MindLink-Eumpy: An Open-Source Python Toolbox for Multimodal Emotion Recognition

Emotion recognition plays an important role in intelligent human–computer interaction, but the related research still faces the problems of low accuracy and subject dependence. In this paper, an open-source software toolbox called MindLink-Eumpy is developed to recognize emotions by integrating elec...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 15; p. 621493
Main Authors Li, Ruixin, Liang, Yan, Liu, Xiaojian, Wang, Bingbing, Huang, Wenxin, Cai, Zhaoxin, Ye, Yaoguang, Qiu, Lina, Pan, Jiahui
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 19.02.2021
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Emotion recognition plays an important role in intelligent human–computer interaction, but the related research still faces the problems of low accuracy and subject dependence. In this paper, an open-source software toolbox called MindLink-Eumpy is developed to recognize emotions by integrating electroencephalogram (EEG) and facial expression information. MindLink-Eumpy first applies a series of tools to automatically obtain physiological data from subjects and then analyzes the obtained facial expression data and EEG data, respectively, and finally fuses the two different signals at a decision level. In the detection of facial expressions, the algorithm used by MindLink-Eumpy is a multitask convolutional neural network (CNN) based on transfer learning technique. In the detection of EEG, MindLink-Eumpy provides two algorithms, including a subject-dependent model based on support vector machine (SVM) and a subject-independent model based on long short-term memory network (LSTM). In the decision-level fusion, weight enumerator and AdaBoost technique are applied to combine the predictions of SVM and CNN. We conducted two offline experiments on the Database for Emotion Analysis Using Physiological Signals (DEAP) dataset and the Multimodal Database for Affect Recognition and Implicit Tagging (MAHNOB-HCI) dataset, respectively, and conducted an online experiment on 15 healthy subjects. The results show that multimodal methods outperform single-modal methods in both offline and online experiments. In the subject-dependent condition, the multimodal method achieved an accuracy of 71.00% in the valence dimension and an accuracy of 72.14% in the arousal dimension. In the subject-independent condition, the LSTM-based method achieved an accuracy of 78.56% in the valence dimension and an accuracy of 77.22% in the arousal dimension. The feasibility and efficiency of MindLink-Eumpy for emotion recognition is thus demonstrated.
AbstractList Emotion recognition plays an important role in intelligent human–computer interaction, but the related research still faces the problems of low accuracy and subject dependence. In this paper, an open-source software toolbox called MindLink-Eumpy is developed to recognize emotions by integrating electroencephalogram (EEG) and facial expression information. MindLink-Eumpy first applies a series of tools to automatically obtain physiological data from subjects and then analyzes the obtained facial expression data and EEG data, respectively, and finally fuses the two different signals at a decision level. In the detection of facial expressions, the algorithm used by MindLink-Eumpy is a multitask convolutional neural network (CNN) based on transfer learning technique. In the detection of EEG, MindLink-Eumpy provides two algorithms, including a subject-dependent model based on support vector machine (SVM) and a subject-independent model based on long short-term memory network (LSTM). In the decision-level fusion, weight enumerator and AdaBoost technique are applied to combine the predictions of SVM and CNN. We conducted two offline experiments on the Database for Emotion Analysis Using Physiological Signals (DEAP) dataset and the Multimodal Database for Affect Recognition and Implicit Tagging (MAHNOB-HCI) dataset, respectively, and conducted an online experiment on 15 healthy subjects. The results show that multimodal methods outperform single-modal methods in both offline and online experiments. In the subject-dependent condition, the multimodal method achieved an accuracy of 71.00% in the valence dimension and an accuracy of 72.14% in the arousal dimension. In the subject-independent condition, the LSTM-based method achieved an accuracy of 78.56% in the valence dimension and an accuracy of 77.22% in the arousal dimension. The feasibility and efficiency of MindLink-Eumpy for emotion recognition is thus demonstrated.
Emotion recognition plays an important role in intelligent human computer interaction, but the related research still faces low accuracy and subject-dependent limitation. In this paper, an open-source software toolbox called MindLink-Eumpy is developed to recognize emotions by integrating electroencephalogram (EEG) and facial expression information. MindLink-Eumpy applies a series of tools to automatically obtain physiological data from subjects. In the detection of facial expressions, the algorithm used by MindLink-Eumpy is a multi-task convolutional neural network (CNN) based on transfer learning technique. In the detection of EEG, MindLink-Eumpy provides two algorithms, including a subject-dependent model based on support vector machine (SVM) and a subject-independent model based on long short-term memory network (LSTM). In the decision-level fusion, the weight enumerator and AdaBoost technique are applied to combine the predictions of SVM and CNN. Two offline experiments were conducted on the DEAP dataset and MAHNOB-HCI dataset respectively and an online experiment was conducted on fifteen healthy subjects. The results show that multimodal methods outperform single-modal methods in both offline and online experiments. In the subject-dependent condition, the multimodal method achieved an accuracy of 71.00% for the valence dimension, and an accuracy of 72.14% for the arousal dimension. In the subject-independent condition, the LSTM-based method achieved an accuracy of 78.56% for the valence dimension, and an accuracy of 77.22% for the arousal dimension. The feasibility and efficiency of MindLink-Eumpy for emotion recognition is thus demonstrated.
Emotion recognition plays an important role in intelligent human-computer interaction, but the related research still faces the problems of low accuracy and subject dependence. In this paper, an open-source software toolbox called MindLink-Eumpy is developed to recognize emotions by integrating electroencephalogram (EEG) and facial expression information. MindLink-Eumpy first applies a series of tools to automatically obtain physiological data from subjects and then analyzes the obtained facial expression data and EEG data, respectively, and finally fuses the two different signals at a decision level. In the detection of facial expressions, the algorithm used by MindLink-Eumpy is a multitask convolutional neural network (CNN) based on transfer learning technique. In the detection of EEG, MindLink-Eumpy provides two algorithms, including a subject-dependent model based on support vector machine (SVM) and a subject-independent model based on long short-term memory network (LSTM). In the decision-level fusion, weight enumerator and AdaBoost technique are applied to combine the predictions of SVM and CNN. We conducted two offline experiments on the Database for Emotion Analysis Using Physiological Signals (DEAP) dataset and the Multimodal Database for Affect Recognition and Implicit Tagging (MAHNOB-HCI) dataset, respectively, and conducted an online experiment on 15 healthy subjects. The results show that multimodal methods outperform single-modal methods in both offline and online experiments. In the subject-dependent condition, the multimodal method achieved an accuracy of 71.00% in the valence dimension and an accuracy of 72.14% in the arousal dimension. In the subject-independent condition, the LSTM-based method achieved an accuracy of 78.56% in the valence dimension and an accuracy of 77.22% in the arousal dimension. The feasibility and efficiency of MindLink-Eumpy for emotion recognition is thus demonstrated.Emotion recognition plays an important role in intelligent human-computer interaction, but the related research still faces the problems of low accuracy and subject dependence. In this paper, an open-source software toolbox called MindLink-Eumpy is developed to recognize emotions by integrating electroencephalogram (EEG) and facial expression information. MindLink-Eumpy first applies a series of tools to automatically obtain physiological data from subjects and then analyzes the obtained facial expression data and EEG data, respectively, and finally fuses the two different signals at a decision level. In the detection of facial expressions, the algorithm used by MindLink-Eumpy is a multitask convolutional neural network (CNN) based on transfer learning technique. In the detection of EEG, MindLink-Eumpy provides two algorithms, including a subject-dependent model based on support vector machine (SVM) and a subject-independent model based on long short-term memory network (LSTM). In the decision-level fusion, weight enumerator and AdaBoost technique are applied to combine the predictions of SVM and CNN. We conducted two offline experiments on the Database for Emotion Analysis Using Physiological Signals (DEAP) dataset and the Multimodal Database for Affect Recognition and Implicit Tagging (MAHNOB-HCI) dataset, respectively, and conducted an online experiment on 15 healthy subjects. The results show that multimodal methods outperform single-modal methods in both offline and online experiments. In the subject-dependent condition, the multimodal method achieved an accuracy of 71.00% in the valence dimension and an accuracy of 72.14% in the arousal dimension. In the subject-independent condition, the LSTM-based method achieved an accuracy of 78.56% in the valence dimension and an accuracy of 77.22% in the arousal dimension. The feasibility and efficiency of MindLink-Eumpy for emotion recognition is thus demonstrated.
Author Cai, Zhaoxin
Li, Ruixin
Pan, Jiahui
Wang, Bingbing
Huang, Wenxin
Qiu, Lina
Liang, Yan
Liu, Xiaojian
Ye, Yaoguang
AuthorAffiliation 2 Pazhou Lab , Guangzhou , China
1 School of Software, South China Normal University , Guangzhou , China
AuthorAffiliation_xml – name: 1 School of Software, South China Normal University , Guangzhou , China
– name: 2 Pazhou Lab , Guangzhou , China
Author_xml – sequence: 1
  givenname: Ruixin
  surname: Li
  fullname: Li, Ruixin
– sequence: 2
  givenname: Yan
  surname: Liang
  fullname: Liang, Yan
– sequence: 3
  givenname: Xiaojian
  surname: Liu
  fullname: Liu, Xiaojian
– sequence: 4
  givenname: Bingbing
  surname: Wang
  fullname: Wang, Bingbing
– sequence: 5
  givenname: Wenxin
  surname: Huang
  fullname: Huang, Wenxin
– sequence: 6
  givenname: Zhaoxin
  surname: Cai
  fullname: Cai, Zhaoxin
– sequence: 7
  givenname: Yaoguang
  surname: Ye
  fullname: Ye, Yaoguang
– sequence: 8
  givenname: Lina
  surname: Qiu
  fullname: Qiu, Lina
– sequence: 9
  givenname: Jiahui
  surname: Pan
  fullname: Pan, Jiahui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33679348$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQtFAQecAHcEEjceEyy_gx7TEHpChaQqSNEkE4Wx5Pe9fLjL2ZB2L_Pt5siJIcOLnlrip1V9cxOQgxICHvaTHjvFKfXVhN3YwVjM6AUaH4K3JEAVheUqAHT-pDcjwM66IABiV9Qw45B6m4qI7I9aUPzcKH3_l86jbbL9lpyK42GPKfceotZtfbcRVDdhNjW8e_mYt9djm1o-9iY9ps3sXRp_YPtHEZ_K5-S1470w747uE9Ib--zW_OvueLq_OLs9NFbtOcY94UTYkgsFGyZFhyWSHWElAZVVcoa2OplUoohAIqFA7QCSfQoagaV0HJT8jFXreJZq03ve9Mv9XReH3_EfulNv3obYvaIS-Bg5CgmKCKGSyNlTVTYIBLppLW173WZqo7bCyGsTftM9HnneBXehn_6GQiF8CSwKcHgT7eTjiMuvODxbY1AeM0aCaUKmhBQSboxxfQdXI6JKs0g3QSUCWlCfXh6USPo_w7XALQPcD2cRh6dI8QWuhdOPR9OPQuHHofjsSRLzjWj2Z3tLSUb__DvAOnIr_R
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3263670
crossref_primary_10_1109_TIM_2022_3165280
crossref_primary_10_3390_math10173159
crossref_primary_10_3389_fncom_2021_741086
crossref_primary_10_3390_mti9030028
crossref_primary_10_3389_fnins_2024_1355512
crossref_primary_10_5937_telfor2202073S
crossref_primary_10_4103_jmss_jmss_59_22
crossref_primary_10_1109_OJEMB_2023_3240280
crossref_primary_10_1109_JBHI_2024_3430310
crossref_primary_10_3389_fnins_2022_988535
crossref_primary_10_3389_fncom_2021_723843
crossref_primary_10_3390_diagnostics13050977
Cites_doi 10.1088/1757-899X/557/1/012032
10.1109/EMBC.2017.8037544
10.1007/s11517-012-1026-1
10.1109/TBME.2018.2889705
10.1109/IJCNN.2015.7280835
10.1117/12.600746
10.1007/BF00994018
10.1016/j.imavis.2012.10.002
10.1109/PROC.1982.12433
10.1109/tnb.2005.853657
10.1109/TCYB.2019.2904052
10.1016/j.inffus.2017.02.003
10.1109/TMM.2018.2798287
10.1007/s40708-016-0031-9
10.1109/CSIT.2016.7549457
10.1109/MCSE.2011.37
10.1109/CVPR.2001.990517
10.1007/978-3-540-85099-1_8
10.1109/72.554195
10.3389/fict.2017.00001
10.1017/S0954579499001947
10.1017/S0954579405050340
10.1016/j.brainres.2019.04.016
10.1016/j.neunet.2014.09.005
10.1109/T-AFFC.2011.15
10.1145/3388142.3388167
10.1007/s00779-011-0479-9
10.1016/j.jad.2010.10.034
10.1109/T-AFFC.2011.25
10.1109/ACCESS.2019.2949707
10.1109/FG.2011.5771414
10.14569/IJACSA.2017.081046
10.4103/0972-6748.57865
10.1109/ICSSIT46314.2019.8987899
10.1162/neco.1997.9.8.1735
10.1109/IHMSC.2019.00078
10.1016/j.aap.2014.04.010
10.1186/s12911-017-0562-x
10.1109/IHMSC.2017.201
10.1016/S0165-0173(97)00064-7
10.1037/0022-3514.58.2.330
10.1007/s00521-014-1653-6
10.1016/0005-7916(94)90063-9
10.1109/ICPR.2018.8545411
ContentType Journal Article
Copyright Copyright © 2021 Li, Liang, Liu, Wang, Huang, Cai, Ye, Qiu and Pan.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Li, Liang, Liu, Wang, Huang, Cai, Ye, Qiu and Pan. 2021 Li, Liang, Liu, Wang, Huang, Cai, Ye, Qiu and Pan
Copyright_xml – notice: Copyright © 2021 Li, Liang, Liu, Wang, Huang, Cai, Ye, Qiu and Pan.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Li, Liang, Liu, Wang, Huang, Cai, Ye, Qiu and Pan. 2021 Li, Liang, Liu, Wang, Huang, Cai, Ye, Qiu and Pan
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2021.621493
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_fe35636476924192ae5ac7b296a63729
PMC7933462
33679348
10_3389_fnhum_2021_621493
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
– fundername: National Natural Science Foundation of China
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-d0d5e64ed9752e5378eeb76e9a9b8e7bac1c7949e6068e4f6ef4f4efe48df8653
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:12:49 EDT 2025
Thu Aug 21 14:06:44 EDT 2025
Fri Jul 11 08:54:31 EDT 2025
Fri Jul 25 11:42:11 EDT 2025
Thu Apr 03 07:04:05 EDT 2025
Thu Apr 24 23:03:20 EDT 2025
Tue Jul 01 03:44:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords subject-independent method
multitask convolutional neural network (CNN)
support vector machine (SVM)
long short-term memory network (LSTM)
multimodal emotion recognition
Language English
License Copyright © 2021 Li, Liang, Liu, Wang, Huang, Cai, Ye, Qiu and Pan.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-d0d5e64ed9752e5378eeb76e9a9b8e7bac1c7949e6068e4f6ef4f4efe48df8653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience
These authors have contributed equally to this work
Reviewed by: Pietro Aricò, Sapienza University of Rome, Italy; Yisi Liu, Fraunhofer Singapore, Singapore
Edited by: Anton Nijholt, University of Twente, Netherlands
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2021.621493
PMID 33679348
PQID 2634869511
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_fe35636476924192ae5ac7b296a63729
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7933462
proquest_miscellaneous_2499010167
proquest_journals_2634869511
pubmed_primary_33679348
crossref_primary_10_3389_fnhum_2021_621493
crossref_citationtrail_10_3389_fnhum_2021_621493
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-19
PublicationDateYYYYMMDD 2021-02-19
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Park (B31) 2013; 51
Littlewort (B27) 2011
Roidl (B38) 2014; 70
Thomson (B43) 1982; 70
van der Walt (B44) 2011; 13
Li (B25) 2019; 7
Punkanen (B36) 2011; 130
Soleymani (B40) 2012; 3
Nguyen (B30) 2018
Sur (B42) 2009; 18
Chen (B7) 2017; 17
Koelstra (B22) 2013; 31
Rodrigues (B37) 2019; 66
Buitelaar (B4) 1999; 11
Buitelaar (B5) 2018; 20
Gu (B16) 2019; 1718
Goodfellow (B15) 2015; 64
Castellano (B6) 2008
Lang (B23) 1997
Guzel Aydin (B17) 2016; 3
Posner (B34) 2005; 17
Cortes (B8) 1995; 20
Jiang (B20) 2019
Lawrence (B24) 1997; 8
Davidson (B11) 1990; 58
Sebe (B39) 2005
Li (B26) 2020; 50
Ng (B29) 2019; 557
Nath (B28) 2020
Koelstra (B21) 2012; 3
Di Flumeri (B12) 2017
Pedregosa (B32) 2011; 12
Viola (B45) 2001
Poria (B33) 2017; 37
Yan den Broek (B46) 2013; 17
He (B18) 2017
Alhagry (B1) 2017; 8
Damasio (B9) 1998; 26
Georgieva (B14) 2015; 26
Bradley (B3) 1994; 25
Hochreiter (B19) 1997; 9
Duan (B13) 2005; 4
Das (B10) 2015
Soleymani (B41) 2017; 4
Prakash (B35) 2019
Alsolamy (B2) 2016
References_xml – volume: 557
  year: 2019
  ident: B29
  article-title: PSD-based features extraction for EEG signal during typing task.
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/557/1/012032
– start-page: 3228
  year: 2017
  ident: B12
  article-title: EEG-based approach-withdrawal index for the pleasantness evaluation during taste experience in realistic settings
  publication-title: Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  doi: 10.1109/EMBC.2017.8037544
– volume: 51
  start-page: 571
  year: 2013
  ident: B31
  article-title: Evaluation of feature extraction methods for EEG-based brain–computer interfaces in terms of robustness to slight changes in electrode locations.
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-1026-1
– volume: 66
  start-page: 2390
  year: 2019
  ident: B37
  article-title: Riemannian procrustes analysis: transfer learning for brain–computer interfaces.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2889705
– start-page: 1
  year: 2015
  ident: B10
  article-title: Adaptive parameterized AdaBoost algorithm with application in EEG motor imagery classification
  publication-title: Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN)
  doi: 10.1109/IJCNN.2015.7280835
– start-page: 56
  year: 2005
  ident: B39
  article-title: Multimodal approaches for emotion recognition: a survey
  publication-title: Proceedings of the SPIE
  doi: 10.1117/12.600746
– volume: 20
  start-page: 273
  year: 1995
  ident: B8
  article-title: Support-vector networks.
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 31
  start-page: 164
  year: 2013
  ident: B22
  article-title: Fusion of facial expressions and EEG for implicit affective tagging.
  publication-title: Image Vision Comput.
  doi: 10.1016/j.imavis.2012.10.002
– volume: 70
  start-page: 1055
  year: 1982
  ident: B43
  article-title: Spectrum estimation and harmonic analysis.
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1982.12433
– volume: 4
  start-page: 228
  year: 2005
  ident: B13
  article-title: Multiple SVM-RFE for gene selection in cancer classification with expression data.
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/tnb.2005.853657
– volume: 50
  start-page: 3281
  year: 2020
  ident: B26
  article-title: Multisource transfer learning for cross-subject eeg emotion recognition.
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2904052
– volume: 37
  start-page: 98
  year: 2017
  ident: B33
  article-title: A review of affective computing: from unimodal analysis to multimodal fusion.
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.02.003
– volume: 20
  start-page: 2454
  year: 2018
  ident: B5
  article-title: Mixed emotions: an open-source toolbox for multimodal emotion analysis.
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2018.2798287
– volume: 12
  start-page: 2825
  year: 2011
  ident: B32
  article-title: Scikit-learn: machine learning in python.
  publication-title: J. Mach. Learn. Res.
– volume: 3
  start-page: 109
  year: 2016
  ident: B17
  article-title: Wavelet-based study of valence–arousal model of emotions on EEG signals with LabVIEW.
  publication-title: Brain Inf.
  doi: 10.1007/s40708-016-0031-9
– start-page: 1
  year: 2016
  ident: B2
  article-title: Emotion estimation from EEG signals during listening to Quran using PSD features
  publication-title: Proceedings of the 2016 7th International Conference on Computer Science and Information Technology (CSIT)
  doi: 10.1109/CSIT.2016.7549457
– volume: 13
  start-page: 22
  year: 2011
  ident: B44
  article-title: The numpy array: a structure for efficient numerical computation.
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– start-page: I
  year: 2001
  ident: B45
  article-title: Rapid object detection using a boosted cascade of simple features
  publication-title: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001
  doi: 10.1109/CVPR.2001.990517
– start-page: 92
  year: 2008
  ident: B6
  article-title: Emotion recognition through multiple modalities: face, body gesture, speech
  publication-title: Affect and Emotion in Human-Computer Interaction: From Theory to Applications Lecture Notes in Computer Science
  doi: 10.1007/978-3-540-85099-1_8
– volume: 8
  start-page: 98
  year: 1997
  ident: B24
  article-title: Face recognition: a convolutional neural-network approach.
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.554195
– volume: 4
  start-page: 1
  year: 2017
  ident: B41
  article-title: Toolbox foremotional feature extraction from physiological signals (TEAP).
  publication-title: Front. ICT
  doi: 10.3389/fict.2017.00001
– volume: 11
  start-page: 39
  year: 1999
  ident: B4
  article-title: Theory of mind and emotion-recognition functioning in autistic spectrum disorders and in psychiatric control and normal children.
  publication-title: Dev. Psychopathol.
  doi: 10.1017/S0954579499001947
– volume: 17
  start-page: 715
  year: 2005
  ident: B34
  article-title: The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology.
  publication-title: Dev. Psychopathol.
  doi: 10.1017/S0954579405050340
– volume: 1718
  start-page: 252
  year: 2019
  ident: B16
  article-title: Inhibitory control of emotional interference in children with learning disorders: evidence from event-related potentials and event-related spectral perturbation analysis.
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2019.04.016
– volume: 64
  start-page: 59
  year: 2015
  ident: B15
  article-title: Challenges in representation learning: a report on three machine learning contests.
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.005
– volume: 3
  start-page: 18
  year: 2012
  ident: B21
  article-title: DEAP: a database for emotion analysis; using physiological signals.
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– year: 2020
  ident: B28
  article-title: A comparative study of subject-dependent and subject-independent strategies for EEG-based emotion recognition using LSTM network
  publication-title: Proceedings of the 2020 the 4th International Conference on Compute and Data Analysis
  doi: 10.1145/3388142.3388167
– volume: 17
  start-page: 53
  year: 2013
  ident: B46
  article-title: Ubiquitous emotion-aware computing.
  publication-title: Pers. Ubiquit. Comput.
  doi: 10.1007/s00779-011-0479-9
– volume: 130
  start-page: 118
  year: 2011
  ident: B36
  article-title: Biased emotional recognition in depression: perception of emotions in music by depressed patients.
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2010.10.034
– volume: 3
  start-page: 42
  year: 2012
  ident: B40
  article-title: A multimodal database for affect recognition and implicit tagging.
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.25
– volume: 7
  start-page: 155724
  year: 2019
  ident: B25
  article-title: The fusion of electroencephalography and facial expression for continuous emotion recognition.
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949707
– start-page: 298
  year: 2011
  ident: B27
  article-title: The computer expression recognition toolbox (CERT)
  publication-title: Proceedings of the 2011 IEEE International Conference on Automatic Face Gesture Recognition (FG)
  doi: 10.1109/FG.2011.5771414
– volume: 8
  start-page: 355
  year: 2017
  ident: B1
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network.
  publication-title: Int. J. Adv. Comput. Sci. Appl.
  doi: 10.14569/IJACSA.2017.081046
– volume: 18
  start-page: 70
  year: 2009
  ident: B42
  article-title: Event-related potential: an overview.
  publication-title: Ind. Psychiatry J.
  doi: 10.4103/0972-6748.57865
– start-page: 861
  year: 2019
  ident: B35
  article-title: Face Recognition with convolutional neural network and transfer learning
  publication-title: Proceedings of the 2019 International Conference on Smart Systems and Inventive Technology (ICSSIT)
  doi: 10.1109/ICSSIT46314.2019.8987899
– volume: 9
  start-page: 1735
  year: 1997
  ident: B19
  article-title: Long short-term memory.
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 309
  year: 2019
  ident: B20
  article-title: Cross-subject emotion recognition with a decision tree classifier based on sequential backward selection
  publication-title: Proceedings of the 2019 11th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)
  doi: 10.1109/IHMSC.2019.00078
– volume: 70
  start-page: 282
  year: 2014
  ident: B38
  article-title: Emotional states of drivers and the impact on speed, acceleration and traffic violations-a simulator study.
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2014.04.010
– volume: 17
  year: 2017
  ident: B7
  article-title: Subject-independent emotion recognition based on physiological signals: a three-stage decision method.
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-017-0562-x
– start-page: 399
  year: 2017
  ident: B18
  article-title: A MEMD method of human emotion recognition based on valence-arousal model
  publication-title: 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)
  doi: 10.1109/IHMSC.2017.201
– start-page: 97
  year: 1997
  ident: B23
  article-title: Motivated attention: affect, activation, and action
  publication-title: Attention and Orienting: Sensory and Motivational Processes
– volume: 26
  start-page: 83
  year: 1998
  ident: B9
  article-title: Emotion in the perspective of an integrated nervous.
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(97)00064-7
– volume: 58
  start-page: 330
  year: 1990
  ident: B11
  article-title: Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology: I.
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/0022-3514.58.2.330
– volume: 26
  start-page: 573
  year: 2015
  ident: B14
  article-title: Learning to decode human emotions from event-related potentials.
  publication-title: Neural Comput Appl.
  doi: 10.1007/s00521-014-1653-6
– volume: 25
  start-page: 49
  year: 1994
  ident: B3
  article-title: Measuring emotion: the self-assessment manikin and the semantic differential.
  publication-title: J. Behav. Ther. Exp. Psychiatry
  doi: 10.1016/0005-7916(94)90063-9
– start-page: 3543
  year: 2018
  ident: B30
  article-title: Meta transfer learning for facial emotion recognition
  publication-title: Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR)
  doi: 10.1109/ICPR.2018.8545411
SSID ssj0062651
Score 2.3702042
Snippet Emotion recognition plays an important role in intelligent human–computer interaction, but the related research still faces the problems of low accuracy and...
Emotion recognition plays an important role in intelligent human-computer interaction, but the related research still faces the problems of low accuracy and...
Emotion recognition plays an important role in intelligent human computer interaction, but the related research still faces low accuracy and subject-dependent...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 621493
SubjectTerms Accuracy
Algorithms
Arousal
Artificial intelligence
Brain research
Datasets
EEG
Electroencephalography
Emotions
Experiments
Long short-term memory
long short-term memory network (LSTM)
Methods
multimodal emotion recognition
multitask convolutional neural network (CNN)
Nervous system
Neural networks
Neuroscience
Physiology
Software
subject-independent method
support vector machine (SVM)
Support vector machines
Transfer learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA_SJ19EWz9Wq0QQH4TY283HJr6dcqUIStEW-hY22QkV2l3RO-j9984ke0dPRF983SRsMpmZzC8zmWHsFbQ6Qp2kiE4GoYydiRBTI9B6lqgynZpBjrb4bE7O1ccLfXGr1BfFhJX0wIVwRwmkNpTk3CBSQHOkA93FNjTOdIZcTqR98czbgKmig9FK13XxYSIEc0dpuFzRs_OmfmsaxARy5xTKyfr_ZGH-Hih56-Q5vs_uTSYjn5epPmB3YNhnB_MB4fL1mr_mOYgz344fsNNPiLEJX4oF7tP6HZ8PnGJGxNd8Sc9P15QrgJ-N41UYbzharDw_wb0ee_zFotT04V82UUXj8JCdHy_OPpyIqWiCiLiupehnvQajoHetbkDL1gKE1oDrXLDQhi7WEWXQASIXCyoZSCopSKBsn6zR8hHbG8YBnjDeSCNBR1VHPMMQdFvXtSHIZJMEco9WbLYhoo9TRnEqbHHlEVkQ3X2muye6-0L3ir3ZDvle0mn8rfN72pltR8qEnT8gf_iJP_y_-KNih5t99ZN4_vSNkcoaNC7rir3cNqNgkbekG2BcYR9FLkN6pVGxx4UNtjOR0qBeU7Zi7Q6D7Ex1t2X4dpmTd-M4qUzz9H-s7Rm7S-SiIPLaHbK95Y8VPEcbaRleZHH4BUv7DrA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI_g9sILAsZH2UBBQjwghV2bjya8oBu6aUJiOo1N2lvVpM6GtLVju5N2_z122js4hPbaJmpqO45_tmMz9h5KHSCPUgQnvVDGjoUPsRBoPUtUmU6NIWVbHJnDU_XtTJ8NDrfbIa1ypROTom66QD7yvcJIZQ3aA_mX61-CukZRdHVoofGQbaEKtnbEtvanR7PjlS5Ga13nfSwToZjbi-3Fgq6fF_knUyA2kBunUSra_z9L89-Eyb9OoIMn7PFgOvJJz-un7AG0z9j2pEXYfLXkH3hK5kxe8m02-45Ym3CmmCK_lp_5pOWUOyJ-JGc9ny2pZgA_6bpL391xtFx5uop71TX4iWnf24cfr7KLuvY5Oz2Ynnw9FEPzBBHwv-aiGTcajILGlboALUsL4EsDrnbeQunrkAfciw4QwVhQ0UBUUUEEZZtojZYv2KjtWnjFeCGNBB1UHvAsQ_BtXV16L6ONEihMmrHxiohVGCqLU4OLywoRBtG9SnSviO5VT_eMfVxPue7Latw3eJ84sx5IFbHTg-7mvBo2WBVBakPF8A0iSjRba9B1KH3hTG0oNJmx3RVfq2Gb3lZ_hCpj79avcYNR1KRuoVvgGEWhQ7qtkbGXvRisVyKlQf2mbMbKDQHZWOrmm_bnRSrijfOkMsXr-5e1wx4RIShNPHe7bDS_WcAbtILm_u0g6r8B_7AI4g
  priority: 102
  providerName: ProQuest
Title MindLink-Eumpy: An Open-Source Python Toolbox for Multimodal Emotion Recognition
URI https://www.ncbi.nlm.nih.gov/pubmed/33679348
https://www.proquest.com/docview/2634869511
https://www.proquest.com/docview/2499010167
https://pubmed.ncbi.nlm.nih.gov/PMC7933462
https://doaj.org/article/fe35636476924192ae5ac7b296a63729
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9q--KLqPUjWo8VxAch9ZLdbBJB5CpXi9By1B7cW8juzbbCNdHzDnr_vTObDzw5BF8CSTZfszuZ329ndgbgDaaJxcjJ0ObShEpnw9BYF4eEniX9MnM1RB9tcaHPpurrLJntQVfeqhXgr53UjutJTZeL47ufm0-k8B-ZcZK9fe-qmzUvKo-jYx0T4pf34IAMU8oFDc5V71Qg6O6rMUZaE_8ipNM4OXffYstM-Wz-uyDo35GUf5im04fwoMWUYtQMgkewh9VjOBxVxKdvN-Kt8FGefvr8ECbnRMKZgIZj6sjNBzGqBAeVhN_8LL6YbDiZgLiq64Wp7wRBWuHX6N7Wc3rEuCn6Iy67sKO6egLT0_HV57OwraoQWvquVTgfzhPUCud5msSYyDRDNKnGvMxNhqkpbWRJSXMkapOhchqdcgodqmzuMp3Ip7Bf1RU-BxFLLTGxKrJk5IiVZ3mZGiNd5iSy_zSAYSfEwrYpx7nyxaIg6sFyL7zcC5Z70cg9gHf9JT-afBv_anzCPdM35FTZ_kC9vC5azSscykRzlnxNVJPwbIlJaVMT57rU7LMM4Kjr16IbfkWspco0oc8ogNf9adI8dqeUFdZraqPYp8jLOAJ41gyD_k2k1PTjU1kA6dYA2XrV7TPV9xuf3Zuuk0rHL_5HEC_hPu9xNHmUH8H-arnGVwSWVmYAByfji8nlwE820PbLLBp4tfgNhDAU_g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELem7gFeEDA-AgOMBDwghTW248RICHXQqWNbVY1O2ptJnDND2pKxtYL-U_yN3OWjUIT2ttfYVqzzz-f7-c53jL2AJHYQeRk6I_NQ6bQf5s6LEK1niSrTqD7U0RZjPTpSn47j4zX2q3sLQ2GVnU6sFXVROboj3xJaqlSjPRC9P_8eUtUo8q52JTQaWOzB4gdStst3ux9xfV8KsTOcfhiFbVWB0CkjZ2HRL2LQCgqTxAJimaQAeaLBZCZPIckzFzkEqQE07VNQXoNXXoEHlRY-1VQlAlX-upK6L3psfXs4nhx2uh_ZQRw1vlOkfmbLlydzeu4uojdaIBeRK6dfXSTgf5btvwGaf514O7fZrdZU5YMGW3fYGpR32cagRJp-tuCveB08Wt_Kb7DJAXJ74rXhEPGxeMsHJadYlfBz7RzgkwXlKODTqjrNq58cLWVeP_09qwr8xbCpJcQPu2imqrzHjq5FrPdZr6xKeMi4kFpC7FTk8OxEsp-aLMlz6VMvgdyyAet3QrSuzWROBTVOLTIakrut5W5J7raRe8BeL4ecN2k8ruq8TSuz7EgZuOsP1cVX225o60HGmpLva2SwaCZnEGcuyYXRmSZXaMA2u3W1rVq4tH9AHLDny2bc0OSlyUqo5thHkauSXocE7EEDg-VMpNSoT1UasGQFICtTXW0pv53UScNxnFRaPLp6Ws_YjdH0YN_u7473HrObJBQKUY_MJuvNLubwBC2wWf60hT1nX657p_0GfO1Hjw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnYR4QcD4CAwwEvCAFNrEjhMjIdSxVhuDqhqbtLcscc4MaUvG1gr6r_HXcZePQhHa215jW7HOd-f7-b4AXmAcWQyc9K2Rua90MvBz60KfrGdJKtOoAdbRFhO9c6g-HkVHa_Cry4XhsMpOJ9aKuqgsv5H3Qy1VoskeCPquDYuYbo_fn3_3uYMUe1q7dhoNi-zh4gfBt8t3u9t01i_DcDw6-LDjtx0GfKuMnPnFoIhQKyxMHIUYyThBzGONJjN5gnGe2cASwxokMz9B5TQ65RQ6VEnhEs0dI0j9r8eMinqwvjWaTPe7e4CQQhQ0flSCgabvypM5p76HwRsdEi6RKzdh3TDgf1buv8Gaf91-49twqzVbxbDhszuwhuVd2BiWBNnPFuKVqANJ6xf6DZh-JpzPGNcfEa8s3ophKThuxf9SOwrEdMH1CsRBVZ3m1U9BVrOo04DPqoJ-MWr6Con9LrKpKu_B4bWQ9T70yqrEhyBCqSVGVgWW7lEC_onJ4jyXLnES2UXrwaAjYmrbqubcXOM0JXTDdE9ruqdM97Shuwevl0vOm5IeV03e4pNZTuRq3PWH6uJr2gp36lBGmgvxa0KzZDJnGGU2zkOjM81uUQ82u3NNWxVxmf5haA-eL4dJuNljk5VYzWmOYrclZ4p48KBhg-VOpNSkW1XiQbzCICtbXR0pv53UBcRpnVQ6fHT1tp7BDZKw9NPuZO8x3GSacLR6YDahN7uY4xMyxmb505brBRxft6D9BngES8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MindLink-Eumpy%3A+An+Open-Source+Python+Toolbox+for+Multimodal+Emotion+Recognition&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Li%2C+Ruixin&rft.au=Liang%2C+Yan&rft.au=Liu%2C+Xiaojian&rft.au=Wang%2C+Bingbing&rft.date=2021-02-19&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=15&rft_id=info:doi/10.3389%2Ffnhum.2021.621493&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2021_621493
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon