Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence
Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vort...
Saved in:
Published in | Chinese physics B Vol. 20; no. 12; pp. 279 - 292 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.12.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/20/12/124702 |
Cover
Abstract | Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects. |
---|---|
AbstractList | Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects. Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects. |
Author | 蔡伟华 李凤臣 张红娜 |
AuthorAffiliation | School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China |
Author_xml | – sequence: 1 fullname: 蔡伟华 李凤臣 张红娜 |
BookMark | eNqNkctq3DAUhkVJoZO0r1DUXTfu6G4ZuinpFQLdtGshy8czKh7JkeQWP0retpqZkEUJNCAQHH3f4ej8l-gixAAIvabkHSVab6lqRUOJVFtGtpTVI1rCnqENI1I3XHNxgTYP0At0mfMvQhQljG_Q3UefwBUclgMk7-yEsz8sky0-BpzLMqw4jrjsAftQIFl3euih_AEIp_ocp7W6GMbx2MiGAf-GKTpfVrxLdvAQCi4Qcky1Bx7A2dWHHd7HQ9xBgLhk7HMsKc7e4bKkfpkgOHiJno92yvDq_r5CPz9_-nH9tbn5_uXb9YebxomOl8bRTnDHaDfWTzMOSkrlKLdW9qPue91pUFrZTjhLCeGdk1KIXg9SC8n6QfAr9Pbcd07xdoFczMFnB9NkT7MZ2kouqWwVewLKmaZUqbai78-oSzHnBKOpCzlttSTrJ0OJOYZnjrmYYy6G1Qoz5_Cqrv7R5-QPNq3_F-lZ9HF-utM84jzKmnkYK__mfrh9DLvbGuaDJQinStdE_gLBYcmp |
CitedBy_id | crossref_primary_10_7498_aps_63_054704 crossref_primary_10_1139_cjp_2017_0038 crossref_primary_10_1088_1674_1056_23_3_034701 crossref_primary_10_1155_2013_921524 crossref_primary_10_1155_2014_734175 crossref_primary_10_1088_1674_1056_22_2_024703 crossref_primary_10_7498_aps_64_094703 crossref_primary_10_1103_PhysRevFluids_7_064303 |
Cites_doi | 10.1209/epl/i2006-10222-6 10.1017/S0022112088001302 10.1017/S0022112005003666 10.1017/S0022112092002325 10.1007/s00348-005-0061-1 10.1063/1.3263706 10.1209/0295-5075/2/7/005 10.1017/S002211208100181X 10.1017/S0022112007006611 10.1063/1.2147610 10.1063/1.2397536 10.1016/S0142-727X(02)00166-2 10.1080/14685240802448626 10.1017/S0022112000001580 10.1017/S0022112096001802 10.1063/1.869229 10.1063/1.858546 10.1007/s00348-005-0954-z 10.1016/S0997-7546(98)80003-4 10.1146/annurev.fl.19.010187.001013 10.1103/PhysRevLett.67.983 10.1017/S0022112010003939 10.1017/S0022112070001763 10.1017/S002211209900467X 10.1002/pol.1973.230070104 10.1063/1.1864133 10.1063/1.858282 10.1146/annurev.fl.23.010191.003125 10.1017/S0022112009006697 10.1063/1.868323 10.1103/PhysRevE.72.017301 10.1063/1.868325 10.1063/1.869532 10.1016/j.jnnfm.2006.03.018 10.1103/PhysRevE.81.066301 10.1063/1.1410981 10.1017/S0022112091001957 10.1017/S0022112097004850 10.1007/1-4020-4181-0_2 10.1063/1.866513 10.1063/1.2912513 10.1007/s10494-008-9189-4 10.1103/PhysRevLett.97.264501 10.1016/S0377-0257(98)00115-3 10.1088/1367-2630/10/12/123015 10.1017/CBO9780511546099 10.1063/1.861977 10.1017/S0022112098003024 10.1017/S0022112093002393 10.1063/1.869752 10.1017/S002211209400011X 10.1063/1.870100 10.1016/j.fluiddyn.2005.04.002 10.1063/1.857730 10.1017/S0022112095000462 10.1017/S0022112003005305 10.1016/0378-4371(86)90200-1 10.1098/rspa.1938.0002 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7TG KL. 7SR 7U5 8FD H8D JG9 L7M |
DOI | 10.1088/1674-1056/20/12/124702 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Materials Research Database Aerospace Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence |
EISSN | 2058-3834 1741-4199 |
EndPage | 292 |
ExternalDocumentID | 10_1088_1674_1056_20_12_124702 40316894 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA AAPBV ABPTK CDYEO UNR -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7TG AEINN KL. 7SR 7U5 8FD H8D JG9 L7M |
ID | FETCH-LOGICAL-c493t-c1943c219f70223e6556c13aa5bf8bb898e686a94ca10039c5544b8d58452bd43 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Tue Aug 05 11:01:44 EDT 2025 Thu Sep 04 21:59:09 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Tue Jul 01 03:59:58 EDT 2025 Tue Nov 10 14:15:06 EST 2020 Mon May 13 15:57:15 EDT 2019 Wed Feb 14 10:25:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-c1943c219f70223e6556c13aa5bf8bb898e686a94ca10039c5544b8d58452bd43 |
Notes | Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects. 11-5639/O4 decaying homogeneous isotropic turbulence, turbulent drag-reducing flow, velocity gradient tensor, direct numerical simulation ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1732811667 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1753515762 crossref_citationtrail_10_1088_1674_1056_20_12_124702 proquest_miscellaneous_1732811667 iop_primary_10_1088_1674_1056_20_12_124702 crossref_primary_10_1088_1674_1056_20_12_124702 chongqing_primary_40316894 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-01 |
PublicationDateYYYYMMDD | 2011-12-01 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2011 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 46 47 48 49 Crawford A M (15) 2008; 10 Tabor M (17) 1986; 2 51 53 10 11 Samanta G (52) 2008; 9 55 12 13 14 58 Hunt J C R (59) 1988 Kolmogorov A N (27) 1941; 30 Gyr A (54) 1996 16 Chen J H (37) 1990 18 19 2 3 4 5 6 7 8 9 60 61 63 20 21 65 66 67 24 68 25 69 26 Tsinober A (29) 2000 Berti S (22) 2006; 76 Dubief Y (64) 2000; 11 Jin S (23) 2007 Tennekes H (28) 1972 70 Sibilla S (50) 2005; 37 30 31 32 33 34 Rogallo R S (56) 1981 35 36 38 39 Canuto C (57) 1988 Abdel K W (62) 2006; 6 Toms B A (1) 1949 40 41 42 43 |
References_xml | – volume: 76 start-page: 63 issn: 0295-5075 year: 2006 ident: 22 publication-title: Europhys. Lett. doi: 10.1209/epl/i2006-10222-6 – ident: 4 doi: 10.1017/S0022112088001302 – ident: 19 doi: 10.1017/S0022112005003666 – ident: 45 doi: 10.1017/S0022112092002325 – ident: 6 doi: 10.1007/s00348-005-0061-1 – ident: 53 doi: 10.1063/1.3263706 – volume: 2 start-page: 519 issn: 0295-5075 year: 1986 ident: 17 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/2/7/005 – ident: 30 doi: 10.1017/S002211208100181X – ident: 48 doi: 10.1017/S0022112007006611 – ident: 67 doi: 10.1063/1.2147610 – ident: 14 doi: 10.1063/1.2397536 – ident: 47 doi: 10.1016/S0142-727X(02)00166-2 – volume: 9 start-page: 1 issn: 1468-5248 year: 2008 ident: 52 publication-title: J. Turbul. doi: 10.1080/14685240802448626 – start-page: 449 year: 1996 ident: 54 – ident: 35 doi: 10.1017/S0022112000001580 – ident: 41 doi: 10.1017/S0022112096001802 – ident: 7 doi: 10.1063/1.869229 – ident: 65 doi: 10.1063/1.858546 – ident: 49 doi: 10.1007/s00348-005-0954-z – ident: 42 doi: 10.1016/S0997-7546(98)80003-4 – ident: 60 doi: 10.1146/annurev.fl.19.010187.001013 – ident: 31 doi: 10.1103/PhysRevLett.67.983 – start-page: 164 year: 2000 ident: 29 publication-title: Paper appearing in Turbulence Structure and Vortex Dynamics – start-page: 139 year: 1990 ident: 37 – volume: 11 start-page: 1 issn: 1468-5248 year: 2000 ident: 64 publication-title: J. Turbul. – ident: 24 doi: 10.1017/S0022112010003939 – ident: 9 doi: 10.1017/S0022112070001763 – start-page: 103 year: 1972 ident: 28 publication-title: A First Course in Turbulence – ident: 61 doi: 10.1017/S002211209900467X – ident: 2 doi: 10.1002/pol.1973.230070104 – ident: 13 doi: 10.1063/1.1864133 – ident: 46 doi: 10.1063/1.858282 – ident: 34 doi: 10.1146/annurev.fl.23.010191.003125 – ident: 16 doi: 10.1017/S0022112009006697 – ident: 40 doi: 10.1063/1.868323 – ident: 20 doi: 10.1103/PhysRevE.72.017301 – ident: 33 doi: 10.1063/1.868325 – ident: 12 doi: 10.1063/1.869532 – ident: 58 doi: 10.1016/j.jnnfm.2006.03.018 – start-page: 505 year: 1988 ident: 57 publication-title: Spectral Methods in Fluid Dynamics – ident: 55 doi: 10.1103/PhysRevE.81.066301 – ident: 66 doi: 10.1063/1.1410981 – ident: 44 doi: 10.1017/S0022112091001957 – ident: 5 doi: 10.1017/S0022112097004850 – ident: 69 doi: 10.1007/1-4020-4181-0_2 – ident: 43 doi: 10.1063/1.866513 – ident: 70 doi: 10.1063/1.2912513 – ident: 63 doi: 10.1007/s10494-008-9189-4 – ident: 21 doi: 10.1103/PhysRevLett.97.264501 – volume: 6 start-page: 403 year: 2006 ident: 62 publication-title: Prog. Comput. Fluid Dyn. – year: 2007 ident: 23 – volume: 30 start-page: 9 issn: 0002-3264 year: 1941 ident: 27 publication-title: Dokl. Akad. Nauk SSSR – ident: 8 doi: 10.1016/S0377-0257(98)00115-3 – volume: 10 start-page: 123015 issn: 1367-2630 year: 2008 ident: 15 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/12/123015 – start-page: 135 year: 1949 ident: 1 – ident: 25 doi: 10.1017/CBO9780511546099 – start-page: 193 year: 1988 ident: 59 – ident: 10 doi: 10.1063/1.861977 – ident: 39 doi: 10.1017/S0022112098003024 – ident: 32 doi: 10.1017/S0022112093002393 – ident: 38 doi: 10.1063/1.869752 – ident: 68 doi: 10.1017/S002211209400011X – ident: 11 doi: 10.1063/1.870100 – volume: 37 start-page: 183 issn: 1873-7005 year: 2005 ident: 50 publication-title: Fluid Dyn. Res. doi: 10.1016/j.fluiddyn.2005.04.002 – ident: 36 doi: 10.1063/1.857730 – ident: 51 doi: 10.1017/S0022112095000462 – ident: 3 doi: 10.1017/S0022112003005305 – ident: 18 doi: 10.1016/0378-4371(86)90200-1 – ident: 26 doi: 10.1098/rspa.1938.0002 – year: 1981 ident: 56 publication-title: Technical Report |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 1.9420885 |
Snippet | Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect... Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect... |
SourceID | proquest crossref iop chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 279 |
SubjectTerms | Decay Fluid flow Inhibition Mathematical analysis Tensors Tubes Turbulence Turbulent flow Vorticity 均匀各向同性湍流 张量 直接数值模拟 联合概率密度 聚合效应 聚合物溶液 衰减 速度梯度 |
Title | Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence |
URI | http://lib.cqvip.com/qk/85823A/201112/40316894.html http://iopscience.iop.org/1674-1056/20/12/124702 https://www.proquest.com/docview/1732811667 https://www.proquest.com/docview/1753515762 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpoNBL36WbPphC6aHgzcqWZPlYSkPaQx_QQG5CkuVkycZyvfah_Sf9tx1JdiAktCn4YMyMbDHSPKyZbwh5ba2oy1KzrDAugGoLkRnmaMap1JWQaAR1RPv8LA6P2KdjfrxD5iaIa99Nmn-Jt-kkX5QsC_3hMU7fpzlerIzokWj8w5L--OXrrHpFwCEIEdbMMpcEY5R3_TABUeHUtyc_0E5csky38PVX1HO0OQf3yLe5cielmpwtx8Es7a-rQI43ns59cndyQOFdWjEPyI5rH5LbMRHUbh-R30kHQjumo5wNbNfnU4sviFi04BtArxEC0ESfyiJgyvaKzzu_-Ym8kDJFQLc1hLwki-4-nPQxw2yAkDfvexwDamd1KLWCU3_ucTU7P25hvfVD77u1BbSIZoyFUY_J0cGH7-8Ps6l9Q2ZZVQyZpRUrLGrEBieYF05wLiwttOamkcbISjohha6Y1TSUCFv0bJiRNbpEPDc1K56Q3da37ikBDDLLQjeMujJnznAjnZQi1OhRsxKrfEH2LsSougTTodgqNOWq2ILwWa7KTsDnof_GRsUDeClVkIkKMlE5PslVksmC7F_wzWP-i-MtivnGxG8uEV9LpLq6WZBX8zJUuPfDgY6OwlA0IC1RKkT5NxpeoM-KNm_vf77uGbkT_57HxJ3nZHfoR_cC3a_BvIxb7g_I7x-j |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIhAX3hVbXkZCHJCyu05sxzki6KoFVHqgUm-W7Tjtim0cNskB_gn_lrGdrFTeCCmHyPJYccaZGcfffIPQM2N4meeKJpm2nlSb80RTSxJGhCq4ACeoAtvnET84oW9O2ekW2t_kwrhmMP1TuI1EwfEVDoA4MfO4-cQXjIeN-4ykcNF8ns6astpGV1jGC1_I4PD98WiQuWcn8PuuUW5MFP7lWJ5n4dzVZ5_Ae1zyV9vwTD8Y7eCJFjcjYqQNBIYegPJx2nd6ar58R-_435O8hW4MsSp-GYVuoy1b30FXA2bUtHfR12gucd3HU58VbpcXQzUwHGhrsaswBJjYc1KsYwYFHoBhob1xq88giyOoBKu6xB7CZGBngM_WAYzWYQ-xd2sYA5fWKJ-Vhc_dhYOFb13f4mXrurVrlgaD89R9yKG6h04W-x9eHSRDpYfE0CLrEkMKmhkwnhVMMs0sZ4wbkinFdCW0FoWwXHBVUKOIzyY2EARRLUqInliqS5rtop3a1fY-wrAfzTNVUWLzlFrNtLBCcJ_OR_Scz9MJ2tvoVjaR0UPSua_fVdAJYqOypRk40n2pjpUMZ_VCSK8X6fUiU2hJZdTLBM02cuOYf5J4Aar_687PL3X-aScJa2OCno5rU4KZ8Gc_KihDEk_KRAjn-e_6sAzCW3CPe__ydE_QtePXC_nu8OjtA3Q9_HMPcJ-HaKdb9_YRBG2dfhw-yW-LTS-R |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+numerical+simulation+study+of+the+interaction+between+the+polymer+effect+and+velocity+gradient+tensor+in+decaying+homogeneous+isotropic+turbulence&rft.jtitle=Chinese+physics+B&rft.au=Cai%2C+Wei-Hua&rft.au=Li%2C+Feng-Chen&rft.au=Zhang%2C+Hong-Na&rft.date=2011-12-01&rft.issn=1674-1056&rft.volume=20&rft.issue=12&rft.spage=124702&rft_id=info:doi/10.1088%2F1674-1056%2F20%2F12%2F124702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_20_12_124702 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |