Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence

Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vort...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 12; pp. 279 - 292
Main Author 蔡伟华 李凤臣 张红娜
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.12.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/20/12/124702

Cover

Abstract Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.
AbstractList Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.
Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.
Author 蔡伟华 李凤臣 张红娜
AuthorAffiliation School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Author_xml – sequence: 1
  fullname: 蔡伟华 李凤臣 张红娜
BookMark eNqNkctq3DAUhkVJoZO0r1DUXTfu6G4ZuinpFQLdtGshy8czKh7JkeQWP0retpqZkEUJNCAQHH3f4ej8l-gixAAIvabkHSVab6lqRUOJVFtGtpTVI1rCnqENI1I3XHNxgTYP0At0mfMvQhQljG_Q3UefwBUclgMk7-yEsz8sky0-BpzLMqw4jrjsAftQIFl3euih_AEIp_ocp7W6GMbx2MiGAf-GKTpfVrxLdvAQCi4Qcky1Bx7A2dWHHd7HQ9xBgLhk7HMsKc7e4bKkfpkgOHiJno92yvDq_r5CPz9_-nH9tbn5_uXb9YebxomOl8bRTnDHaDfWTzMOSkrlKLdW9qPue91pUFrZTjhLCeGdk1KIXg9SC8n6QfAr9Pbcd07xdoFczMFnB9NkT7MZ2kouqWwVewLKmaZUqbai78-oSzHnBKOpCzlttSTrJ0OJOYZnjrmYYy6G1Qoz5_Cqrv7R5-QPNq3_F-lZ9HF-utM84jzKmnkYK__mfrh9DLvbGuaDJQinStdE_gLBYcmp
CitedBy_id crossref_primary_10_7498_aps_63_054704
crossref_primary_10_1139_cjp_2017_0038
crossref_primary_10_1088_1674_1056_23_3_034701
crossref_primary_10_1155_2013_921524
crossref_primary_10_1155_2014_734175
crossref_primary_10_1088_1674_1056_22_2_024703
crossref_primary_10_7498_aps_64_094703
crossref_primary_10_1103_PhysRevFluids_7_064303
Cites_doi 10.1209/epl/i2006-10222-6
10.1017/S0022112088001302
10.1017/S0022112005003666
10.1017/S0022112092002325
10.1007/s00348-005-0061-1
10.1063/1.3263706
10.1209/0295-5075/2/7/005
10.1017/S002211208100181X
10.1017/S0022112007006611
10.1063/1.2147610
10.1063/1.2397536
10.1016/S0142-727X(02)00166-2
10.1080/14685240802448626
10.1017/S0022112000001580
10.1017/S0022112096001802
10.1063/1.869229
10.1063/1.858546
10.1007/s00348-005-0954-z
10.1016/S0997-7546(98)80003-4
10.1146/annurev.fl.19.010187.001013
10.1103/PhysRevLett.67.983
10.1017/S0022112010003939
10.1017/S0022112070001763
10.1017/S002211209900467X
10.1002/pol.1973.230070104
10.1063/1.1864133
10.1063/1.858282
10.1146/annurev.fl.23.010191.003125
10.1017/S0022112009006697
10.1063/1.868323
10.1103/PhysRevE.72.017301
10.1063/1.868325
10.1063/1.869532
10.1016/j.jnnfm.2006.03.018
10.1103/PhysRevE.81.066301
10.1063/1.1410981
10.1017/S0022112091001957
10.1017/S0022112097004850
10.1007/1-4020-4181-0_2
10.1063/1.866513
10.1063/1.2912513
10.1007/s10494-008-9189-4
10.1103/PhysRevLett.97.264501
10.1016/S0377-0257(98)00115-3
10.1088/1367-2630/10/12/123015
10.1017/CBO9780511546099
10.1063/1.861977
10.1017/S0022112098003024
10.1017/S0022112093002393
10.1063/1.869752
10.1017/S002211209400011X
10.1063/1.870100
10.1016/j.fluiddyn.2005.04.002
10.1063/1.857730
10.1017/S0022112095000462
10.1017/S0022112003005305
10.1016/0378-4371(86)90200-1
10.1098/rspa.1938.0002
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7TG
KL.
7SR
7U5
8FD
H8D
JG9
L7M
DOI 10.1088/1674-1056/20/12/124702
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Meteorological & Geoastrophysical Abstracts - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence
EISSN 2058-3834
1741-4199
EndPage 292
ExternalDocumentID 10_1088_1674_1056_20_12_124702
40316894
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
AAPBV
ABPTK
CDYEO
UNR
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7TG
AEINN
KL.
7SR
7U5
8FD
H8D
JG9
L7M
ID FETCH-LOGICAL-c493t-c1943c219f70223e6556c13aa5bf8bb898e686a94ca10039c5544b8d58452bd43
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Tue Aug 05 11:01:44 EDT 2025
Thu Sep 04 21:59:09 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Tue Jul 01 03:59:58 EDT 2025
Tue Nov 10 14:15:06 EST 2020
Mon May 13 15:57:15 EDT 2019
Wed Feb 14 10:25:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-c1943c219f70223e6556c13aa5bf8bb898e686a94ca10039c5544b8d58452bd43
Notes Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect on turbulence or additive-turbulence interaction, we directly investigate the influence of polymers on velocity gradient tensor including vorticity and strain. By visualizing vortex tubes and sheets, we observe a remarkable inhibition of vortex structures in an intermediate-scale field and a small-scale field but not for a large scale field in DHIT with polymers. The geometric study indicates a strong relevance among the vorticity vector, rate-of-strain tensor, and polymer conformation tensor. Joint probability density functions show that the polymer effect can increase "strain generation resistance" and "vorticity generation resistance", i.e., inhibit the generation of vortex sheets and tubes, ultimately leading to turbulence inhibition effects.
11-5639/O4
decaying homogeneous isotropic turbulence, turbulent drag-reducing flow, velocity gradient tensor, direct numerical simulation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1732811667
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_1753515762
crossref_citationtrail_10_1088_1674_1056_20_12_124702
proquest_miscellaneous_1732811667
iop_primary_10_1088_1674_1056_20_12_124702
crossref_primary_10_1088_1674_1056_20_12_124702
chongqing_primary_40316894
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-01
PublicationDateYYYYMMDD 2011-12-01
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2011
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
46
47
48
49
Crawford A M (15) 2008; 10
Tabor M (17) 1986; 2
51
53
10
11
Samanta G (52) 2008; 9
55
12
13
14
58
Hunt J C R (59) 1988
Kolmogorov A N (27) 1941; 30
Gyr A (54) 1996
16
Chen J H (37) 1990
18
19
2
3
4
5
6
7
8
9
60
61
63
20
21
65
66
67
24
68
25
69
26
Tsinober A (29) 2000
Berti S (22) 2006; 76
Dubief Y (64) 2000; 11
Jin S (23) 2007
Tennekes H (28) 1972
70
Sibilla S (50) 2005; 37
30
31
32
33
34
Rogallo R S (56) 1981
35
36
38
39
Canuto C (57) 1988
Abdel K W (62) 2006; 6
Toms B A (1) 1949
40
41
42
43
References_xml – volume: 76
  start-page: 63
  issn: 0295-5075
  year: 2006
  ident: 22
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2006-10222-6
– ident: 4
  doi: 10.1017/S0022112088001302
– ident: 19
  doi: 10.1017/S0022112005003666
– ident: 45
  doi: 10.1017/S0022112092002325
– ident: 6
  doi: 10.1007/s00348-005-0061-1
– ident: 53
  doi: 10.1063/1.3263706
– volume: 2
  start-page: 519
  issn: 0295-5075
  year: 1986
  ident: 17
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/2/7/005
– ident: 30
  doi: 10.1017/S002211208100181X
– ident: 48
  doi: 10.1017/S0022112007006611
– ident: 67
  doi: 10.1063/1.2147610
– ident: 14
  doi: 10.1063/1.2397536
– ident: 47
  doi: 10.1016/S0142-727X(02)00166-2
– volume: 9
  start-page: 1
  issn: 1468-5248
  year: 2008
  ident: 52
  publication-title: J. Turbul.
  doi: 10.1080/14685240802448626
– start-page: 449
  year: 1996
  ident: 54
– ident: 35
  doi: 10.1017/S0022112000001580
– ident: 41
  doi: 10.1017/S0022112096001802
– ident: 7
  doi: 10.1063/1.869229
– ident: 65
  doi: 10.1063/1.858546
– ident: 49
  doi: 10.1007/s00348-005-0954-z
– ident: 42
  doi: 10.1016/S0997-7546(98)80003-4
– ident: 60
  doi: 10.1146/annurev.fl.19.010187.001013
– ident: 31
  doi: 10.1103/PhysRevLett.67.983
– start-page: 164
  year: 2000
  ident: 29
  publication-title: Paper appearing in Turbulence Structure and Vortex Dynamics
– start-page: 139
  year: 1990
  ident: 37
– volume: 11
  start-page: 1
  issn: 1468-5248
  year: 2000
  ident: 64
  publication-title: J. Turbul.
– ident: 24
  doi: 10.1017/S0022112010003939
– ident: 9
  doi: 10.1017/S0022112070001763
– start-page: 103
  year: 1972
  ident: 28
  publication-title: A First Course in Turbulence
– ident: 61
  doi: 10.1017/S002211209900467X
– ident: 2
  doi: 10.1002/pol.1973.230070104
– ident: 13
  doi: 10.1063/1.1864133
– ident: 46
  doi: 10.1063/1.858282
– ident: 34
  doi: 10.1146/annurev.fl.23.010191.003125
– ident: 16
  doi: 10.1017/S0022112009006697
– ident: 40
  doi: 10.1063/1.868323
– ident: 20
  doi: 10.1103/PhysRevE.72.017301
– ident: 33
  doi: 10.1063/1.868325
– ident: 12
  doi: 10.1063/1.869532
– ident: 58
  doi: 10.1016/j.jnnfm.2006.03.018
– start-page: 505
  year: 1988
  ident: 57
  publication-title: Spectral Methods in Fluid Dynamics
– ident: 55
  doi: 10.1103/PhysRevE.81.066301
– ident: 66
  doi: 10.1063/1.1410981
– ident: 44
  doi: 10.1017/S0022112091001957
– ident: 5
  doi: 10.1017/S0022112097004850
– ident: 69
  doi: 10.1007/1-4020-4181-0_2
– ident: 43
  doi: 10.1063/1.866513
– ident: 70
  doi: 10.1063/1.2912513
– ident: 63
  doi: 10.1007/s10494-008-9189-4
– ident: 21
  doi: 10.1103/PhysRevLett.97.264501
– volume: 6
  start-page: 403
  year: 2006
  ident: 62
  publication-title: Prog. Comput. Fluid Dyn.
– year: 2007
  ident: 23
– volume: 30
  start-page: 9
  issn: 0002-3264
  year: 1941
  ident: 27
  publication-title: Dokl. Akad. Nauk SSSR
– ident: 8
  doi: 10.1016/S0377-0257(98)00115-3
– volume: 10
  start-page: 123015
  issn: 1367-2630
  year: 2008
  ident: 15
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/12/123015
– start-page: 135
  year: 1949
  ident: 1
– ident: 25
  doi: 10.1017/CBO9780511546099
– start-page: 193
  year: 1988
  ident: 59
– ident: 10
  doi: 10.1063/1.861977
– ident: 39
  doi: 10.1017/S0022112098003024
– ident: 32
  doi: 10.1017/S0022112093002393
– ident: 38
  doi: 10.1063/1.869752
– ident: 68
  doi: 10.1017/S002211209400011X
– ident: 11
  doi: 10.1063/1.870100
– volume: 37
  start-page: 183
  issn: 1873-7005
  year: 2005
  ident: 50
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/j.fluiddyn.2005.04.002
– ident: 36
  doi: 10.1063/1.857730
– ident: 51
  doi: 10.1017/S0022112095000462
– ident: 3
  doi: 10.1017/S0022112003005305
– ident: 18
  doi: 10.1016/0378-4371(86)90200-1
– ident: 26
  doi: 10.1098/rspa.1938.0002
– year: 1981
  ident: 56
  publication-title: Technical Report
SSID ssj0061023
ssib054405859
ssib000804704
Score 1.9420885
Snippet Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect...
Direct numerical simulation of decaying homogeneous isotropic turbulence (DHIT) of a polymer solution is performed. In order to understand the polymer effect...
SourceID proquest
crossref
iop
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 279
SubjectTerms Decay
Fluid flow
Inhibition
Mathematical analysis
Tensors
Tubes
Turbulence
Turbulent flow
Vorticity
均匀各向同性湍流
张量
直接数值模拟
联合概率密度
聚合效应
聚合物溶液
衰减
速度梯度
Title Direct numerical simulation study of the interaction between the polymer effect and velocity gradient tensor in decaying homogeneous isotropic turbulence
URI http://lib.cqvip.com/qk/85823A/201112/40316894.html
http://iopscience.iop.org/1674-1056/20/12/124702
https://www.proquest.com/docview/1732811667
https://www.proquest.com/docview/1753515762
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpoNBL36WbPphC6aHgzcqWZPlYSkPaQx_QQG5CkuVkycZyvfah_Sf9tx1JdiAktCn4YMyMbDHSPKyZbwh5ba2oy1KzrDAugGoLkRnmaMap1JWQaAR1RPv8LA6P2KdjfrxD5iaIa99Nmn-Jt-kkX5QsC_3hMU7fpzlerIzokWj8w5L--OXrrHpFwCEIEdbMMpcEY5R3_TABUeHUtyc_0E5csky38PVX1HO0OQf3yLe5cielmpwtx8Es7a-rQI43ns59cndyQOFdWjEPyI5rH5LbMRHUbh-R30kHQjumo5wNbNfnU4sviFi04BtArxEC0ESfyiJgyvaKzzu_-Ym8kDJFQLc1hLwki-4-nPQxw2yAkDfvexwDamd1KLWCU3_ucTU7P25hvfVD77u1BbSIZoyFUY_J0cGH7-8Ps6l9Q2ZZVQyZpRUrLGrEBieYF05wLiwttOamkcbISjohha6Y1TSUCFv0bJiRNbpEPDc1K56Q3da37ikBDDLLQjeMujJnznAjnZQi1OhRsxKrfEH2LsSougTTodgqNOWq2ILwWa7KTsDnof_GRsUDeClVkIkKMlE5PslVksmC7F_wzWP-i-MtivnGxG8uEV9LpLq6WZBX8zJUuPfDgY6OwlA0IC1RKkT5NxpeoM-KNm_vf77uGbkT_57HxJ3nZHfoR_cC3a_BvIxb7g_I7x-j
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbaIhAX3hVbXkZCHJCyu05sxzki6KoFVHqgUm-W7Tjtim0cNskB_gn_lrGdrFTeCCmHyPJYccaZGcfffIPQM2N4meeKJpm2nlSb80RTSxJGhCq4ACeoAtvnET84oW9O2ekW2t_kwrhmMP1TuI1EwfEVDoA4MfO4-cQXjIeN-4ykcNF8ns6astpGV1jGC1_I4PD98WiQuWcn8PuuUW5MFP7lWJ5n4dzVZ5_Ae1zyV9vwTD8Y7eCJFjcjYqQNBIYegPJx2nd6ar58R-_435O8hW4MsSp-GYVuoy1b30FXA2bUtHfR12gucd3HU58VbpcXQzUwHGhrsaswBJjYc1KsYwYFHoBhob1xq88giyOoBKu6xB7CZGBngM_WAYzWYQ-xd2sYA5fWKJ-Vhc_dhYOFb13f4mXrurVrlgaD89R9yKG6h04W-x9eHSRDpYfE0CLrEkMKmhkwnhVMMs0sZ4wbkinFdCW0FoWwXHBVUKOIzyY2EARRLUqInliqS5rtop3a1fY-wrAfzTNVUWLzlFrNtLBCcJ_OR_Scz9MJ2tvoVjaR0UPSua_fVdAJYqOypRk40n2pjpUMZ_VCSK8X6fUiU2hJZdTLBM02cuOYf5J4Aar_687PL3X-aScJa2OCno5rU4KZ8Gc_KihDEk_KRAjn-e_6sAzCW3CPe__ydE_QtePXC_nu8OjtA3Q9_HMPcJ-HaKdb9_YRBG2dfhw-yW-LTS-R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+numerical+simulation+study+of+the+interaction+between+the+polymer+effect+and+velocity+gradient+tensor+in+decaying+homogeneous+isotropic+turbulence&rft.jtitle=Chinese+physics+B&rft.au=Cai%2C+Wei-Hua&rft.au=Li%2C+Feng-Chen&rft.au=Zhang%2C+Hong-Na&rft.date=2011-12-01&rft.issn=1674-1056&rft.volume=20&rft.issue=12&rft.spage=124702&rft_id=info:doi/10.1088%2F1674-1056%2F20%2F12%2F124702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_20_12_124702
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg