Nanocapsule of MnS Nanopolyhedron Core@CoS Nanoparticle/Carbon Shell@Pure Carbon Shell as Anode Material for High-Performance Lithium Storage
MnS has been explored as an anode material for lithium-ion batteries due to its high theoretical capacity, but low electronic conductivity and severe volume change induce low reversible capacity and poor cycling performance. In this work, the nanocapsule consisting of MnS nanopolyhedrons confined in...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 2; p. 898 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
16.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MnS has been explored as an anode material for lithium-ion batteries due to its high theoretical capacity, but low electronic conductivity and severe volume change induce low reversible capacity and poor cycling performance. In this work, the nanocapsule consisting of MnS nanopolyhedrons confined in independent, closed and conductive hollow polyhedral nanospheres is prepared by embedding MnCO3 nanopolyhedrons into ZIF-67, followed by coating of RF resin and gaseous sulfurization/carbonization. Benefiting from the unique nanocapsule structure, especially inner CoS/C shell and outer pure C shell, the MnS@CoS/C@C composite as anode material presents excellent cycling performance (674 mAh g−1 at 1 A g−1 after 300 cycles; 481 mAh g−1 at 5 A g−1 after 300 cycles) and superior rate capability (1133.3 and 650.6 mAh g−1 at 0.1 and 4 A g−1), compared to the control materials (MnS and MnS@CoS/C) and other MnS composites. Kinetics measurements further reveal a high proportion of the capacitive effect and low reaction impedance of MnS@CoS/C@C. SEM and TEM observation on the cycled electrode confirms superior structural stability of MnS@CoS/C@C during long-term cycles. Excellent lithium storage performance and the convenient synthesis strategy demonstrates that the MnS@CoS/C@C nanocapsule is a promising high-performance anode material. |
---|---|
AbstractList | MnS has been explored as an anode material for lithium-ion batteries due to its high theoretical capacity, but low electronic conductivity and severe volume change induce low reversible capacity and poor cycling performance. In this work, the nanocapsule consisting of MnS nanopolyhedrons confined in independent, closed and conductive hollow polyhedral nanospheres is prepared by embedding MnCO3 nanopolyhedrons into ZIF-67, followed by coating of RF resin and gaseous sulfurization/carbonization. Benefiting from the unique nanocapsule structure, especially inner CoS/C shell and outer pure C shell, the MnS@CoS/C@C composite as anode material presents excellent cycling performance (674 mAh g−1 at 1 A g−1 after 300 cycles; 481 mAh g−1 at 5 A g−1 after 300 cycles) and superior rate capability (1133.3 and 650.6 mAh g−1 at 0.1 and 4 A g−1), compared to the control materials (MnS and MnS@CoS/C) and other MnS composites. Kinetics measurements further reveal a high proportion of the capacitive effect and low reaction impedance of MnS@CoS/C@C. SEM and TEM observation on the cycled electrode confirms superior structural stability of MnS@CoS/C@C during long-term cycles. Excellent lithium storage performance and the convenient synthesis strategy demonstrates that the MnS@CoS/C@C nanocapsule is a promising high-performance anode material. MnS has been explored as an anode material for lithium-ion batteries due to its high theoretical capacity, but low electronic conductivity and severe volume change induce low reversible capacity and poor cycling performance. In this work, the nanocapsule consisting of MnS nanopolyhedrons confined in independent, closed and conductive hollow polyhedral nanospheres is prepared by embedding MnCO 3 nanopolyhedrons into ZIF-67, followed by coating of RF resin and gaseous sulfurization/carbonization. Benefiting from the unique nanocapsule structure, especially inner CoS/C shell and outer pure C shell, the MnS@CoS/C@C composite as anode material presents excellent cycling performance (674 mAh g −1 at 1 A g −1 after 300 cycles; 481 mAh g −1 at 5 A g −1 after 300 cycles) and superior rate capability (1133.3 and 650.6 mAh g −1 at 0.1 and 4 A g −1 ), compared to the control materials (MnS and MnS@CoS/C) and other MnS composites. Kinetics measurements further reveal a high proportion of the capacitive effect and low reaction impedance of MnS@CoS/C@C. SEM and TEM observation on the cycled electrode confirms superior structural stability of MnS@CoS/C@C during long-term cycles. Excellent lithium storage performance and the convenient synthesis strategy demonstrates that the MnS@CoS/C@C nanocapsule is a promising high-performance anode material. MnS has been explored as an anode material for lithium-ion batteries due to its high theoretical capacity, but low electronic conductivity and severe volume change induce low reversible capacity and poor cycling performance. In this work, the nanocapsule consisting of MnS nanopolyhedrons confined in independent, closed and conductive hollow polyhedral nanospheres is prepared by embedding MnCO nanopolyhedrons into ZIF-67, followed by coating of RF resin and gaseous sulfurization/carbonization. Benefiting from the unique nanocapsule structure, especially inner CoS/C shell and outer pure C shell, the MnS@CoS/C@C composite as anode material presents excellent cycling performance (674 mAh g at 1 A g after 300 cycles; 481 mAh g at 5 A g after 300 cycles) and superior rate capability (1133.3 and 650.6 mAh g at 0.1 and 4 A g ), compared to the control materials (MnS and MnS@CoS/C) and other MnS composites. Kinetics measurements further reveal a high proportion of the capacitive effect and low reaction impedance of MnS@CoS/C@C. SEM and TEM observation on the cycled electrode confirms superior structural stability of MnS@CoS/C@C during long-term cycles. Excellent lithium storage performance and the convenient synthesis strategy demonstrates that the MnS@CoS/C@C nanocapsule is a promising high-performance anode material. MnS has been explored as an anode material for lithium-ion batteries due to its high theoretical capacity, but low electronic conductivity and severe volume change induce low reversible capacity and poor cycling performance. In this work, the nanocapsule consisting of MnS nanopolyhedrons confined in independent, closed and conductive hollow polyhedral nanospheres is prepared by embedding MnCO3 nanopolyhedrons into ZIF-67, followed by coating of RF resin and gaseous sulfurization/carbonization. Benefiting from the unique nanocapsule structure, especially inner CoS/C shell and outer pure C shell, the MnS@CoS/C@C composite as anode material presents excellent cycling performance (674 mAh g-1 at 1 A g-1 after 300 cycles; 481 mAh g-1 at 5 A g-1 after 300 cycles) and superior rate capability (1133.3 and 650.6 mAh g-1 at 0.1 and 4 A g-1), compared to the control materials (MnS and MnS@CoS/C) and other MnS composites. Kinetics measurements further reveal a high proportion of the capacitive effect and low reaction impedance of MnS@CoS/C@C. SEM and TEM observation on the cycled electrode confirms superior structural stability of MnS@CoS/C@C during long-term cycles. Excellent lithium storage performance and the convenient synthesis strategy demonstrates that the MnS@CoS/C@C nanocapsule is a promising high-performance anode material.MnS has been explored as an anode material for lithium-ion batteries due to its high theoretical capacity, but low electronic conductivity and severe volume change induce low reversible capacity and poor cycling performance. In this work, the nanocapsule consisting of MnS nanopolyhedrons confined in independent, closed and conductive hollow polyhedral nanospheres is prepared by embedding MnCO3 nanopolyhedrons into ZIF-67, followed by coating of RF resin and gaseous sulfurization/carbonization. Benefiting from the unique nanocapsule structure, especially inner CoS/C shell and outer pure C shell, the MnS@CoS/C@C composite as anode material presents excellent cycling performance (674 mAh g-1 at 1 A g-1 after 300 cycles; 481 mAh g-1 at 5 A g-1 after 300 cycles) and superior rate capability (1133.3 and 650.6 mAh g-1 at 0.1 and 4 A g-1), compared to the control materials (MnS and MnS@CoS/C) and other MnS composites. Kinetics measurements further reveal a high proportion of the capacitive effect and low reaction impedance of MnS@CoS/C@C. SEM and TEM observation on the cycled electrode confirms superior structural stability of MnS@CoS/C@C during long-term cycles. Excellent lithium storage performance and the convenient synthesis strategy demonstrates that the MnS@CoS/C@C nanocapsule is a promising high-performance anode material. |
Author | Zhang, Dong Yang, Peng Guo, Shaoyi Yuan, Yongfeng Yang, Qiuhe Cheng, Jipeng |
AuthorAffiliation | 3 Fair Friend Institute of Intelligent Manufacturing, Hangzhou Vocational & Technical College, Hangzhou 310018, China 4 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China 2 Hang Zhou City of Quality and Technical Supervision and Testing Institute, Hangzhou 310019, China 1 College of Machinery Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China |
AuthorAffiliation_xml | – name: 3 Fair Friend Institute of Intelligent Manufacturing, Hangzhou Vocational & Technical College, Hangzhou 310018, China – name: 4 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China – name: 1 College of Machinery Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China – name: 2 Hang Zhou City of Quality and Technical Supervision and Testing Institute, Hangzhou 310019, China |
Author_xml | – sequence: 1 givenname: Peng surname: Yang fullname: Yang, Peng – sequence: 2 givenname: Yongfeng orcidid: 0000-0001-7846-2617 surname: Yuan fullname: Yuan, Yongfeng – sequence: 3 givenname: Dong surname: Zhang fullname: Zhang, Dong – sequence: 4 givenname: Qiuhe surname: Yang fullname: Yang, Qiuhe – sequence: 5 givenname: Shaoyi surname: Guo fullname: Guo, Shaoyi – sequence: 6 givenname: Jipeng orcidid: 0000-0003-4698-516X surname: Cheng fullname: Cheng, Jipeng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36677954$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhiNURD_gB3BBlrj0sjS2kzi-oFYR0EpbqLRwtvwx3vUqsRc7QeqP4D_j7W7RtoiTR--883g8ntPiyAcPRfEWlx8o5eXFEHrQUw-JtCUpW96-KE5wRcoZLSt-dBAfF6cprcuS4ArXr4pj2jSM8bo6KX5_lT5ouUkZg4JFt36BttIm9PcrMDF41IUIl13Y6zKOTvdw0cmocnKxgr6_vJsioEMFyYSufDCAbuUI0cke2RDRtVuuZncQczxIrwHN3bhy04AWY4hyCa-Ll1b2Cd7sz7Pix-dP37vr2fzbl5vuaj7TFafjTNsKrKG2sZq2THOGNVOEMArUSiIrUETVleLc1K1qrDGYqVJizRtttaaEnhU3O64Jci020Q0y3osgnXgQQlyK_TuFIhwMwxwrYyrMG6VM5mtl8w21revM-rhjbSY1gNHgxyj7J9CnGe9WYhl-Cd42DX0AnO8BMfycII1icEnnIUoPYUqCsKYlVY15m63vn1nXYYo-j2rrYoRVDefZ9e6wo7-tPP56NrCdQceQUgQrtBvl6MK2QdcLXIrtfol_9itX4meVj_D_1_wBv93ZxA |
CitedBy_id | crossref_primary_10_1016_j_ceramint_2023_11_096 crossref_primary_10_1021_acssuschemeng_3c06652 crossref_primary_10_1016_j_apsusc_2023_159233 crossref_primary_10_1007_s10854_024_12769_0 crossref_primary_10_1016_j_jelechem_2023_117994 crossref_primary_10_3390_molecules28104040 crossref_primary_10_3390_molecules28227580 |
Cites_doi | 10.1016/j.electacta.2022.141092 10.1016/j.apsusc.2019.145239 10.1021/am404746k 10.1007/s10854-019-01556-x 10.1038/s41596-022-00762-y 10.1007/s10853-020-04509-6 10.1016/j.jallcom.2016.03.132 10.1016/j.ssi.2015.06.005 10.1016/j.jcis.2022.07.134 10.1016/j.jpowsour.2016.11.032 10.1016/j.jpowsour.2019.226931 10.1021/acsami.6b01003 10.1002/chem.201801979 10.1016/j.jallcom.2020.157315 10.1021/acsanm.2c02507 10.1039/D1TA06708G 10.1016/j.jmmm.2015.05.076 10.1039/C9NJ05587H 10.1088/2053-1591/2/8/085901 10.1021/acsaem.0c02014 10.1021/acsami.8b05688 10.1016/j.cclet.2020.12.050 10.1002/smll.202203759 10.1016/j.cej.2018.08.136 10.1016/j.electacta.2021.139575 10.1016/j.jmmm.2014.10.120 10.1002/aenm.201902077 10.1002/anie.201606776 10.1002/adfm.202207978 10.1016/j.solmat.2022.112032 10.1021/acsaem.8b00919 10.1016/j.jcis.2022.07.071 10.1002/ange.202212151 10.3390/nano12172926 10.1016/j.apsusc.2020.148496 10.1016/j.electacta.2015.09.131 10.1021/am3023652 10.1016/j.electacta.2022.140546 10.1021/acsami.5b06590 10.1016/j.mtener.2021.100876 10.1016/j.matlet.2016.09.112 10.1016/j.matchemphys.2021.124444 10.1007/s10854-021-06226-5 10.1039/C6TA04441G 10.1016/j.mtnano.2022.100186 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules28020898 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_b29ed7191bdd4196bbd4ebcbfb545f55 PMC9866355 36677954 10_3390_molecules28020898 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Zhejiang Province grantid: LY21E020011 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-cf4efd3f6fc387c971c7b2273e3fa2a4eb2b54b99d58b6fdd17b0a1c96cfcc323 |
IEDL.DBID | 7X7 |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:19:32 EDT 2025 Thu Aug 21 18:38:42 EDT 2025 Mon Jul 21 09:52:39 EDT 2025 Fri Jul 25 09:42:27 EDT 2025 Wed Feb 19 02:26:08 EST 2025 Tue Jul 01 01:21:48 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | anode MnS lithium-ion batteries CoS |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-cf4efd3f6fc387c971c7b2273e3fa2a4eb2b54b99d58b6fdd17b0a1c96cfcc323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7846-2617 0000-0003-4698-516X |
OpenAccessLink | https://www.proquest.com/docview/2767274699?pq-origsite=%requestingapplication% |
PMID | 36677954 |
PQID | 2767274699 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b29ed7191bdd4196bbd4ebcbfb545f55 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9866355 proquest_miscellaneous_2768245198 proquest_journals_2767274699 pubmed_primary_36677954 crossref_citationtrail_10_3390_molecules28020898 crossref_primary_10_3390_molecules28020898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230116 |
PublicationDateYYYYMMDD | 2023-01-16 |
PublicationDate_xml | – month: 1 year: 2023 text: 20230116 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Huang (ref_3) 2022; 422 Trukhanov (ref_10) 2015; 379 Resto (ref_30) 2014; 6 Kozlovskiy (ref_35) 2021; 263 Liu (ref_14) 2022; 32 Yang (ref_2) 2021; 9 Geng (ref_29) 2018; 1 ref_33 Qiu (ref_5) 2022; 248 Ning (ref_25) 2016; 4 Almessiere (ref_36) 2022; 18 Zhu (ref_27) 2020; 3 Jin (ref_42) 2017; 188 Hu (ref_21) 2020; 542 Zhou (ref_31) 2020; 55 Guo (ref_17) 2021; 22 Yu (ref_45) 2016; 55 Wang (ref_6) 2021; 402 Chen (ref_15) 2022; 627 Zdorovets (ref_19) 2021; 32 Ma (ref_23) 2019; 9 He (ref_46) 2015; 182 Liu (ref_22) 2018; 10 Xu (ref_34) 2015; 7 Camacho (ref_43) 2019; 437 Zheng (ref_20) 2021; 854 Kozlovskiy (ref_32) 2019; 30 Ren (ref_44) 2015; 278 Trukhanov (ref_18) 2015; 393 Chen (ref_7) 2022; 430 Tan (ref_41) 2016; 8 Gong (ref_9) 2022; 628 Gu (ref_39) 2013; 5 Zhang (ref_13) 2022; 18 Gao (ref_26) 2018; 24 Ren (ref_37) 2020; 32 Huang (ref_12) 2022; 134 Chen (ref_4) 2022; 5 Wang (ref_16) 2018; 355 Wang (ref_40) 2016; 676 Bodnar (ref_11) 2015; 2 Yuan (ref_38) 2020; 44 Zhao (ref_1) 2021; 30 ref_8 Hao (ref_28) 2017; 338 Chen (ref_24) 2019; 508 |
References_xml | – volume: 430 start-page: 141092 year: 2022 ident: ref_7 article-title: CoCl2 encapsulated in nitrogen-doped carbon hollow cubic nanobox enabling long-life and high-rate lithium storage publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141092 – volume: 508 start-page: 145239 year: 2019 ident: ref_24 article-title: MnS nanoparticles embedded in N,S co-doped carbon nanosheets for superior lithium ion storage publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.145239 – volume: 6 start-page: 1180 year: 2014 ident: ref_30 article-title: Single-Crystal γ-MnS Nanowires Conformally Coated with Carbon publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404746k – volume: 30 start-page: 11819 year: 2019 ident: ref_32 article-title: Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni) publication-title: J. Mater. Sci.-Mater. El. doi: 10.1007/s10854-019-01556-x – ident: ref_8 doi: 10.1038/s41596-022-00762-y – volume: 55 start-page: 7403 year: 2020 ident: ref_31 article-title: Nanosized α-MnS homogenously embedded in axial multichannel carbon nanofibers as freestanding electrodes for lithium-ion batteries publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04509-6 – volume: 676 start-page: 551 year: 2016 ident: ref_40 article-title: CoS/CNTs hybrid structure for improved performance lithium ion battery publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2016.03.132 – volume: 278 start-page: 138 year: 2015 ident: ref_44 article-title: Γ-MnS/reduced graphene oxide nanocomposites with great lithium storage capacity publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.06.005 – volume: 628 start-page: 343 year: 2022 ident: ref_9 article-title: NiCoO2 and polypyrrole decorated three-dimensional carbon nanofiber network with coaxial cable-like structure for high-performance supercapacitors publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.07.134 – volume: 338 start-page: 9 year: 2017 ident: ref_28 article-title: Studies on intrinsic phase-dependent electrochemical properties of MnS nanocrystals as anodes for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.11.032 – volume: 437 start-page: 226931 year: 2019 ident: ref_43 article-title: Effective carbon constraint of MnS nanoparticles as high-performance anode of lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226931 – volume: 8 start-page: 14488 year: 2016 ident: ref_41 article-title: In situ fabrication of CoS and NiS nanomaterials anchored on reduced graphene oxide for reversible lithium storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b01003 – volume: 24 start-page: 13535 year: 2018 ident: ref_26 article-title: Flexible MnS-Carbon Fiber Hybrids for Lithium-Ion and Sodium-Ion Energy Storage publication-title: Chem.–A Eur. J. doi: 10.1002/chem.201801979 – volume: 854 start-page: 157315 year: 2021 ident: ref_20 article-title: CoS2-MnS@Carbon nanoparticles derived from metaleorganic framework as a promising anode for lithium-ion batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.157315 – volume: 5 start-page: 10055 year: 2022 ident: ref_4 article-title: CuGaO2 Nanosheet Arrays as the Hole-Transport Layer in Inverted Perovskite Solar Cells publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c02507 – volume: 9 start-page: 22334 year: 2021 ident: ref_2 article-title: Superior rate-capability and long-lifespan carbon nanotube-in-nanotube@Sb2S3 anode for lithium-ion storage publication-title: J. Mater. Chem. A doi: 10.1039/D1TA06708G – volume: 393 start-page: 253 year: 2015 ident: ref_18 article-title: Crystal structure and magnetic properties of the BaFe12−xAlxO19 (x=0.1–1.2) solid solutions publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2015.05.076 – volume: 44 start-page: 1846 year: 2020 ident: ref_38 article-title: A cellulose substance derived nanofibrous CoS–nanoparticle/carbon composite as a high-performance anodic material for lithium-ion batteries publication-title: New J. Chem. doi: 10.1039/C9NJ05587H – volume: 2 start-page: 085901 year: 2015 ident: ref_11 article-title: Growth, optical, magnetic and electrical properties of CuFe2.33In9.67S17.33 single crystal publication-title: Mater. Res. Express doi: 10.1088/2053-1591/2/8/085901 – volume: 3 start-page: 10215 year: 2020 ident: ref_27 article-title: Flower-like Mn/Co glycerolate-derived α-MnS/Co9S8/carbon heterostructures for high-performance lithium-ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02014 – volume: 10 start-page: 27911 year: 2018 ident: ref_22 article-title: One-dimensional integrated MnS@carbon nanoreactors hybrid: An alternative anode for full-cell Li-ion and Na-iIon bBatteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05688 – volume: 32 start-page: 2243 year: 2020 ident: ref_37 article-title: Designed preparation of CoS/Co/MoC nanoparticles incorporated in N and S dual-doped porous carbon nanofibers for high-performance Zn-air batteries publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.12.050 – volume: 18 start-page: 2203759 year: 2022 ident: ref_13 article-title: Boosting electrocatalytic reduction of CO2 to HCOOH on Ni single atom anchored WTe2 monolayer publication-title: Small doi: 10.1002/smll.202203759 – volume: 355 start-page: 752 year: 2018 ident: ref_16 article-title: 3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.136 – volume: 402 start-page: 139575 year: 2021 ident: ref_6 article-title: Carbon nanotubes refined mesoporous NiCoO2 nanoparticles for high−performance supercapacitors publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.139575 – volume: 379 start-page: 22 year: 2015 ident: ref_10 article-title: Magnetic and electrical properties of (FeIn2S4)1−x(CuIn5S8)x solid solutions publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.10.120 – volume: 9 start-page: 1902077 year: 2019 ident: ref_23 article-title: Superior lithium storage capacity of α-MnS nanoparticles embedded in S-doped carbonaceous mesoporous frameworks publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902077 – volume: 55 start-page: 13422 year: 2016 ident: ref_45 article-title: Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201606776 – volume: 32 start-page: 2207978 year: 2022 ident: ref_14 article-title: Revealing the Impact of Cl Substitution on the Crystallization Behavior and Interfacial Stability of Superionic Lithium Argyrodites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207978 – volume: 248 start-page: 112032 year: 2022 ident: ref_5 article-title: Organic-inorganic hybrid electron transport layer of PVP-doped SnO2 for high-efficiency stable perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2022.112032 – volume: 1 start-page: 4867 year: 2018 ident: ref_29 article-title: Double-Layer N,S-Codoped Carbon Protection of MnS Nanoparticles Enabling Ultralong-Life and High-Rate Lithium Ion Storage publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00919 – volume: 627 start-page: 449 year: 2022 ident: ref_15 article-title: Hierarchical hollow superstructure cobalt selenide bird nests for high-performance lithium storage publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.07.071 – volume: 134 start-page: e202212151 year: 2022 ident: ref_12 article-title: Synergistic Interfacial Bonding in Reduced Graphene Oxide Fiber Cathodes Containing Polypyrrole@sulfur Nanospheres for Flexible Energy Storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202212151 – ident: ref_33 doi: 10.3390/nano12172926 – volume: 542 start-page: 148496 year: 2020 ident: ref_21 article-title: A facile ex situ strategy of α-MnS nanoparticles anchored on holey graphene as high-performance anode for lithium-ion batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.148496 – volume: 182 start-page: 424 year: 2015 ident: ref_46 article-title: Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.09.131 – volume: 5 start-page: 801 year: 2013 ident: ref_39 article-title: Graphene-wrapped CoS nanoparticles for high-capacity lithium-ion storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3023652 – volume: 422 start-page: 140546 year: 2022 ident: ref_3 article-title: Si/SiC/C in-situ composite microspindles as anode materials for lithium-ion batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.140546 – volume: 7 start-page: 20957 year: 2015 ident: ref_34 article-title: In Situ Synthesis of MnS Hollow Microspheres on Reduced Graphene Oxide Sheets as High-Capacity and Long-Life Anodes for Li- and Na-Ion Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b06590 – volume: 22 start-page: 100876 year: 2021 ident: ref_17 article-title: Honeycomb-structured α-MnS@N-HC nanocomposite fabricated by sol-gel pyrolysis blowing method and its high-performance lithium storage publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2021.100876 – volume: 188 start-page: 13 year: 2017 ident: ref_42 article-title: Mesoporous γ-MnS nanospheres as anode materials for Li ion batteries publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.09.112 – volume: 263 start-page: 124444 year: 2021 ident: ref_35 article-title: Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124444 – volume: 30 start-page: e00357 year: 2021 ident: ref_1 article-title: Titanium niobium oxides (TiNb2O7): Design, fabrication and application in energy storage devices publication-title: Sustain. Mater. Technol. – volume: 32 start-page: 16694 year: 2021 ident: ref_19 article-title: Phase transformations in FeCo–Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application publication-title: J. Mater. Sci.-Mater. El. doi: 10.1007/s10854-021-06226-5 – volume: 4 start-page: 12098 year: 2016 ident: ref_25 article-title: Branched carbon-encapsulated MnS core/shell nanochains prepared via oriented attachment for lithium-ion storage publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04441G – volume: 18 start-page: 100186 year: 2022 ident: ref_36 article-title: Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites publication-title: Mater. Today Nano doi: 10.1016/j.mtnano.2022.100186 |
SSID | ssj0021415 |
Score | 2.4164748 |
Snippet | MnS has been explored as an anode material for lithium-ion batteries due to its high theoretical capacity, but low electronic conductivity and severe volume... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 898 |
SubjectTerms | anode Carbon CoS Electrodes Lithium lithium-ion batteries MnS Morphology Nanocapsules Nanoparticles Nanospheres |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BB0PJIaZGROCFFTWzHjm8tEVWFWFRpqdRbFNtj7UrbpMpmD_wI_jPjPJZdQOXCdewok5mxZyYef0PIe-ZNwoCpWGacxUIIHlfcpjG3VksAyLkJd4dnX-XVjfh8m93utPoKNWEDPPAguDPDNDiFWYVxTqC5GOMEGGu8Qd_vsx69FH3elEyNqVaKfmk4w-SY1J_dDa1mYc3y0JRS53teqAfr_1uE-Xuh5I7nuXxGno4hI70YWH1OHkF9SB4XU6e2I_IDt0h0SZjvroA2ns7qOQ2k-2b1fQGubWpaNC2cF81In766qFqDg_NQDHp-vWmB7lJotaYXdeOAzqquN1SKES4NlSHx9a_7BvTLslssN3d0juk77k4vyM3lp2_FVTy2WYit0LyLrRfgHffSW54rq1VqlWEY1gD3FatQ2gxlbbR2WW6kdy5VJqlS1KX11nLGX5KDuqnhNaFSKqMSbbnLnVDKV8Z5Li1PBL4EV3tEkknspR0xyEMrjFWJuUjQVPmHpiLyYfvI_QDA8dDkj0GX24kBO7snoEWVo2zLf1lURE4mSyjHBb0umQpH1kJqHZF322HUczhfqWpoNv2cnAW4HuTj1WA4W044ikbpTERE7ZnUHqv7I_Vy0cN967yPCo__x7e9IU8YRmnhH1IqT8hB127gFKOqzrztF9BPlMEoSQ priority: 102 providerName: Directory of Open Access Journals |
Title | Nanocapsule of MnS Nanopolyhedron Core@CoS Nanoparticle/Carbon Shell@Pure Carbon Shell as Anode Material for High-Performance Lithium Storage |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36677954 https://www.proquest.com/docview/2767274699 https://www.proquest.com/docview/2768245198 https://pubmed.ncbi.nlm.nih.gov/PMC9866355 https://doaj.org/article/b29ed7191bdd4196bbd4ebcbfb545f55 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Nb9Mw1ILtABfEN4FRGYkTUtTEduL4xLZoZUJ0qiiTeovir7VSl5Q0PfAj-M88J267Atolh2dHsf2e33feQ-gjsTIihvAwTSgJGWM0LKmKQ6qUSI0xGZXu3-HxVXp5zb7Okpl3uK19WuWWJ3aMWtfK-ciHhLuYIRhz4vPqZ-i6Rrnoqm-h8RAdu9JlLqWLz_YGVwzSqY9kUjDth7d9w1mzJplrTSmyA1nUlez_n575d7rkHfkzeoqeeMURn_WYfoYemOo5epRv-7W9QL-BUYJgAqt3aXBt8biaYgda1ctfc6ObusJ53ZjTvPZwTzTDvGwkDE5dSujpZNMYfBeCyzU-q2pt8LhsO3LFoOdilx8STvZ_HeBvi3a-2NziKRjxwKNeouvRxY_8MvTNFkLFBG1DZZmxmtrUKppxJXisuCSg3BhqS1IysMBlwqQQOslkarWOuYzKGDCqrFKU0FfoqKor8wbhNOWSR0JRnWnGuS2ltjRVNGLwEbjzAYq2x14oX4ncNcRYFmCROEwV_2AqQJ92r6z6Mhz3TT53uNxNdBW0O0Dd3BT-bAtJhNEcrFWpNQM2JKWGPSppYZeJTZIAnWwpofDXel3siTBAH3bDgGcXZSkrU2-6ORlxRXtgHa97wtmthMLRcJGwAPEDkjpY6uFItZh3Rb9F1umGb-9f1jv0mIAW5nxEcXqCjtpmY96D1tTKQXc14JmNvgzQ8fnF1eT7oPNA_AEj9iHH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0JrGw3hBfBMYYCR4QYqa2E4cPyA2CqVj7TSpm7S3EH-tlbqkpKnQfgR_hd_IOR_dCmhvez07ytl3vg_f-Q6ht8TKgBjC_TiixGeMUT-jKvSpUiI2xiRUurfD46N4eMq-nUVnW-h39xbGpVV2MrEW1LpQ7o68R7iLGYIzJz4ufviua5SLrnYtNBq2ODSXP8FlW344-Az0fUfI4MtJf-i3XQV8xQStfGWZsZra2CqacCV4qLgkoMUNtRnJGLiaMmJSCB0lMrZah1wGWQioK6sUdYUOQOTfYZQKd6KSwde1gxeCNmwipzAY9C6aBrdmSRLXClMkG7qvbhHwP7v27_TMa_pucB_daw1VvN9w1gO0ZfKHaKff9Yd7hH6BYAZFCF723ODC4nE-wQ60KOaXU6PLIsf9ojR7_aKFt0za62elhMGJS0HdO16VBl-H4GyJ9_NCGzzOqvp4YLCrsctH8Y-vXjng0ayazlYXeFIBE5-bx-j0VsjwBG3nRW6eIRzHXPJAKKoTzTi3mdSWxooGDH4CMsZDQbftqWorn7sGHPMUPCBHqfQfSnno_fqTRVP246bJnxwt1xNdxe4aUJTnabu3qSTCaA7esdSagdiTUsMalbSwyshGkYd2O05IWzGyTK-Y3kNv1sNAZxfVyXJTrOo5CXFFggCPpw3jrDGhsDVcRMxDfIOlNlDdHMln07rIuEhqW_T5zWi9RjvDk_EoHR0cHb5AdwlYgO5-Kox30XZVrsxLsNgq-ao-Jhh9v-1z-Qf5SF2u |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1JqGBLwgGJcVBjMSvCBFTWwnjh8QGx3VxtapUpnUtxDf1kpdUtJUaB_BD_F1HOfSroD2ttdjR7F97j7H5yD0jljpE0O4F4WUeIwx6qVUBR5VSkTGmJhK93Z4cB4dX7Cv43C8hX63b2FcWmUrEytBrXPl7si7hLuYIThzomubtIjhUf_T_IfnOki5SGvbTqMmkVNz_RPct8XHkyPA9XtC-l--9Y69psOAp5igpacsM1ZTG1lFY64EDxSXBDS6oTYlKQO3U4ZMCqHDWEZW64BLPw1gG8oqRV3RAxD_9zgNA8djfLx29gLQjHUUlVLhd6_qZrdmQWLXFlPEG3qwahfwPxv371TNG7qv_xg9aoxWfFhT2RO0ZbId9KDX9op7in6BkAalCB73zODc4kE2wg40z2fXE6OLPMO9vDAHvbyBNwTb7aWFhMGRS0c9GC4Lg29CcLrAh1muDR6kZcUqGGxs7HJTvOH6xQM-m5aT6fIKj0og6EvzDF3cCRqeo-0sz8wuwlHEJfeFojrWjHObSm1ppKjP4CcgbzrIb489UU0VdNeMY5aAN-QwlfyDqQ76sPpkXpcAuW3yZ4fL1URXvbsC5MVl0pxtIokwmoOnLLVmIAKl1LBHJS3sMrRh2EF7LSUkjUhZJGsG6KC3q2HAs4vwpJnJl9WcmLiCQbCOFzXhrFZC4Wi4CFkH8Q2S2ljq5kg2nVQFx0Vc2aUvb1_WProPHJmcnZyfvkIPCRiD7qoqiPbQdlkszWsw3kr5puISjL7fNVv-AZYYYds |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanocapsule+of+MnS+Nanopolyhedron+Core%40CoS+Nanoparticle%2FCarbon+Shell%40Pure+Carbon+Shell+as+Anode+Material+for+High-Performance+Lithium+Storage&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Yang%2C+Peng&rft.au=Yuan%2C+Yongfeng&rft.au=Zhang%2C+Dong&rft.au=Yang%2C+Qiuhe&rft.date=2023-01-16&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=28&rft.issue=2&rft.spage=898&rft_id=info:doi/10.3390%2Fmolecules28020898&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |