
  publication-title: Genetics
– volume: 467
  start-page: 109
  year: 2015
  end-page: 114
  article-title: Mutation of Gonadal soma‐derived factor induces medaka XY gonads to undergo ovarian development
  publication-title: Biochem Bioph Res Commun
– volume: 8
  start-page: 58
  year: 2007
  article-title: Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA
  publication-title: BMC Mol Biol
– volume: 8
  start-page: 643
  year: 1994
  end-page: 653
  article-title: Functional difference between Ad4BP and ELP, and their distributions in steroidogenic tissues
  publication-title: Mol Endocrinol
– volume: 29
  start-page: 76
  year: 2015
  end-page: 98
  article-title: Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN‐mediated gene disruption
  publication-title: Mol Endocrinol
– volume: 165
  start-page: 352
  year: 2010
  end-page: 366
  article-title: Ovarian aromatase and estrogens: A pivotal role for gonadal sex differentiation and sex change in fish
  publication-title: Gen Comp Endocrinol
– volume: 109
  start-page: 2955
  year: 2012
  end-page: 2959
  article-title: A Y‐linked anti‐Mullerian hormone duplication takes over a critical role in sex determination
  publication-title: Proc Natl Acad Sci USA
– volume: 91
  start-page: 1
  year: 2014
  end-page: 10
  article-title: Isolation of doublesex‐ and mab‐3‐related transcription factor 6 and its involvement in spermatogenesis in tilapia
  publication-title: Biol Reprod
– volume: 301
  start-page: 266
  year: 2007
  end-page: 275
  article-title: A novel transforming growth factor‐beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout ( )
  publication-title: Dev Biol
– volume: 78
  start-page: 333
  year: 2008
  end-page: 341
  article-title: Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia
  publication-title: Biol Reprod
– volume: 231
  start-page: 518
  year: 2004
  end-page: 526
  article-title: Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka,
  publication-title: Dev Dyn
– volume: 15
  start-page: 1
  year: 2004
  end-page: 11
  article-title: The transforming growth factor‐β superfamily of receptors
  publication-title: Cytokine Growth Factor Rev
– volume: 14
  start-page: 452
  year: 2013
  article-title: Genomics of sablefish ( ): Expressed genes, mitochondrial phylogeny, linkage map, and identification of a putative sex gene
  publication-title: BMC Genomics
– volume: 197
  start-page: 591
  year: 2014
  end-page: 599
  article-title: Efficient and heritable gene targeting in tilapia by CRISPR/Cas9
  publication-title: Genetics
– volume: 82
  start-page: 1799
  year: 1997
  end-page: 1806
  article-title: Steroidogenic factor 1 messenger ribonucleic acid expression in steroidogenic and nonsteroidogenic human tissues: Northern blot and in situ hybridization studies
  publication-title: J Clin Endocr Metab
– volume: 6
  start-page: 19738
  year: 2016
  article-title: Autosomal acts as a male sex initiator in the fish medaka
  publication-title: Sci Rep
– volume: 290
  start-page: 574
  year: 2001
  end-page: 585
  article-title: Search for genes involved in the temperature‐induced gonadal sex differentiation in the tilapia, a
  publication-title: J Exp Zool
– volume: 242
  start-page: 388
  year: 2013
  end-page: 399
  article-title: Characterization of gonadal soma‐derived factor expression during sex change in the protogynous wrasse,
  publication-title: Dev Dyn
– volume: 8
  start-page: e1002798
  year: 2012
  article-title: A trans‐species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, (fugu)
  publication-title: PLoS Genet
– volume: 41
  start-page: 8896
  year: 2013
  end-page: 8907
  article-title: Integrative analysis of SF‐1 transcription factor dosage impact on genome‐wide binding and gene expression regulation
  publication-title: Nucleic Acids Res
– volume: 8
  start-page: e63604
  year: 2013
  article-title: Characterization of gonadal transcriptomes from Nile tilapia ( ) reveals differentially expressed genes
  publication-title: PLoS ONE
– volume: 85
  start-page: 1240
  year: 2011
  end-page: 1251
  article-title: The proximal promoter region of the zebrafish gene is sufficient to mimic the spatio‐temporal expression pattern of the endogenous gene in Sertoli and granulosa cells
  publication-title: Biol Reprod
– volume: 433
  start-page: 19
  year: 2014b
  end-page: 27
  article-title: Screening and characterization of sex‐linked DNA markers and marker‐assisted selection in the Nile tilapia ( )
  publication-title: Aquaculture
– volume: 101
  start-page: 289
  year: 2003
  end-page: 294
  article-title: Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia
  publication-title: Cytogenet Genome Res
– volume: 155
  start-page: 1476
  year: 2014a
  end-page: 1488
  article-title: Transdifferentiation of differentiated ovary into functional testis by long‐term treatment of aromatase inhibitor in Nile tilapia
  publication-title: Endocrinology
– volume: 120
  start-page: 2787
  year: 1994
  end-page: 2797
  article-title: Sex‐dependent expression of a transcription factor, Ad4BP, regulating steroidogenic P‐450 genes in the gonads during prenatal and postnatal rat development
  publication-title: Development
– volume: 6
  start-page: 19480
  year: 2016
  article-title: Dmy initiates masculinity by altering Gsdf/Sox9a2/Rspo1 expression in medaka ( )
  publication-title: Sci Rep
– volume: 217–218
  start-page: 71
  year: 2015
  end-page: 80
  article-title: Cloning and expression pattern of gsdf during the first maleness reproductive phase in the protandrous
  publication-title: Gen Comp Endocrinol
– volume: 417
  start-page: 559
  year: 2002
  end-page: 563
  article-title: DMY is a Y‐specific DM‐domain gene required for male development in the medaka fish
  publication-title: Nature
– volume: 99
  start-page: 11778
  year: 2002
  end-page: 11783
  article-title: A duplicated copy of DMRT1 in the sex‐determining region of the Y chromosome of the medaka,
  publication-title: Proc Natl Acad Sci USA
– volume: 415
  start-page: 87
  year: 2015
  end-page: 99
  article-title: Gonadal soma‐derived factor ( ), a TGF‐beta superfamily gene, induces testis differentiation in the teleost fish
  publication-title: Mol Cell Endocrinol
– volume: 151
  start-page: 1331
  year: 2010
  end-page: 1340
  article-title: Doublesex‐ and Mab‐3‐related transcription factor‐1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia
  publication-title: Endocrinology
– volume: 113
  start-page: 685
  year: 2003
  end-page: 700
  article-title: Mechanisms of TGF‐beta signaling from cell membrane to the nucleus
  publication-title: Cell
– ident: e_1_2_8_8_1
  doi: 10.1095/biolreprod.111.091892
– ident: e_1_2_8_16_1
  doi: 10.1016/j.mce.2015.08.008
– ident: e_1_2_8_21_1
  doi: 10.1038/nature751
– ident: e_1_2_8_38_1
  doi: 10.1210/en.2009-0999
– ident: e_1_2_8_18_1
  doi: 10.1002/dvdy.20158
– ident: e_1_2_8_37_1
  doi: 10.1210/me.2006-0248
– ident: e_1_2_8_39_1
  doi: 10.1095/biolreprod.114.121418
– ident: e_1_2_8_14_1
  doi: 10.1016/j.bbrc.2015.09.112
– ident: e_1_2_8_5_1
  doi: 10.1002/jez.1108
– ident: e_1_2_8_28_1
  doi: 10.1210/jcem.82.6.3967
– ident: e_1_2_8_4_1
  doi: 10.1530/JOE-15-0432
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ygcen.2015.02.018
– ident: e_1_2_8_27_1
  doi: 10.1073/pnas.182314699
– start-page: 211
  volume-title: Proc 6th international symposium on reproductive physiology of fish
  year: 2000
  ident: e_1_2_8_25_1
– ident: e_1_2_8_19_1
  doi: 10.1534/genetics.114.163667
– ident: e_1_2_8_32_1
  doi: 10.1016/S0092-8674(03)00432-X
– ident: e_1_2_8_17_1
  doi: 10.1159/000074351
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ygcen.2012.01.019
– ident: e_1_2_8_33_1
  doi: 10.1016/j.gep.2010.06.005
– ident: e_1_2_8_30_1
  doi: 10.1186/1471-2164-14-452
– ident: e_1_2_8_10_1
  doi: 10.1242/dev.120.10.2787
– ident: e_1_2_8_13_1
  doi: 10.1095/biolreprod.107.064246
– ident: e_1_2_8_24_1
  doi: 10.1534/genetics.111.137497
– ident: e_1_2_8_20_1
  doi: 10.1371/journal.pgen.1005678
– ident: e_1_2_8_23_1
  doi: 10.1186/1471-2199-8-58
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ydbio.2006.10.001
– ident: e_1_2_8_7_1
  doi: 10.1093/nar/gkt658
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cell.2015.10.071
– ident: e_1_2_8_41_1
  doi: 10.1038/srep19738
– ident: e_1_2_8_35_1
  doi: 10.1016/j.aquaculture.2014.05.035
– ident: e_1_2_8_11_1
  doi: 10.1073/pnas.1018392109
– ident: e_1_2_8_9_1
  doi: 10.1016/j.ygcen.2009.03.002
– ident: e_1_2_8_15_1
  doi: 10.1371/journal.pgen.1002798
– ident: e_1_2_8_2_1
  doi: 10.1038/srep19480
– ident: e_1_2_8_22_1
  doi: 10.1210/me.8.5.643
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cytogfr.2003.10.004
– ident: e_1_2_8_12_1
  doi: 10.1002/dvdy.23929
– ident: e_1_2_8_36_1
  doi: 10.1371/journal.pone.0063604
– ident: e_1_2_8_40_1
  doi: 10.1210/me.2014-1256
– ident: e_1_2_8_34_1
  doi: 10.1210/en.2013-1959
SSID ssj0009980
Score 2.510192
Snippet SUMMARY Gonadal soma‐derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation...
Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation is...
SUMMARY Gonadal soma-derived factor (gsdf) is critical for testicular differentiation in teleosts, yet detailed analysis of Gsdf on testicular differentiation...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 497
SubjectTerms Animals
Fish Proteins - genetics
Fish Proteins - metabolism
Male
Oreochromis niloticus
Sex Determination Processes - physiology
Teleostei
Testis - embryology
Tilapia
Tilapia - embryology
Tilapia - genetics
Transcription Factors - genetics
Transcription Factors - metabolism
Transforming Growth Factor beta - genetics
Transforming Growth Factor beta - metabolism
Title gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia
URI https://api.istex.fr/ark:/67375/WNG-Q4XWQ75K-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrd.22642
https://www.ncbi.nlm.nih.gov/pubmed/27027772
https://www.proquest.com/docview/1798288055
https://www.proquest.com/docview/1799209291
https://www.proquest.com/docview/1811903365
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEA-lIvrFR-tjtUoUKX7Z624u2Qd-qtValB60WO4QIeR19rjuntzuYetf70z2USpVxG8hmcAmmZn8kp38hpBXgBJSXNtQJQpvq5wLtU54mLA8NXkCJua59A5HycEJ_zgRkzXypnsL0_BD9BduaBneX6OBK13tXJKGFks7wFeg6H8xVgsB0fEldRQcI1omgijkgk06VqGI7fQ9r-xFN3Baz68Dmldxq9949u-Sr90nN_Em88Gq1gPz8zc2x_8c0z1ypwWkdLfRoPtkzZUbZHO3hMN4cUG3qQ8R9XfvG-Tm2650a69LFAe1Xxa-dpPMv1V2SmcVVdTirTVGsRcUVNTRxZTaYlnHtD5VNcXd1Cs8nZVQ42gB-xSt3Dm1XXgONlPMl_xDXWBvlBrBoGg9wwd46gE52X__ee8gbLM5hIbnnIWapcJwPkwzZXmW5Fk8dAwaBLcsxkZmARoZbTOuI6FMHNlEcJcrnkVGq2j4kKyXi9I9JtRpE-VTK1QaGyR4y5Tg4Joip3WmGNMBed2tqzQt1Tlm3DiTDUkzkzDR0k90QF72ot8bfo_rhLa9cvQSajnHgLhUyPHogzzik_FRKj7JcUC2Ou2RrS-oJFLCMXCTQgTkRd8Ma4S_ZlTpFisvk7MIoGr8F5ksBvQ2BFUPyKNGM_sPwleFKRyUYORev_48Fnl4_M4Xnvy76FNyG3Bi0kTIbZH1erlyzwCL1fq5N7pfyG8r9g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwELemTWh84bHxKAwwCE18SZc4dh4SX8bGKGyttGlTq0nIsmMXqpIUtanY-Ou5cx7T0ECIb5F9jmL7fP75cv4dIa8BJcQ4t56KFHqrrPW0jrgXsTTO0giWmOPS6w-i3hn_NBKjFfK2uQtT8UO0DjdcGc5e4wJHh_TOFWtoPjddvAYKBngNM3pj_oL9kyvyKDhI1FwEvscFGzW8Qj7baZte243WcGAvboKa15Gr23oO7pLPzUdXESfT7rLU3eznb3yO_9ure-ROjUnpbqVE98mKLTbI5m4B5_H8km5TFyXq3O8b5Na75ml9r8kVB6XnM1e6SaZfFmZMJwuqqEHHNQay5xS01NLZmJp8Xga0_KpKihuq03k6KaDE0hy2KrqwF9Q0ETpYTTFl8g91ia1RagC9ouUE7-CpB-Ts4P3pXs-rEzp4GU858zSLRcZ5GCfK8CRKkyC0DCoENyzASmYAHWXaJFz7QmWBbyLBbap44mda-eFDslrMCvuYUKszPx0boeIgQ463RAkO1sm3WieKMd0hb5qJlVnNdo5JN77JiqeZSRho6Qa6Q161ot8rio-bhLaddrQSaj7FmLhYyOHggzzmo-FxLA7lsEO2GvWRtTlYSGSFY2ApheiQl201zBH-nVGFnS2dTMp8QKvBX2SSAABcGEbwnkeVarYfhBcLYzgrQc-dgv25L7J_su8envy76Auy3jvtH8mjj4PDp-Q2wMaoCpjbIqvlfGmfATQr9XO3An8Bbs8wEA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bTxQxFG4IxMuLF1BZRa3GEF9mmem0c4lPCK4oshEi2Q0xadppFzfrzJLd2Qj-es_pXAgGjfGtaU8nvZxz-rVz-pWQV4ASYpxbT0UKT6us9bSOuBexNM7SCEzMcekd9KO9Y_5xKIZL5E1zF6bih2gP3NAynL9GAz8zo61L0tB8Zrp4CxT87wqPwFgQER1dckfBPqKmIvA9LtiwoRXy2VZb9cpitILjen4d0rwKXN3K07tLvjZtrgJOJt1FqbvZz9_oHP-zU_fInRqR0u1Khe6TJVuskrXtAnbj-QXdpC5G1B2-r5Ibb5vUrZ3mpTjIPZm63DUyOZ2bER3PqaIGj60xjD2noKOWTkfU5LMyoOU3VVJcTp3G03EBOZbmsFDRuT2nponPwWKKDyb_UBdYG6X60ClajvEGnnpAjnvvvuzsefVzDl7GU848zWKRcR7GiTI8idIkCC2DAsENC7CQGcBGmTYJ175QWeCbSHCbKp74mVZ--JAsF9PCrhNqdeanIyNUHGTI8JYowcE3-VbrRDGmO-R1M68yq7nO8cmN77JiaWYSBlq6ge6Ql63oWUXwcZ3QplOOVkLNJhgRFws56L-Xh3w4OIzFvhx0yEajPbJ2BnOJnHAM_KQQHfKiLYY5wn8zqrDThZNJmQ9YNfiLTBIAfAvDCL7zqNLMtkF4rTCGnRL03OnXn_siD452XeLxv4s-Jzc_7_bkpw_9_SfkNmDGqIqW2yDL5WxhnwIuK_UzZ3-_ANNFLsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=gsdf+is+a+downstream+gene+of+dmrt1+that+functions+in+the+male+sex+determination+pathway+of+the+Nile+tilapia&rft.jtitle=Molecular+reproduction+and+development&rft.au=Jiang%2C+Dong%E2%80%90Neng&rft.au=Yang%2C+Hui%E2%80%90Hui&rft.au=Li%2C+Ming%E2%80%90Hui&rft.au=Shi%2C+Hong%E2%80%90Juan&rft.date=2016-06-01&rft.issn=1040-452X&rft.eissn=1098-2795&rft.volume=83&rft.issue=6&rft.spage=497&rft.epage=508&rft_id=info:doi/10.1002%2Fmrd.22642&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrd_22642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-452X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-452X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-452X&client=summon