Design, Synthesis, and Biological Investigation of Novel Classes of 3-Carene-Derived Potent Inhibitors of TDP1

Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 25; no. 15; p. 3496
Main Authors Il’ina, Irina V., Dyrkheeva, Nadezhda S., Zakharenko, Alexandra L., Sidorenko, Alexander Yu, Li-Zhulanov, Nikolay S., Korchagina, Dina V., Chand, Raina, Ayine-Tora, Daniel M., Chepanova, Arina A., Zakharova, Olga D., Ilina, Ekaterina S., Reynisson, Jóhannes, Malakhova, Anastasia A., Medvedev, Sergey P., Zakian, Suren M., Volcho, Konstantin P., Salakhutdinov, Nariman F., Lavrik, Olga I.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed by reaction with heteroaromatic aldehydes. All the compounds inhibit the TDP1 enzyme at micro- and submicromolar levels, with the most potent compound having an IC50 value of 0.65 μM. TDP1 is an important DNA repair enzyme and a promising target for the development of new chemosensitizing agents. A panel of isogenic clones of the HEK293FT cell line knockout for the TDP1 gene was created using the CRISPR-Cas9 system. Cytotoxic effects of topotecan (Tpc) and non-cytotoxic compounds of the new structures were investigated separately and jointly in the TDP1 gene knockout cells. For two TDP1 inhibitors, 11h and 12k, a synergistic effect was observed with Tpc in the HEK293FT cells but was not found in TDP1 −/− cells. Thus, it is likely that the synergistic effect is caused by inhibition of TDP1. Synergy was also found for 11h in other cancer cell lines. Thus, sensitizing cancer cells using a non-cytotoxic drug can enhance the efficacy of currently used pharmaceuticals and, concomitantly, reduce toxic side effects.
AbstractList Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed by reaction with heteroaromatic aldehydes. All the compounds inhibit the TDP1 enzyme at micro- and submicromolar levels, with the most potent compound having an IC 50 value of 0.65 μM. TDP1 is an important DNA repair enzyme and a promising target for the development of new chemosensitizing agents. A panel of isogenic clones of the HEK293FT cell line knockout for the TDP1 gene was created using the CRISPR-Cas9 system. Cytotoxic effects of topotecan (Tpc) and non-cytotoxic compounds of the new structures were investigated separately and jointly in the TDP1 gene knockout cells. For two TDP1 inhibitors, 11h and 12k , a synergistic effect was observed with Tpc in the HEK293FT cells but was not found in TDP1 −/− cells. Thus, it is likely that the synergistic effect is caused by inhibition of TDP1. Synergy was also found for 11h in other cancer cell lines. Thus, sensitizing cancer cells using a non-cytotoxic drug can enhance the efficacy of currently used pharmaceuticals and, concomitantly, reduce toxic side effects.
Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed by reaction with heteroaromatic aldehydes. All the compounds inhibit the TDP1 enzyme at micro- and submicromolar levels, with the most potent compound having an IC50 value of 0.65 μM. TDP1 is an important DNA repair enzyme and a promising target for the development of new chemosensitizing agents. A panel of isogenic clones of the HEK293FT cell line knockout for the TDP1 gene was created using the CRISPR-Cas9 system. Cytotoxic effects of topotecan (Tpc) and non-cytotoxic compounds of the new structures were investigated separately and jointly in the TDP1 gene knockout cells. For two TDP1 inhibitors, 11h and 12k, a synergistic effect was observed with Tpc in the HEK293FT cells but was not found in TDP1 −/− cells. Thus, it is likely that the synergistic effect is caused by inhibition of TDP1. Synergy was also found for 11h in other cancer cell lines. Thus, sensitizing cancer cells using a non-cytotoxic drug can enhance the efficacy of currently used pharmaceuticals and, concomitantly, reduce toxic side effects.
Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed by reaction with heteroaromatic aldehydes. All the compounds inhibit the TDP1 enzyme at micro- and submicromolar levels, with the most potent compound having an IC50 value of 0.65 μM. TDP1 is an important DNA repair enzyme and a promising target for the development of new chemosensitizing agents. A panel of isogenic clones of the HEK293FT cell line knockout for the TDP1 gene was created using the CRISPR-Cas9 system. Cytotoxic effects of topotecan (Tpc) and non-cytotoxic compounds of the new structures were investigated separately and jointly in the TDP1 gene knockout cells. For two TDP1 inhibitors, 11h and 12k, a synergistic effect was observed with Tpc in the HEK293FT cells but was not found in TDP1 -/- cells. Thus, it is likely that the synergistic effect is caused by inhibition of TDP1. Synergy was also found for 11h in other cancer cell lines. Thus, sensitizing cancer cells using a non-cytotoxic drug can enhance the efficacy of currently used pharmaceuticals and, concomitantly, reduce toxic side effects.Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed by reaction with heteroaromatic aldehydes. All the compounds inhibit the TDP1 enzyme at micro- and submicromolar levels, with the most potent compound having an IC50 value of 0.65 μM. TDP1 is an important DNA repair enzyme and a promising target for the development of new chemosensitizing agents. A panel of isogenic clones of the HEK293FT cell line knockout for the TDP1 gene was created using the CRISPR-Cas9 system. Cytotoxic effects of topotecan (Tpc) and non-cytotoxic compounds of the new structures were investigated separately and jointly in the TDP1 gene knockout cells. For two TDP1 inhibitors, 11h and 12k, a synergistic effect was observed with Tpc in the HEK293FT cells but was not found in TDP1 -/- cells. Thus, it is likely that the synergistic effect is caused by inhibition of TDP1. Synergy was also found for 11h in other cancer cell lines. Thus, sensitizing cancer cells using a non-cytotoxic drug can enhance the efficacy of currently used pharmaceuticals and, concomitantly, reduce toxic side effects.
Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran and 3-oxabicyclo [3.3.1]nonane scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed by reaction with heteroaromatic aldehydes. All the compounds inhibit the TDP1 enzyme at micro- and submicromolar levels, with the most potent compound having an IC value of 0.65 μM. TDP1 is an important DNA repair enzyme and a promising target for the development of new chemosensitizing agents. A panel of isogenic clones of the HEK293FT cell line knockout for the gene was created using the CRISPR-Cas9 system. Cytotoxic effects of topotecan (Tpc) and non-cytotoxic compounds of the new structures were investigated separately and jointly in the gene knockout cells. For two TDP1 inhibitors, and , a synergistic effect was observed with Tpc in the HEK293FT cells but was not found in TDP1 -/- cells. Thus, it is likely that the synergistic effect is caused by inhibition of TDP1. Synergy was also found for in other cancer cell lines. Thus, sensitizing cancer cells using a non-cytotoxic drug can enhance the efficacy of currently used pharmaceuticals and, concomitantly, reduce toxic side effects.
Author Zakharenko, Alexandra L.
Korchagina, Dina V.
Ilina, Ekaterina S.
Lavrik, Olga I.
Sidorenko, Alexander Yu
Dyrkheeva, Nadezhda S.
Ayine-Tora, Daniel M.
Medvedev, Sergey P.
Zakian, Suren M.
Salakhutdinov, Nariman F.
Il’ina, Irina V.
Malakhova, Anastasia A.
Chand, Raina
Chepanova, Arina A.
Li-Zhulanov, Nikolay S.
Reynisson, Jóhannes
Volcho, Konstantin P.
Zakharova, Olga D.
AuthorAffiliation 1 N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Lavrentiev Ave., 630090 Novosibirsk, Russia; ilyina@nioch.nsc.ru (I.V.I.); lizhulan@nioch.nsc.ru (N.S.L.-Z.); korchaga@nioch.nsc.ru (D.V.K.); anvar@nioch.nsc.ru (N.F.S.)
3 Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Skaryna Str, 36, 220141 Minsk, Belarus; camphene@gmail.com
5 School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; rcha387@aucklanduni.ac.nz (R.C.); dayi479@aucklanduni.ac.nz (D.M.A.-T.)
7 Federal Research Centre Institute of Cytology and Genetics of the Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090 Novosibirsk, Russia; medvedev@bionet.nsc.ru
8 E.Meshalkin National medical research center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
6 School of Pharmacy and Bioenginee
AuthorAffiliation_xml – name: 2 Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Lavrentiev Ave., 630090 Novosibirsk, Russia; elpida80@mail.ru (N.S.D.); sashaz@niboch.nsc.ru (A.L.Z.); arinachepanova@mail.ru (A.A.C.); isar@niboch.nsc.ru (O.D.Z.); katya.plekhanova@gmail.com (E.S.I.); amal@bionet.nsc.ru (A.A.M.); lavrik@niboch.nsc.ru (O.I.L.)
– name: 1 N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Lavrentiev Ave., 630090 Novosibirsk, Russia; ilyina@nioch.nsc.ru (I.V.I.); lizhulan@nioch.nsc.ru (N.S.L.-Z.); korchaga@nioch.nsc.ru (D.V.K.); anvar@nioch.nsc.ru (N.F.S.)
– name: 3 Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Skaryna Str, 36, 220141 Minsk, Belarus; camphene@gmail.com
– name: 4 Nstitute of Cytology and Genetics, The Siberian Division of the Russian Academy of Sciences, Novosibirsk State University, 2, Pirogova Str., 630090 Novosibirsk, Russia; zakian@bionet.nsc.ru
– name: 7 Federal Research Centre Institute of Cytology and Genetics of the Siberian Branch of Russian Academy of Sciences, 10, Lavrentiev Ave, 630090 Novosibirsk, Russia; medvedev@bionet.nsc.ru
– name: 8 E.Meshalkin National medical research center of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
– name: 5 School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; rcha387@aucklanduni.ac.nz (R.C.); dayi479@aucklanduni.ac.nz (D.M.A.-T.)
– name: 6 School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK; j.reynisson@keele.ac.uk
Author_xml – sequence: 1
  givenname: Irina V.
  surname: Il’ina
  fullname: Il’ina, Irina V.
– sequence: 2
  givenname: Nadezhda S.
  surname: Dyrkheeva
  fullname: Dyrkheeva, Nadezhda S.
– sequence: 3
  givenname: Alexandra L.
  surname: Zakharenko
  fullname: Zakharenko, Alexandra L.
– sequence: 4
  givenname: Alexander Yu
  surname: Sidorenko
  fullname: Sidorenko, Alexander Yu
– sequence: 5
  givenname: Nikolay S.
  surname: Li-Zhulanov
  fullname: Li-Zhulanov, Nikolay S.
– sequence: 6
  givenname: Dina V.
  surname: Korchagina
  fullname: Korchagina, Dina V.
– sequence: 7
  givenname: Raina
  surname: Chand
  fullname: Chand, Raina
– sequence: 8
  givenname: Daniel M.
  surname: Ayine-Tora
  fullname: Ayine-Tora, Daniel M.
– sequence: 9
  givenname: Arina A.
  surname: Chepanova
  fullname: Chepanova, Arina A.
– sequence: 10
  givenname: Olga D.
  surname: Zakharova
  fullname: Zakharova, Olga D.
– sequence: 11
  givenname: Ekaterina S.
  surname: Ilina
  fullname: Ilina, Ekaterina S.
– sequence: 12
  givenname: Jóhannes
  orcidid: 0000-0003-4174-9512
  surname: Reynisson
  fullname: Reynisson, Jóhannes
– sequence: 13
  givenname: Anastasia A.
  orcidid: 0000-0003-1916-1333
  surname: Malakhova
  fullname: Malakhova, Anastasia A.
– sequence: 14
  givenname: Sergey P.
  orcidid: 0000-0002-1520-5549
  surname: Medvedev
  fullname: Medvedev, Sergey P.
– sequence: 15
  givenname: Suren M.
  surname: Zakian
  fullname: Zakian, Suren M.
– sequence: 16
  givenname: Konstantin P.
  orcidid: 0000-0002-4083-9324
  surname: Volcho
  fullname: Volcho, Konstantin P.
– sequence: 17
  givenname: Nariman F.
  surname: Salakhutdinov
  fullname: Salakhutdinov, Nariman F.
– sequence: 18
  givenname: Olga I.
  orcidid: 0000-0001-5980-8889
  surname: Lavrik
  fullname: Lavrik, Olga I.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32751997$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vEzEQtVAR_YAfwAWtxIVDF_y5Xl-QIOEjUgWVKGfL653dOHLs1t5E6r_HSUrVFomTR-P33sy8mVN0FGIAhF4T_J4xhT-sowe78ZCpIIJx1TxDJ4RTXDPM1dGD-Bid5rzCmBJOxAt0zKgURCl5gsIcshvDefXrNkzLEufzyoS--uyij6OzxleLsIU8udFMLoYqDtWPuAVfzbzJGfIuweqZSRCgnkNyW-iryzhBmApz6To3xbRHXc0vyUv0fDA-w6u79wz9_vrlava9vvj5bTH7dFFbrthUQydbI1Sj2k4IKlTXGdZz1lrbY9UDHgjvKO-hG7hocQPWCA6WGclBEmkNO0OLg24fzUpfJ7c26VZH4_Q-EdOoTZqc9aAHCUBNMUN0DSeKKSGNpYwLbHFDGC1aHw9a15tuDb0tkyXjH4k-_gluqce41ZKzBhNWBN7dCaR4syle6rXLFrw3AeIma8oZbngr8K7W2yfQVdykUKzao4oZUuxQbx52dN_K37UWADkAbIo5JxjuIQTr3enof06ncOQTjnXTfudlKOf_w_wDhEDLMw
CitedBy_id crossref_primary_10_3390_biom11070973
crossref_primary_10_3390_ijms222111336
crossref_primary_10_1016_j_jpba_2023_115731
crossref_primary_10_1016_j_mcat_2023_113627
crossref_primary_10_1016_j_steroids_2020_108771
crossref_primary_10_6023_cjoc202204055
crossref_primary_10_59761_RCR5125
crossref_primary_10_59761_RCR5104
crossref_primary_10_3390_ijms21197162
crossref_primary_10_3390_ijms24065148
crossref_primary_10_1016_j_apcata_2021_118395
crossref_primary_10_1002_iub_2890
crossref_primary_10_3390_M1734
crossref_primary_10_1007_s40487_021_00158_0
crossref_primary_10_3390_molecules26071945
crossref_primary_10_1021_acs_joc_4c01282
crossref_primary_10_1134_S1068162021060236
crossref_primary_10_1038_s41388_022_02369_9
crossref_primary_10_1080_01614940_2024_2329553
crossref_primary_10_3390_ijms24065781
crossref_primary_10_1007_s11172_023_4055_z
crossref_primary_10_3390_s21144832
crossref_primary_10_3390_ijms24119155
crossref_primary_10_1016_j_apcata_2021_118144
crossref_primary_10_3390_molecules26113128
crossref_primary_10_31857_S0044460X24020087
crossref_primary_10_1016_j_arabjc_2024_105937
crossref_primary_10_3390_molecules26071821
Cites_doi 10.1016/j.ctrv.2014.05.003
10.1073/pnas.211429198
10.1139/v76-496
10.1517/13543776.2011.604314
10.2174/187152008784220357
10.1093/nar/gkx1219
10.3390/ijms21010126
10.1016/j.ejmech.2015.08.032
10.3390/app9132767
10.1016/j.bioorg.2017.12.005
10.3390/genes10110897
10.2174/1871520619666181207094243
10.1016/j.febslet.2011.01.032
10.1016/j.bmc.2018.07.039
10.3390/molecules23030679
10.2174/1570180811666131210000316
10.1038/nrc1977
10.1002/qsar.200730051
10.1016/j.mcat.2020.110974
10.1038/nprot.2013.143
10.2174/1570180816666181220121042
10.1016/j.bmc.2016.09.045
10.3390/molecules24203711
10.1016/j.bmc.2016.09.016
10.1002/hlca.201000145
10.3390/molecules23102468
10.1016/S1381-1169(98)00289-1
10.1002/med.21587
10.1002/minf.201200103
10.1515/pac-2017-0109
10.13005/ojc/330652
10.1016/j.mcat.2017.10.014
10.1016/j.mcat.2018.07.025
10.1038/nature08444
10.1070/RCR4810
10.1016/j.bmc.2015.03.020
10.1021/ja00984a030
10.2174/092986710790979971
10.1016/j.dnarep.2017.10.003
10.1002/minf.201800068
10.1016/j.ejmech.2018.10.055
10.1093/nar/gkm463
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules25153496
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_f7ee2a9975b64193957ac23450c06132
PMC7436013
32751997
10_3390_molecules25153496
Genre Journal Article
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 19-13-00040
– fundername: Russian Foundation for Basic Research
  grantid: 19-415-540002
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IHR
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-eb78a59698b55259bba3d438ccd09de0f14b24debf45806eca54ec3a74e717ca3
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:02:37 EDT 2025
Thu Aug 21 17:50:49 EDT 2025
Mon Jul 21 10:56:59 EDT 2025
Fri Jul 25 20:02:45 EDT 2025
Thu Apr 03 06:56:34 EDT 2025
Tue Jul 01 01:16:52 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords monoterpene
synergy
carene
inhibitor
TDP1 gene knockout cells
tyrosyl-DNA phosphodiesterase 1
topotecan
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-eb78a59698b55259bba3d438ccd09de0f14b24debf45806eca54ec3a74e717ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1916-1333
0000-0003-4174-9512
0000-0002-4083-9324
0000-0002-1520-5549
0000-0001-5980-8889
OpenAccessLink https://www.proquest.com/docview/2430552752?pq-origsite=%requestingapplication%
PMID 32751997
PQID 2430552752
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_f7ee2a9975b64193957ac23450c06132
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7436013
proquest_miscellaneous_2430648502
proquest_journals_2430552752
pubmed_primary_32751997
crossref_primary_10_3390_molecules25153496
crossref_citationtrail_10_3390_molecules25153496
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200731
PublicationDateYYYYMMDD 2020-07-31
PublicationDate_xml – month: 7
  year: 2020
  text: 20200731
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zakharova (ref_33) 2018; 26
Volcho (ref_23) 2010; 93
ref_13
Khomenko (ref_16) 2016; 24
Ledesma (ref_9) 2009; 461
Zhu (ref_41) 2012; 31
Ioakimidis (ref_46) 2008; 27
ref_10
Zakharenko (ref_11) 2019; 161
ref_32
Huang (ref_1) 2011; 21
Ponomarev (ref_21) 2018; 76
Kawale (ref_4) 2018; 46
Li (ref_39) 2017; 60
Majumdar (ref_35) 2015; 102
ref_17
Dyrkheeva (ref_12) 2018; 85
Salakhutdinov (ref_14) 2017; 89
Zakharenko (ref_3) 2019; 39
Interthal (ref_5) 2001; 98
Laev (ref_2) 2016; 24
Lebedeva (ref_43) 2011; 585
Zakharenko (ref_38) 2015; 23
Beretta (ref_8) 2010; 17
Sidorenko (ref_30) 2017; 443
Liu (ref_47) 2014; 40
Eswaramoorthy (ref_28) 2001; 40
Volcho (ref_36) 1994; 30
Pavlova (ref_24) 2013; 11
Sidorenko (ref_31) 2018; 459
Dexheimer (ref_7) 2008; 8
ref_45
Mozhaitsev (ref_19) 2019; 16
ref_22
Patrusheva (ref_15) 2018; 87
ref_20
ref_40
Krishnasamy (ref_29) 1976; 54
Mozhaitsev (ref_18) 2019; 19
Sidorenko (ref_37) 2020; 490
Meyer (ref_26) 1999; 142
Eurtivong (ref_42) 2018; 38
Acharya (ref_25) 1967; 89
Pommier (ref_6) 2006; 6
Julianto (ref_27) 2017; 33
Antony (ref_34) 2007; 35
Ran (ref_44) 2013; 8
References_xml – volume: 40
  start-page: 883
  year: 2014
  ident: ref_47
  article-title: Toxicity of targeted therapy: Implications for response and impact of genetic polymorphisms
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2014.05.003
– volume: 98
  start-page: 12009
  year: 2001
  ident: ref_5
  article-title: The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.211429198
– volume: 54
  start-page: 3458
  year: 1976
  ident: ref_29
  article-title: Vapour phase catalytic transformations of terpene hydrocarbons in the C10H16 series. III. Dehydrogenation of Δ3-carene over modified chromia and chromia–alumina catalysts
  publication-title: Can. J. Chem.
  doi: 10.1139/v76-496
– volume: 21
  start-page: 1285
  year: 2011
  ident: ref_1
  article-title: Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) inhibitors
  publication-title: Expert Opin. Ther. Patents
  doi: 10.1517/13543776.2011.604314
– volume: 8
  start-page: 381
  year: 2008
  ident: ref_7
  article-title: Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy
  publication-title: Anti-Cancer Agents Med. Chem.
  doi: 10.2174/187152008784220357
– ident: ref_32
– volume: 46
  start-page: 520
  year: 2018
  ident: ref_4
  article-title: Tyrosyl-DNA phosphodiesterases: Rescuing the genome from the risks of relaxation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1219
– ident: ref_17
  doi: 10.3390/ijms21010126
– volume: 102
  start-page: 540
  year: 2015
  ident: ref_35
  article-title: Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2015.08.032
– ident: ref_20
  doi: 10.3390/app9132767
– volume: 76
  start-page: 392
  year: 2018
  ident: ref_21
  article-title: Aminoadamantanes containing monoterpene-derived fragments as potent tyrosyl-DNA phosphodiesterase 1 inhibitors
  publication-title: Bioorganic Chem.
  doi: 10.1016/j.bioorg.2017.12.005
– ident: ref_40
  doi: 10.3390/genes10110897
– volume: 19
  start-page: 463
  year: 2019
  ident: ref_18
  article-title: Novel Inhibitors of DNA Repair Enzyme TDP1 Combining Monoterpenoid and Adamantane Fragments
  publication-title: Anti-Cancer Agents Med. Chem.
  doi: 10.2174/1871520619666181207094243
– volume: 585
  start-page: 683
  year: 2011
  ident: ref_43
  article-title: AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2011.01.032
– volume: 26
  start-page: 4470
  year: 2018
  ident: ref_33
  article-title: Synthesis and evaluation of aryliden- and hetarylidenfuranone derivatives of usnic acid as highly potent Tdp1 inhibitors
  publication-title: Bioorganic Med. Chem.
  doi: 10.1016/j.bmc.2018.07.039
– ident: ref_13
  doi: 10.3390/molecules23030679
– volume: 11
  start-page: 611
  year: 2013
  ident: ref_24
  article-title: Potent Neuroprotective Activity of Monoterpene Derived 4-[(3aR,7aS)- 1,3,3a,4,5,7a-Hexahydro-3,3,6-trimethylisobenzofuran-1-yl]-2-methoxyphenol in MPTP Mice Model
  publication-title: Lett. Drug Des. Discov.
  doi: 10.2174/1570180811666131210000316
– volume: 6
  start-page: 789
  year: 2006
  ident: ref_6
  article-title: Topoisomerase I inhibitors: Camptothecins and beyond
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1977
– volume: 27
  start-page: 445
  year: 2008
  ident: ref_46
  article-title: Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200730051
– volume: 40
  start-page: 264
  year: 2001
  ident: ref_28
  article-title: Influence of coke on the aromatization of 3-carene in the vapour phase over zeolites
  publication-title: Indian J. Chem.
– volume: 490
  start-page: 110974
  year: 2020
  ident: ref_37
  article-title: Synthesis of isobenzofuran derivatives from renewable 2-carene over halloysite nanotubes
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2020.110974
– volume: 8
  start-page: 2281
  year: 2013
  ident: ref_44
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 16
  start-page: 597
  year: 2019
  ident: ref_19
  article-title: The Development of Tyrosyl-DNA Phosphodyesterase 1 (TDP1) Inhibitors Based on the Amines Combining Aromatic/Heteroaromatic and Monoterpenoid Moieties
  publication-title: Lett. Drug Des. Discov.
  doi: 10.2174/1570180816666181220121042
– volume: 24
  start-page: 5017
  year: 2016
  ident: ref_2
  article-title: Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential
  publication-title: Bioorganic Med. Chem.
  doi: 10.1016/j.bmc.2016.09.045
– ident: ref_10
  doi: 10.3390/molecules24203711
– volume: 24
  start-page: 5573
  year: 2016
  ident: ref_16
  article-title: New inhibitors of tyrosyl-DNA phosphodiesterase I (Tdp 1)
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2016.09.016
– volume: 93
  start-page: 2135
  year: 2010
  ident: ref_23
  article-title: Unusual reactions of (+)-2- and (+)-3-carene with aldehydes on K10 clay
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.201000145
– ident: ref_22
  doi: 10.3390/molecules23102468
– volume: 142
  start-page: 213
  year: 1999
  ident: ref_26
  article-title: Application of basic zeolites in the decomposition reaction of 2-methyl-3-butyn-2-ol and the isomerization of 3-carene
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(98)00289-1
– volume: 39
  start-page: 1427
  year: 2019
  ident: ref_3
  article-title: Dual DNA topoisomerase 1 and tyrosyl-DNA phosphodiesterase 1 inhibition for improved anticancer activity
  publication-title: Med. Res. Rev.
  doi: 10.1002/med.21587
– volume: 31
  start-page: 847
  year: 2012
  ident: ref_41
  article-title: Wine Compounds as a Source for HTS Screening Collections. A Feasibility Study
  publication-title: Mol. Informatics
  doi: 10.1002/minf.201200103
– volume: 89
  start-page: 1105
  year: 2017
  ident: ref_14
  article-title: Monoterpenes as a renewable source of biologically active compounds
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2017-0109
– volume: 33
  start-page: 3107
  year: 2017
  ident: ref_27
  article-title: Solvent-free isomerization of 3-carene to 2-carene using Na/o-chlorotoluene catalyst in trans-isolimonene production
  publication-title: Orient. J. Chem.
  doi: 10.13005/ojc/330652
– volume: 443
  start-page: 193
  year: 2017
  ident: ref_30
  article-title: Catalytic isomerization of α-pinene and 3-carene in the presence of modified layered aluminosilicates
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2017.10.014
– volume: 459
  start-page: 38
  year: 2018
  ident: ref_31
  article-title: Preparation of chiral isobenzofurans from 3-carene in the presence of modified clays
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2018.07.025
– volume: 85
  start-page: 103
  year: 2018
  ident: ref_12
  article-title: Inhibitory Effect of New Semisynthetic Usnic Acid Derivatives on Human Tyrosyl-DNA Phosphodiesterase 1
  publication-title: Planta Medica
– volume: 461
  start-page: 674
  year: 2009
  ident: ref_9
  article-title: A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage
  publication-title: Nature
  doi: 10.1038/nature08444
– volume: 87
  start-page: 771
  year: 2018
  ident: ref_15
  article-title: Approaches to the synthesis of oxygen-containing heterocyclic compounds based on monoterpenoids
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RCR4810
– volume: 23
  start-page: 2044
  year: 2015
  ident: ref_38
  article-title: Synthesis and biological evaluation of novel tyrosyl-DNA phosphodiesterase 1 inhibitors with a benzopentathiepine moiety
  publication-title: Bioorganic Med. Chem.
  doi: 10.1016/j.bmc.2015.03.020
– volume: 89
  start-page: 1925
  year: 1967
  ident: ref_25
  article-title: Hydroboration of Terpenes. III. Isomerization of (+)-3-Carene to (+)-2-Carene. Hydroboration of (+)-2-Carene ([UNK]4-Carene). Nuclear Magnetic Resonance Spectra with Absolute Configurational and Conformational Assignments for the 2-Caranols and 2-Caranones
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00984a030
– volume: 17
  start-page: 1500
  year: 2010
  ident: ref_8
  article-title: Tyrosyl-DNA Phosphodiesterase 1 Targeting for Modulation of Camptothecin-Based Treatment
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986710790979971
– volume: 60
  start-page: 40
  year: 2017
  ident: ref_39
  article-title: TDP1 is required for efficient non-homologous end joining in human cells
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2017.10.003
– ident: ref_45
– volume: 30
  start-page: 641
  year: 1994
  ident: ref_36
  article-title: Cycloaddition of carbonyl compounds to olefins on aluminosilicate catalysts
  publication-title: Russ. J. Org. Chem.
– volume: 38
  start-page: 1800068
  year: 2018
  ident: ref_42
  article-title: The Development of a Weighted Index to Optimise Compound Libraries for High Throughput Screening
  publication-title: Mol. Informatics
  doi: 10.1002/minf.201800068
– volume: 161
  start-page: 581
  year: 2019
  ident: ref_11
  article-title: Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topotecan on in vivo tumor models
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.10.055
– volume: 35
  start-page: 4474
  year: 2007
  ident: ref_34
  article-title: Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm463
SSID ssj0021415
Score 2.4326925
Snippet Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were...
Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran and 3-oxabicyclo [3.3.1]nonane scaffolds were...
Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3496
SubjectTerms Apoptosis
Bicyclic Monoterpenes - chemistry
Cancer
carene
Cell Proliferation - drug effects
Cell Survival - drug effects
Clay
CRISPR-Cas Systems
Cytotoxicity
Deoxyribonucleic acid
DNA
DNA damage
DNA repair
Drug Design
Drug Synergism
Enzymes
Gene Knockout Techniques
HCT116 Cells
HEK293 Cells
HeLa Cells
Humans
Inhibitory Concentration 50
monoterpene
Phosphodiesterase Inhibitors - chemical synthesis
Phosphodiesterase Inhibitors - chemistry
Phosphodiesterase Inhibitors - pharmacology
Phosphoric Diester Hydrolases - genetics
Phosphoric Diester Hydrolases - metabolism
Signal Transduction - drug effects
synergy
TDP1 gene knockout cells
topotecan
Topotecan - pharmacology
tyrosyl-DNA phosphodiesterase 1
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SF30Rv722lgg-SUOzm2SzedSepQiWgi30bcnHLD2oWXGvBf97J8necVdFX3zdTJZsZrLzm2TyG0LehaaxvbCBaaM4k8oI5irrGULzoBRCaOfT5eQvZ83ppfx8pa42Sn2lnLBCD1wm7qjXALU1RivXSEQbRmnrayEV98kV5b8v-rxVMDWFWhX6pXKGKTCoP_pWSs3CiN5cJYr0LS-Uyfr_hDDvJ0pueJ6TJ-TxBBnphzLUp-QBxGfk4fGqUttzEuc5DeOQfv0ZEc-Ni_GQ2hhoqTOZtEA36DSGSIeeng13cENzSUwY0wPB0lWkCGyONnkHgZ4PCKeX2PN64RapJk-SupifVy_I5cmni-NTNtVRYF4asWTgdGuVaUzrlMJwxzkrghSt94GbALyvpKtlANdL1fIGvFUSvLBaAgZ73oqXZCcOEV4TKn3luGibYAS-W3MnPOCKrgKGHdppNSN8Na-dn0jGU62Lmw6DjaSK7jdVzMj7dZfvhWHjb8Ifk7LWgokcOz9Ak-kmk-n-ZTIzsr9SdTet2LGrM_dZrRU2v103oyLTAYqNMNwWmUa2iqPMq2IZ65EI7JqSdmZEb9nM1lC3W-LiOvN5I4jDsFjs_o9v2yOP6rQjkHef98nO8sctvEHYtHQHeYX8AoBEFkg
  priority: 102
  providerName: Directory of Open Access Journals
Title Design, Synthesis, and Biological Investigation of Novel Classes of 3-Carene-Derived Potent Inhibitors of TDP1
URI https://www.ncbi.nlm.nih.gov/pubmed/32751997
https://www.proquest.com/docview/2430552752
https://www.proquest.com/docview/2430648502
https://pubmed.ncbi.nlm.nih.gov/PMC7436013
https://doaj.org/article/f7ee2a9975b64193957ac23450c06132
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcAF8SalrIzECTVqEttxfEK026VCYrWCVtpb5FfoSsVpm20l_j0zTnbbBdRLDs44sjzj-Bs_vo-QD64sdcO0S6USWcqFYqnJtU0BmjshAEIbi5eTv03L41P-dS7mw4JbNxyrXP0T44_atRbXyPeLyE1VSFF8urhMUTUKd1cHCY2HZBupyzCq5fw24cphdup3Mhmk9vu_esFZ38GcLpAofWMuipT9_8OZfx-XvDP_TJ6SJwNwpJ97Tz8jD3x4Th4drvTaXpAwjocx9uiP3wFQXbfo9qgOjvZqk-gLeodUow20bei0vfHnNApj-g4LWIoXkoJPxxCZN97RWQugegk1zxZmgco8aHUynuUvyenk6OTwOB3UFFLLFVum3shKC1WqykA_CmWMZo6zylqXKeezJuem4M6bhosqK73VgnvLtOQeUj6r2SuyFdrg3xDKbW4yVpVOMfi2zAyzHsZ17iD5kEaKhGSrfq3tQDWOihfnNaQc6Ir6H1ck5OO6ykXPs3Gf8QE6a22IFNmxoL36WQ8jrm6k94VWSgpTcoCpSkhtC8ZFZhHDFAnZXbm6HsZtV99GWULer1-DI3EbRQffXvc2Ja9EBjav-8hYt4RBVTy6kxC5ETMbTd18ExZnkdUboBwkx2zn_ma9JY8LzPjj6vIu2VpeXft3AIuWZhRjH57V5MuIbB8cTWffR3GJ4Q9jSBKR
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4k2ggJHggmo1ie04PiAEXZYtbVeV2Eq9Bb9CVypOabZF_VP8RsZ50QXUW6_22LI8Y_sbezwfQq9slqmSKkuE5DFhXFKiE2UIQHPLOUBobcLn5L1pNjlgnw_54Qr61f-FCWGV_Z7YbNS2MuGOfDNtclOlgqfvTn6QwBoVXld7Co3WLHbcxU9w2eq32yPQ7-s0HX-cbU1IxypADJN0QZwWueIyk7mG_rjUWlHLaG6MjaV1cZkwnTLrdMl4HmfOKM6coUowB66PURT6vYFuMgonefiZPv40OHgJnIbtyylUxpvfW4JbVwOG4CEx-9LZ11AE_A_X_h2eeem8G99Btzugit-3lnUXrTh_D61t9fxw95EfNcEfG_jLhQcUWc_rDay8xS27ZdA9vpTEo_K4KvG0OnfHuCHidHUooCR8gPKOjGAlnDuL9ysA8QtoeTTX88AEFKRmo_3kATq4lnl-iFZ95d1jhJlJdEzzzEoKfYtYU-NgH0ksODtCCx6huJ_XwnSpzQPDxnEBLk5QRfGPKiL0Zmhy0ub1uEr4Q1DWIBhScjcF1em3olvhRSmcS5WUguuMASyWXCiTUsZjEzBTGqH1XtVFt0_UxR-rjtDLoRoUGZ5tlHfVWSuTsZzHIPOotYxhJBSahlChCIklm1ka6nKNnx81WcQBOoIzTp9cPawXaG0y29stdrenO0_RrTTcNjQ32-todXF65p4BJFvo5806wOjrdS-8346dTVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBYwEF9Rok9iO4wNCtNtVS2G1glbqLfUrdKWSlGZb1L_Gr2Ocx9IF1Fuv8diyMjP2N_Z4PoDXNk1VQZUNheRRyLikoY6VCRGaW84RQmvjHyd_nqTb--zjAT9YgV_9WxifVtmvic1CbSvjz8iHSVObKhE8GRZdWsR0NH5_8iP0DFL-prWn02hNZNdd_MTwrX63M0Jdv0mS8dbe5nbYMQyEhkk6D50WmeIylZnGsbnUWlHLaGaMjaR1UREznTDrdMF4FqXOKM6coUowh2GQURTHvQGrwkdFA1jd2JpMvyzCvRj3xvYelVIZDb-3dLeuRkTBfZn2pZ2wIQz4H8r9O1nz0u43vgt3OthKPrR2dg9WXHkfbm32bHEPoBw1qSDr5OtFiZiyntXrRJWWtFyX3hLIpZIeVUmqgkyqc3dMGlpOV_sPNPTPoUoXjtAvzp0l0woh_Rx7Hs30zPMCeam90TR-CPvX8qcfwaCsSvcECDOxjmiWWklxbBFpahyuKrHF0EdowQOI-v-am67QuefbOM4x4PGqyP9RRQBvF11O2iofVwlveGUtBH2B7uZDdfot7_w9L4RziZJScJ0yBMmSC2USynhkPIJKAljrVZ13q0ad_7HxAF4tmlGR_hJHla46a2VSlvEIZR63lrGYCcWuPnEoALFkM0tTXW4pZ0dNTXEEkhia06dXT-sl3ESnyz_tTHafwe3EHz00x9xrMJifnrnniM_m-kXnCAQOr9v3fgNY-1Lq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design%2C+Synthesis%2C+and+Biological+Investigation+of+Novel+Classes+of+3-Carene-Derived+Potent+Inhibitors+of+TDP1&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Il%27ina%2C+Irina+V&rft.au=Dyrkheeva%2C+Nadezhda+S&rft.au=Zakharenko%2C+Alexandra+L&rft.au=Sidorenko%2C+Alexander+Yu&rft.date=2020-07-31&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=25&rft.issue=15&rft_id=info:doi/10.3390%2Fmolecules25153496&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon