l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation

L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pat...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 26; no. 7; p. 1887
Main Authors Han, Mei, Zhang, Can, Suglo, Peter, Sun, Shuyue, Wang, Mingyao, Su, Tao
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.03.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.
AbstractList L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.
L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.
Author Suglo, Peter
Han, Mei
Su, Tao
Sun, Shuyue
Zhang, Can
Wang, Mingyao
AuthorAffiliation 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; sthanmei@njfu.edu.cn (M.H.); can18723@126.com (C.Z.); petersuglo@yahoo.com (P.S.); sunsyjessica@163.com (S.S.); njfuwmy2021@163.com (M.W.)
2 Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
AuthorAffiliation_xml – name: 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; sthanmei@njfu.edu.cn (M.H.); can18723@126.com (C.Z.); petersuglo@yahoo.com (P.S.); sunsyjessica@163.com (S.S.); njfuwmy2021@163.com (M.W.)
– name: 2 Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
Author_xml – sequence: 1
  givenname: Mei
  surname: Han
  fullname: Han, Mei
– sequence: 2
  givenname: Can
  surname: Zhang
  fullname: Zhang, Can
– sequence: 3
  givenname: Peter
  surname: Suglo
  fullname: Suglo, Peter
– sequence: 4
  givenname: Shuyue
  surname: Sun
  fullname: Sun, Shuyue
– sequence: 5
  givenname: Mingyao
  surname: Wang
  fullname: Wang, Mingyao
– sequence: 6
  givenname: Tao
  orcidid: 0000-0003-4267-0574
  surname: Su
  fullname: Su, Tao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33810495$$D View this record in MEDLINE/PubMed
BookMark eNp1kl1rFDEUhoNU7Jc_wBsZ8MabqfmaSeKFsJRaCysK1euQSc60WbKTNclU_Pdmu21pK14lnLzvk_N1iPamOAFCbwg-YUzhD-sYwM4BMu2xIFKKF-iAcIpbhrnae3TfR4c5rzCmhJPuFdpnTJIa7g7QMrSLvDGpmAIfm8XUnOUMU_EmNF-hmCEGX6AZY2q-BzOV5jzF3-W6MZNrLkuCnJuFtcGvTfFxOkYvRxMyvL47j9DPz2c_Tr-0y2_nF6eLZWu5YqUFNgIfeszYyKkiYIGzgRNg3FE5ODcYDmYwzCoQtHfE0d4KxUbWi4HQjrAjdLHjumhWepPq9-mPjsbr20BMV7pW5G0ATYjho-TGGVmpvDdKwqioE4R3rB-6yvq0Y23mYQ3O1uKTCU-gT18mf62v4o2WmAkqt4D3d4AUf82Qi177bCHUdkGcs6Ydll0vGBVV-u6ZdBXnNNVWVRWXSnaSbKt7-zijh1Tuh1YFYiewKeacYNTWl9sB1AR90ATr7Xrof9ajOskz5z38_56_IyzANA
CitedBy_id crossref_primary_10_1016_j_fochx_2024_101422
crossref_primary_10_3390_metabo13030329
crossref_primary_10_1021_acs_jafc_4c00394
crossref_primary_10_3390_plants10071354
crossref_primary_10_1186_s11671_023_03953_y
crossref_primary_10_1016_j_jhazmat_2024_136688
crossref_primary_10_1016_j_stress_2025_100797
crossref_primary_10_3390_pr11020563
crossref_primary_10_1039_D2MO00251E
crossref_primary_10_1016_j_scienta_2024_113809
crossref_primary_10_1016_j_jcs_2024_104010
crossref_primary_10_1016_j_jhazmat_2021_126624
crossref_primary_10_3390_ijms241411773
crossref_primary_10_1016_j_biortech_2024_130899
crossref_primary_10_1111_ppl_14491
crossref_primary_10_1186_s12870_024_05831_w
crossref_primary_10_1016_j_plaphy_2025_109551
crossref_primary_10_33619_2414_2948_96_02
crossref_primary_10_3389_fpls_2022_871387
crossref_primary_10_1016_j_foodres_2024_114687
crossref_primary_10_1016_j_jhazmat_2024_134897
crossref_primary_10_1007_s10126_025_10415_2
crossref_primary_10_17660_ActaHortic_2024_1399_22
crossref_primary_10_3389_fpls_2023_1260393
crossref_primary_10_3390_ijms232315194
crossref_primary_10_1016_j_plantsci_2022_111538
crossref_primary_10_1016_j_bbrc_2024_151263
crossref_primary_10_1016_j_jhazmat_2024_135537
crossref_primary_10_1186_s12870_023_04198_8
crossref_primary_10_3390_toxics10090494
crossref_primary_10_1016_j_aqrep_2023_101871
crossref_primary_10_1042_BST20231558
crossref_primary_10_3390_plants13111522
crossref_primary_10_1134_S0006297923110226
crossref_primary_10_3390_molecules26237383
crossref_primary_10_1016_j_scitotenv_2024_171278
crossref_primary_10_1016_j_ecoenv_2024_116026
crossref_primary_10_1007_s44154_024_00175_9
crossref_primary_10_1038_s41598_024_80556_2
crossref_primary_10_1016_j_envres_2025_120906
crossref_primary_10_3389_fmicb_2023_1190052
crossref_primary_10_1016_j_plaphy_2022_08_014
crossref_primary_10_1007_s10722_025_02373_4
crossref_primary_10_1186_s12870_023_04545_9
crossref_primary_10_3390_ijms26020582
crossref_primary_10_1016_j_foodres_2024_115112
crossref_primary_10_1038_s41598_025_90676_y
crossref_primary_10_3389_fpls_2023_1114172
crossref_primary_10_1016_j_indcrop_2024_118023
crossref_primary_10_3389_fpls_2022_1041649
crossref_primary_10_1002_adbi_202300095
crossref_primary_10_1016_j_plaphy_2022_12_008
crossref_primary_10_1007_s11104_023_06437_1
crossref_primary_10_1111_tpj_15913
crossref_primary_10_1016_j_plaphy_2023_107902
crossref_primary_10_3389_fpls_2022_869713
crossref_primary_10_3390_toxics12080611
crossref_primary_10_1016_j_aquatox_2024_106840
crossref_primary_10_1111_ppl_14044
crossref_primary_10_18016_ksutarimdoga_vi_1223516
crossref_primary_10_1016_j_ecoenv_2022_114135
crossref_primary_10_1093_jxb_erad507
crossref_primary_10_3390_horticulturae10111187
crossref_primary_10_1007_s00248_023_02260_4
crossref_primary_10_1094_PDIS_08_21_1675_RE
crossref_primary_10_1111_ppl_14201
crossref_primary_10_1186_s40538_022_00373_5
crossref_primary_10_3389_fpls_2023_1170448
crossref_primary_10_1016_j_scienta_2021_110697
crossref_primary_10_1016_j_greenca_2023_08_003
crossref_primary_10_1111_pce_15457
crossref_primary_10_1007_s11240_023_02560_0
crossref_primary_10_1186_s12870_025_06097_6
crossref_primary_10_3390_plants13121603
crossref_primary_10_1111_jac_70049
crossref_primary_10_1016_j_jff_2022_104941
crossref_primary_10_1016_j_plaphy_2023_108029
crossref_primary_10_3390_seeds3040043
crossref_primary_10_1021_acs_jafc_4c09107
crossref_primary_10_1016_j_foodchem_2024_139858
crossref_primary_10_1016_j_plaphy_2025_109581
crossref_primary_10_3389_fpls_2022_987641
crossref_primary_10_1186_s12870_023_04688_9
crossref_primary_10_1016_j_jwpe_2024_104973
crossref_primary_10_3389_fpls_2024_1392433
crossref_primary_10_1073_pnas_2410598121
crossref_primary_10_1016_j_livsci_2024_105611
crossref_primary_10_3390_ijms23126368
crossref_primary_10_3390_horticulturae9080866
crossref_primary_10_1111_ppl_14220
crossref_primary_10_1186_s12870_023_04158_2
crossref_primary_10_3390_gels10010010
crossref_primary_10_3390_foods12020352
crossref_primary_10_1007_s00216_024_05188_x
crossref_primary_10_3390_su152316328
crossref_primary_10_1016_j_ijbiomac_2023_125661
crossref_primary_10_3390_foods10123067
crossref_primary_10_3390_plants13152072
crossref_primary_10_7744_kjoas_510415
crossref_primary_10_1093_lambio_ovae126
crossref_primary_10_1111_nph_19092
crossref_primary_10_3390_plants11020199
crossref_primary_10_3390_ijms25168875
crossref_primary_10_3390_fermentation9080737
crossref_primary_10_3389_fpls_2022_878272
crossref_primary_10_1016_j_ijbiomac_2024_137429
crossref_primary_10_1007_s00284_021_02647_x
Cites_doi 10.1006/jmbi.1999.3255
10.1093/aob/mcw194
10.1111/j.1365-313X.2004.02329.x
10.1093/jxb/ers119
10.1093/genetics/149.2.491
10.1111/j.1399-3054.1997.tb00028.x
10.1007/s00344-007-9027-2
10.1093/jxb/ert124
10.1105/tpc.111.095190
10.1016/S0168-9452(03)00251-6
10.1105/tpc.104.026690
10.3389/fpls.2020.01150
10.1006/mben.2001.0203
10.1093/mp/ssr003
10.1111/nph.16463
10.1073/pnas.0308515101
10.1104/pp.106.081091
10.3389/fpls.2019.00995
10.1111/j.1432-1033.1993.tb17953.x
10.1007/s00425-018-2914-x
10.1016/j.plantsci.2018.03.016
10.1016/j.plaphy.2008.10.004
10.1093/mp/ssn080
10.3390/ijms20184456
10.1080/15384101.2015.1087619
10.1093/jxb/erg161
10.1093/jxb/eru320
10.1111/j.1365-3040.2006.01580.x
10.1111/j.1747-0765.2008.00293.x
10.1074/jbc.M610524200
10.1101/gad.1648308
10.1038/s42003-018-0178-4
10.1007/s11103-005-6802-y
10.1074/jbc.M308297200
10.1055/s-2006-923876
10.1007/s11738-017-2412-y
10.1016/j.bbabio.2019.07.010
10.1002/tcr.10005
10.1161/CIRCRESAHA.119.315483
10.1007/s00709-019-01414-x
10.1016/j.cmet.2018.07.021
10.2174/138920012799320400
10.1107/S2053230X14014733
10.1126/science.2820061
10.1105/tpc.112.096743
10.1016/S0021-9258(19)68239-6
10.4161/viru.1.5.12735
10.3390/plants9101303
10.1016/j.plaphy.2018.01.026
10.1016/j.scienta.2019.108877
10.1271/bbb.57.2074
10.1104/pp.103.020123
10.1104/pp.113.232462
10.1093/treephys/27.9.1283
10.1002/iub.2367
10.1038/s41467-020-15573-6
10.1111/j.1365-313X.2010.04254.x
10.1146/annurev.arplant.55.031903.141701
10.1073/pnas.0709747104
10.1080/07352689.2018.1505591
10.1093/treephys/tpz047
10.4236/ajps.2014.52031
10.1104/pp.118.1.285
10.1016/j.celrep.2019.01.106
10.1016/j.plaphy.2010.08.016
10.1016/S0969-2126(94)00088-3
10.1093/pcp/pcv184
10.1016/j.bbamcr.2016.04.011
10.1007/s11306-011-0296-1
10.3389/fpls.2017.01101
10.1038/s41556-018-0118-z
10.1007/124_2018_17
10.1093/jxb/erp204
10.1111/j.1399-3054.2004.00361.x
10.1016/j.jplph.2011.01.022
10.1016/j.cell.2015.07.017
10.1111/j.1744-7348.2006.00104.x
10.1016/j.envexpbot.2020.104253
10.1111/j.1365-313X.2006.02713.x
10.1016/j.envexpbot.2017.01.010
10.1111/j.1399-3054.1994.tb02185.x
10.1016/j.plaphy.2005.06.007
10.4161/psb.21949
10.1111/j.1469-8137.2010.03478.x
10.1074/jbc.M808066200
10.1016/j.cell.2015.07.016
10.1021/acs.jmedchem.8b00700
10.1023/B:BIOP.0000033463.98440.db
10.1186/s12870-016-0901-6
10.1007/BF00164031
10.1186/s12284-017-0143-8
10.1105/tpc.009647
10.1186/s12864-017-4321-2
10.1038/s41598-019-38702-8
10.1126/science.1660187
10.1093/nar/gkz862
10.1016/j.abb.2013.10.002
10.1016/j.biortech.2017.05.145
10.1371/journal.pone.0229494
10.1016/S0981-9428(02)01411-0
10.1073/pnas.0706668104
10.1146/annurev-arplant-042811-105439
10.3390/biom10010098
10.1007/s10126-017-9745-9
10.1074/jbc.RA117.000771
10.1201/9780203705315-12
10.1126/science.285.5434.1751
10.1186/s12870-015-0601-7
10.1080/23723556.2018.1536843
10.1073/pnas.1604375113
10.1016/j.febslet.2010.09.037
10.1007/s41348-020-00314-0
10.1093/jxb/erq174
10.1016/S2095-3119(19)62625-0
10.1007/s11270-019-4309-4
10.1016/j.jplph.2015.11.012
10.1046/j.1365-313X.1995.07010061.x
10.1016/j.mito.2007.09.003
10.1111/j.1399-3054.2008.01092.x
10.1093/jxb/eru240
10.1186/1471-2164-14-442
10.1023/A:1013738603020
10.1007/s10863-012-9475-7
10.4161/psb.6.2.14425
10.1007/s11738-018-2620-0
10.1007/s00497-018-0322-9
10.1093/aob/mcp019
10.1016/j.abb.2011.10.024
10.3389/fpls.2015.00826
10.1186/s12864-016-2554-0
10.1038/s41598-018-30150-0
10.1104/pp.106.4.1347
10.1042/BJ20101912
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules26071887
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_11a4f84ada8a4e46a98ef92d714536b5
PMC8037285
33810495
10_3390_molecules26071887
Genre Journal Article
Review
GrantInformation_xml – fundername: the Priority Academic Program Development of Jiangsu Higher Education Institutions
  grantid: PAPD
– fundername: National Natural Science Foundation of China
  grantid: 31870589; 31700525
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-e3fe4b6033f4291ece43b41e34d28bddba4eaba3c9e726d1d26c793f367b12513
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:30:32 EDT 2025
Thu Aug 21 18:45:47 EDT 2025
Fri Jul 11 14:29:29 EDT 2025
Fri Jul 25 09:28:12 EDT 2025
Wed Feb 19 02:28:32 EST 2025
Tue Jul 01 03:11:39 EDT 2025
Thu Apr 24 23:02:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords compartmentation
stress
aspartate
aspartate transporter/carrier
aspartate aminotransferase
hormone
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-e3fe4b6033f4291ece43b41e34d28bddba4eaba3c9e726d1d26c793f367b12513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4267-0574
OpenAccessLink https://www.proquest.com/docview/2548985811?pq-origsite=%requestingapplication%
PMID 33810495
PQID 2548985811
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_11a4f84ada8a4e46a98ef92d714536b5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8037285
proquest_miscellaneous_2508567327
proquest_journals_2548985811
pubmed_primary_33810495
crossref_citationtrail_10_3390_molecules26071887
crossref_primary_10_3390_molecules26071887
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210326
PublicationDateYYYYMMDD 2021-03-26
PublicationDate_xml – month: 3
  year: 2021
  text: 20210326
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Byeon (ref_91) 2020; 260
Contreras (ref_46) 2009; 284
Good (ref_77) 1994; 90
Park (ref_129) 2007; 282
Mise (ref_114) 2014; 70
Dobrev (ref_126) 2017; 119
(ref_50) 2011; 436
Vanderauwera (ref_8) 2007; 104
Wang (ref_32) 2018; 31
Noguchi (ref_53) 2008; 8
Paidi (ref_86) 2017; 19
Falke (ref_115) 1987; 237
Gorgoglione (ref_52) 2019; 1860
Baudrier (ref_12) 2018; 20
Sullivan (ref_11) 2015; 162
Okumoto (ref_70) 2011; 4
Koehler (ref_90) 2015; 6
Tsuchisaka (ref_122) 2004; 101
Fritz (ref_104) 2006; 29
Miniero (ref_47) 2013; 45
Hasegawa (ref_21) 2019; 256
Schultz (ref_28) 1998; 149
Nasu (ref_33) 1982; 257
Yamagami (ref_121) 2003; 278
Angelovici (ref_30) 2011; 189
ref_123
Easlon (ref_45) 2008; 22
Zhu (ref_66) 2003; 15
Yagi (ref_67) 2014; 57
Dornfeld (ref_10) 2015; 14
Pratelli (ref_57) 2014; 65
Gao (ref_109) 2011; 168
Witz (ref_43) 2012; 24
Ward (ref_18) 2010; 63
Lea (ref_69) 2007; 150
ref_72
Galili (ref_64) 2011; 6
Hashida (ref_9) 2009; 103
Katoh (ref_34) 2006; 141
Wadsworth (ref_23) 1997; 100
Amoedo (ref_49) 2016; 1863
Kirma (ref_68) 2012; 63
Khan (ref_81) 2019; 9
Gaufichon (ref_4) 2016; 57
ref_78
Kowalyczk (ref_125) 1998; 118
Yan (ref_99) 2019; 39
Birsoy (ref_6) 2015; 162
Shahzad (ref_87) 2017; 136
DeBerardinis (ref_19) 2007; 104
Graindorge (ref_25) 2010; 584
ref_83
Janmohammadi (ref_92) 2018; 40
Hao (ref_35) 2018; 271
Christen (ref_119) 2001; 1
Vitor (ref_74) 2018; 248
Ueda (ref_105) 2008; 54
Barickman (ref_82) 2020; 180
ref_85
ref_84
Gaude (ref_100) 2015; 15
Brunoni (ref_124) 2020; 226
Korolik (ref_113) 2010; 1
Lin (ref_117) 2009; 60
Staswick (ref_127) 2005; 17
Maeda (ref_26) 2012; 63
Lima (ref_71) 2003; 165
Canas (ref_5) 2014; 65
Galili (ref_65) 2002; 4
Lehmann (ref_97) 2009; 2
ref_58
Nikolova (ref_94) 2002; 40
Lehmann (ref_96) 2012; 8
ref_54
Campanella (ref_131) 2008; 27
Lee (ref_31) 2005; 41
Alkan (ref_13) 2018; 28
Fu (ref_17) 2018; 61
Caspi (ref_1) 2020; 48
Seiffert (ref_63) 2004; 121
Schultz (ref_27) 1995; 7
Hayat (ref_88) 2012; 7
Apel (ref_95) 2004; 55
Tiwari (ref_75) 2020; 19
Brisson (ref_130) 2012; 24
Mehta (ref_118) 1993; 214
Wan (ref_60) 2006; 8
Ullah (ref_79) 2017; 18
Antunes (ref_61) 2008; 133
Camargos (ref_56) 2004; 48
Nguyen (ref_93) 2019; 10
Reggiani (ref_108) 1988; 29
Daddabbo (ref_51) 2018; 293
Avila (ref_38) 2014; 164
Scott (ref_111) 1994; 2
Lemaire (ref_116) 2013; 64
Ritterhoff (ref_16) 2020; 126
Kafer (ref_42) 2004; 9
Borst (ref_44) 2020; 72
Crespillo (ref_24) 2006; 46
Slocum (ref_37) 2005; 43
Ottemann (ref_112) 1999; 285
Deng (ref_59) 2020; 11
Porco (ref_132) 2016; 113
Hao (ref_36) 2018; 37
Guo (ref_55) 2020; 11
Li (ref_2) 2017; 245
Zerche (ref_73) 2016; 16
Abbes (ref_107) 2009; 47
Lam (ref_3) 1994; 106
Matsubara (ref_103) 2014; 05
Suarez (ref_29) 2007; 27
Okunev (ref_98) 2019; 230
ref_106
Toney (ref_20) 2014; 544
Lam (ref_62) 2003; 132
Preece (ref_80) 2018; 8
Chai (ref_7) 2005; 59
Urrutia (ref_14) 2019; 26
Cheng (ref_39) 2018; 1
Kantrowitz (ref_41) 2012; 519
ref_102
ref_40
Alkan (ref_15) 2019; 6
Winefield (ref_48) 1995; 40
(ref_89) 2001; 44
Capitani (ref_120) 1999; 294
Kasote (ref_101) 2020; 127
Ostrowski (ref_133) 2016; 191
Gill (ref_134) 2010; 48
Silvente (ref_76) 2003; 54
Milburn (ref_110) 1991; 254
Strnad (ref_135) 2018; 125
Keyzers (ref_128) 2010; 61
Wrenger (ref_22) 2012; 13
References_xml – volume: 294
  start-page: 745
  year: 1999
  ident: ref_120
  article-title: Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3255
– volume: 119
  start-page: 151
  year: 2017
  ident: ref_126
  article-title: Control of cytokinin and auxin homeostasis in cyanobacteria and algae
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcw194
– volume: 41
  start-page: 685
  year: 2005
  ident: ref_31
  article-title: Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02329.x
– volume: 63
  start-page: 4995
  year: 2012
  ident: ref_68
  article-title: The multifaceted role of aspartate-family amino acids in plant metabolism
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers119
– volume: 149
  start-page: 491
  year: 1998
  ident: ref_28
  article-title: Arabidopsis mutants define an in vivo role for isoenzymes of aspartate aminotransferase in plant nitrogen assimilation
  publication-title: Genetics
  doi: 10.1093/genetics/149.2.491
– volume: 100
  start-page: 998
  year: 1997
  ident: ref_23
  article-title: The plant aspartate aminotransferase gene family
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1997.tb00028.x
– volume: 27
  start-page: 26
  year: 2008
  ident: ref_131
  article-title: The Auxin Conjugate Hydrolase Family of Medicago truncatula and Their Expression During the Interaction with Two Symbionts
  publication-title: J. Plant Growth Regul.
  doi: 10.1007/s00344-007-9027-2
– volume: 64
  start-page: 2725
  year: 2013
  ident: ref_116
  article-title: Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert124
– volume: 24
  start-page: 762
  year: 2012
  ident: ref_130
  article-title: The Conjugated Auxin Indole-3-Acetic Acid–Aspartic Acid Promotes Plant Disease Development
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.095190
– volume: 165
  start-page: 649
  year: 2003
  ident: ref_71
  article-title: N-stress alters aspartate and asparagine levels of xylem sap in soybean
  publication-title: Plant Sci.
  doi: 10.1016/S0168-9452(03)00251-6
– volume: 17
  start-page: 616
  year: 2005
  ident: ref_127
  article-title: Characterization of an Arabidopsis Enzyme Family That Conjugates Amino Acids to Indole-3-Acetic Acid
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.026690
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_55
  article-title: Rice OsLHT1 Functions in Leaf-to-Panicle Nitrogen Allocation for Grain Yield and Quality
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.01150
– volume: 4
  start-page: 3
  year: 2002
  ident: ref_65
  article-title: Metabolic Engineering of Amino Acids and Storage Proteins in Plants
  publication-title: Metab. Eng.
  doi: 10.1006/mben.2001.0203
– volume: 4
  start-page: 453
  year: 2011
  ident: ref_70
  article-title: Amino Acid Export in Plants: A Missing Link in Nitrogen Cycling
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssr003
– volume: 226
  start-page: 1753
  year: 2020
  ident: ref_124
  article-title: Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis
  publication-title: New Phytol.
  doi: 10.1111/nph.16463
– volume: 101
  start-page: 2275
  year: 2004
  ident: ref_122
  article-title: Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0308515101
– volume: 141
  start-page: 851
  year: 2006
  ident: ref_34
  article-title: Early Steps in the Biosynthesis of NAD in Arabidopsis Start with Aspartate and Occur in the Plastid
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.081091
– volume: 10
  start-page: 1
  year: 2019
  ident: ref_93
  article-title: Genotypic Variation in the Root and Shoot Metabolite Profiles of Wheat (Triticum aestivum L.) Indicate Sustained, Preferential Carbon Allocation as a Potential Mechanism in Phosphorus Efficiency
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00995
– volume: 214
  start-page: 549
  year: 1993
  ident: ref_118
  article-title: Aminotransferases: Demonstration of homology and division into evolutionary subgroups
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1993.tb17953.x
– volume: 248
  start-page: 437
  year: 2018
  ident: ref_74
  article-title: Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean?
  publication-title: Planta
  doi: 10.1007/s00425-018-2914-x
– volume: 271
  start-page: 133
  year: 2018
  ident: ref_35
  article-title: Characterization of l -aspartate oxidase from Arabidopsis thaliana
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.03.016
– volume: 47
  start-page: 153
  year: 2009
  ident: ref_107
  article-title: Nitrogen and carbon relationships between the parasitic weed Orobanche foetida and susceptible and tolerant faba bean lines
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2008.10.004
– volume: 2
  start-page: 390
  year: 2009
  ident: ref_97
  article-title: The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssn080
– ident: ref_54
  doi: 10.3390/ijms20184456
– volume: 29
  start-page: 981
  year: 1988
  ident: ref_108
  article-title: Accumulation and interconversion of amino acids in rice roots under anoxia
  publication-title: Plant Cell Physiol.
– volume: 14
  start-page: 3282
  year: 2015
  ident: ref_10
  article-title: Aspartate facilitates mitochondrial function, growth arrest and survival during doxorubicin exposure
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1087619
– volume: 54
  start-page: 1545
  year: 2003
  ident: ref_76
  article-title: Molecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nodule nitrogen metabolism
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erg161
– volume: 65
  start-page: 5535
  year: 2014
  ident: ref_57
  article-title: Regulation of amino acid metabolic enzymes and transporters in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru320
– volume: 29
  start-page: 2055
  year: 2006
  ident: ref_104
  article-title: Impact of the C-N status on the amino acid profile in tobacco source leaves
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2006.01580.x
– volume: 54
  start-page: 732
  year: 2008
  ident: ref_105
  article-title: Provision of carbon skeletons for amide synthesis in non-nodulated soybean and pea roots in response to the source of nitrogen supply
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2008.00293.x
– volume: 282
  start-page: 10036
  year: 2007
  ident: ref_129
  article-title: GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M610524200
– volume: 22
  start-page: 931
  year: 2008
  ident: ref_45
  article-title: The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.1648308
– volume: 1
  start-page: 178
  year: 2018
  ident: ref_39
  article-title: Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-018-0178-4
– volume: 59
  start-page: 553
  year: 2005
  ident: ref_7
  article-title: NADK2, an Arabidopsis Chloroplastic NAD Kinase, Plays a Vital Role in Both Chlorophyll Synthesis and Chloroplast Protection
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-005-6802-y
– volume: 278
  start-page: 49102
  year: 2003
  ident: ref_121
  article-title: Biochemical Diversity among the 1-Amino-cyclopropane-1-Carboxylate Synthase Isozymes Encoded by the Arabidopsis Gene Family
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M308297200
– volume: 8
  start-page: 271
  year: 2006
  ident: ref_60
  article-title: Correlation between AS1 Gene Expression and Seed Protein Contents in Different Soybean (Glycine Max [L.] Merr.) Cultivars
  publication-title: Plant Biol.
  doi: 10.1055/s-2006-923876
– ident: ref_83
  doi: 10.1007/s11738-017-2412-y
– volume: 1860
  start-page: 724
  year: 2019
  ident: ref_52
  article-title: The human uncoupling proteins 5 and 6 (UCP5/SLC25A14 and UCP6/SLC25A30) transport sulfur oxyanions, phosphate and dicarboxylates
  publication-title: Biochim. Biophys. Acta Bioenerg.
  doi: 10.1016/j.bbabio.2019.07.010
– volume: 1
  start-page: 436
  year: 2001
  ident: ref_119
  article-title: From cofactor to enzymes. The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.10005
– volume: 126
  start-page: 182
  year: 2020
  ident: ref_16
  article-title: Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.315483
– volume: 256
  start-page: 1727
  year: 2019
  ident: ref_21
  article-title: Functional characterization of aminotransferase involved in serine and aspartate metabolism in a halotolerant cyanobacterium, Aphanothece halophytica
  publication-title: Protoplasma
  doi: 10.1007/s00709-019-01414-x
– volume: 28
  start-page: 706
  year: 2018
  ident: ref_13
  article-title: Cytosolic Aspartate Availability Determines Cell Survival When Glutamine Is Limiting
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.07.021
– volume: 13
  start-page: 332
  year: 2012
  ident: ref_22
  article-title: Aspartate Aminotransferase - Bridging Carbohydrate and Energy Metabolism in Plasmodium Falciparum
  publication-title: Curr. Drug Metab.
  doi: 10.2174/138920012799320400
– volume: 70
  start-page: 1219
  year: 2014
  ident: ref_114
  article-title: Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate
  publication-title: Acta Crystallogr. Sect. F Struct. Biol. Commun.
  doi: 10.1107/S2053230X14014733
– volume: 237
  start-page: 1596
  year: 1987
  ident: ref_115
  article-title: Global flexibility in a sensory receptor: A site-directed cross-linking approach
  publication-title: Science
  doi: 10.1126/science.2820061
– volume: 24
  start-page: 1549
  year: 2012
  ident: ref_43
  article-title: De Novo Pyrimidine Nucleotide Synthesis Mainly Occurs outside of Plastids, but a Previously Undiscovered Nucleobase Importer Provides Substrates for the Essential Salvage Pathway in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.096743
– volume: 257
  start-page: 626
  year: 1982
  ident: ref_33
  article-title: L-Aspartate Oxidase, a Newly Discovered Enzyme of Escherichia coli, Is the B Protein of Quinolinate Synthetase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)68239-6
– volume: 1
  start-page: 414
  year: 2010
  ident: ref_113
  article-title: Aspartate chemosensory receptor signalling in Campylobacter jejuni
  publication-title: Virulence
  doi: 10.4161/viru.1.5.12735
– ident: ref_106
  doi: 10.3390/plants9101303
– volume: 125
  start-page: 74
  year: 2018
  ident: ref_135
  article-title: Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2018.01.026
– volume: 260
  start-page: 108877
  year: 2020
  ident: ref_91
  article-title: Differential responses of fruit quality and major targeted metabolites in three different cultivars of cold-stored figs (Ficus carica L.)
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2019.108877
– volume: 57
  start-page: 2074
  year: 2014
  ident: ref_67
  article-title: Purification and Characterization of Aspartate Aminotransferase Isoenzymes from Rice Bran Purification and Characterization of Aspartate Aminotransferase Isoenzymes from Rice
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.57.2074
– volume: 132
  start-page: 926
  year: 2003
  ident: ref_62
  article-title: Overexpression of the ASN1 Gene Enhances Nitrogen Status in Seeds of Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.020123
– volume: 164
  start-page: 92
  year: 2014
  ident: ref_38
  article-title: Deciphering the Role of Aspartate and Prephenate Aminotransferase Activities in Plastid Nitrogen Metabolism
  publication-title: PLANT Physiol.
  doi: 10.1104/pp.113.232462
– volume: 27
  start-page: 1283
  year: 2007
  ident: ref_29
  article-title: The aspartate aminotransferase family in conifers: Biochemical analysis of a prokaryotic-type enzyme from maritime pine
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/27.9.1283
– volume: 72
  start-page: 2241
  year: 2020
  ident: ref_44
  article-title: The malate–aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway
  publication-title: IUBMB Life
  doi: 10.1002/iub.2367
– volume: 11
  start-page: 1755
  year: 2020
  ident: ref_59
  article-title: p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15573-6
– volume: 63
  start-page: 443
  year: 2010
  ident: ref_18
  article-title: The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04254.x
– volume: 55
  start-page: 373
  year: 2004
  ident: ref_95
  article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.55.031903.141701
– volume: 104
  start-page: 19345
  year: 2007
  ident: ref_19
  article-title: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709747104
– volume: 37
  start-page: 259
  year: 2018
  ident: ref_36
  article-title: NAD + Biosynthesis and Signaling in Plants
  publication-title: CRC. Crit. Rev. Plant Sci.
  doi: 10.1080/07352689.2018.1505591
– volume: 39
  start-page: 1572
  year: 2019
  ident: ref_99
  article-title: Aluminum toxicity could be mitigated with boron by altering the metabolic patterns of amino acids and carbohydrates rather than organic acids in trifoliate orange
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/tpz047
– volume: 05
  start-page: 235
  year: 2014
  ident: ref_103
  article-title: Suppression of Fusarium Crown Rot and Increase in Several Free Amino Acids in Mycorrhizal Asparagus
  publication-title: Am. J. Plant Sci.
  doi: 10.4236/ajps.2014.52031
– volume: 118
  start-page: 285
  year: 1998
  ident: ref_125
  article-title: Metabolism of Indole-3-Acetic Acid in Arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.118.1.285
– volume: 26
  start-page: 2257
  year: 2019
  ident: ref_14
  article-title: HIF1α Suppresses Tumor Cell Proliferation through Inhibition of Aspartate Biosynthesis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.01.106
– volume: 48
  start-page: 909
  year: 2010
  ident: ref_134
  article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.08.016
– volume: 2
  start-page: 877
  year: 1994
  ident: ref_111
  article-title: Transmembrane signalling and the aspartate receptor
  publication-title: Structure
  doi: 10.1016/S0969-2126(94)00088-3
– volume: 57
  start-page: 675
  year: 2016
  ident: ref_4
  article-title: Asparagine Metabolic Pathways in Arabidopsis
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcv184
– volume: 1863
  start-page: 2394
  year: 2016
  ident: ref_49
  article-title: AGC1/2, the mitochondrial aspartate-glutamate carriers
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2016.04.011
– volume: 8
  start-page: 143
  year: 2012
  ident: ref_96
  article-title: Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0296-1
– ident: ref_85
  doi: 10.3389/fpls.2017.01101
– volume: 20
  start-page: 775
  year: 2018
  ident: ref_12
  article-title: Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-018-0118-z
– ident: ref_123
  doi: 10.1007/124_2018_17
– volume: 60
  start-page: 3311
  year: 2009
  ident: ref_117
  article-title: Recent advances in ethylene research
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erp204
– volume: 121
  start-page: 656
  year: 2004
  ident: ref_63
  article-title: Expression of a bacterial asparagine synthetase gene in oilseed rape (Brassica napus) and its effect on traits related to nitrogen efficiency
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2004.00361.x
– volume: 168
  start-page: 1217
  year: 2011
  ident: ref_109
  article-title: Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2011.01.022
– volume: 162
  start-page: 552
  year: 2015
  ident: ref_11
  article-title: Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.017
– volume: 150
  start-page: 1
  year: 2007
  ident: ref_69
  article-title: Asparagine in plants
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2006.00104.x
– volume: 180
  start-page: 104253
  year: 2020
  ident: ref_82
  article-title: Differing precision irrigation thresholds for kale (Brassica oleracea L. var. acephala) induces changes in physiological performance, metabolites, and yield
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2020.104253
– volume: 46
  start-page: 414
  year: 2006
  ident: ref_24
  article-title: Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: Implications for plant amino acid metabolism
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2006.02713.x
– volume: 136
  start-page: 68
  year: 2017
  ident: ref_87
  article-title: Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2017.01.010
– volume: 90
  start-page: 9
  year: 1994
  ident: ref_77
  article-title: The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1994.tb02185.x
– volume: 43
  start-page: 729
  year: 2005
  ident: ref_37
  article-title: Genes, enzymes and regulation of arginine biosynthesis in plants
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2005.06.007
– volume: 7
  start-page: 1456
  year: 2012
  ident: ref_88
  article-title: Role of proline under changing environments: A review
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.21949
– volume: 189
  start-page: 148
  year: 2011
  ident: ref_30
  article-title: A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2010.03478.x
– volume: 284
  start-page: 7091
  year: 2009
  ident: ref_46
  article-title: Calcium Signaling in Brain Mitochondria
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808066200
– volume: 162
  start-page: 540
  year: 2015
  ident: ref_6
  article-title: An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.016
– volume: 61
  start-page: 7741
  year: 2018
  ident: ref_17
  article-title: Chemoenzymatic Synthesis and Pharmacological Characterization of Functionalized Aspartate Analogues As Novel Excitatory Amino Acid Transporter Inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b00700
– volume: 48
  start-page: 309
  year: 2004
  ident: ref_56
  article-title: Variation in the Amino Acid Concentration During Development of Canavalia ensiformes
  publication-title: Biol. Plant.
  doi: 10.1023/B:BIOP.0000033463.98440.db
– volume: 16
  start-page: 1
  year: 2016
  ident: ref_73
  article-title: Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-016-0901-6
– volume: 40
  start-page: 455
  year: 1995
  ident: ref_48
  article-title: Evolutionary analysis of aspartate aminotransferases
  publication-title: J. Mol. Evol.
  doi: 10.1007/BF00164031
– ident: ref_58
  doi: 10.1186/s12284-017-0143-8
– volume: 15
  start-page: 845
  year: 2003
  ident: ref_66
  article-title: Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds
  publication-title: Plant Cell
  doi: 10.1105/tpc.009647
– volume: 18
  start-page: 1
  year: 2017
  ident: ref_79
  article-title: Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species
  publication-title: BMC Genom.
  doi: 10.1186/s12864-017-4321-2
– volume: 9
  start-page: 2097
  year: 2019
  ident: ref_81
  article-title: Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38702-8
– volume: 254
  start-page: 1342
  year: 1991
  ident: ref_110
  article-title: Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand
  publication-title: Science
  doi: 10.1126/science.1660187
– volume: 48
  start-page: D445
  year: 2020
  ident: ref_1
  article-title: The MetaCyc database of metabolic pathways and enzymes–A 2019 update
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz862
– volume: 544
  start-page: 119
  year: 2014
  ident: ref_20
  article-title: Aspartate aminotransferase: An old dog teaches new tricks
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2013.10.002
– volume: 245
  start-page: 1588
  year: 2017
  ident: ref_2
  article-title: Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.05.145
– ident: ref_40
  doi: 10.1371/journal.pone.0229494
– volume: 9
  start-page: 1611
  year: 2004
  ident: ref_42
  article-title: Regulation of pyrimidine metabolism in plants
  publication-title: Front. Biosci.
– volume: 40
  start-page: 577
  year: 2002
  ident: ref_94
  article-title: Cadmium and H2O2-induced oxidative stress in Populus x canescens roots
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/S0981-9428(02)01411-0
– volume: 104
  start-page: 15150
  year: 2007
  ident: ref_8
  article-title: Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0706668104
– volume: 63
  start-page: 73
  year: 2012
  ident: ref_26
  article-title: The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042811-105439
– ident: ref_102
  doi: 10.3390/biom10010098
– volume: 19
  start-page: 207
  year: 2017
  ident: ref_86
  article-title: Chemical Derivatization of Metabolite Mass Profiling of the Recretohalophyte Aeluropus lagopoides Revealing Salt Stress Tolerance Mechanism
  publication-title: Mar. Biotechnol.
  doi: 10.1007/s10126-017-9745-9
– volume: 293
  start-page: 4213
  year: 2018
  ident: ref_51
  article-title: Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA117.000771
– ident: ref_84
  doi: 10.1201/9780203705315-12
– volume: 285
  start-page: 1751
  year: 1999
  ident: ref_112
  article-title: A piston model for transmembrane signaling of the aspartate receptor
  publication-title: Science
  doi: 10.1126/science.285.5434.1751
– volume: 15
  start-page: 1
  year: 2015
  ident: ref_100
  article-title: Symbiosis dependent accumulation of primary metabolites in arbuscule-containing cells
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-015-0601-7
– volume: 6
  start-page: e1536843
  year: 2019
  ident: ref_15
  article-title: Maintaining cytosolic aspartate levels is a major function of the TCA cycle in proliferating cells
  publication-title: Mol. Cell. Oncol.
  doi: 10.1080/23723556.2018.1536843
– volume: 113
  start-page: 11016
  year: 2016
  ident: ref_132
  article-title: Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1604375113
– volume: 584
  start-page: 4357
  year: 2010
  ident: ref_25
  article-title: Identification of a plant gene encoding glutamate/aspartate-prephenate aminotransferase: The last homeless enzyme of aromatic amino acids biosynthesis
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.09.037
– volume: 127
  start-page: 591
  year: 2020
  ident: ref_101
  article-title: Metabolomics-based biomarkers of Fusarium wilt disease in watermelon plants
  publication-title: J. Plant Dis. Prot.
  doi: 10.1007/s41348-020-00314-0
– volume: 61
  start-page: 3615
  year: 2010
  ident: ref_128
  article-title: Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq174
– volume: 19
  start-page: 51
  year: 2020
  ident: ref_75
  article-title: Precision phenotyping of contrasting potato (Solanum tuberosum L.) varieties in a novel aeroponics system for improving nitrogen use efficiency: In search of key traits and genes
  publication-title: J. Integr. Agric.
  doi: 10.1016/S2095-3119(19)62625-0
– volume: 230
  start-page: 1
  year: 2019
  ident: ref_98
  article-title: Free Amino Acid Accumulation in Soil and Tomato Plants (Solanum lycopersicum L.) Associated with Arsenic Stress
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-019-4309-4
– volume: 191
  start-page: 63
  year: 2016
  ident: ref_133
  article-title: The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L.
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2015.11.012
– volume: 7
  start-page: 61
  year: 1995
  ident: ref_27
  article-title: The aspartate aminotransferase gene family of Arabidopsis encodes isozymes localized to three distinct subcellular compartments
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1995.07010061.x
– volume: 8
  start-page: 87
  year: 2008
  ident: ref_53
  article-title: Interaction between photosynthesis and respiration in illuminated leaves
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2007.09.003
– volume: 133
  start-page: 736
  year: 2008
  ident: ref_61
  article-title: Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean ( Glycine max )
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.2008.01092.x
– volume: 65
  start-page: 5527
  year: 2014
  ident: ref_5
  article-title: Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru240
– ident: ref_72
  doi: 10.1186/1471-2164-14-442
– volume: 44
  start-page: 541
  year: 2001
  ident: ref_89
  article-title: Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine
  publication-title: Biol. Plantarum
  doi: 10.1023/A:1013738603020
– volume: 45
  start-page: 1
  year: 2013
  ident: ref_47
  article-title: The mitochondrial oxoglutarate carrier: From identification to mechanism
  publication-title: J. Bioenerg. Biomembr.
  doi: 10.1007/s10863-012-9475-7
– volume: 6
  start-page: 192
  year: 2011
  ident: ref_64
  article-title: The aspartate-family pathway of plants: Linking production of essential amino acids with energy and stress regulation
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.6.2.14425
– volume: 40
  start-page: 42
  year: 2018
  ident: ref_92
  article-title: Frost tolerance and metabolite changes of rye (Secale cereale) during the cold hardening and overwintering
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-018-2620-0
– volume: 31
  start-page: 203
  year: 2018
  ident: ref_32
  article-title: New insights into the metabolism of aspartate-family amino acids in plant seeds
  publication-title: Plant Reprod.
  doi: 10.1007/s00497-018-0322-9
– volume: 103
  start-page: 819
  year: 2009
  ident: ref_9
  article-title: The role of NAD biosynthesis in plant development and stress responses
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcp019
– volume: 519
  start-page: 81
  year: 2012
  ident: ref_41
  article-title: Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2011.10.024
– volume: 6
  start-page: 1
  year: 2015
  ident: ref_90
  article-title: Integrative “omic” analysis reveals distinctive cold responses in leaves and roots of strawberry, fragaria × ananassa ‘Korona’
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00826
– ident: ref_78
  doi: 10.1186/s12864-016-2554-0
– volume: 8
  start-page: 12696
  year: 2018
  ident: ref_80
  article-title: Root exudate metabolomes change under drought and show limited capacity for recovery
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30150-0
– volume: 106
  start-page: 1347
  year: 1994
  ident: ref_3
  article-title: Metabolic Regulation of the Gene Encoding Glutamine-Dependent Asparagine Synthetase in Arabidopsis thaliana
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.4.1347
– volume: 436
  start-page: 193
  year: 2011
  ident: ref_50
  article-title: The role of amino acid transporters in inherited and acquired diseases
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101912
SSID ssj0021415
Score 2.6148465
SecondaryResourceType review_article
Snippet L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1887
SubjectTerms Amino acids
aspartate
aspartate aminotransferase
aspartate transporter/carrier
Biosynthesis
Carbon
Cell growth
compartmentation
Dehydrogenases
Enzymes
Glucose
hormone
Kinases
Metabolism
Metabolites
Nitrogen
Phosphorylation
Plastids
Polyamines
Prokaryotes
Review
Senescence
stress
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_i2_oigiehuHk0Tbyt4gNhvajgreQxRWHtilv_v5O2u-yq6MVrk5bpPDIzZOYbQo4VSGG9xdNPeUil5ja1KkNd1pnhmWO5b-CaBnfq5lHePmVPM6O-Yk1YCw_cMu6UMStLLW2w2kqQyhoNpeEhZzITyjXopejzJslUl2ox9EvtHabApP70tR01C2Me4dSa-rkZL9SA9f8UYX4tlJzxPFerZKULGWm_JXWNLEC1TpYuJpPaNshgSNM-ngzxWh3OaL-il-PYU4SqRQdQo5hjozHF8JTGGUU1vcbcu36mtgr0vukVoX3vhy9tF-Mmeby6fLi4SbsxCamXRtQpiBKkUz0hSnQuDDyy30kGQgauXQgO-WadFd5AzlVggSuPVlkKlbsY3ogtsliNKtghVPlSYohgnDYePxkwVuGee2vQzgGcT0hvwrbCdxjicZTFsMBcInK6-MbphJxMX3lrATR-23weZTHdGLGvmweoEUWnEcVfGpGQ_Ykki84gxwXmwdroTDOWkKPpMsop3o_YCkYfcQ_GnyoXHOnYbgU_pUREJDRMJhOSz6nEHKnzK9XLcwPXrXsi5zrb_Y9_2yPLPBbV9ETK1T5ZrN8_4ACjotodNgbwCYHgDWE
  priority: 102
  providerName: Directory of Open Access Journals
Title l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation
URI https://www.ncbi.nlm.nih.gov/pubmed/33810495
https://www.proquest.com/docview/2548985811
https://www.proquest.com/docview/2508567327
https://pubmed.ncbi.nlm.nih.gov/PMC8037285
https://doaj.org/article/11a4f84ada8a4e46a98ef92d714536b5
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4AL4k2grIzECSnqxnYcmwvaVrutEK0QUGlvkV-hlZZs6ab_nxknu-0C6iWHxIkcz9j-xjPzDcB7FaWw3uLqp3zMpeY2t6pEXdal4aUrKp_omk5O1fGZ_Dwv58OB22oIq1yviWmhDktPZ-T7aMhoo0tdFJ8uf-dUNYq8q0MJjfuwS9RlFNJVzW8MrgJ3p96TKdC03__VF5yNK06kaimK7tZelCj7_4cz_w6XvLX_zB7DowE4skkv6SdwL7ZP4cHhul7bM_iyyCe4PJBvPX5kk5ZNV5RYhPrFTmKHsqZsY4YYlVGhoo4doQHenTPbBvY9JYywifeLiz6V8TmczaY_Do_zoVZC7qURXR5FE6VTYyEa3GGK6FEGThZRyMC1C8FZGa2zwptYcRWKwJXHqdkIVTnCOOIF7LTLNr4CpnwjEScYp43HTwYELNxzbw1O9hidz2C8HrXaD0TiVM9iUaNBQQNd_zPQGXzYvHLZs2jc1fiARLFpSATY6cby6mc9zCc0XKxstLTBavwzqazRsTE8VIUshXJlBntrQdbDrFzVNzqUwbvNYxQTOUlsG5fX1AZBqKoEx3687OW-6YkgOjS0KDOotjRiq6vbT9qL88TZrcei4rp8fXe33sBDTjEzY5FztQc73dV1fIugp3OjpNl41bOjEeweTE-_fhulA4Q_lQcIJg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJtAASPBBSlqYjuOjYTQUrrd0t1eaKXegl-hlZZs6aZC_Cl-I-O86ALqrdfYsSYzn8czGc8MwCvhOdNWo_YT1sdcUh1rkSGWZaZoZtLcNuWaZgdicsQ_HWfHa_Crz4UJ1yp7ndgoarew4R_5FjoyUslMpun7s-9x6BoVoqt9C40WFvv-5w902Zbv9j6ifF9TOt453J7EXVeB2HLF6tiz0nMjEsZK1MWpt0it4aln3FFpnDOae200s8rnVLjUUWERxCUTuQnWAMN1b8BNzpgKO0qOdwcHL8XTsI2c4mCy9a1tcOuXNBRxa27tXTr7mhYB_7Nr_76eeem8G9-B252hSkYtsu7Cmq_uwcZ23x_uPkzn8QjVUYjl-7dkVJGdZUhkQjyTma8RWyG7maBNTEJjpJrsosNfnxBdOfK5SVAhI2vnp23q5AM4uhYuPoT1alH5x0CELTnaJcpIZXFJhwYStdRqhcrFe2MjSHquFbYrXB76Z8wLdGACo4t_GB3Bm-GVs7Zqx1WTPwRRDBNDwe3mweL8a9HtX3SUNC8l105L_DIutJK-VNTlKc-YMFkEm70gi04LLIs_mI3g5TCMYgpBGV35xUWYg0avyBlFOh61ch8oYaH8GnqwEeQriFghdXWkOj1paoTLhOVUZk-uJusFbEwOZ9Niunew_xRu0XBfJ2ExFZuwXp9f-GdocNXmeYNyAl-ue1v9BrxSQmE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgEviJvQAkaCF6RoE9txbKQKLW2Xlh5Cgkr7lvoKrbRkSzdVxV_rr2OcY9sF1Le-RYljTTyfxzOZC-Ct8Jxpq1H6CetjLqmOtcgQyzJTNDNpbptyTXv7YuuAfxln4yW46HNhQlhlLxMbQe2mNvwjH6AhI5XMZJoOyi4s4uvG6OPJrzh0kAqe1r6dRguRHf_7HM232dr2BvL6HaWjze_rW3HXYSC2XLE69qz03IiEsRLlcuotUm546hl3VBrnjOZeG82s8jkVLnVUWAR0yURugmbAcN5bcDtneIl7KR9fGnspnoytF5UxlQx-ts1u_YyGgm5NBN-Vc7BpF_A_HffvUM0rZ9_oAdzvlFYybFH2EJZ89Qjurve94h7D7iQeomgKfn3_gQwrsjkLSU2IbbLna8RZyHQmqB-T0CSpJp_R-K-PiK4c-dYkq5ChtZPjNo3yCRzcyCo-heVqWvnnQIQtOeooykhlcUqHyhK11GqFgsZ7YyNI-lUrbFfEPPTSmBRozISFLv5Z6Ajez185aSt4XDf4U2DFfGAovt3cmJ7-KLq9jEaT5qXk2mmJX8aFVtKXiro85RkTJotgtWdk0UmEWXGJ3wjezB8jm4KDRld-ehbGoAIsckaRjmct3-eUsFCKDa3ZCPIFRCyQuvikOj5q6oXLhOVUZi-uJ-s13MENVexu7--swD0aQncSFlOxCsv16Zl_ibpXbV41ICdweNO76g9I40aO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=l-Aspartate%3A+An+Essential+Metabolite+for+Plant+Growth+and+Stress+Acclimation&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Han%2C+Mei&rft.au=Zhang%2C+Can&rft.au=Suglo%2C+Peter&rft.au=Sun%2C+Shuyue&rft.date=2021-03-26&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=26&rft.issue=7&rft_id=info:doi/10.3390%2Fmolecules26071887&rft_id=info%3Apmid%2F33810495&rft.externalDocID=PMC8037285
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon