The Influence of Heart Rate Variability Biofeedback on Cardiac Regulation and Functional Brain Connectivity

Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 15; p. 691988
Main Authors Schumann, Andy, de la Cruz, Feliberto, Köhler, Stefanie, Brotte, Lisa, Bär, Karl-Jürgen
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 29.06.2021
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects. HRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC. First, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions. Our results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.
AbstractList Background: Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects. Methods: HRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC. Results: First, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions. Conclusion: Our results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.
Background Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects. Methods HRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC. Results First, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions. Conclusion Our results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.
Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects. HRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC. First, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions. Our results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.
BackgroundHeart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still unclear. In this study, we aimed to investigate the effect of an 8-week HRV-biofeedback intervention on functional brain connectivity in healthy subjects.MethodsHRV biofeedback was carried out in five sessions per week, including four at home and one in our lab. A control group played jump‘n’run games instead of the training. Functional magnetic resonance imaging was conducted before and after the intervention in both groups. To compute resting state functional connectivity (RSFC), we defined regions of interest in the ventral medial prefrontal cortex (VMPFC) and a total of 260 independent anatomical regions for network-based analysis. Changes of RSFC of the VMPFC to other brain regions were compared between groups. Temporal changes of HRV during the resting state recording were correlated to dynamic functional connectivity of the VMPFC.ResultsFirst, we corroborated the role of the VMPFC in cardiac autonomic regulation. We found that temporal changes of HRV were correlated to dynamic changes of prefrontal connectivity, especially to the middle cingulate cortex, the left insula, supplementary motor area, dorsal and ventral lateral prefrontal regions. The biofeedback group showed a drop in heart rate by 5.2 beats/min and an increased SDNN as a measure of HRV by 8.6 ms (18%) after the intervention. Functional connectivity of the VMPFC increased mainly to the insula, the amygdala, the middle cingulate cortex, and lateral prefrontal regions after biofeedback intervention when compared to changes in the control group. Network-based statistic showed that biofeedback had an influence on a broad functional network of brain regions.ConclusionOur results show that increased heart rate variability induced by HRV-biofeedback is accompanied by changes in functional brain connectivity during resting state.
Author Schumann, Andy
Bär, Karl-Jürgen
Köhler, Stefanie
de la Cruz, Feliberto
Brotte, Lisa
AuthorAffiliation 3 Institute of Medical Psychology and Behavioral Immunobiology, Essen University Hospital , Essen , Germany
2 Department of Psychiatry and Psychotherapy, Jena University Hospital , Jena , Germany
1 Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital , Jena , Germany
AuthorAffiliation_xml – name: 1 Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital , Jena , Germany
– name: 3 Institute of Medical Psychology and Behavioral Immunobiology, Essen University Hospital , Essen , Germany
– name: 2 Department of Psychiatry and Psychotherapy, Jena University Hospital , Jena , Germany
Author_xml – sequence: 1
  givenname: Andy
  surname: Schumann
  fullname: Schumann, Andy
  organization: Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
– sequence: 2
  givenname: Feliberto
  surname: de la Cruz
  fullname: de la Cruz, Feliberto
  organization: Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
– sequence: 3
  givenname: Stefanie
  surname: Köhler
  fullname: Köhler, Stefanie
  organization: Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
– sequence: 4
  givenname: Lisa
  surname: Brotte
  fullname: Brotte, Lisa
  organization: Institute of Medical Psychology and Behavioral Immunobiology, Essen University Hospital, Essen, Germany
– sequence: 5
  givenname: Karl-Jürgen
  surname: Bär
  fullname: Bär, Karl-Jürgen
  organization: Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34267625$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1rGzEQhpeS0ny0P6CXIuglFztafaykS6ExTWMIFEJaehNjadaRs5ZS7W4g_77aODVJT9KM3nmYGb3H1UFMEavqY03nnGtz1sYQ-zmjrJ43pjZav6mO6qZhMyH574P9XejD6rjvN5Q2TAv2rjrkgjWqYfKouru5RbKMbTdidEhSSy4R8kCuYUDyC3KAVejC8EjOQ2oR_QrcHUmRLCD7AI5c43rsYAglBdGTizG6KYCOnGcIRZdixJJ6KIz31dsWuh4_PJ8n1c-LbzeLy9nVj-_LxdermROGD7MWvFYNdzUK5RV1jWOGK5QrRGc0Use0w3oKwaBjzEstlJRGG2iZYYqfVMsd1yfY2PsctpAfbYJgnxIpr20ZMbgOraMcqNeerYwSXilwbe2EZt4wTYHxwvqyY92Pqy16h3HI0L2Cvn6J4dau04PVTMlGTM2cPgNy-jNiP9ht6B12HURMY2-ZlKz8nJSiSD__J92kMZddTirRCMq00UVV71Qup77P2O6bqamdbGGfbGEnW9idLUrNp5dT7Cv--YD_BeLTt6M
CitedBy_id crossref_primary_10_3389_fnins_2022_791498
crossref_primary_10_1097_MD_0000000000032534
crossref_primary_10_1016_j_neuroimage_2023_120136
crossref_primary_10_3390_jcm12031016
crossref_primary_10_3390_life13112230
crossref_primary_10_1111_psyp_14129
crossref_primary_10_3389_fnhum_2022_891547
crossref_primary_10_1111_ipd_12958
crossref_primary_10_1177_23727322221144647
crossref_primary_10_3389_fcvm_2024_1329463
crossref_primary_10_1016_j_bbr_2024_114923
crossref_primary_10_1007_s10484_024_09650_5
crossref_primary_10_3389_fdgth_2024_1337667
crossref_primary_10_3390_jcm13010280
crossref_primary_10_3390_medicina57101021
crossref_primary_10_1016_j_psyneuen_2024_107003
crossref_primary_10_1007_s10484_024_09638_1
crossref_primary_10_3389_fpsyg_2023_1292983
crossref_primary_10_3389_fpsyt_2022_961294
crossref_primary_10_3390_sports10100146
crossref_primary_10_1097_AJP_0000000000001114
crossref_primary_10_1007_s10484_021_09530_2
crossref_primary_10_3389_fpsyt_2023_1273439
crossref_primary_10_1038_s41598_022_20064_3
crossref_primary_10_1111_ejn_15969
crossref_primary_10_23736_S0022_4707_24_15407_2
crossref_primary_10_5298_1081_5937_51_02_01
crossref_primary_10_3390_jcm12247664
crossref_primary_10_1016_j_ijpsycho_2022_01_008
crossref_primary_10_21518_2079_701X_2022_16_6_50_58
crossref_primary_10_1186_s44247_023_00042_z
crossref_primary_10_2139_ssrn_4117268
crossref_primary_10_3389_fcvm_2023_1171647
crossref_primary_10_1007_s10484_022_09535_5
crossref_primary_10_1016_j_neubiorev_2024_105542
crossref_primary_10_1016_j_neubiorev_2022_104576
Cites_doi 10.5298/1081-5937-41.3.01
10.1017/s0048577201393198
10.1016/j.neuroimage.2009.10.003
10.1016/j.brs.2019.02.003
10.1093/oxfordjournals.eurheartj.a014868
10.1016/j.neubiorev.2016.05.001
10.1016/j.neuroimage.2019.04.014
10.1097/01.psy.0000089200.81962.19
10.1016/j.ijpsycho.2009.01.012
10.1111/1469-8986.00032
10.1016/j.appsy.2007.09.004
10.1016/j.schres.2005.01.021
10.1038/nn1399
10.1016/j.biopsycho.2016.06.009
10.1016/j.autneu.2014.10.022
10.3389/fpsyg.2015.00261
10.1016/s0025-6196(12)62272-1
10.1017/s0140525x11000446
10.1212/WNL.59.6_suppl_4.S3
10.3389/fphys.2017.00282
10.3389/fnins.2019.00710
10.1007/s12160-009-9101-z
10.1109/tmi.2011.2138152
10.1016/j.cobeha.2017.12.017
10.1016/j.neuron.2011.09.006
10.1016/j.neures.2004.05.003
10.1016/j.neuroimage.2010.04.246
10.1111/j.1469-8986.1995.tb01213.x
10.1016/j.neuroimage.2016.05.076
10.1097/j.pain.0000000000000930
10.1038/sj.npp.1301082
10.3389/fnhum.2017.00520
10.1016/j.neuroimage.2007.11.059
10.1016/j.biopsycho.2006.06.009
10.1523/jneurosci.1103-13.2013
10.1002/cphy.cp010506
10.1016/j.neuroimage.2018.10.027
10.1016/j.neubiorev.2011.11.009
10.1016/j.resp.2004.03.015
10.1016/j.tics.2005.03.010
10.3389/fpsyg.2014.00756
10.1002/cne.20749
10.1017/s0033291717001003
10.1093/europace/eus341
10.1016/j.neuroimage.2019.116072
10.1371/journal.pone.0181833
10.1016/j.biopsycho.2005.11.013
10.1023/A:1009554825745
10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e
10.1016/s0165-0327(00)00338-4
10.1016/j.neuroimage.2012.11.038
10.1088/1361-6579/ab2065
10.1016/j.neuroimage.2010.06.041
10.1016/j.biopsych.2015.10.013
10.1016/j.brat.2015.05.001
10.2203/dose-response.004.01.002.Thayer
10.1111/1469-8986.3740515
ContentType Journal Article
Copyright Copyright © 2021 Schumann, de la Cruz, Köhler, Brotte and Bär.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Schumann, de la Cruz, Köhler, Brotte and Bär. 2021 Schumann, de la Cruz, Köhler, Brotte and Bär
Copyright_xml – notice: Copyright © 2021 Schumann, de la Cruz, Köhler, Brotte and Bär.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Schumann, de la Cruz, Köhler, Brotte and Bär. 2021 Schumann, de la Cruz, Köhler, Brotte and Bär
DBID NPM
AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2021.691988
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Databases
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
EndPage 691988
ExternalDocumentID oai_doaj_org_article_c03a0d8d2b974d77acf1c482d9280a23
10_3389_fnins_2021_691988
34267625
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
C1A
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEA
IHR
ISR
KQ8
LK8
M2P
M48
M7P
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
AAYXX
CITATION
3V.
7XB
8FK
PQEST
PQUKI
PRINS
Q9U
7X8
ITC
5PM
ID FETCH-LOGICAL-c493t-fad8763c1e47d70c6c2937e5beec98e0c28ce15beea9ec22d584755989af29273
IEDL.DBID RPM
ISSN 1662-4548
1662-453X
IngestDate Fri Oct 04 12:53:02 EDT 2024
Tue Sep 17 21:10:15 EDT 2024
Fri Aug 16 11:26:20 EDT 2024
Thu Oct 10 18:34:43 EDT 2024
Thu Sep 26 19:08:32 EDT 2024
Sat Sep 28 08:19:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cingulate cortex
resting state functional connectivity
autonomic nervous system
insula
prefrontal cortex
Language English
License Copyright © 2021 Schumann, de la Cruz, Köhler, Brotte and Bär.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-fad8763c1e47d70c6c2937e5beec98e0c28ce15beea9ec22d584755989af29273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Eugene Golanov, Houston Methodist Hospital, United States
This article was submitted to Autonomic Neuroscience, a section of the journal Frontiers in Neuroscience
Reviewed by: Cristina Ottaviani, Sapienza University of Rome, Italy; Moacir Fernandes Godoy, Faculty of Medicine of São José do Rio Preto, Brazil
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275647/
PMID 34267625
PQID 2546402898
PQPubID 4424402
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c03a0d8d2b974d77acf1c482d9280a23
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8275647
proquest_miscellaneous_2552988554
proquest_journals_2546402898
crossref_primary_10_3389_fnins_2021_691988
pubmed_primary_34267625
PublicationCentury 2000
PublicationDate 2021-06-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Makovac (B31) 2017; 74
Zalesky (B58) 2010; 53
Chang (B6) 2013; 68
Jo (B23) 2010; 52
Henry (B18) 2002; 59
Ochsner (B37) 2005; 9
Power (B41) 2011; 72
Schumann (B48) 2017; 8
Mather (B33) 2018; 19
Sakaki (B45) 2016; 139
Shoemaker (B50) 2015; 188
Thayer (B55) 2007; 74
Nikolin (B36) 2017; 12
Lehrer (B25) 2014; 5
Porges (B40) 2007; 74
Malik (B32) 1996; 17
Lehrer (B26) 2000; 25
Lin (B28) 2015; 70
Glover (B15) 2000; 44
Gevirtz (B14) 2013; 41
Mulcahy (B34) 2019; 202
de la Cruz (B10) 2019; 196
Ruiz-Padial (B44) 2003; 40
Dillon (B11) 2007; 12
Goessl (B16) 2017; 47
Davidson (B9) 2000
Thayer (B51) 2006; 4
Thayer (B54) 2000; 61
Jackson (B22) 2000; 37
Nemeroff (B35) 2006; 31
Thayer (B53) 2009; 37
Amat (B1) 2005; 8
Birn (B4) 2008; 40
Critchley (B7) 2005; 493
Iglesias (B21) 2011; 30
Schumann (B47) 2019; 40
Beissner (B2) 2013; 33
Garcia (B13) 2017; 158
Kumral (B24) 2019; 15
Williams (B57) 2017; 11
Critchley (B8) 2009; 73
Makovac (B30) 2016; 80
Forte (B12) 2019; 13
Sclocco (B49) 2019; 12
Rogers (B42) 2004; 50
Benarroch (B3) 1993; 68
Porges (B39) 1995; 32
Gross (B17) 2002; 39
Chamberlin (B5) 2004; 143
Lehrer (B27) 2003; 65
Holmes (B20) 2005; 76
Lindquist (B29) 2012; 35
Ottaviani (B38) 2016; 119
Saper (B46) 2011
Thayer (B52) 2012; 36
Rubinov (B43) 2010; 52
Hillebrand (B19) 2013; 15
Williams (B56) 2015; 6
References_xml – volume: 41
  start-page: 110
  year: 2013
  ident: B14
  article-title: The promise of heart rate variability biofeedback: evidence-based applications.
  publication-title: Biofeedback
  doi: 10.5298/1081-5937-41.3.01
  contributor:
    fullname: Gevirtz
– volume: 39
  start-page: 281
  year: 2002
  ident: B17
  article-title: Emotion regulation: Affective, cognitive, and social consequences.
  publication-title: Psychophysiology
  doi: 10.1017/s0048577201393198
  contributor:
    fullname: Gross
– volume: 52
  start-page: 1059
  year: 2010
  ident: B43
  article-title: NeuroImage complex network measures of brain connectivity: Uses and interpretations.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
  contributor:
    fullname: Rubinov
– volume: 12
  start-page: 911
  year: 2019
  ident: B49
  article-title: Brain stimulation the in fl uence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh- fi eld (7T) fMRI study.
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.02.003
  contributor:
    fullname: Sclocco
– volume: 17
  start-page: 354
  year: 1996
  ident: B32
  article-title: Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task force of the european society of cardiology and the North American society of pacing and electrophysiology.
  publication-title: Eur. Heart J.
  doi: 10.1093/oxfordjournals.eurheartj.a014868
  contributor:
    fullname: Malik
– volume: 74
  start-page: 330
  year: 2017
  ident: B31
  article-title: A meta-analysis of non-invasive brain stimulation and autonomic functioning: Implications for brain-heart pathways to cardiovascular disease.
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2016.05.001
  contributor:
    fullname: Makovac
– volume: 196
  start-page: 318
  year: 2019
  ident: B10
  article-title: The relationship between heart rate and functional connectivity of brain regions involved in autonomic control.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.04.014
  contributor:
    fullname: de la Cruz
– volume: 65
  start-page: 796
  year: 2003
  ident: B27
  article-title: Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow.
  publication-title: Psychosom. Med.
  doi: 10.1097/01.psy.0000089200.81962.19
  contributor:
    fullname: Lehrer
– volume: 73
  start-page: 88
  year: 2009
  ident: B8
  article-title: Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants.
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2009.01.012
  contributor:
    fullname: Critchley
– volume: 40
  start-page: 306
  year: 2003
  ident: B44
  article-title: The rhythm of the heart in the blink of an eye: emotion-modulated startle magnitude covaries with heart rate variability.
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.00032
  contributor:
    fullname: Ruiz-Padial
– volume: 12
  start-page: 99
  year: 2007
  ident: B11
  article-title: Inhibition of action, thought, and emotion: A selective neurobiological review.
  publication-title: Appl. Prev. Psychol.
  doi: 10.1016/j.appsy.2007.09.004
  contributor:
    fullname: Dillon
– volume: 76
  start-page: 199
  year: 2005
  ident: B20
  article-title: Prefrontal functioning during context processing in schizophrenia and major depression: An event-related fMRI study.
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2005.01.021
  contributor:
    fullname: Holmes
– volume: 8
  start-page: 365
  year: 2005
  ident: B1
  article-title: Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus.
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1399
  contributor:
    fullname: Amat
– volume: 119
  start-page: 31
  year: 2016
  ident: B38
  article-title: Neurobiological substrates of cognitive rigidity and autonomic inflexibility in generalized anxiety disorder.
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2016.06.009
  contributor:
    fullname: Ottaviani
– volume: 188
  start-page: 5
  year: 2015
  ident: B50
  article-title: Forebrain organization for autonomic cardiovascular control.
  publication-title: Auton. Neurosci. Basic Clin.
  doi: 10.1016/j.autneu.2014.10.022
  contributor:
    fullname: Shoemaker
– volume: 6
  year: 2015
  ident: B56
  article-title: Resting heart rate variability predicts self-reported difficulties in emotion regulation: a focus on different facets of emotion regulation.
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2015.00261
  contributor:
    fullname: Williams
– volume: 68
  start-page: 988
  year: 1993
  ident: B3
  article-title: The central autonomic network: functional organization, dysfunction, and perspective.
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/s0025-6196(12)62272-1
  contributor:
    fullname: Benarroch
– volume: 35
  start-page: 121
  year: 2012
  ident: B29
  article-title: The brain basis of emotion: A meta-analytic review.
  publication-title: Behav. Brain Sci.
  doi: 10.1017/s0140525x11000446
  contributor:
    fullname: Lindquist
– volume: 59
  start-page: S3
  year: 2002
  ident: B18
  article-title: Therapeutic mechanisms of vagus nerve stimulation.
  publication-title: Neurology
  doi: 10.1212/WNL.59.6_suppl_4.S3
  contributor:
    fullname: Henry
– volume: 8
  year: 2017
  ident: B48
  article-title: Baroreflex coupling assessed by cross-compression entropy.
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00282
  contributor:
    fullname: Schumann
– volume: 13
  year: 2019
  ident: B12
  article-title: Heart rate variability and cognitive function: A systematic review.
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00710
  contributor:
    fullname: Forte
– volume: 37
  start-page: 141
  year: 2009
  ident: B53
  article-title: Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health.
  publication-title: Ann. Behav. Med.
  doi: 10.1007/s12160-009-9101-z
  contributor:
    fullname: Thayer
– volume: 30
  start-page: 1617
  year: 2011
  ident: B21
  article-title: Robust brain extraction across datasets and comparison with publicly available methods.
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/tmi.2011.2138152
  contributor:
    fullname: Iglesias
– volume: 19
  start-page: 98
  year: 2018
  ident: B33
  article-title: How heart rate variability affects emotion regulation brain networks.
  publication-title: Curr. Opin. Behav. Sci.
  doi: 10.1016/j.cobeha.2017.12.017
  contributor:
    fullname: Mather
– volume: 72
  start-page: 665
  year: 2011
  ident: B41
  article-title: Functional network organization of the human brain.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
  contributor:
    fullname: Power
– volume: 50
  start-page: 1
  year: 2004
  ident: B42
  article-title: Executive and prefrontal dysfunction in unipolar depression: A review of neuropsychological and imaging evidence.
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2004.05.003
  contributor:
    fullname: Rogers
– volume: 52
  start-page: 571
  year: 2010
  ident: B23
  article-title: Mapping sources of correlation in resting state FMRI, with artifact detection and removal.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.246
  contributor:
    fullname: Jo
– volume: 32
  start-page: 301
  year: 1995
  ident: B39
  article-title: Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory.
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1995.tb01213.x
  contributor:
    fullname: Porges
– volume: 139
  start-page: 44
  year: 2016
  ident: B45
  article-title: Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.05.076
  contributor:
    fullname: Sakaki
– volume: 158
  start-page: 1461
  year: 2017
  ident: B13
  article-title: Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients.
  publication-title: Pain
  doi: 10.1097/j.pain.0000000000000930
  contributor:
    fullname: Garcia
– volume: 31
  start-page: 1345
  year: 2006
  ident: B35
  article-title: VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms.
  publication-title: Neuropsychopharmacology
  doi: 10.1038/sj.npp.1301082
  contributor:
    fullname: Nemeroff
– volume: 11
  year: 2017
  ident: B57
  article-title: Resting heart rate variability, facets of rumination and trait anxiety: Implications for the perseverative cognition hypothesis.
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2017.00520
  contributor:
    fullname: Williams
– volume: 40
  start-page: 644
  year: 2008
  ident: B4
  article-title: The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.11.059
  contributor:
    fullname: Birn
– volume: 74
  start-page: 116
  year: 2007
  ident: B40
  article-title: The polyvagal perspective.
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2006.06.009
  contributor:
    fullname: Porges
– volume: 33
  start-page: 10503
  year: 2013
  ident: B2
  article-title: The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function.
  publication-title: J. Neurosci.
  doi: 10.1523/jneurosci.1103-13.2013
  contributor:
    fullname: Beissner
– year: 2011
  ident: B46
  article-title: Diffuse cortical projection systems: Anatomical organization and role in cortical function.
  publication-title: Comprehen. Physiol.
  doi: 10.1002/cphy.cp010506
  contributor:
    fullname: Saper
– volume: 15
  start-page: 521
  year: 2019
  ident: B24
  article-title: The age-dependent relationship between resting heart rate variability and functional brain connectivity.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.10.027
  contributor:
    fullname: Kumral
– volume: 36
  start-page: 747
  year: 2012
  ident: B52
  article-title: A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health.
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2011.11.009
  contributor:
    fullname: Thayer
– volume: 143
  start-page: 115
  year: 2004
  ident: B5
  article-title: Functional organization of the parabrachial complex and intertrigeminal region in the control of breathing.
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2004.03.015
  contributor:
    fullname: Chamberlin
– volume: 9
  start-page: 242
  year: 2005
  ident: B37
  article-title: The cognitive control of emotion.
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2005.03.010
  contributor:
    fullname: Ochsner
– volume: 5
  year: 2014
  ident: B25
  article-title: Heart rate variability biofeedback: how and why does it work?
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2014.00756
  contributor:
    fullname: Lehrer
– volume: 493
  start-page: 154
  year: 2005
  ident: B7
  article-title: Neural mechanisms of autonomic, affective, and cognitive integration.
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.20749
  contributor:
    fullname: Critchley
– volume: 47
  start-page: 2578
  year: 2017
  ident: B16
  article-title: The effect of heart rate variability biofeedback training on stress and anxiety: A meta-analysis.
  publication-title: Psychol. Med.
  doi: 10.1017/s0033291717001003
  contributor:
    fullname: Goessl
– volume: 15
  start-page: 742
  year: 2013
  ident: B19
  article-title: Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose-response meta-regression.
  publication-title: Europace
  doi: 10.1093/europace/eus341
  contributor:
    fullname: Hillebrand
– volume: 202
  year: 2019
  ident: B34
  article-title: Heart rate variability as a biomarker in health and affective disorders: A perspective on neuroimaging studies.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116072
  contributor:
    fullname: Mulcahy
– volume: 12
  year: 2017
  ident: B36
  article-title: Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0181833
  contributor:
    fullname: Nikolin
– volume: 74
  start-page: 224
  year: 2007
  ident: B55
  article-title: The role of vagal function in the risk for cardiovascular disease and mortality.
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2005.11.013
  contributor:
    fullname: Thayer
– volume: 25
  start-page: 177
  year: 2000
  ident: B26
  article-title: Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training.
  publication-title: Appl. Psychophysiol. Biofeedback
  doi: 10.1023/A:1009554825745
  contributor:
    fullname: Lehrer
– volume: 44
  start-page: 162
  year: 2000
  ident: B15
  article-title: Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR.
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.0.co;2-e
  contributor:
    fullname: Glover
– volume: 61
  start-page: 201
  year: 2000
  ident: B54
  article-title: A model of neurovisceral integration in emotion regulation and dysregulation.
  publication-title: J. Affect. Disord.
  doi: 10.1016/s0165-0327(00)00338-4
  contributor:
    fullname: Thayer
– volume: 68
  start-page: 93
  year: 2013
  ident: B6
  article-title: Association between heart rate variability and fluctuations in resting-state functional connectivity.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.11.038
  contributor:
    fullname: Chang
– volume: 40
  year: 2019
  ident: B47
  article-title: Effect of an eight-week smartphone-guided HRV-biofeedback intervention on autonomic function and impulsivity in healthy controls.
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab2065
  contributor:
    fullname: Schumann
– volume: 53
  start-page: 1197
  year: 2010
  ident: B58
  article-title: Network-based statistic: identifying differences in brain networks.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.041
  contributor:
    fullname: Zalesky
– volume: 80
  start-page: 786
  year: 2016
  ident: B30
  article-title: Alterations in Amygdala-prefrontal functional connectivity account for excessive worry and autonomic dysregulation in generalized anxiety disorder.
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2015.10.013
  contributor:
    fullname: Makovac
– volume: 70
  start-page: 38
  year: 2015
  ident: B28
  article-title: Randomized controlled trial of heart rate variability biofeedback in cardiac autonomic and hostility among patients with coronary artery disease.
  publication-title: Behav. Res. Ther.
  doi: 10.1016/j.brat.2015.05.001
  contributor:
    fullname: Lin
– volume: 4
  start-page: 2
  year: 2006
  ident: B51
  article-title: On the importance of inhibition: central and peripheral manifestations of nonlinear inhibitory processes in neural systems.
  publication-title: Dose Response
  doi: 10.2203/dose-response.004.01.002.Thayer
  contributor:
    fullname: Thayer
– start-page: 371
  year: 2000
  ident: B9
  publication-title: The functional neuroanatomy of affective style. Cognitive Neuroscience of Emotion.
  contributor:
    fullname: Davidson
– volume: 37
  start-page: 515
  year: 2000
  ident: B22
  article-title: Suppression and enhancement of emotional responses to unpleasant pictures.
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3740515
  contributor:
    fullname: Jackson
SSID ssj0062842
Score 2.490248
Snippet Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is still...
Background Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function...
Background: Heart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function...
BACKGROUNDHeart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is...
BackgroundHeart rate variability (HRV) biofeedback has a beneficial impact on perceived stress and emotion regulation. However, its impact on brain function is...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 691988
SubjectTerms Amygdala
autonomic nervous system
Biofeedback
Brain mapping
cingulate cortex
Cortex (cingulate)
Emotions
Feedback
Functional magnetic resonance imaging
Heart rate
Hypothalamus
insula
Magnetic resonance imaging
Mental disorders
Nervous system
Neural networks
Neuroimaging
Neuroscience
Pacemakers
Physiology
Prefrontal cortex
resting state functional connectivity
Sensors
Smartphones
Supplementary motor area
Temporal cortex
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp1xKm4_WbRImEHIouLFlyZKO2dBlE2gPoSm5GVmS6RIqh7I55N9nRtpdsqHQS462BJL1Rp430vCGsRPBrUTDkaXqG14KaW1pdVOXjVNGBRukT-WAvv9oZzfi6lbePiv1RTlhWR44L9yZqxpbee15j8zXK2XdUDuhuTdcV5Znnc9aroKp_A9u8afL8x0mhmDmbIjzSNrcvP7aGgyz9YYXSmL9_2KYLxMln3me6Tv2dkkZ4TxP9T17E-IO2z2PGC7_eYRTSEmc6XR8l90h7HC5KjwC4wAzNOUFXCOlhF8YF2dZ7keYzMcBHVdv3R2MES6SoTi4zqXpESyw0cMUvV4-LIQJ1ZKAlBfjcsWJPXYz_fbzYlYu6ymUTphmUQ7Wk_6cq4NQXlWudejrVZB9CM7oUDmuXajp0ZrgOPd0hUoC7sYO3CDP2WdbcYzhIwNRe9OiW7NI0AW2atkK1csB2UY1GNEX7Mtqfbv7LJvRYbhBYHQJjI7A6DIYBZsQAuuOpHidXqAddEs76P5nBwU7WOHXLbchDiJFK-guFcc4XjfjBqJbERvD-EB9JMdJIK0q2IcM93omDfIX9BayYGrDEDamutkS57-TSLcmXX2hPr3Gt31m27RclKHGzQHbWvx9CIfIhRb9UTL7JwNqCOU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1Be-GCgPIRKMhIiANSaOLYsX1C3aqrBYkKrSjqLXJsp6wqnH5sD_33zDjJikWIY-JIsfLGnjeeyRuAd4JbiYYjc9VWPBfS2tzqqswrp4wKNkif2gF9PakXp-LLmTwbD9xuxrLKaU9MG7XvHZ2RH5Buu6C0mP50eZVT1yjKro4tNO7DLi8FpWl3Z8cn35bTXlzj5pvynTX9G4TkfMhrYlhmDrq4iqTXzcuPtcHQW295piTg_y_W-Xfx5B_eaP4IHo40kh0OuD-GeyE-gb3DiCH0rzv2nqXCznRivgcXaArs89SMhPUdW6B5r9kSaSb7gbHyINV9x2arvkNn1lp3wfrIjpLxOLYc2tUjgMxGz-boCYcDRDaj_hIs1cq4oQvFUzidH38_WuRjj4XcCVOt88560qRzZRDKq8LVDv2_CrINwRkdCse1CyVdWhMc557SqiTqbmzHDXKfZ7AT-xheABOlNzW6OoukXeColrVQreyQgRSdEW0GH6bv21wOUhoNhiAERpPAaAiMZgAjgxkhsHmQVLDTjf76vBkXVeOKyhZee95iVOSVsq4rndDcG64Ly6sM9if8mnFp4ks2hpTB280wLirKlNgY-lt6RnKcBFKtDJ4PcG9mUiGnQQ8iM1BbhrA11e2RuPqZhLs1ae0L9fL_03oFD-hDUD0aN_uws76-Da-R-azbN6N5_wYZCQOr
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELWW5cIFActHYEFGQhyQsiSOHdsHhLYrqoK0HFYU7c1ybAeqBQdKV6L_nhm7qSjqgWPrqLE8z503Gec9Ql5wZgUAR5Sya1jJhbWlVU1dNk5qGWwQPtkBnX9sZ3P-4VJcHpDR3mqzgL_2lnboJzVffjv5_XP9Fjb8G6w4Id--7uMiovI2q09aDUW0ukFuMt5wBPw53zYVWvgnTs3PFl8UAqaem5z7f2InTSU1_30U9N-TlH-lpukdcnvDKelpBsFdchDiPXJ0GqGe_r6mL2k65Zkenx-RK8AFfT86k9ChpzPA-opeAOekn6FwzrrdazpZDD1kts66KzpEepaQ5OhF9q6HaFIbPZ1CWsxPE-kEzSZoOjjjsiXFfTKfvvt0Nis3hgul47pZlb31KFDn6sCll5VrHZABGUQXgtMqVI4pF2r8aHVwjHnssaLCu7Y900CEHpDDOMTwiFBee91C3rPA4DmMKtFy2Yke6EjVa94V5NW4vuZH1tUwUI9gMEwKhsFgmByMgkwwAtsLURI7fTEsv5jNDjOuamzllWcdlEheSuv62nHFvGaqsqwpyPEYPzPCzKAbAMdmK9zj-XYYdhi2TWwMwzVeIxhMAnhXQR7mcG9n0gDBgXQiCiJ3gLAz1d2RuPiaVLwVCu9z-fg_7vuE3MLVwBNqTB-Tw9XyOjwFLrTqniWE_wEqNAhL
  priority: 102
  providerName: Scholars Portal
Title The Influence of Heart Rate Variability Biofeedback on Cardiac Regulation and Functional Brain Connectivity
URI https://www.ncbi.nlm.nih.gov/pubmed/34267625
https://www.proquest.com/docview/2546402898
https://search.proquest.com/docview/2552988554
https://pubmed.ncbi.nlm.nih.gov/PMC8275647
https://doaj.org/article/c03a0d8d2b974d77acf1c482d9280a23
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZtd9llrOt-eOuCBmOHgRNblizr2ISGbJBSwjp6M7Ikr6GLXEp66H_f9yQ7LGOnXQKJHCz8fdJ7T-_5e4R85kwLII5IZVOwlAutU10VeVoYqaTTTtjQDmh5US6u-PdrcX1AxPAuTCjaN8167H9vxn59E2or7zZmMtSJTS6Xswo1y7mcHJJDWRRDiB633xL225DiLPF1IPDHYyoTIjE1af3ao0Q3y8elgmgbm_UVYKJgQxB7dinI9__L5_y7dPIPWzR_SV70TiQ9i5M9JgfOvyInZx4C6M0j_UJDWWc4Lz8ht0AE-m1oRUK7li6A3Fu6AieT_oRIOQp1P9LpumvBlDXa3NLO01mgjqGr2Kwe4KPaWzoHOxiPD-kUu0vQUCljYg-K1-Rqfv5jtkj7Dgup4arYpq22qEhncsellZkpDVh_6UTjnFGVywyrjMvxq1bOMGYxqYqS7kq3TIHn84Yc-c67d4Ty3KoSDJ0Gl53DaIUINaIF_yNrFW8S8nV4vvVdFNKoIQBBXOqAS4241BGXhEwRgd2FqIEdfujuf9U9E2qTFTqzlWUNxERWSm3a3PCKWcWqTLMiIacDfnW_MOEmgpccs6twj0-7YVhSmCfR3nUPeI1gMAlwtBLyNsK9m8lAl4TIPSLsTXV_BFgcZLt71r7_739-IM_xGWGhGlOn5Gh7_-A-gku0bUbk2fT84nI1CkcK8Lnk1Sgsiyc9cQ6u
link.rule.ids 230,315,733,786,790,870,891,2115,21416,24346,27955,27956,33777,33778,43838,53825,53827,74657
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwEB3B9gAXBBRoSgEjIQ5IoYnjxPYJdauuttCu0KpFvUWO7cCqwmnL9tC_Z8bJrliEOCaOFCtv7HnjmbwBeCe4KdFwylQ2BU9FaUxqVJGnhZVaeuNLF9sBnc6q6bn4fFFeDAduv4ayytWeGDdq11k6I98n3XZBaTH16eo6pa5RlF0dWmjchy2S3FQj2Bofzb7OV3txhZtvzHdW9G8QkvM-r4lhmd5vwyKQXjfPP1YaQ2-14ZmigP-_WOffxZN_eKPJY3g00Eh20OP-BO758BS2DwKG0D_v2HsWCzvjifk2XKIpsONVMxLWtWyK5r1kc6SZ7BvGyr1U9x0bL7oWnVlj7CXrAjuMxmPZvG9XjwAyExyboCfsDxDZmPpLsFgrY_suFM_gfHJ0djhNhx4LqRW6WKatcaRJZ3MvpJOZrSz6f-nLxnurlc8sV9bndGm0t5w7SquSqLs2LdfIfZ7DKHTB7wATudMVujqDpF3gqCorIZuyRQaStVo0CXxYfd_6qpfSqDEEITDqCEZNYNQ9GAmMCYH1g6SCHW90N9_rYVHVNitM5pTjDUZFTkpj29wKxZ3mKjO8SGBvhV89LE18ydqQEni7HsZFRZkSE3x3S8-UHCeBVCuBFz3c65kUyGnQg5QJyA1D2Jjq5khY_IjC3Yq09oXc_f-03sCD6dnpSX1yPPvyEh7SR6HaNK73YLS8ufWvkAUtm9eDqf8Gh5cGoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglRAXBJRHoICREAeksIljx_YJdUtXWx6rakVRb5HjB6wqnFK2h_57ZpxkxSLEMXGkWJnPnm88k28IecWZEQAckcu2YjkXxuRGVWVeWamlN1641A7o86Ken_IPZ-JsqH_6NZRVjnti2qhdZ_GMfIK67RzTYmoShrKIk_ezdxc_c-wghZnWoZ3GTbIreS0gENudHi1OluO-XMNGnHKfNf4nBES9z3FCiKYnIa4ianez8m2tIQxXW14qifn_i4H-XUj5h2ea3SV3BkpJD3oM3CM3fLxP9g4ihNM_rulrmoo80-n5HjkHWNDjsTEJ7QKdA9TXdAmUk36FuLmX7b6m01UXwLG1xp7TLtLDBCRLl33rejAmNdHRGXjF_jCRTrHXBE11M7bvSPGAnM6OvhzO86HfQm65rtZ5MA716WzpuXSysLUFLiC9aL23WvnCMmV9iZdGe8uYwxQrCrxrE5gGHvSQ7MQu-seE8tLpGtyeAQLPYVSJmstWBGAjRdC8zcib8fs2F72sRgPhCBqjScZo0BhNb4yMTNECmwdRETvd6C6_NcMCa2xRmcIpx1qIkJyUxobScsWcZqowrMrI_mi_Zlim8JINqDLycjMMCwyzJib67gqfEQwmAbQrI496c29mUgG_AW8iMiK3gLA11e2RuPqeRLwV6u5z-eT_03pBbgHKm0_Hi49PyW38JlimxvQ-2VlfXvlnQIjW7fMB6b8By8YK1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Influence+of+Heart+Rate+Variability+Biofeedback+on+Cardiac+Regulation+and+Functional+Brain+Connectivity&rft.jtitle=Frontiers+in+neuroscience&rft.au=Schumann%2C+Andy&rft.au=de+la+Cruz%2C+Feliberto&rft.au=K%C3%B6hler%2C+Stefanie&rft.au=Brotte%2C+Lisa&rft.date=2021-06-29&rft.issn=1662-4548&rft.volume=15&rft.spage=691988&rft.epage=691988&rft_id=info:doi/10.3389%2Ffnins.2021.691988&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-4548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-4548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-4548&client=summon