l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation
L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pat...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 26; no. 7; p. 1887 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.03.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks. |
---|---|
AbstractList | L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks. L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks.L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as biosynthesis of other amino acids, nucleotides, nicotinamide adenine dinucleotide (NAD), the tricarboxylic acid (TCA) cycle and glycolysis pathway intermediates, and hormones, which are vital for growth and defense. In animals and humans, lines of data have proved that Asp is indispensable for cell proliferation. However, in plants, despite the extensive study of the Asp family amino acid pathway, little attention has been paid to the function of Asp through the other numerous pathways. This review aims to elucidate the most important aspects of Asp in plants, from biosynthesis to catabolism and the role of Asp and its metabolic derivatives in response to changing environmental conditions. It considers the distribution of Asp in various cell compartments and the change of Asp level, and its significance in the whole plant under various stresses. Moreover, it provides evidence of the interconnection between Asp and phytohormones, which have prominent functions in plant growth, development, and defense. The updated information will help improve our understanding of the physiological role of Asp and Asp-borne metabolic fluxes, supporting the modular operation of these networks. |
Author | Suglo, Peter Han, Mei Su, Tao Sun, Shuyue Zhang, Can Wang, Mingyao |
AuthorAffiliation | 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; sthanmei@njfu.edu.cn (M.H.); can18723@126.com (C.Z.); petersuglo@yahoo.com (P.S.); sunsyjessica@163.com (S.S.); njfuwmy2021@163.com (M.W.) 2 Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China |
AuthorAffiliation_xml | – name: 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; sthanmei@njfu.edu.cn (M.H.); can18723@126.com (C.Z.); petersuglo@yahoo.com (P.S.); sunsyjessica@163.com (S.S.); njfuwmy2021@163.com (M.W.) – name: 2 Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China |
Author_xml | – sequence: 1 givenname: Mei surname: Han fullname: Han, Mei – sequence: 2 givenname: Can surname: Zhang fullname: Zhang, Can – sequence: 3 givenname: Peter surname: Suglo fullname: Suglo, Peter – sequence: 4 givenname: Shuyue surname: Sun fullname: Sun, Shuyue – sequence: 5 givenname: Mingyao surname: Wang fullname: Wang, Mingyao – sequence: 6 givenname: Tao orcidid: 0000-0003-4267-0574 surname: Su fullname: Su, Tao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33810495$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kl1rFDEUhoNU7Jc_wBsZ8MabqfmaSeKFsJRaCysK1euQSc60WbKTNclU_Pdmu21pK14lnLzvk_N1iPamOAFCbwg-YUzhD-sYwM4BMu2xIFKKF-iAcIpbhrnae3TfR4c5rzCmhJPuFdpnTJIa7g7QMrSLvDGpmAIfm8XUnOUMU_EmNF-hmCEGX6AZY2q-BzOV5jzF3-W6MZNrLkuCnJuFtcGvTfFxOkYvRxMyvL47j9DPz2c_Tr-0y2_nF6eLZWu5YqUFNgIfeszYyKkiYIGzgRNg3FE5ODcYDmYwzCoQtHfE0d4KxUbWi4HQjrAjdLHjumhWepPq9-mPjsbr20BMV7pW5G0ATYjho-TGGVmpvDdKwqioE4R3rB-6yvq0Y23mYQ3O1uKTCU-gT18mf62v4o2WmAkqt4D3d4AUf82Qi177bCHUdkGcs6Ydll0vGBVV-u6ZdBXnNNVWVRWXSnaSbKt7-zijh1Tuh1YFYiewKeacYNTWl9sB1AR90ATr7Xrof9ajOskz5z38_56_IyzANA |
CitedBy_id | crossref_primary_10_1016_j_fochx_2024_101422 crossref_primary_10_3390_metabo13030329 crossref_primary_10_1021_acs_jafc_4c00394 crossref_primary_10_3390_plants10071354 crossref_primary_10_1186_s11671_023_03953_y crossref_primary_10_1016_j_jhazmat_2024_136688 crossref_primary_10_1016_j_stress_2025_100797 crossref_primary_10_3390_pr11020563 crossref_primary_10_1039_D2MO00251E crossref_primary_10_1016_j_scienta_2024_113809 crossref_primary_10_1016_j_jcs_2024_104010 crossref_primary_10_1016_j_jhazmat_2021_126624 crossref_primary_10_3390_ijms241411773 crossref_primary_10_1016_j_biortech_2024_130899 crossref_primary_10_1111_ppl_14491 crossref_primary_10_1186_s12870_024_05831_w crossref_primary_10_1016_j_plaphy_2025_109551 crossref_primary_10_33619_2414_2948_96_02 crossref_primary_10_3389_fpls_2022_871387 crossref_primary_10_1016_j_foodres_2024_114687 crossref_primary_10_1016_j_jhazmat_2024_134897 crossref_primary_10_1007_s10126_025_10415_2 crossref_primary_10_17660_ActaHortic_2024_1399_22 crossref_primary_10_3389_fpls_2023_1260393 crossref_primary_10_3390_ijms232315194 crossref_primary_10_1016_j_plantsci_2022_111538 crossref_primary_10_1016_j_bbrc_2024_151263 crossref_primary_10_1016_j_jhazmat_2024_135537 crossref_primary_10_1186_s12870_023_04198_8 crossref_primary_10_3390_toxics10090494 crossref_primary_10_1016_j_aqrep_2023_101871 crossref_primary_10_1042_BST20231558 crossref_primary_10_3390_plants13111522 crossref_primary_10_1134_S0006297923110226 crossref_primary_10_3390_molecules26237383 crossref_primary_10_1016_j_scitotenv_2024_171278 crossref_primary_10_1016_j_ecoenv_2024_116026 crossref_primary_10_1007_s44154_024_00175_9 crossref_primary_10_1038_s41598_024_80556_2 crossref_primary_10_1016_j_envres_2025_120906 crossref_primary_10_3389_fmicb_2023_1190052 crossref_primary_10_1016_j_plaphy_2022_08_014 crossref_primary_10_1007_s10722_025_02373_4 crossref_primary_10_1186_s12870_023_04545_9 crossref_primary_10_3390_ijms26020582 crossref_primary_10_1016_j_foodres_2024_115112 crossref_primary_10_1038_s41598_025_90676_y crossref_primary_10_3389_fpls_2023_1114172 crossref_primary_10_1016_j_indcrop_2024_118023 crossref_primary_10_3389_fpls_2022_1041649 crossref_primary_10_1002_adbi_202300095 crossref_primary_10_1016_j_plaphy_2022_12_008 crossref_primary_10_1007_s11104_023_06437_1 crossref_primary_10_1111_tpj_15913 crossref_primary_10_1016_j_plaphy_2023_107902 crossref_primary_10_3389_fpls_2022_869713 crossref_primary_10_3390_toxics12080611 crossref_primary_10_1016_j_aquatox_2024_106840 crossref_primary_10_1111_ppl_14044 crossref_primary_10_18016_ksutarimdoga_vi_1223516 crossref_primary_10_1016_j_ecoenv_2022_114135 crossref_primary_10_1093_jxb_erad507 crossref_primary_10_3390_horticulturae10111187 crossref_primary_10_1007_s00248_023_02260_4 crossref_primary_10_1094_PDIS_08_21_1675_RE crossref_primary_10_1111_ppl_14201 crossref_primary_10_1186_s40538_022_00373_5 crossref_primary_10_3389_fpls_2023_1170448 crossref_primary_10_1016_j_scienta_2021_110697 crossref_primary_10_1016_j_greenca_2023_08_003 crossref_primary_10_1111_pce_15457 crossref_primary_10_1007_s11240_023_02560_0 crossref_primary_10_1186_s12870_025_06097_6 crossref_primary_10_3390_plants13121603 crossref_primary_10_1111_jac_70049 crossref_primary_10_1016_j_jff_2022_104941 crossref_primary_10_1016_j_plaphy_2023_108029 crossref_primary_10_3390_seeds3040043 crossref_primary_10_1021_acs_jafc_4c09107 crossref_primary_10_1016_j_foodchem_2024_139858 crossref_primary_10_1016_j_plaphy_2025_109581 crossref_primary_10_3389_fpls_2022_987641 crossref_primary_10_1186_s12870_023_04688_9 crossref_primary_10_1016_j_jwpe_2024_104973 crossref_primary_10_3389_fpls_2024_1392433 crossref_primary_10_1073_pnas_2410598121 crossref_primary_10_1016_j_livsci_2024_105611 crossref_primary_10_3390_ijms23126368 crossref_primary_10_3390_horticulturae9080866 crossref_primary_10_1111_ppl_14220 crossref_primary_10_1186_s12870_023_04158_2 crossref_primary_10_3390_gels10010010 crossref_primary_10_3390_foods12020352 crossref_primary_10_1007_s00216_024_05188_x crossref_primary_10_3390_su152316328 crossref_primary_10_1016_j_ijbiomac_2023_125661 crossref_primary_10_3390_foods10123067 crossref_primary_10_3390_plants13152072 crossref_primary_10_7744_kjoas_510415 crossref_primary_10_1093_lambio_ovae126 crossref_primary_10_1111_nph_19092 crossref_primary_10_3390_plants11020199 crossref_primary_10_3390_ijms25168875 crossref_primary_10_3390_fermentation9080737 crossref_primary_10_3389_fpls_2022_878272 crossref_primary_10_1016_j_ijbiomac_2024_137429 crossref_primary_10_1007_s00284_021_02647_x |
Cites_doi | 10.1006/jmbi.1999.3255 10.1093/aob/mcw194 10.1111/j.1365-313X.2004.02329.x 10.1093/jxb/ers119 10.1093/genetics/149.2.491 10.1111/j.1399-3054.1997.tb00028.x 10.1007/s00344-007-9027-2 10.1093/jxb/ert124 10.1105/tpc.111.095190 10.1016/S0168-9452(03)00251-6 10.1105/tpc.104.026690 10.3389/fpls.2020.01150 10.1006/mben.2001.0203 10.1093/mp/ssr003 10.1111/nph.16463 10.1073/pnas.0308515101 10.1104/pp.106.081091 10.3389/fpls.2019.00995 10.1111/j.1432-1033.1993.tb17953.x 10.1007/s00425-018-2914-x 10.1016/j.plantsci.2018.03.016 10.1016/j.plaphy.2008.10.004 10.1093/mp/ssn080 10.3390/ijms20184456 10.1080/15384101.2015.1087619 10.1093/jxb/erg161 10.1093/jxb/eru320 10.1111/j.1365-3040.2006.01580.x 10.1111/j.1747-0765.2008.00293.x 10.1074/jbc.M610524200 10.1101/gad.1648308 10.1038/s42003-018-0178-4 10.1007/s11103-005-6802-y 10.1074/jbc.M308297200 10.1055/s-2006-923876 10.1007/s11738-017-2412-y 10.1016/j.bbabio.2019.07.010 10.1002/tcr.10005 10.1161/CIRCRESAHA.119.315483 10.1007/s00709-019-01414-x 10.1016/j.cmet.2018.07.021 10.2174/138920012799320400 10.1107/S2053230X14014733 10.1126/science.2820061 10.1105/tpc.112.096743 10.1016/S0021-9258(19)68239-6 10.4161/viru.1.5.12735 10.3390/plants9101303 10.1016/j.plaphy.2018.01.026 10.1016/j.scienta.2019.108877 10.1271/bbb.57.2074 10.1104/pp.103.020123 10.1104/pp.113.232462 10.1093/treephys/27.9.1283 10.1002/iub.2367 10.1038/s41467-020-15573-6 10.1111/j.1365-313X.2010.04254.x 10.1146/annurev.arplant.55.031903.141701 10.1073/pnas.0709747104 10.1080/07352689.2018.1505591 10.1093/treephys/tpz047 10.4236/ajps.2014.52031 10.1104/pp.118.1.285 10.1016/j.celrep.2019.01.106 10.1016/j.plaphy.2010.08.016 10.1016/S0969-2126(94)00088-3 10.1093/pcp/pcv184 10.1016/j.bbamcr.2016.04.011 10.1007/s11306-011-0296-1 10.3389/fpls.2017.01101 10.1038/s41556-018-0118-z 10.1007/124_2018_17 10.1093/jxb/erp204 10.1111/j.1399-3054.2004.00361.x 10.1016/j.jplph.2011.01.022 10.1016/j.cell.2015.07.017 10.1111/j.1744-7348.2006.00104.x 10.1016/j.envexpbot.2020.104253 10.1111/j.1365-313X.2006.02713.x 10.1016/j.envexpbot.2017.01.010 10.1111/j.1399-3054.1994.tb02185.x 10.1016/j.plaphy.2005.06.007 10.4161/psb.21949 10.1111/j.1469-8137.2010.03478.x 10.1074/jbc.M808066200 10.1016/j.cell.2015.07.016 10.1021/acs.jmedchem.8b00700 10.1023/B:BIOP.0000033463.98440.db 10.1186/s12870-016-0901-6 10.1007/BF00164031 10.1186/s12284-017-0143-8 10.1105/tpc.009647 10.1186/s12864-017-4321-2 10.1038/s41598-019-38702-8 10.1126/science.1660187 10.1093/nar/gkz862 10.1016/j.abb.2013.10.002 10.1016/j.biortech.2017.05.145 10.1371/journal.pone.0229494 10.1016/S0981-9428(02)01411-0 10.1073/pnas.0706668104 10.1146/annurev-arplant-042811-105439 10.3390/biom10010098 10.1007/s10126-017-9745-9 10.1074/jbc.RA117.000771 10.1201/9780203705315-12 10.1126/science.285.5434.1751 10.1186/s12870-015-0601-7 10.1080/23723556.2018.1536843 10.1073/pnas.1604375113 10.1016/j.febslet.2010.09.037 10.1007/s41348-020-00314-0 10.1093/jxb/erq174 10.1016/S2095-3119(19)62625-0 10.1007/s11270-019-4309-4 10.1016/j.jplph.2015.11.012 10.1046/j.1365-313X.1995.07010061.x 10.1016/j.mito.2007.09.003 10.1111/j.1399-3054.2008.01092.x 10.1093/jxb/eru240 10.1186/1471-2164-14-442 10.1023/A:1013738603020 10.1007/s10863-012-9475-7 10.4161/psb.6.2.14425 10.1007/s11738-018-2620-0 10.1007/s00497-018-0322-9 10.1093/aob/mcp019 10.1016/j.abb.2011.10.024 10.3389/fpls.2015.00826 10.1186/s12864-016-2554-0 10.1038/s41598-018-30150-0 10.1104/pp.106.4.1347 10.1042/BJ20101912 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules26071887 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_11a4f84ada8a4e46a98ef92d714536b5 PMC8037285 33810495 10_3390_molecules26071887 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: the Priority Academic Program Development of Jiangsu Higher Education Institutions grantid: PAPD – fundername: National Natural Science Foundation of China grantid: 31870589; 31700525 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-e3fe4b6033f4291ece43b41e34d28bddba4eaba3c9e726d1d26c793f367b12513 |
IEDL.DBID | 7X7 |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Thu Aug 21 18:45:47 EDT 2025 Fri Jul 11 14:29:29 EDT 2025 Fri Jul 25 09:28:12 EDT 2025 Wed Feb 19 02:28:32 EST 2025 Tue Jul 01 03:11:39 EDT 2025 Thu Apr 24 23:02:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | compartmentation stress aspartate aspartate transporter/carrier aspartate aminotransferase hormone |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-e3fe4b6033f4291ece43b41e34d28bddba4eaba3c9e726d1d26c793f367b12513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-4267-0574 |
OpenAccessLink | https://www.proquest.com/docview/2548985811?pq-origsite=%requestingapplication% |
PMID | 33810495 |
PQID | 2548985811 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_11a4f84ada8a4e46a98ef92d714536b5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8037285 proquest_miscellaneous_2508567327 proquest_journals_2548985811 pubmed_primary_33810495 crossref_citationtrail_10_3390_molecules26071887 crossref_primary_10_3390_molecules26071887 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210326 |
PublicationDateYYYYMMDD | 2021-03-26 |
PublicationDate_xml | – month: 3 year: 2021 text: 20210326 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Byeon (ref_91) 2020; 260 Contreras (ref_46) 2009; 284 Good (ref_77) 1994; 90 Park (ref_129) 2007; 282 Mise (ref_114) 2014; 70 Dobrev (ref_126) 2017; 119 (ref_50) 2011; 436 Vanderauwera (ref_8) 2007; 104 Wang (ref_32) 2018; 31 Noguchi (ref_53) 2008; 8 Paidi (ref_86) 2017; 19 Falke (ref_115) 1987; 237 Gorgoglione (ref_52) 2019; 1860 Baudrier (ref_12) 2018; 20 Sullivan (ref_11) 2015; 162 Okumoto (ref_70) 2011; 4 Koehler (ref_90) 2015; 6 Tsuchisaka (ref_122) 2004; 101 Fritz (ref_104) 2006; 29 Miniero (ref_47) 2013; 45 Hasegawa (ref_21) 2019; 256 Schultz (ref_28) 1998; 149 Nasu (ref_33) 1982; 257 Yamagami (ref_121) 2003; 278 Angelovici (ref_30) 2011; 189 ref_123 Easlon (ref_45) 2008; 22 Zhu (ref_66) 2003; 15 Yagi (ref_67) 2014; 57 Dornfeld (ref_10) 2015; 14 Pratelli (ref_57) 2014; 65 Gao (ref_109) 2011; 168 Witz (ref_43) 2012; 24 Ward (ref_18) 2010; 63 Lea (ref_69) 2007; 150 ref_72 Galili (ref_64) 2011; 6 Hashida (ref_9) 2009; 103 Katoh (ref_34) 2006; 141 Wadsworth (ref_23) 1997; 100 Amoedo (ref_49) 2016; 1863 Kirma (ref_68) 2012; 63 Khan (ref_81) 2019; 9 Gaufichon (ref_4) 2016; 57 ref_78 Kowalyczk (ref_125) 1998; 118 Yan (ref_99) 2019; 39 Birsoy (ref_6) 2015; 162 Shahzad (ref_87) 2017; 136 DeBerardinis (ref_19) 2007; 104 Graindorge (ref_25) 2010; 584 ref_83 Janmohammadi (ref_92) 2018; 40 Hao (ref_35) 2018; 271 Christen (ref_119) 2001; 1 Vitor (ref_74) 2018; 248 Ueda (ref_105) 2008; 54 Barickman (ref_82) 2020; 180 ref_85 ref_84 Gaude (ref_100) 2015; 15 Brunoni (ref_124) 2020; 226 Korolik (ref_113) 2010; 1 Lin (ref_117) 2009; 60 Staswick (ref_127) 2005; 17 Maeda (ref_26) 2012; 63 Lima (ref_71) 2003; 165 Canas (ref_5) 2014; 65 Galili (ref_65) 2002; 4 Lehmann (ref_97) 2009; 2 ref_58 Nikolova (ref_94) 2002; 40 Lehmann (ref_96) 2012; 8 ref_54 Campanella (ref_131) 2008; 27 Lee (ref_31) 2005; 41 Alkan (ref_13) 2018; 28 Fu (ref_17) 2018; 61 Caspi (ref_1) 2020; 48 Seiffert (ref_63) 2004; 121 Schultz (ref_27) 1995; 7 Hayat (ref_88) 2012; 7 Apel (ref_95) 2004; 55 Tiwari (ref_75) 2020; 19 Brisson (ref_130) 2012; 24 Mehta (ref_118) 1993; 214 Wan (ref_60) 2006; 8 Ullah (ref_79) 2017; 18 Antunes (ref_61) 2008; 133 Camargos (ref_56) 2004; 48 Nguyen (ref_93) 2019; 10 Reggiani (ref_108) 1988; 29 Daddabbo (ref_51) 2018; 293 Avila (ref_38) 2014; 164 Scott (ref_111) 1994; 2 Lemaire (ref_116) 2013; 64 Ritterhoff (ref_16) 2020; 126 Kafer (ref_42) 2004; 9 Borst (ref_44) 2020; 72 Crespillo (ref_24) 2006; 46 Slocum (ref_37) 2005; 43 Ottemann (ref_112) 1999; 285 Deng (ref_59) 2020; 11 Porco (ref_132) 2016; 113 Hao (ref_36) 2018; 37 Guo (ref_55) 2020; 11 Li (ref_2) 2017; 245 Zerche (ref_73) 2016; 16 Abbes (ref_107) 2009; 47 Lam (ref_3) 1994; 106 Matsubara (ref_103) 2014; 05 Suarez (ref_29) 2007; 27 Okunev (ref_98) 2019; 230 ref_106 Toney (ref_20) 2014; 544 Lam (ref_62) 2003; 132 Preece (ref_80) 2018; 8 Chai (ref_7) 2005; 59 Urrutia (ref_14) 2019; 26 Cheng (ref_39) 2018; 1 Kantrowitz (ref_41) 2012; 519 ref_102 ref_40 Alkan (ref_15) 2019; 6 Winefield (ref_48) 1995; 40 (ref_89) 2001; 44 Capitani (ref_120) 1999; 294 Kasote (ref_101) 2020; 127 Ostrowski (ref_133) 2016; 191 Gill (ref_134) 2010; 48 Silvente (ref_76) 2003; 54 Milburn (ref_110) 1991; 254 Strnad (ref_135) 2018; 125 Keyzers (ref_128) 2010; 61 Wrenger (ref_22) 2012; 13 |
References_xml | – volume: 294 start-page: 745 year: 1999 ident: ref_120 article-title: Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3255 – volume: 119 start-page: 151 year: 2017 ident: ref_126 article-title: Control of cytokinin and auxin homeostasis in cyanobacteria and algae publication-title: Ann. Bot. doi: 10.1093/aob/mcw194 – volume: 41 start-page: 685 year: 2005 ident: ref_31 article-title: Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02329.x – volume: 63 start-page: 4995 year: 2012 ident: ref_68 article-title: The multifaceted role of aspartate-family amino acids in plant metabolism publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers119 – volume: 149 start-page: 491 year: 1998 ident: ref_28 article-title: Arabidopsis mutants define an in vivo role for isoenzymes of aspartate aminotransferase in plant nitrogen assimilation publication-title: Genetics doi: 10.1093/genetics/149.2.491 – volume: 100 start-page: 998 year: 1997 ident: ref_23 article-title: The plant aspartate aminotransferase gene family publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1997.tb00028.x – volume: 27 start-page: 26 year: 2008 ident: ref_131 article-title: The Auxin Conjugate Hydrolase Family of Medicago truncatula and Their Expression During the Interaction with Two Symbionts publication-title: J. Plant Growth Regul. doi: 10.1007/s00344-007-9027-2 – volume: 64 start-page: 2725 year: 2013 ident: ref_116 article-title: Modulation of ethylene biosynthesis by ACC and AIB reveals a structural and functional relationship between the K15NO3 uptake rate and root absorbing surfaces publication-title: J. Exp. Bot. doi: 10.1093/jxb/ert124 – volume: 24 start-page: 762 year: 2012 ident: ref_130 article-title: The Conjugated Auxin Indole-3-Acetic Acid–Aspartic Acid Promotes Plant Disease Development publication-title: Plant Cell doi: 10.1105/tpc.111.095190 – volume: 165 start-page: 649 year: 2003 ident: ref_71 article-title: N-stress alters aspartate and asparagine levels of xylem sap in soybean publication-title: Plant Sci. doi: 10.1016/S0168-9452(03)00251-6 – volume: 17 start-page: 616 year: 2005 ident: ref_127 article-title: Characterization of an Arabidopsis Enzyme Family That Conjugates Amino Acids to Indole-3-Acetic Acid publication-title: Plant Cell doi: 10.1105/tpc.104.026690 – volume: 11 start-page: 1 year: 2020 ident: ref_55 article-title: Rice OsLHT1 Functions in Leaf-to-Panicle Nitrogen Allocation for Grain Yield and Quality publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.01150 – volume: 4 start-page: 3 year: 2002 ident: ref_65 article-title: Metabolic Engineering of Amino Acids and Storage Proteins in Plants publication-title: Metab. Eng. doi: 10.1006/mben.2001.0203 – volume: 4 start-page: 453 year: 2011 ident: ref_70 article-title: Amino Acid Export in Plants: A Missing Link in Nitrogen Cycling publication-title: Mol. Plant doi: 10.1093/mp/ssr003 – volume: 226 start-page: 1753 year: 2020 ident: ref_124 article-title: Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis publication-title: New Phytol. doi: 10.1111/nph.16463 – volume: 101 start-page: 2275 year: 2004 ident: ref_122 article-title: Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0308515101 – volume: 141 start-page: 851 year: 2006 ident: ref_34 article-title: Early Steps in the Biosynthesis of NAD in Arabidopsis Start with Aspartate and Occur in the Plastid publication-title: Plant Physiol. doi: 10.1104/pp.106.081091 – volume: 10 start-page: 1 year: 2019 ident: ref_93 article-title: Genotypic Variation in the Root and Shoot Metabolite Profiles of Wheat (Triticum aestivum L.) Indicate Sustained, Preferential Carbon Allocation as a Potential Mechanism in Phosphorus Efficiency publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00995 – volume: 214 start-page: 549 year: 1993 ident: ref_118 article-title: Aminotransferases: Demonstration of homology and division into evolutionary subgroups publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb17953.x – volume: 248 start-page: 437 year: 2018 ident: ref_74 article-title: Are phloem-derived amino acids the origin of the elevated malate concentration in the xylem sap following mineral N starvation in soybean? publication-title: Planta doi: 10.1007/s00425-018-2914-x – volume: 271 start-page: 133 year: 2018 ident: ref_35 article-title: Characterization of l -aspartate oxidase from Arabidopsis thaliana publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.03.016 – volume: 47 start-page: 153 year: 2009 ident: ref_107 article-title: Nitrogen and carbon relationships between the parasitic weed Orobanche foetida and susceptible and tolerant faba bean lines publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2008.10.004 – volume: 2 start-page: 390 year: 2009 ident: ref_97 article-title: The metabolic response of Arabidopsis roots to oxidative stress is distinct from that of heterotrophic cells in culture and highlights a complex relationship between the levels of transcripts, metabolites, and flux publication-title: Mol. Plant doi: 10.1093/mp/ssn080 – ident: ref_54 doi: 10.3390/ijms20184456 – volume: 29 start-page: 981 year: 1988 ident: ref_108 article-title: Accumulation and interconversion of amino acids in rice roots under anoxia publication-title: Plant Cell Physiol. – volume: 14 start-page: 3282 year: 2015 ident: ref_10 article-title: Aspartate facilitates mitochondrial function, growth arrest and survival during doxorubicin exposure publication-title: Cell Cycle doi: 10.1080/15384101.2015.1087619 – volume: 54 start-page: 1545 year: 2003 ident: ref_76 article-title: Molecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nodule nitrogen metabolism publication-title: J. Exp. Bot. doi: 10.1093/jxb/erg161 – volume: 65 start-page: 5535 year: 2014 ident: ref_57 article-title: Regulation of amino acid metabolic enzymes and transporters in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru320 – volume: 29 start-page: 2055 year: 2006 ident: ref_104 article-title: Impact of the C-N status on the amino acid profile in tobacco source leaves publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2006.01580.x – volume: 54 start-page: 732 year: 2008 ident: ref_105 article-title: Provision of carbon skeletons for amide synthesis in non-nodulated soybean and pea roots in response to the source of nitrogen supply publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2008.00293.x – volume: 282 start-page: 10036 year: 2007 ident: ref_129 article-title: GH3-mediated Auxin Homeostasis Links Growth Regulation with Stress Adaptation Response in Arabidopsis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M610524200 – volume: 22 start-page: 931 year: 2008 ident: ref_45 article-title: The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast publication-title: Genes Dev. doi: 10.1101/gad.1648308 – volume: 1 start-page: 178 year: 2018 ident: ref_39 article-title: Arginine starvation kills tumor cells through aspartate exhaustion and mitochondrial dysfunction publication-title: Commun. Biol. doi: 10.1038/s42003-018-0178-4 – volume: 59 start-page: 553 year: 2005 ident: ref_7 article-title: NADK2, an Arabidopsis Chloroplastic NAD Kinase, Plays a Vital Role in Both Chlorophyll Synthesis and Chloroplast Protection publication-title: Plant Mol. Biol. doi: 10.1007/s11103-005-6802-y – volume: 278 start-page: 49102 year: 2003 ident: ref_121 article-title: Biochemical Diversity among the 1-Amino-cyclopropane-1-Carboxylate Synthase Isozymes Encoded by the Arabidopsis Gene Family publication-title: J. Biol. Chem. doi: 10.1074/jbc.M308297200 – volume: 8 start-page: 271 year: 2006 ident: ref_60 article-title: Correlation between AS1 Gene Expression and Seed Protein Contents in Different Soybean (Glycine Max [L.] Merr.) Cultivars publication-title: Plant Biol. doi: 10.1055/s-2006-923876 – ident: ref_83 doi: 10.1007/s11738-017-2412-y – volume: 1860 start-page: 724 year: 2019 ident: ref_52 article-title: The human uncoupling proteins 5 and 6 (UCP5/SLC25A14 and UCP6/SLC25A30) transport sulfur oxyanions, phosphate and dicarboxylates publication-title: Biochim. Biophys. Acta Bioenerg. doi: 10.1016/j.bbabio.2019.07.010 – volume: 1 start-page: 436 year: 2001 ident: ref_119 article-title: From cofactor to enzymes. The molecular evolution of pyridoxal-5′-phosphate-dependent enzymes publication-title: Chem. Rec. doi: 10.1002/tcr.10005 – volume: 126 start-page: 182 year: 2020 ident: ref_16 article-title: Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.315483 – volume: 256 start-page: 1727 year: 2019 ident: ref_21 article-title: Functional characterization of aminotransferase involved in serine and aspartate metabolism in a halotolerant cyanobacterium, Aphanothece halophytica publication-title: Protoplasma doi: 10.1007/s00709-019-01414-x – volume: 28 start-page: 706 year: 2018 ident: ref_13 article-title: Cytosolic Aspartate Availability Determines Cell Survival When Glutamine Is Limiting publication-title: Cell Metab. doi: 10.1016/j.cmet.2018.07.021 – volume: 13 start-page: 332 year: 2012 ident: ref_22 article-title: Aspartate Aminotransferase - Bridging Carbohydrate and Energy Metabolism in Plasmodium Falciparum publication-title: Curr. Drug Metab. doi: 10.2174/138920012799320400 – volume: 70 start-page: 1219 year: 2014 ident: ref_114 article-title: Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate publication-title: Acta Crystallogr. Sect. F Struct. Biol. Commun. doi: 10.1107/S2053230X14014733 – volume: 237 start-page: 1596 year: 1987 ident: ref_115 article-title: Global flexibility in a sensory receptor: A site-directed cross-linking approach publication-title: Science doi: 10.1126/science.2820061 – volume: 24 start-page: 1549 year: 2012 ident: ref_43 article-title: De Novo Pyrimidine Nucleotide Synthesis Mainly Occurs outside of Plastids, but a Previously Undiscovered Nucleobase Importer Provides Substrates for the Essential Salvage Pathway in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.096743 – volume: 257 start-page: 626 year: 1982 ident: ref_33 article-title: L-Aspartate Oxidase, a Newly Discovered Enzyme of Escherichia coli, Is the B Protein of Quinolinate Synthetase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)68239-6 – volume: 1 start-page: 414 year: 2010 ident: ref_113 article-title: Aspartate chemosensory receptor signalling in Campylobacter jejuni publication-title: Virulence doi: 10.4161/viru.1.5.12735 – ident: ref_106 doi: 10.3390/plants9101303 – volume: 125 start-page: 74 year: 2018 ident: ref_135 article-title: Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.01.026 – volume: 260 start-page: 108877 year: 2020 ident: ref_91 article-title: Differential responses of fruit quality and major targeted metabolites in three different cultivars of cold-stored figs (Ficus carica L.) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2019.108877 – volume: 57 start-page: 2074 year: 2014 ident: ref_67 article-title: Purification and Characterization of Aspartate Aminotransferase Isoenzymes from Rice Bran Purification and Characterization of Aspartate Aminotransferase Isoenzymes from Rice publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.57.2074 – volume: 132 start-page: 926 year: 2003 ident: ref_62 article-title: Overexpression of the ASN1 Gene Enhances Nitrogen Status in Seeds of Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.103.020123 – volume: 164 start-page: 92 year: 2014 ident: ref_38 article-title: Deciphering the Role of Aspartate and Prephenate Aminotransferase Activities in Plastid Nitrogen Metabolism publication-title: PLANT Physiol. doi: 10.1104/pp.113.232462 – volume: 27 start-page: 1283 year: 2007 ident: ref_29 article-title: The aspartate aminotransferase family in conifers: Biochemical analysis of a prokaryotic-type enzyme from maritime pine publication-title: Tree Physiol. doi: 10.1093/treephys/27.9.1283 – volume: 72 start-page: 2241 year: 2020 ident: ref_44 article-title: The malate–aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway publication-title: IUBMB Life doi: 10.1002/iub.2367 – volume: 11 start-page: 1755 year: 2020 ident: ref_59 article-title: p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival publication-title: Nat. Commun. doi: 10.1038/s41467-020-15573-6 – volume: 63 start-page: 443 year: 2010 ident: ref_18 article-title: The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04254.x – volume: 55 start-page: 373 year: 2004 ident: ref_95 article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 104 start-page: 19345 year: 2007 ident: ref_19 article-title: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709747104 – volume: 37 start-page: 259 year: 2018 ident: ref_36 article-title: NAD + Biosynthesis and Signaling in Plants publication-title: CRC. Crit. Rev. Plant Sci. doi: 10.1080/07352689.2018.1505591 – volume: 39 start-page: 1572 year: 2019 ident: ref_99 article-title: Aluminum toxicity could be mitigated with boron by altering the metabolic patterns of amino acids and carbohydrates rather than organic acids in trifoliate orange publication-title: Tree Physiol. doi: 10.1093/treephys/tpz047 – volume: 05 start-page: 235 year: 2014 ident: ref_103 article-title: Suppression of Fusarium Crown Rot and Increase in Several Free Amino Acids in Mycorrhizal Asparagus publication-title: Am. J. Plant Sci. doi: 10.4236/ajps.2014.52031 – volume: 118 start-page: 285 year: 1998 ident: ref_125 article-title: Metabolism of Indole-3-Acetic Acid in Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.118.1.285 – volume: 26 start-page: 2257 year: 2019 ident: ref_14 article-title: HIF1α Suppresses Tumor Cell Proliferation through Inhibition of Aspartate Biosynthesis publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.01.106 – volume: 48 start-page: 909 year: 2010 ident: ref_134 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 – volume: 2 start-page: 877 year: 1994 ident: ref_111 article-title: Transmembrane signalling and the aspartate receptor publication-title: Structure doi: 10.1016/S0969-2126(94)00088-3 – volume: 57 start-page: 675 year: 2016 ident: ref_4 article-title: Asparagine Metabolic Pathways in Arabidopsis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcv184 – volume: 1863 start-page: 2394 year: 2016 ident: ref_49 article-title: AGC1/2, the mitochondrial aspartate-glutamate carriers publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2016.04.011 – volume: 8 start-page: 143 year: 2012 ident: ref_96 article-title: Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress publication-title: Metabolomics doi: 10.1007/s11306-011-0296-1 – ident: ref_85 doi: 10.3389/fpls.2017.01101 – volume: 20 start-page: 775 year: 2018 ident: ref_12 article-title: Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0118-z – ident: ref_123 doi: 10.1007/124_2018_17 – volume: 60 start-page: 3311 year: 2009 ident: ref_117 article-title: Recent advances in ethylene research publication-title: J. Exp. Bot. doi: 10.1093/jxb/erp204 – volume: 121 start-page: 656 year: 2004 ident: ref_63 article-title: Expression of a bacterial asparagine synthetase gene in oilseed rape (Brassica napus) and its effect on traits related to nitrogen efficiency publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2004.00361.x – volume: 168 start-page: 1217 year: 2011 ident: ref_109 article-title: Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2011.01.022 – volume: 162 start-page: 552 year: 2015 ident: ref_11 article-title: Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells publication-title: Cell doi: 10.1016/j.cell.2015.07.017 – volume: 150 start-page: 1 year: 2007 ident: ref_69 article-title: Asparagine in plants publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2006.00104.x – volume: 180 start-page: 104253 year: 2020 ident: ref_82 article-title: Differing precision irrigation thresholds for kale (Brassica oleracea L. var. acephala) induces changes in physiological performance, metabolites, and yield publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2020.104253 – volume: 46 start-page: 414 year: 2006 ident: ref_24 article-title: Identification and functional analysis of a prokaryotic-type aspartate aminotransferase: Implications for plant amino acid metabolism publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02713.x – volume: 136 start-page: 68 year: 2017 ident: ref_87 article-title: Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2017.01.010 – volume: 90 start-page: 9 year: 1994 ident: ref_77 article-title: The effects of drought stress on free amino acid accumulation and protein synthesis in Brassica napus publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1994.tb02185.x – volume: 43 start-page: 729 year: 2005 ident: ref_37 article-title: Genes, enzymes and regulation of arginine biosynthesis in plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2005.06.007 – volume: 7 start-page: 1456 year: 2012 ident: ref_88 article-title: Role of proline under changing environments: A review publication-title: Plant Signal. Behav. doi: 10.4161/psb.21949 – volume: 189 start-page: 148 year: 2011 ident: ref_30 article-title: A seed high-lysine trait is negatively associated with the TCA cycle and slows down Arabidopsis seed germination publication-title: New Phytol. doi: 10.1111/j.1469-8137.2010.03478.x – volume: 284 start-page: 7091 year: 2009 ident: ref_46 article-title: Calcium Signaling in Brain Mitochondria publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808066200 – volume: 162 start-page: 540 year: 2015 ident: ref_6 article-title: An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis publication-title: Cell doi: 10.1016/j.cell.2015.07.016 – volume: 61 start-page: 7741 year: 2018 ident: ref_17 article-title: Chemoenzymatic Synthesis and Pharmacological Characterization of Functionalized Aspartate Analogues As Novel Excitatory Amino Acid Transporter Inhibitors publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b00700 – volume: 48 start-page: 309 year: 2004 ident: ref_56 article-title: Variation in the Amino Acid Concentration During Development of Canavalia ensiformes publication-title: Biol. Plant. doi: 10.1023/B:BIOP.0000033463.98440.db – volume: 16 start-page: 1 year: 2016 ident: ref_73 article-title: Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida publication-title: BMC Plant Biol. doi: 10.1186/s12870-016-0901-6 – volume: 40 start-page: 455 year: 1995 ident: ref_48 article-title: Evolutionary analysis of aspartate aminotransferases publication-title: J. Mol. Evol. doi: 10.1007/BF00164031 – ident: ref_58 doi: 10.1186/s12284-017-0143-8 – volume: 15 start-page: 845 year: 2003 ident: ref_66 article-title: Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds publication-title: Plant Cell doi: 10.1105/tpc.009647 – volume: 18 start-page: 1 year: 2017 ident: ref_79 article-title: Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species publication-title: BMC Genom. doi: 10.1186/s12864-017-4321-2 – volume: 9 start-page: 2097 year: 2019 ident: ref_81 article-title: Comparative Physiological and Metabolic Analysis Reveals a Complex Mechanism Involved in Drought Tolerance in Chickpea (Cicer arietinum L.) Induced by PGPR and PGRs publication-title: Sci. Rep. doi: 10.1038/s41598-019-38702-8 – volume: 254 start-page: 1342 year: 1991 ident: ref_110 article-title: Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand publication-title: Science doi: 10.1126/science.1660187 – volume: 48 start-page: D445 year: 2020 ident: ref_1 article-title: The MetaCyc database of metabolic pathways and enzymes–A 2019 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz862 – volume: 544 start-page: 119 year: 2014 ident: ref_20 article-title: Aspartate aminotransferase: An old dog teaches new tricks publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2013.10.002 – volume: 245 start-page: 1588 year: 2017 ident: ref_2 article-title: Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.05.145 – ident: ref_40 doi: 10.1371/journal.pone.0229494 – volume: 9 start-page: 1611 year: 2004 ident: ref_42 article-title: Regulation of pyrimidine metabolism in plants publication-title: Front. Biosci. – volume: 40 start-page: 577 year: 2002 ident: ref_94 article-title: Cadmium and H2O2-induced oxidative stress in Populus x canescens roots publication-title: Plant Physiol. Biochem. doi: 10.1016/S0981-9428(02)01411-0 – volume: 104 start-page: 15150 year: 2007 ident: ref_8 article-title: Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0706668104 – volume: 63 start-page: 73 year: 2012 ident: ref_26 article-title: The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042811-105439 – ident: ref_102 doi: 10.3390/biom10010098 – volume: 19 start-page: 207 year: 2017 ident: ref_86 article-title: Chemical Derivatization of Metabolite Mass Profiling of the Recretohalophyte Aeluropus lagopoides Revealing Salt Stress Tolerance Mechanism publication-title: Mar. Biotechnol. doi: 10.1007/s10126-017-9745-9 – volume: 293 start-page: 4213 year: 2018 ident: ref_51 article-title: Uncoupling proteins 1 and 2 (UCP1 and UCP2) from Arabidopsis thaliana are mitochondrial transporters of aspartate, glutamate, and dicarboxylates publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA117.000771 – ident: ref_84 doi: 10.1201/9780203705315-12 – volume: 285 start-page: 1751 year: 1999 ident: ref_112 article-title: A piston model for transmembrane signaling of the aspartate receptor publication-title: Science doi: 10.1126/science.285.5434.1751 – volume: 15 start-page: 1 year: 2015 ident: ref_100 article-title: Symbiosis dependent accumulation of primary metabolites in arbuscule-containing cells publication-title: BMC Plant Biol. doi: 10.1186/s12870-015-0601-7 – volume: 6 start-page: e1536843 year: 2019 ident: ref_15 article-title: Maintaining cytosolic aspartate levels is a major function of the TCA cycle in proliferating cells publication-title: Mol. Cell. Oncol. doi: 10.1080/23723556.2018.1536843 – volume: 113 start-page: 11016 year: 2016 ident: ref_132 article-title: Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1604375113 – volume: 584 start-page: 4357 year: 2010 ident: ref_25 article-title: Identification of a plant gene encoding glutamate/aspartate-prephenate aminotransferase: The last homeless enzyme of aromatic amino acids biosynthesis publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.09.037 – volume: 127 start-page: 591 year: 2020 ident: ref_101 article-title: Metabolomics-based biomarkers of Fusarium wilt disease in watermelon plants publication-title: J. Plant Dis. Prot. doi: 10.1007/s41348-020-00314-0 – volume: 61 start-page: 3615 year: 2010 ident: ref_128 article-title: Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq174 – volume: 19 start-page: 51 year: 2020 ident: ref_75 article-title: Precision phenotyping of contrasting potato (Solanum tuberosum L.) varieties in a novel aeroponics system for improving nitrogen use efficiency: In search of key traits and genes publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(19)62625-0 – volume: 230 start-page: 1 year: 2019 ident: ref_98 article-title: Free Amino Acid Accumulation in Soil and Tomato Plants (Solanum lycopersicum L.) Associated with Arsenic Stress publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-019-4309-4 – volume: 191 start-page: 63 year: 2016 ident: ref_133 article-title: The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L. publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.11.012 – volume: 7 start-page: 61 year: 1995 ident: ref_27 article-title: The aspartate aminotransferase gene family of Arabidopsis encodes isozymes localized to three distinct subcellular compartments publication-title: Plant J. doi: 10.1046/j.1365-313X.1995.07010061.x – volume: 8 start-page: 87 year: 2008 ident: ref_53 article-title: Interaction between photosynthesis and respiration in illuminated leaves publication-title: Mitochondrion doi: 10.1016/j.mito.2007.09.003 – volume: 133 start-page: 736 year: 2008 ident: ref_61 article-title: Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean ( Glycine max ) publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2008.01092.x – volume: 65 start-page: 5527 year: 2014 ident: ref_5 article-title: Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru240 – ident: ref_72 doi: 10.1186/1471-2164-14-442 – volume: 44 start-page: 541 year: 2001 ident: ref_89 article-title: Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine publication-title: Biol. Plantarum doi: 10.1023/A:1013738603020 – volume: 45 start-page: 1 year: 2013 ident: ref_47 article-title: The mitochondrial oxoglutarate carrier: From identification to mechanism publication-title: J. Bioenerg. Biomembr. doi: 10.1007/s10863-012-9475-7 – volume: 6 start-page: 192 year: 2011 ident: ref_64 article-title: The aspartate-family pathway of plants: Linking production of essential amino acids with energy and stress regulation publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.2.14425 – volume: 40 start-page: 42 year: 2018 ident: ref_92 article-title: Frost tolerance and metabolite changes of rye (Secale cereale) during the cold hardening and overwintering publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-018-2620-0 – volume: 31 start-page: 203 year: 2018 ident: ref_32 article-title: New insights into the metabolism of aspartate-family amino acids in plant seeds publication-title: Plant Reprod. doi: 10.1007/s00497-018-0322-9 – volume: 103 start-page: 819 year: 2009 ident: ref_9 article-title: The role of NAD biosynthesis in plant development and stress responses publication-title: Ann. Bot. doi: 10.1093/aob/mcp019 – volume: 519 start-page: 81 year: 2012 ident: ref_41 article-title: Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2011.10.024 – volume: 6 start-page: 1 year: 2015 ident: ref_90 article-title: Integrative “omic” analysis reveals distinctive cold responses in leaves and roots of strawberry, fragaria × ananassa ‘Korona’ publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00826 – ident: ref_78 doi: 10.1186/s12864-016-2554-0 – volume: 8 start-page: 12696 year: 2018 ident: ref_80 article-title: Root exudate metabolomes change under drought and show limited capacity for recovery publication-title: Sci. Rep. doi: 10.1038/s41598-018-30150-0 – volume: 106 start-page: 1347 year: 1994 ident: ref_3 article-title: Metabolic Regulation of the Gene Encoding Glutamine-Dependent Asparagine Synthetase in Arabidopsis thaliana publication-title: Plant Physiol. doi: 10.1104/pp.106.4.1347 – volume: 436 start-page: 193 year: 2011 ident: ref_50 article-title: The role of amino acid transporters in inherited and acquired diseases publication-title: Biochem. J. doi: 10.1042/BJ20101912 |
SSID | ssj0021415 |
Score | 2.6148465 |
SecondaryResourceType | review_article |
Snippet | L-aspartate (Asp) serves as a central building block, in addition to being a constituent of proteins, for many metabolic processes in most organisms, such as... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1887 |
SubjectTerms | Amino acids aspartate aspartate aminotransferase aspartate transporter/carrier Biosynthesis Carbon Cell growth compartmentation Dehydrogenases Enzymes Glucose hormone Kinases Metabolism Metabolites Nitrogen Phosphorylation Plastids Polyamines Prokaryotes Review Senescence stress |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_i2_oigiehuHk0Tbyt4gNhvajgreQxRWHtilv_v5O2u-yq6MVrk5bpPDIzZOYbQo4VSGG9xdNPeUil5ja1KkNd1pnhmWO5b-CaBnfq5lHePmVPM6O-Yk1YCw_cMu6UMStLLW2w2kqQyhoNpeEhZzITyjXopejzJslUl2ox9EvtHabApP70tR01C2Me4dSa-rkZL9SA9f8UYX4tlJzxPFerZKULGWm_JXWNLEC1TpYuJpPaNshgSNM-ngzxWh3OaL-il-PYU4SqRQdQo5hjozHF8JTGGUU1vcbcu36mtgr0vukVoX3vhy9tF-Mmeby6fLi4SbsxCamXRtQpiBKkUz0hSnQuDDyy30kGQgauXQgO-WadFd5AzlVggSuPVlkKlbsY3ogtsliNKtghVPlSYohgnDYePxkwVuGee2vQzgGcT0hvwrbCdxjicZTFsMBcInK6-MbphJxMX3lrATR-23weZTHdGLGvmweoEUWnEcVfGpGQ_Ykki84gxwXmwdroTDOWkKPpMsop3o_YCkYfcQ_GnyoXHOnYbgU_pUREJDRMJhOSz6nEHKnzK9XLcwPXrXsi5zrb_Y9_2yPLPBbV9ETK1T5ZrN8_4ACjotodNgbwCYHgDWE priority: 102 providerName: Directory of Open Access Journals |
Title | l-Aspartate: An Essential Metabolite for Plant Growth and Stress Acclimation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33810495 https://www.proquest.com/docview/2548985811 https://www.proquest.com/docview/2508567327 https://pubmed.ncbi.nlm.nih.gov/PMC8037285 https://doaj.org/article/11a4f84ada8a4e46a98ef92d714536b5 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5Be4AL4k2grIzECSnqxnYcmwvaVrutEK0QUGlvkV-hlZZs6ab_nxknu-0C6iWHxIkcz9j-xjPzDcB7FaWw3uLqp3zMpeY2t6pEXdal4aUrKp_omk5O1fGZ_Dwv58OB22oIq1yviWmhDktPZ-T7aMhoo0tdFJ8uf-dUNYq8q0MJjfuwS9RlFNJVzW8MrgJ3p96TKdC03__VF5yNK06kaimK7tZelCj7_4cz_w6XvLX_zB7DowE4skkv6SdwL7ZP4cHhul7bM_iyyCe4PJBvPX5kk5ZNV5RYhPrFTmKHsqZsY4YYlVGhoo4doQHenTPbBvY9JYywifeLiz6V8TmczaY_Do_zoVZC7qURXR5FE6VTYyEa3GGK6FEGThZRyMC1C8FZGa2zwptYcRWKwJXHqdkIVTnCOOIF7LTLNr4CpnwjEScYp43HTwYELNxzbw1O9hidz2C8HrXaD0TiVM9iUaNBQQNd_zPQGXzYvHLZs2jc1fiARLFpSATY6cby6mc9zCc0XKxstLTBavwzqazRsTE8VIUshXJlBntrQdbDrFzVNzqUwbvNYxQTOUlsG5fX1AZBqKoEx3687OW-6YkgOjS0KDOotjRiq6vbT9qL88TZrcei4rp8fXe33sBDTjEzY5FztQc73dV1fIugp3OjpNl41bOjEeweTE-_fhulA4Q_lQcIJg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJtAASPBBSlqYjuOjYTQUrrd0t1eaKXegl-hlZZs6aZC_Cl-I-O86ALqrdfYsSYzn8czGc8MwCvhOdNWo_YT1sdcUh1rkSGWZaZoZtLcNuWaZgdicsQ_HWfHa_Crz4UJ1yp7ndgoarew4R_5FjoyUslMpun7s-9x6BoVoqt9C40WFvv-5w902Zbv9j6ifF9TOt453J7EXVeB2HLF6tiz0nMjEsZK1MWpt0it4aln3FFpnDOae200s8rnVLjUUWERxCUTuQnWAMN1b8BNzpgKO0qOdwcHL8XTsI2c4mCy9a1tcOuXNBRxa27tXTr7mhYB_7Nr_76eeem8G9-B252hSkYtsu7Cmq_uwcZ23x_uPkzn8QjVUYjl-7dkVJGdZUhkQjyTma8RWyG7maBNTEJjpJrsosNfnxBdOfK5SVAhI2vnp23q5AM4uhYuPoT1alH5x0CELTnaJcpIZXFJhwYStdRqhcrFe2MjSHquFbYrXB76Z8wLdGACo4t_GB3Bm-GVs7Zqx1WTPwRRDBNDwe3mweL8a9HtX3SUNC8l105L_DIutJK-VNTlKc-YMFkEm70gi04LLIs_mI3g5TCMYgpBGV35xUWYg0avyBlFOh61ch8oYaH8GnqwEeQriFghdXWkOj1paoTLhOVUZk-uJusFbEwOZ9Niunew_xRu0XBfJ2ExFZuwXp9f-GdocNXmeYNyAl-ue1v9BrxSQmE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgEviJvQAkaCF6RoE9txbKQKLW2Xlh5Cgkr7lvoKrbRkSzdVxV_rr2OcY9sF1Le-RYljTTyfxzOZC-Ct8Jxpq1H6CetjLqmOtcgQyzJTNDNpbptyTXv7YuuAfxln4yW46HNhQlhlLxMbQe2mNvwjH6AhI5XMZJoOyi4s4uvG6OPJrzh0kAqe1r6dRguRHf_7HM232dr2BvL6HaWjze_rW3HXYSC2XLE69qz03IiEsRLlcuotUm546hl3VBrnjOZeG82s8jkVLnVUWAR0yURugmbAcN5bcDtneIl7KR9fGnspnoytF5UxlQx-ts1u_YyGgm5NBN-Vc7BpF_A_HffvUM0rZ9_oAdzvlFYybFH2EJZ89Qjurve94h7D7iQeomgKfn3_gQwrsjkLSU2IbbLna8RZyHQmqB-T0CSpJp_R-K-PiK4c-dYkq5ChtZPjNo3yCRzcyCo-heVqWvnnQIQtOeooykhlcUqHyhK11GqFgsZ7YyNI-lUrbFfEPPTSmBRozISFLv5Z6Ajez185aSt4XDf4U2DFfGAovt3cmJ7-KLq9jEaT5qXk2mmJX8aFVtKXiro85RkTJotgtWdk0UmEWXGJ3wjezB8jm4KDRld-ehbGoAIsckaRjmct3-eUsFCKDa3ZCPIFRCyQuvikOj5q6oXLhOVUZi-uJ-s13MENVexu7--swD0aQncSFlOxCsv16Zl_ibpXbV41ICdweNO76g9I40aO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=l-Aspartate%3A+An+Essential+Metabolite+for+Plant+Growth+and+Stress+Acclimation&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Han%2C+Mei&rft.au=Zhang%2C+Can&rft.au=Suglo%2C+Peter&rft.au=Sun%2C+Shuyue&rft.date=2021-03-26&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=26&rft.issue=7&rft_id=info:doi/10.3390%2Fmolecules26071887&rft_id=info%3Apmid%2F33810495&rft.externalDocID=PMC8037285 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |