Special review series on 3D organotypic culture models: Introduction and historical perspective
Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture...
Saved in:
Published in | In vitro cellular & developmental biology. Animal Vol. 57; no. 2; pp. 95 - 103 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Germany
Springer Science & Business Media LLC
01.02.2021
Society for In Vitro Biology Springer US |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivolike 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations ofthat approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers. |
---|---|
AbstractList | Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivo–like 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations of that approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers. Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivolike 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations ofthat approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers. Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivo-like 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations of that approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers.Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell culture methods which were developed to achieve proliferation of animal cells in the beginning of in vitro biology, the advancements in 3D culture methods are designed to promote cellular differentiation, and to achieve in vivo-like 3D structure and organotypic functions. This project was conceived through the Society for In Vitro Biology to draw on the expertise of individual scientists with special expertise in organotypic cultures of selected tissues or associated interrogation methods to prepare individual-focused reviews in this series. This introductory manuscript will review the early achievements of animal cell culture in monolayer culture and the limitations of that approach to reproduce functioning organ systems. Among these are the nature and 3D architecture of the substrate on which or in which the cells are grown, physical and mechanical clues from the substrate, cell-cell interactions, and defined biochemical factors that trigger the induction of the 3D organotypic differentiation. The organoid culture requires a source of cells with proliferative capacity (ranging from tissue-derived stem or immortalized cells to the iPSC cultures), a suitable substrate or matrix with the mechanical and stimulatory properties appropriate for the organotypic construct and the necessary stimulation of the culture to drive differentiation of the cell population to form the functioning organotypic construct. Details for each type of organotypic construct will be provided in the following papers. |
Author | Hayden, Patrick J. Harbell, John W. |
Author_xml | – sequence: 1 givenname: Patrick J. surname: Hayden fullname: Hayden, Patrick J. – sequence: 2 givenname: John W. surname: Harbell fullname: Harbell, John W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33237402$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1rFTEUhoNU7If-ARcSEMHNaL4zcVGQ-lUouFDBXchNzrS5zE3GZOZK_7253lpqF3o2CeR537ycc47RQcoJEHpKyStKiH5dKVVMdYSRjhBJSMceoCMqBe80Ud8P2p1o2jFlyCE6rnVNWhmqHqFDzhnXgrAjZL9M4KMbcYFthJ-4QolQcU6Yv8O5XLqU5-speuyXcV4K4E0OMNY3-DzNJYfFz7GxLgV8FeucS_TNa4JSm-0ct_AYPRzcWOHJzXmCvn14__XsU3fx-eP52duLzgvD5y6wlWSmp9QpyaVr-TXolWGKcd-KcSYoVyqApsETNZjAiWNh8L4fQAjPT9Dp3ndaVhsIHlo8N9qpxI0r1za7aP9-SfHKXuat1arXjOhm8PLGoOQfC9TZbmL1MI4uQV6qZVJSoxWl8v-oUIKa1mDR0Of30HVeSmqdaJQxpldGskY9uxv-NvWfMTWA7QFfcq0FhluEErvbBbvfBdt2wf7eBbsT9fdEPs5uN6_WgDj-W_piL13vZnr3M8abQkjec9FT_gsYc8SF |
CitedBy_id | crossref_primary_10_1089_ten_tec_2024_0246 crossref_primary_10_1177_02611929231156720 crossref_primary_10_3390_cells12131687 crossref_primary_10_1080_17425247_2024_2380338 crossref_primary_10_3390_cancers15071991 crossref_primary_10_3390_ijms22116128 crossref_primary_10_1002_elsc_202100128 crossref_primary_10_1038_s41598_025_90101_4 crossref_primary_10_3390_biom14091066 crossref_primary_10_1016_j_tiv_2023_105718 crossref_primary_10_3389_ftox_2024_1370045 crossref_primary_10_3390_biomedicines12102373 crossref_primary_10_1016_j_fct_2023_113944 crossref_primary_10_3390_ijms25021251 crossref_primary_10_3390_biomedicines11051476 crossref_primary_10_1038_s41420_024_02053_9 crossref_primary_10_1007_s11626_024_00958_4 crossref_primary_10_1016_j_tice_2024_102319 crossref_primary_10_3390_biomedicines12020408 |
Cites_doi | 10.1007/BF02627079 10.1126/science.149.3684.634 10.1016/j.molmed.2018.09.005 10.1007/s11095-018-2362-0 10.1128/MCB.14.9.5858 10.3181/00379727-74-17797 10.1084/jem.81.3.233 10.1016/B978-0-12-817202-5.00006-1 10.1016/j.stem.2017.11.001 10.1016/0887-2333(94)90095-7 10.1016/j.stem.2010.08.012 10.1016/0092-8674(80)90540-1 10.1038/nprot.2007.418 10.1016/B978-0-12-571126-5.50017-0 10.1016/S0074-7696(08)62241-X 10.1111/rda.13481 10.1126/science.1151526 10.2105/AJPH.45.5_Pt_1.575 10.1016/0014-4827(65)90211-9 10.1084/jem.102.1.37 10.1177/026119291103900409 10.1002/adma.201801621 10.1038/nature20168 10.3390/pharmaceutics12020152 10.1016/B978-0-12-817202-5.00002-4 10.1177/2472630318760515 10.1007/10.1007/s10616-004-5123-3 10.1002/adhm.201700939 10.1073/pnas.46.7.963 10.2183/pjab.85.348 10.1242/dev.166173 10.1016/j.bbcan.2020.188350 10.1167/iovs.18-23944 10.1007/978-1-4939-3603-8_4 10.1177/026119291804600404 10.1093/toxsci/kfq188 10.1016/0014-4827(61)90192-6 10.1007/BF01540656 10.1016/j.cell.2007.11.019 10.1089/ten.tec.2014.0376 10.1093/clinids/2.3.493 10.5858/133.9.1463 10.1016/j.cell.2006.07.024 10.1007/BF02618428 10.1016/0047-6374(83)90026-X 10.1007/BF02618170 10.2302/kjm.2012-0017-RE 10.1016/j.jacc.2016.01.083 |
ContentType | Journal Article |
Copyright | 2021 Society for In Vitro Biology The Society for In Vitro Biology 2020. The Society for In Vitro Biology 2020 |
Copyright_xml | – notice: 2021 Society for In Vitro Biology – notice: The Society for In Vitro Biology 2020. – notice: The Society for In Vitro Biology 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 7S9 L.6 5PM |
DOI | 10.1007/s11626-020-00500-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Docstoc AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Zoology Biology |
EISSN | 1543-706X |
EndPage | 103 |
ExternalDocumentID | PMC7687207 33237402 10_1007_s11626_020_00500_2 45383481 |
Genre | Historical Article Journal Article Review |
GroupedDBID | --- -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 203 29I 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40D 40E 5GY 5RE 5VS 67N 67Z 6NX 78A 7X7 8R4 8R5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHKG AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AAPSS AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBHK ABBRH ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABPLY ABQBU ABSXP ABTEG ABTHY ABTKH ABTLG ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEUPB AEVLU AEXYK AFAZZ AFDZB AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AZFZN B-. BA0 BBNVY BENPR BGNMA CBGCD CS3 CSCUP DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EMOBN ESBYG F5P FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 HF~ HG5 HG6 HMJXF HRMNR IJ- IKXTQ IPSME ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JAAYA JBMMH JBS JBSCW JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LLZTM M4Y M7P MA- N9A NF0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF0 PQ0 PT4 PT5 Q2X QOK QOR QOS R89 R9I RBO RHV ROL RPX RSV RWL RXW S16 S27 S3A S3B SA0 SAP SBL SBY SDH SDM SHX SISQX SJN SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TAE TSG TSK TSV TUC U2A U5U U9L UG4 UNMZH UOJIU UTJUX VC2 W48 WH7 WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 ~EX ~KM -JH -Y2 .55 .GJ 1SB 28- 2VQ 3SX 53G 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ AANXM AARHV AAYTO AAYXX ABDPE ABQSL ABULA ABUWG ABXSQ ACBXY ACHIC ADHKG ADHSS ADULT ADYPR AEBTG AEKMD AEPYG AEUYN AFDYV AFEXP AFFIJ AFGCZ AFKRA AFNWH AGJBK AGQPQ AGUYK AHXOZ AJBLW AKPMI AQVQM AS~ AZQEC BBWZM BDATZ BHPHI BPHCQ BVXVI CAG CCPQU CITATION COF D1J DC7 DWQXO EJD EN4 FEDTE FINBP FSGXE FYUFA GNUQQ GTFYD H13 HCIFZ HMCUK HTVGU HVGLF HZ~ LK8 M1P M2P M2Q N2Q NDZJH O9- PHGZM PHGZT PQQKQ PROAC PSQYO Q5J RNI RZK S0X S1Z S26 S28 SCLPG T16 TAF UKHRP UZXMN VFIZW WK6 X7M ZGI ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 4T- 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c493t-d2b529811a6535a7067e7b92623cccc23241366de71dc06f9d30a2dfcc8fe44c3 |
ISSN | 1071-2690 1543-706X |
IngestDate | Thu Aug 21 18:20:55 EDT 2025 Fri Jul 11 01:16:07 EDT 2025 Mon Jul 21 11:21:05 EDT 2025 Fri Jul 25 10:46:52 EDT 2025 Mon Jul 21 06:04:30 EDT 2025 Thu Apr 24 22:54:27 EDT 2025 Tue Jul 01 05:05:44 EDT 2025 Thu May 29 08:49:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Biological matrix Functional differentiation Organotypic culture iPSC |
Language | English |
License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c493t-d2b529811a6535a7067e7b92623cccc23241366de71dc06f9d30a2dfcc8fe44c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Editor: Tetsuji Okamoto |
ORCID | 0000-0001-9012-6851 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7687207 |
PMID | 33237402 |
PQID | 2499986952 |
PQPubID | 38079 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7687207 proquest_miscellaneous_2551976115 proquest_miscellaneous_2464193744 proquest_journals_2499986952 pubmed_primary_33237402 crossref_primary_10_1007_s11626_020_00500_2 crossref_citationtrail_10_1007_s11626_020_00500_2 jstor_primary_10_2307_45383481 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Heidelberg – name: New York |
PublicationTitle | In vitro cellular & developmental biology. Animal |
PublicationTitleAlternate | In Vitro Cell Dev Biol Anim |
PublicationYear | 2021 |
Publisher | Springer Science & Business Media LLC Society for In Vitro Biology Springer US |
Publisher_xml | – name: Springer Science & Business Media LLC – name: Society for In Vitro Biology – name: Springer US |
References | MC Kibbey (500_CR30) 1994; 16 X Li (500_CR33) 2016; 1422 CM Pomerat (500_CR40) 1958; 17 KR Porter (500_CR41) 1945; 81 N Gjorevski (500_CR17) 2016; 539 L Hayflick (500_CR25) 1962; 75 500_CR38 500_CR39 Z Xia (500_CR55) 2018; 23 ME Andersen (500_CR1) 2010; 117 S Yui (500_CR57) 2018; 22 N Fusake (500_CR15) 2009; 85 Y Kaluzhny (500_CR28) 2011; 39 D Barnes (500_CR3) 1980; 22 C Waymouth (500_CR54) 1965; 23 N Broguiere (500_CR5) 2018; 30 H Green (500_CR18) 1978; 15 500_CR48 H Eagle (500_CR12) 1955; 102 L Hayflick (500_CR24) 1961; 25 500_CR44 500_CR46 500_CR4 500_CR8 S Chen (500_CR7) 2019; 54 CL Cannon (500_CR6) 1994; 8 F Grinnell (500_CR19) 1978; 53 B Rana (500_CR42) 1994; 14 CA Trujillo (500_CR52) 2018; 24 JF Morgan (500_CR36) 1950; 74 JF Enders (500_CR13) 1980; 2 LJ Schiff (500_CR47) 1997; 31 500_CR14 500_CR11 K Takahashi (500_CR49) 2007; 2 L Warren (500_CR53) 2010; 7 S Ayehunie (500_CR2) 2018; 35 K Takahashi (500_CR51) 2006; 126 G Sato (500_CR45) 1960; 46 L Hayflick (500_CR23) 1965; 37 K Takahashi (500_CR50) 2007; 131 BP Lucey (500_CR34) 2009; 133 CW Daniel (500_CR9) 1965; 149 CW Daniel (500_CR10) 1983; 23 DB Kolesky (500_CR31) 2018; 46 RG Ham (500_CR20) 1979; 14 M Ieda (500_CR27) 2013; 3 GO Gey (500_CR16) 1952; 12 500_CR26 R Neupane (500_CR37) 2020; 12 500_CR21 500_CR22 F Meier (500_CR35) 2017; 40 J Yu (500_CR56) 2007; 318 Y Kaluzhny (500_CR29) 2018; 59 JE Salk (500_CR43) 1955; 45 KM Lee (500_CR32) 2004; 45 |
References_xml | – ident: 500_CR8 doi: 10.1007/BF02627079 – volume: 40 start-page: 1759 issue: 6 year: 2017 ident: 500_CR35 publication-title: Int J Mol Med – volume: 149 start-page: 634 year: 1965 ident: 500_CR9 publication-title: Science doi: 10.1126/science.149.3684.634 – volume: 24 start-page: 982 issue: 12 year: 2018 ident: 500_CR52 publication-title: Trends Mol Med doi: 10.1016/j.molmed.2018.09.005 – volume: 35 start-page: 72 issue: 4 year: 2018 ident: 500_CR2 publication-title: Pharmaceutical Res doi: 10.1007/s11095-018-2362-0 – volume: 14 start-page: 5858 issue: 9 year: 1994 ident: 500_CR42 publication-title: Mol Cell Biol doi: 10.1128/MCB.14.9.5858 – volume: 74 start-page: 22 issue: 1 year: 1950 ident: 500_CR36 publication-title: Proc Soc Exp Biol Med doi: 10.3181/00379727-74-17797 – volume: 81 start-page: 233 issue: 3 year: 1945 ident: 500_CR41 publication-title: J Exp Med doi: 10.1084/jem.81.3.233 – ident: 500_CR21 doi: 10.1016/B978-0-12-817202-5.00006-1 – volume: 22 start-page: 35 year: 2018 ident: 500_CR57 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.11.001 – volume: 8 start-page: 889 issue: 4 year: 1994 ident: 500_CR6 publication-title: Toxicol in Vitro doi: 10.1016/0887-2333(94)90095-7 – volume: 31 start-page: 1 issue: 5 year: 1997 ident: 500_CR47 publication-title: In Vitro Rep – volume: 7 start-page: 618 year: 2010 ident: 500_CR53 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.08.012 – volume: 22 start-page: 649 issue: 3 year: 1980 ident: 500_CR3 publication-title: Cell doi: 10.1016/0092-8674(80)90540-1 – volume: 15 start-page: 801 issue: 3 year: 1978 ident: 500_CR18 publication-title: Cell Biol Toxicol – volume: 2 start-page: 3081 year: 2007 ident: 500_CR49 publication-title: Nat Protoc doi: 10.1038/nprot.2007.418 – ident: 500_CR44 doi: 10.1016/B978-0-12-571126-5.50017-0 – volume: 53 start-page: 65 year: 1978 ident: 500_CR19 publication-title: Int Rev Cytol doi: 10.1016/S0074-7696(08)62241-X – volume: 54 start-page: 38 issue: Suppl. 3 year: 2019 ident: 500_CR7 publication-title: Reprod Domest Anim doi: 10.1111/rda.13481 – volume: 318 start-page: 1917 year: 2007 ident: 500_CR56 publication-title: Science doi: 10.1126/science.1151526 – volume: 45 start-page: 575 issue: 5 year: 1955 ident: 500_CR43 publication-title: Am J Publ Health Nat Health doi: 10.2105/AJPH.45.5_Pt_1.575 – volume: 37 start-page: 614 year: 1965 ident: 500_CR23 publication-title: Exp Cell Res doi: 10.1016/0014-4827(65)90211-9 – volume: 102 start-page: 37 issue: 1 year: 1955 ident: 500_CR12 publication-title: J Exp Med doi: 10.1084/jem.102.1.37 – volume: 39 start-page: 339 year: 2011 ident: 500_CR28 publication-title: Altern Lab Anim doi: 10.1177/026119291103900409 – volume: 30 issue: 43 year: 2018 ident: 500_CR5 publication-title: Adv Mater doi: 10.1002/adma.201801621 – volume: 539 start-page: 560 year: 2016 ident: 500_CR17 publication-title: Nature doi: 10.1038/nature20168 – volume: 75 start-page: 240 year: 1962 ident: 500_CR25 publication-title: Am J Hyg – volume: 12 start-page: 152 year: 2020 ident: 500_CR37 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12020152 – ident: 500_CR22 doi: 10.1016/B978-0-12-817202-5.00002-4 – volume: 23 start-page: 301 issue: 4 year: 2018 ident: 500_CR55 publication-title: SLAS Technol doi: 10.1177/2472630318760515 – volume: 45 start-page: 33 year: 2004 ident: 500_CR32 publication-title: Cytotechnology doi: 10.1007/10.1007/s10616-004-5123-3 – ident: 500_CR39 – ident: 500_CR14 doi: 10.1002/adhm.201700939 – volume: 46 start-page: 963 year: 1960 ident: 500_CR45 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.46.7.963 – volume: 85 start-page: 348 year: 2009 ident: 500_CR15 publication-title: Proc Jpn Acad Series B Physical Biol Sci doi: 10.2183/pjab.85.348 – ident: 500_CR26 doi: 10.1242/dev.166173 – ident: 500_CR38 doi: 10.1016/j.bbcan.2020.188350 – volume: 59 start-page: 2880 issue: 7 year: 2018 ident: 500_CR29 publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.18-23944 – volume: 1422 start-page: 33 year: 2016 ident: 500_CR33 publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-3603-8_4 – volume: 46 start-page: 209 issue: 4 year: 2018 ident: 500_CR31 publication-title: Altern Lab Anim doi: 10.1177/026119291804600404 – volume: 117 start-page: 17 issue: 1 year: 2010 ident: 500_CR1 publication-title: Toxicol Sci doi: 10.1093/toxsci/kfq188 – volume: 12 start-page: 264 year: 1952 ident: 500_CR16 publication-title: Cancer Res – volume: 25 start-page: 585 year: 1961 ident: 500_CR24 publication-title: Exp Cell Res doi: 10.1016/0014-4827(61)90192-6 – volume: 16 start-page: 227 year: 1994 ident: 500_CR30 publication-title: J Tissue Cult Methods doi: 10.1007/BF01540656 – volume: 131 start-page: 861 year: 2007 ident: 500_CR50 publication-title: Cell doi: 10.1016/j.cell.2007.11.019 – ident: 500_CR4 doi: 10.1089/ten.tec.2014.0376 – volume: 2 start-page: 493 year: 1980 ident: 500_CR13 publication-title: Rev Infect Dis doi: 10.1093/clinids/2.3.493 – volume: 133 start-page: 1463 year: 2009 ident: 500_CR34 publication-title: Arch Pathol Lab Med doi: 10.5858/133.9.1463 – volume: 126 start-page: 663 year: 2006 ident: 500_CR51 publication-title: Cell doi: 10.1016/j.cell.2006.07.024 – ident: 500_CR48 doi: 10.1007/BF02618428 – ident: 500_CR11 – volume: 17 start-page: 975 issue: 4 year: 1958 ident: 500_CR40 publication-title: Fed Proc – volume: 23 start-page: 259 year: 1983 ident: 500_CR10 publication-title: Mech Ageing Dev doi: 10.1016/0047-6374(83)90026-X – volume: 14 start-page: 11 year: 1979 ident: 500_CR20 publication-title: In Vitro doi: 10.1007/BF02618170 – volume: 3 start-page: 74 year: 2013 ident: 500_CR27 publication-title: Keio J Med doi: 10.2302/kjm.2012-0017-RE – volume: 23 start-page: 413 issue: Suppl. 1 year: 1965 ident: 500_CR54 publication-title: Tex Rep Biol Med – ident: 500_CR46 doi: 10.1016/j.jacc.2016.01.083 |
SSID | ssj0000916 |
Score | 2.383302 |
SecondaryResourceType | review_article |
Snippet | Three dimensional (3D) organ-like (organotypic) culture models are a rapidly advancing area of in vitro biological science. In contrast to monolayer cell... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 95 |
SubjectTerms | Animals Biology Bioprinting Cell culture Cell Culture Techniques - history Cell Culture Techniques - methods Cell differentiation Cell interactions Cell proliferation Cellular structure Differentiation (biology) History, 20th Century Humans In vivo methods and tests Interrogation INVITED REVIEW Models, Biological Monolayers Organoids Substrates Three dimensional models |
Title | Special review series on 3D organotypic culture models: Introduction and historical perspective |
URI | https://www.jstor.org/stable/45383481 https://www.ncbi.nlm.nih.gov/pubmed/33237402 https://www.proquest.com/docview/2499986952 https://www.proquest.com/docview/2464193744 https://www.proquest.com/docview/2551976115 https://pubmed.ncbi.nlm.nih.gov/PMC7687207 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgiGkvCMatMCYj8RZlSmwnTnmrGKhDGk-rNPESJbYjqm1JNVKk8us5x3YuHWMC-hBVju1U_T4fn-OcCyHvdAYaW5klYVUqGYoqViGsoiRUutJY0R22SIxGPv2Szhfi83lyPrg12-iStjxSP2-NK_kfVKENcMUo2X9Atp8UGuA74AtXQBiuf4WxLx7fxZ_gM409_ufHrlxT025WSxW49BrGlb2xPnAn6KCu175OeK193mGL2Go7_rJTXU_q4McSRgV41m-dV5E1enA6gqE-pdNRMKuXV8XlIN42Xry5igAXw8uoeXHdvfpwTjzjYwgWd57LuIt40Sl4KCNbl7CXrS75tOcQGwlKV1nzN_kd-XjmGOysEC1bzE8TuQDJEaCrK4so54xLEbFhL-s9DLtb98kDBgYESsAFmw17NGjFPoTKBVLefOAe2e2m2NJYnNPqbebITa_akZpy9pg88vYFnTmyPCH3TL1PHrqKo5t9snvqfSmg8WtjG5-S3POIOh5RxyPa1JQf0xGPqOcRdTx6T8csosAiOrCIjlj0jCw-fTz7MA994Y1QiSlvQ83KhE2zOC7ShCcFgCqNLDGzJFfwQSU85mmqjYy1itJqqnlUMF0plVVGCMWfk526qc1LQiUo2EaKTGeg6WqVTLXOKsHKwoCmrrWakLj7c3Pls9JjcZTLfMinjdjkgE1uscnZhAT9mJXLyXJn70OL2bgrRj_kAvZ6DEOfkIMOzNwv7u85w5OALJ0mMP5tfxtEL66xojbNGvukAuwfKcQdfRKMDE_B7pqQF44f_Q_pCDYhcos5fQdM_b59p15-syngZQoyNpKv_jjna7I3rNIDstNer80bUJ_b8tCuhF9dycOb |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Special+review+series+on+3D+organotypic+culture+models%3A+Introduction+and+historical+perspective&rft.jtitle=In+vitro+cellular+%26+developmental+biology.+Animal&rft.au=Hayden%2C+Patrick+J&rft.au=Harbell%2C+John+W&rft.date=2021-02-01&rft.eissn=1543-706X&rft.volume=57&rft.issue=2&rft.spage=95&rft_id=info:doi/10.1007%2Fs11626-020-00500-2&rft_id=info%3Apmid%2F33237402&rft.externalDocID=33237402 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-2690&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-2690&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-2690&client=summon |