Special review series on 3D organotypic culture models: Introduction and historical perspective

Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture...

Full description

Saved in:
Bibliographic Details
Published inIn vitro cellular & developmental biology. Animal Vol. 57; no. 2; pp. 95 - 103
Main Authors Hayden, Patrick J., Harbell, John W.
Format Journal Article
LanguageEnglish
Published Germany Springer Science & Business Media LLC 01.02.2021
Society for In Vitro Biology
Springer US
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivolike 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations ofthat approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers.
AbstractList Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivo–like 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations of that approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers.
Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivolike 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations ofthat approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers.
Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivo-like 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations of that approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers.Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivo-like 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations of that approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers.
Author Hayden, Patrick J.
Harbell, John W.
Author_xml – sequence: 1
  givenname: Patrick J.
  surname: Hayden
  fullname: Hayden, Patrick J.
– sequence: 2
  givenname: John W.
  surname: Harbell
  fullname: Harbell, John W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33237402$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFTEUhoNU7If-ARcSEMHNaL4zcVGQ-lUouFDBXchNzrS5zE3GZOZK_7253lpqF3o2CeR537ycc47RQcoJEHpKyStKiH5dKVVMdYSRjhBJSMceoCMqBe80Ud8P2p1o2jFlyCE6rnVNWhmqHqFDzhnXgrAjZL9M4KMbcYFthJ-4QolQcU6Yv8O5XLqU5-speuyXcV4K4E0OMNY3-DzNJYfFz7GxLgV8FeucS_TNa4JSm-0ct_AYPRzcWOHJzXmCvn14__XsU3fx-eP52duLzgvD5y6wlWSmp9QpyaVr-TXolWGKcd-KcSYoVyqApsETNZjAiWNh8L4fQAjPT9Dp3ndaVhsIHlo8N9qpxI0r1za7aP9-SfHKXuat1arXjOhm8PLGoOQfC9TZbmL1MI4uQV6qZVJSoxWl8v-oUIKa1mDR0Of30HVeSmqdaJQxpldGskY9uxv-NvWfMTWA7QFfcq0FhluEErvbBbvfBdt2wf7eBbsT9fdEPs5uN6_WgDj-W_piL13vZnr3M8abQkjec9FT_gsYc8SF
CitedBy_id crossref_primary_10_1089_ten_tec_2024_0246
crossref_primary_10_1177_02611929231156720
crossref_primary_10_3390_cells12131687
crossref_primary_10_1080_17425247_2024_2380338
crossref_primary_10_3390_cancers15071991
crossref_primary_10_3390_ijms22116128
crossref_primary_10_1002_elsc_202100128
crossref_primary_10_1038_s41598_025_90101_4
crossref_primary_10_3390_biom14091066
crossref_primary_10_1016_j_tiv_2023_105718
crossref_primary_10_3389_ftox_2024_1370045
crossref_primary_10_3390_biomedicines12102373
crossref_primary_10_1016_j_fct_2023_113944
crossref_primary_10_3390_ijms25021251
crossref_primary_10_3390_biomedicines11051476
crossref_primary_10_1038_s41420_024_02053_9
crossref_primary_10_1007_s11626_024_00958_4
crossref_primary_10_1016_j_tice_2024_102319
crossref_primary_10_3390_biomedicines12020408
Cites_doi 10.1007/BF02627079
10.1126/science.149.3684.634
10.1016/j.molmed.2018.09.005
10.1007/s11095-018-2362-0
10.1128/MCB.14.9.5858
10.3181/00379727-74-17797
10.1084/jem.81.3.233
10.1016/B978-0-12-817202-5.00006-1
10.1016/j.stem.2017.11.001
10.1016/0887-2333(94)90095-7
10.1016/j.stem.2010.08.012
10.1016/0092-8674(80)90540-1
10.1038/nprot.2007.418
10.1016/B978-0-12-571126-5.50017-0
10.1016/S0074-7696(08)62241-X
10.1111/rda.13481
10.1126/science.1151526
10.2105/AJPH.45.5_Pt_1.575
10.1016/0014-4827(65)90211-9
10.1084/jem.102.1.37
10.1177/026119291103900409
10.1002/adma.201801621
10.1038/nature20168
10.3390/pharmaceutics12020152
10.1016/B978-0-12-817202-5.00002-4
10.1177/2472630318760515
10.1007/10.1007/s10616-004-5123-3
10.1002/adhm.201700939
10.1073/pnas.46.7.963
10.2183/pjab.85.348
10.1242/dev.166173
10.1016/j.bbcan.2020.188350
10.1167/iovs.18-23944
10.1007/978-1-4939-3603-8_4
10.1177/026119291804600404
10.1093/toxsci/kfq188
10.1016/0014-4827(61)90192-6
10.1007/BF01540656
10.1016/j.cell.2007.11.019
10.1089/ten.tec.2014.0376
10.1093/clinids/2.3.493
10.5858/133.9.1463
10.1016/j.cell.2006.07.024
10.1007/BF02618428
10.1016/0047-6374(83)90026-X
10.1007/BF02618170
10.2302/kjm.2012-0017-RE
10.1016/j.jacc.2016.01.083
ContentType Journal Article
Copyright 2021 Society for In Vitro Biology
The Society for In Vitro Biology 2020.
The Society for In Vitro Biology 2020
Copyright_xml – notice: 2021 Society for In Vitro Biology
– notice: The Society for In Vitro Biology 2020.
– notice: The Society for In Vitro Biology 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
7S9
L.6
5PM
DOI 10.1007/s11626-020-00500-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Docstoc
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
Virology and AIDS Abstracts

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Zoology
Biology
EISSN 1543-706X
EndPage 103
ExternalDocumentID PMC7687207
33237402
10_1007_s11626_020_00500_2
45383481
Genre Historical Article
Journal Article
Review
GroupedDBID ---
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
203
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40D
40E
5GY
5RE
5VS
67N
67Z
6NX
78A
7X7
8R4
8R5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHKG
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AAPSS
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBHK
ABBRH
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABPLY
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTLG
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEVLU
AEXYK
AFAZZ
AFDZB
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BENPR
BGNMA
CBGCD
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
HF~
HG5
HG6
HMJXF
HRMNR
IJ-
IKXTQ
IPSME
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JBMMH
JBS
JBSCW
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JZLTJ
KDC
KOV
KPH
LLZTM
M4Y
M7P
MA-
N9A
NF0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PF0
PQ0
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
RBO
RHV
ROL
RPX
RSV
RWL
RXW
S16
S27
S3A
S3B
SA0
SAP
SBL
SBY
SDH
SDM
SHX
SISQX
SJN
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TAE
TSG
TSK
TSV
TUC
U2A
U5U
U9L
UG4
UNMZH
UOJIU
UTJUX
VC2
W48
WH7
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
~EX
~KM
-JH
-Y2
.55
.GJ
1SB
28-
2VQ
3SX
53G
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
AANXM
AARHV
AAYTO
AAYXX
ABDPE
ABQSL
ABULA
ABUWG
ABXSQ
ACBXY
ACHIC
ADHKG
ADHSS
ADULT
ADYPR
AEBTG
AEKMD
AEPYG
AEUYN
AFDYV
AFEXP
AFFIJ
AFGCZ
AFKRA
AFNWH
AGJBK
AGQPQ
AGUYK
AHXOZ
AJBLW
AKPMI
AQVQM
AS~
AZQEC
BBWZM
BDATZ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
D1J
DC7
DWQXO
EJD
EN4
FEDTE
FINBP
FSGXE
FYUFA
GNUQQ
GTFYD
H13
HCIFZ
HMCUK
HTVGU
HVGLF
HZ~
LK8
M1P
M2P
M2Q
N2Q
NDZJH
O9-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q5J
RNI
RZK
S0X
S1Z
S26
S28
SCLPG
T16
TAF
UKHRP
UZXMN
VFIZW
WK6
X7M
ZGI
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
4T-
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c493t-d2b529811a6535a7067e7b92623cccc23241366de71dc06f9d30a2dfcc8fe44c3
ISSN 1071-2690
1543-706X
IngestDate Thu Aug 21 18:20:55 EDT 2025
Fri Jul 11 01:16:07 EDT 2025
Mon Jul 21 11:21:05 EDT 2025
Fri Jul 25 10:46:52 EDT 2025
Mon Jul 21 06:04:30 EDT 2025
Thu Apr 24 22:54:27 EDT 2025
Tue Jul 01 05:05:44 EDT 2025
Thu May 29 08:49:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Biological matrix
Functional differentiation
Organotypic culture
iPSC
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c493t-d2b529811a6535a7067e7b92623cccc23241366de71dc06f9d30a2dfcc8fe44c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Editor: Tetsuji Okamoto
ORCID 0000-0001-9012-6851
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7687207
PMID 33237402
PQID 2499986952
PQPubID 38079
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687207
proquest_miscellaneous_2551976115
proquest_miscellaneous_2464193744
proquest_journals_2499986952
pubmed_primary_33237402
crossref_primary_10_1007_s11626_020_00500_2
crossref_citationtrail_10_1007_s11626_020_00500_2
jstor_primary_10_2307_45383481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Heidelberg
– name: New York
PublicationTitle In vitro cellular & developmental biology. Animal
PublicationTitleAlternate In Vitro Cell Dev Biol Anim
PublicationYear 2021
Publisher Springer Science & Business Media LLC
Society for In Vitro Biology
Springer US
Publisher_xml – name: Springer Science & Business Media LLC
– name: Society for In Vitro Biology
– name: Springer US
References MC Kibbey (500_CR30) 1994; 16
X Li (500_CR33) 2016; 1422
CM Pomerat (500_CR40) 1958; 17
KR Porter (500_CR41) 1945; 81
N Gjorevski (500_CR17) 2016; 539
L Hayflick (500_CR25) 1962; 75
500_CR38
500_CR39
Z Xia (500_CR55) 2018; 23
ME Andersen (500_CR1) 2010; 117
S Yui (500_CR57) 2018; 22
N Fusake (500_CR15) 2009; 85
Y Kaluzhny (500_CR28) 2011; 39
D Barnes (500_CR3) 1980; 22
C Waymouth (500_CR54) 1965; 23
N Broguiere (500_CR5) 2018; 30
H Green (500_CR18) 1978; 15
500_CR48
H Eagle (500_CR12) 1955; 102
L Hayflick (500_CR24) 1961; 25
500_CR44
500_CR46
500_CR4
500_CR8
S Chen (500_CR7) 2019; 54
CL Cannon (500_CR6) 1994; 8
F Grinnell (500_CR19) 1978; 53
B Rana (500_CR42) 1994; 14
CA Trujillo (500_CR52) 2018; 24
JF Morgan (500_CR36) 1950; 74
JF Enders (500_CR13) 1980; 2
LJ Schiff (500_CR47) 1997; 31
500_CR14
500_CR11
K Takahashi (500_CR49) 2007; 2
L Warren (500_CR53) 2010; 7
S Ayehunie (500_CR2) 2018; 35
K Takahashi (500_CR51) 2006; 126
G Sato (500_CR45) 1960; 46
L Hayflick (500_CR23) 1965; 37
K Takahashi (500_CR50) 2007; 131
BP Lucey (500_CR34) 2009; 133
CW Daniel (500_CR9) 1965; 149
CW Daniel (500_CR10) 1983; 23
DB Kolesky (500_CR31) 2018; 46
RG Ham (500_CR20) 1979; 14
M Ieda (500_CR27) 2013; 3
GO Gey (500_CR16) 1952; 12
500_CR26
R Neupane (500_CR37) 2020; 12
500_CR21
500_CR22
F Meier (500_CR35) 2017; 40
J Yu (500_CR56) 2007; 318
Y Kaluzhny (500_CR29) 2018; 59
JE Salk (500_CR43) 1955; 45
KM Lee (500_CR32) 2004; 45
References_xml – ident: 500_CR8
  doi: 10.1007/BF02627079
– volume: 40
  start-page: 1759
  issue: 6
  year: 2017
  ident: 500_CR35
  publication-title: Int J Mol Med
– volume: 149
  start-page: 634
  year: 1965
  ident: 500_CR9
  publication-title: Science
  doi: 10.1126/science.149.3684.634
– volume: 24
  start-page: 982
  issue: 12
  year: 2018
  ident: 500_CR52
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2018.09.005
– volume: 35
  start-page: 72
  issue: 4
  year: 2018
  ident: 500_CR2
  publication-title: Pharmaceutical Res
  doi: 10.1007/s11095-018-2362-0
– volume: 14
  start-page: 5858
  issue: 9
  year: 1994
  ident: 500_CR42
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.14.9.5858
– volume: 74
  start-page: 22
  issue: 1
  year: 1950
  ident: 500_CR36
  publication-title: Proc Soc Exp Biol Med
  doi: 10.3181/00379727-74-17797
– volume: 81
  start-page: 233
  issue: 3
  year: 1945
  ident: 500_CR41
  publication-title: J Exp Med
  doi: 10.1084/jem.81.3.233
– ident: 500_CR21
  doi: 10.1016/B978-0-12-817202-5.00006-1
– volume: 22
  start-page: 35
  year: 2018
  ident: 500_CR57
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2017.11.001
– volume: 8
  start-page: 889
  issue: 4
  year: 1994
  ident: 500_CR6
  publication-title: Toxicol in Vitro
  doi: 10.1016/0887-2333(94)90095-7
– volume: 31
  start-page: 1
  issue: 5
  year: 1997
  ident: 500_CR47
  publication-title: In Vitro Rep
– volume: 7
  start-page: 618
  year: 2010
  ident: 500_CR53
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2010.08.012
– volume: 22
  start-page: 649
  issue: 3
  year: 1980
  ident: 500_CR3
  publication-title: Cell
  doi: 10.1016/0092-8674(80)90540-1
– volume: 15
  start-page: 801
  issue: 3
  year: 1978
  ident: 500_CR18
  publication-title: Cell Biol Toxicol
– volume: 2
  start-page: 3081
  year: 2007
  ident: 500_CR49
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2007.418
– ident: 500_CR44
  doi: 10.1016/B978-0-12-571126-5.50017-0
– volume: 53
  start-page: 65
  year: 1978
  ident: 500_CR19
  publication-title: Int Rev Cytol
  doi: 10.1016/S0074-7696(08)62241-X
– volume: 54
  start-page: 38
  issue: Suppl. 3
  year: 2019
  ident: 500_CR7
  publication-title: Reprod Domest Anim
  doi: 10.1111/rda.13481
– volume: 318
  start-page: 1917
  year: 2007
  ident: 500_CR56
  publication-title: Science
  doi: 10.1126/science.1151526
– volume: 45
  start-page: 575
  issue: 5
  year: 1955
  ident: 500_CR43
  publication-title: Am J Publ Health Nat Health
  doi: 10.2105/AJPH.45.5_Pt_1.575
– volume: 37
  start-page: 614
  year: 1965
  ident: 500_CR23
  publication-title: Exp Cell Res
  doi: 10.1016/0014-4827(65)90211-9
– volume: 102
  start-page: 37
  issue: 1
  year: 1955
  ident: 500_CR12
  publication-title: J Exp Med
  doi: 10.1084/jem.102.1.37
– volume: 39
  start-page: 339
  year: 2011
  ident: 500_CR28
  publication-title: Altern Lab Anim
  doi: 10.1177/026119291103900409
– volume: 30
  issue: 43
  year: 2018
  ident: 500_CR5
  publication-title: Adv Mater
  doi: 10.1002/adma.201801621
– volume: 539
  start-page: 560
  year: 2016
  ident: 500_CR17
  publication-title: Nature
  doi: 10.1038/nature20168
– volume: 75
  start-page: 240
  year: 1962
  ident: 500_CR25
  publication-title: Am J Hyg
– volume: 12
  start-page: 152
  year: 2020
  ident: 500_CR37
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12020152
– ident: 500_CR22
  doi: 10.1016/B978-0-12-817202-5.00002-4
– volume: 23
  start-page: 301
  issue: 4
  year: 2018
  ident: 500_CR55
  publication-title: SLAS Technol
  doi: 10.1177/2472630318760515
– volume: 45
  start-page: 33
  year: 2004
  ident: 500_CR32
  publication-title: Cytotechnology
  doi: 10.1007/10.1007/s10616-004-5123-3
– ident: 500_CR39
– ident: 500_CR14
  doi: 10.1002/adhm.201700939
– volume: 46
  start-page: 963
  year: 1960
  ident: 500_CR45
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.46.7.963
– volume: 85
  start-page: 348
  year: 2009
  ident: 500_CR15
  publication-title: Proc Jpn Acad Series B Physical Biol Sci
  doi: 10.2183/pjab.85.348
– ident: 500_CR26
  doi: 10.1242/dev.166173
– ident: 500_CR38
  doi: 10.1016/j.bbcan.2020.188350
– volume: 59
  start-page: 2880
  issue: 7
  year: 2018
  ident: 500_CR29
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.18-23944
– volume: 1422
  start-page: 33
  year: 2016
  ident: 500_CR33
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-3603-8_4
– volume: 46
  start-page: 209
  issue: 4
  year: 2018
  ident: 500_CR31
  publication-title: Altern Lab Anim
  doi: 10.1177/026119291804600404
– volume: 117
  start-page: 17
  issue: 1
  year: 2010
  ident: 500_CR1
  publication-title: Toxicol Sci
  doi: 10.1093/toxsci/kfq188
– volume: 12
  start-page: 264
  year: 1952
  ident: 500_CR16
  publication-title: Cancer Res
– volume: 25
  start-page: 585
  year: 1961
  ident: 500_CR24
  publication-title: Exp Cell Res
  doi: 10.1016/0014-4827(61)90192-6
– volume: 16
  start-page: 227
  year: 1994
  ident: 500_CR30
  publication-title: J Tissue Cult Methods
  doi: 10.1007/BF01540656
– volume: 131
  start-page: 861
  year: 2007
  ident: 500_CR50
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.019
– ident: 500_CR4
  doi: 10.1089/ten.tec.2014.0376
– volume: 2
  start-page: 493
  year: 1980
  ident: 500_CR13
  publication-title: Rev Infect Dis
  doi: 10.1093/clinids/2.3.493
– volume: 133
  start-page: 1463
  year: 2009
  ident: 500_CR34
  publication-title: Arch Pathol Lab Med
  doi: 10.5858/133.9.1463
– volume: 126
  start-page: 663
  year: 2006
  ident: 500_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2006.07.024
– ident: 500_CR48
  doi: 10.1007/BF02618428
– ident: 500_CR11
– volume: 17
  start-page: 975
  issue: 4
  year: 1958
  ident: 500_CR40
  publication-title: Fed Proc
– volume: 23
  start-page: 259
  year: 1983
  ident: 500_CR10
  publication-title: Mech Ageing Dev
  doi: 10.1016/0047-6374(83)90026-X
– volume: 14
  start-page: 11
  year: 1979
  ident: 500_CR20
  publication-title: In Vitro
  doi: 10.1007/BF02618170
– volume: 3
  start-page: 74
  year: 2013
  ident: 500_CR27
  publication-title: Keio J Med
  doi: 10.2302/kjm.2012-0017-RE
– volume: 23
  start-page: 413
  issue: Suppl. 1
  year: 1965
  ident: 500_CR54
  publication-title: Tex Rep Biol Med
– ident: 500_CR46
  doi: 10.1016/j.jacc.2016.01.083
SSID ssj0000916
Score 2.383302
SecondaryResourceType review_article
Snippet Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 95
SubjectTerms Animals
Biology
Bioprinting
Cell culture
Cell Culture Techniques - history
Cell Culture Techniques - methods
Cell differentiation
Cell interactions
Cell proliferation
Cellular structure
Differentiation (biology)
History, 20th Century
Humans
In vivo methods and tests
Interrogation
INVITED REVIEW
Models, Biological
Monolayers
Organoids
Substrates
Three dimensional models
Title Special review series on 3D organotypic culture models: Introduction and historical perspective
URI https://www.jstor.org/stable/45383481
https://www.ncbi.nlm.nih.gov/pubmed/33237402
https://www.proquest.com/docview/2499986952
https://www.proquest.com/docview/2464193744
https://www.proquest.com/docview/2551976115
https://pubmed.ncbi.nlm.nih.gov/PMC7687207
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgiGkvCMatMCYj8RZlSmwnTnmrGKhDGk-rNPESJbYjqm1JNVKk8us5x3YuHWMC-hBVju1U_T4fn-OcCyHvdAYaW5klYVUqGYoqViGsoiRUutJY0R22SIxGPv2Szhfi83lyPrg12-iStjxSP2-NK_kfVKENcMUo2X9Atp8UGuA74AtXQBiuf4WxLx7fxZ_gM409_ufHrlxT025WSxW49BrGlb2xPnAn6KCu175OeK193mGL2Go7_rJTXU_q4McSRgV41m-dV5E1enA6gqE-pdNRMKuXV8XlIN42Xry5igAXw8uoeXHdvfpwTjzjYwgWd57LuIt40Sl4KCNbl7CXrS75tOcQGwlKV1nzN_kd-XjmGOysEC1bzE8TuQDJEaCrK4so54xLEbFhL-s9DLtb98kDBgYESsAFmw17NGjFPoTKBVLefOAe2e2m2NJYnNPqbebITa_akZpy9pg88vYFnTmyPCH3TL1PHrqKo5t9snvqfSmg8WtjG5-S3POIOh5RxyPa1JQf0xGPqOcRdTx6T8csosAiOrCIjlj0jCw-fTz7MA994Y1QiSlvQ83KhE2zOC7ShCcFgCqNLDGzJFfwQSU85mmqjYy1itJqqnlUMF0plVVGCMWfk526qc1LQiUo2EaKTGeg6WqVTLXOKsHKwoCmrrWakLj7c3Pls9JjcZTLfMinjdjkgE1uscnZhAT9mJXLyXJn70OL2bgrRj_kAvZ6DEOfkIMOzNwv7u85w5OALJ0mMP5tfxtEL66xojbNGvukAuwfKcQdfRKMDE_B7pqQF44f_Q_pCDYhcos5fQdM_b59p15-syngZQoyNpKv_jjna7I3rNIDstNer80bUJ_b8tCuhF9dycOb
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Special+review+series+on+3D+organotypic+culture+models%3A+Introduction+and+historical+perspective&rft.jtitle=In+vitro+cellular+%26+developmental+biology.+Animal&rft.au=Hayden%2C+Patrick+J&rft.au=Harbell%2C+John+W&rft.date=2021-02-01&rft.eissn=1543-706X&rft.volume=57&rft.issue=2&rft.spage=95&rft_id=info:doi/10.1007%2Fs11626-020-00500-2&rft_id=info%3Apmid%2F33237402&rft.externalDocID=33237402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-2690&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-2690&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-2690&client=summon