Robust integer and fractional helical modes in the quantum Hall effect
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majora...
Saved in:
Published in | Nature physics Vol. 14; no. 4; pp. 411 - 416 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.04.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1745-2473 1745-2481 |
DOI | 10.1038/s41567-017-0035-2 |
Cover
Loading…
Abstract | Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.
Helical modes are induced in a high-mobility two-dimensional electron gas without strong spin–orbit coupling. This platform provides a versatile playground for investigating compounded quantum Hall edge states. |
---|---|
AbstractList | Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of its own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that due to spin-protection, these helical modes remain ballistic for large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge modes based interferometers.Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of its own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that due to spin-protection, these helical modes remain ballistic for large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge modes based interferometers. Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of its own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that due to spin-protection, these helical modes remain ballistic for large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge modes based interferometers. Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers. Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers. Helical modes are induced in a high-mobility two-dimensional electron gas without strong spin–orbit coupling. This platform provides a versatile playground for investigating compounded quantum Hall edge states. |
Author | Banitt, Daniel Umansky, Vladimir Ronen, Yuval Cohen, Yonatan Heiblum, Moty |
Author_xml | – sequence: 1 givenname: Yuval surname: Ronen fullname: Ronen, Yuval organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 2 givenname: Yonatan orcidid: 0000-0002-2641-483X surname: Cohen fullname: Cohen, Yonatan organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 3 givenname: Daniel surname: Banitt fullname: Banitt, Daniel organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 4 givenname: Moty surname: Heiblum fullname: Heiblum, Moty email: moty.heiblum@weizmann.ac.il organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 5 givenname: Vladimir surname: Umansky fullname: Umansky, Vladimir organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29736182$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctq3jAQhUVJaW59gG6CIZts3OpueRMIoblAoFCatZDlcX4FWUokudC3r8yfSxtoF2IG9J3DYc4-2gkxAEKfCP5MMFNfMidCdi0m9WEmWvoO7ZGO14UrsvOyd2wX7ed8jzGnkrAPaJf2HZNE0T108T0OSy6NCwXuIDUmjM2UjC0uBuObDXhn65zjCLlCTdlA87iYUJa5uTLeNzBNYMshej8Zn-Hj0zxAtxdff5xftTffLq_Pz25ay3tW2kGNSnWyl0AVt0YOvVDKYGEBlLScA7cw2XGkWEyW8Q6P0GGBh34cpOilYAfodOv7sAwzjBZCScbrh-Rmk37paJz--ye4jb6LP7XomaC0rwYnTwYpPi6Qi55dtuC9CRCXrClmkmKiMK_o8Rv0Pi6pXmWlKBUUS74mOvoz0UuU5xNXoNsCNsWcE0zaumLW-9aAzmuC9Vqm3papa5l6LVOvSvJG-Wz-Pw3danJlQ230NfS_Rb8Bbwawng |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_16_014043 crossref_primary_10_1103_PhysRevB_110_155404 crossref_primary_10_1103_PhysRevB_107_L121408 crossref_primary_10_1103_PhysRevLett_129_146801 crossref_primary_10_1063_10_0010207 crossref_primary_10_1103_PhysRevX_13_031024 crossref_primary_10_1016_j_cap_2021_04_001 crossref_primary_10_1016_j_physc_2019_1353592 crossref_primary_10_1103_PhysRevLett_122_236802 crossref_primary_10_1103_PhysRevB_97_235139 crossref_primary_10_1103_PhysRevB_103_L180505 crossref_primary_10_1038_s41467_019_09920_5 crossref_primary_10_1103_PhysRevB_99_161302 crossref_primary_10_1038_s41467_021_25631_2 crossref_primary_10_1103_PhysRevB_98_115408 crossref_primary_10_1103_PhysRevLett_123_137701 crossref_primary_10_1103_PhysRevB_105_195417 crossref_primary_10_1103_PhysRevB_104_085304 crossref_primary_10_1103_PhysRevB_110_245309 crossref_primary_10_1103_PhysRevLett_125_076802 crossref_primary_10_1103_PhysRevB_105_L081402 crossref_primary_10_1088_1361_648X_ab5560 crossref_primary_10_1103_PhysRevLett_121_036802 crossref_primary_10_1103_PhysRevLett_133_076503 crossref_primary_10_1016_j_cej_2020_128036 crossref_primary_10_1103_PhysRevB_110_035402 |
Cites_doi | 10.1038/nphys2479 10.1038/nphys3036 10.1038/s41467-017-00315-y 10.1038/nphys2429 10.1126/science.1148047 10.1016/S0003-4916(02)00018-0 10.1103/PhysRevLett.100.096407 10.1103/PhysRevLett.108.046804 10.1126/science.1222360 10.1103/PhysRevLett.107.266802 10.1038/npjqi.2015.1 10.1038/nature09277 10.1070/1063-7869/44/10S/S29 10.1038/nphys4010 10.1038/nphys4070 10.1103/PhysRevLett.113.266803 10.1016/j.aop.2005.10.005 10.1038/ncomms2340 10.1103/PhysRevB.95.235305 10.1103/PhysRevLett.107.136603 10.1103/PhysRevB.87.241401 10.1103/PhysRevLett.61.2797 10.1038/nnano.2016.214 10.1021/nl303758w 10.1103/RevModPhys.80.1083 10.1103/PhysRevLett.105.177002 10.1103/PhysRevB.94.075309 10.1088/0034-4885/75/7/076501 10.1016/j.physleta.2015.11.030 10.1103/PhysRevLett.105.077001 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Apr 2018 |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Apr 2018 |
DBID | AAYXX CITATION NPM 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1038/s41567-017-0035-2 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 416 |
ExternalDocumentID | PMC5935229 29736182 10_1038_s41567_017_0035_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 339070 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACMFV ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AHWEU AIXLP NFIDA NPM PQGLB 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c493t-b8d887696e284ca6b9588a05cee86c44e4cefcdd205fc3470de7050b9db659653 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Thu Aug 21 13:40:30 EDT 2025 Thu Sep 04 22:42:18 EDT 2025 Sat Aug 23 12:42:08 EDT 2025 Mon Jul 21 06:03:12 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Tue Jul 01 00:25:38 EDT 2025 Fri Feb 21 02:38:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-b8d887696e284ca6b9588a05cee86c44e4cefcdd205fc3470de7050b9db659653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 equal contributions |
ORCID | 0000-0002-2641-483X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5935229 |
PMID | 29736182 |
PQID | 2022520645 |
PQPubID | 27545 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5935229 proquest_miscellaneous_2036201804 proquest_journals_2022520645 pubmed_primary_29736182 crossref_citationtrail_10_1038_s41567_017_0035_2 crossref_primary_10_1038_s41567_017_0035_2 springer_journals_10_1038_s41567_017_0035_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationTitleAlternate | Nat Phys |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mourik (CR5) 2012; 336 Barkeshli, Qi (CR31) 2014; 4 Sanchez-Yamagishi (CR26) 2016; 12 Bid (CR32) 2010; 466 Alicea (CR4) 2012; 75 Clarke, Sau, Das Sarma (CR13) 2016; 6 Grivnin (CR34) 2014; 113 Sabo (CR33) 2017; 13 Oreg, Refael, Von Oppen (CR17) 2010; 105 Nuebler (CR29) 2012; 108 Rokhinson, Liu, Furdyna (CR6) 2012; 8 Liu (CR30) 2011; 107 Kitaev (CR2) 2003; 303 Lindner, Berg, Refael, Stern (CR20) 2012; 2 Karzig (CR11) 2017; 95 Vaezi (CR18) 2014; 4 Kammhuber (CR25) 2017; 8 Kazakov (CR27) 2016; 94 Haug (CR28) 1988; 61 Heedt (CR24) 2017; 13 Knez (CR22) 2011; 107 Deng (CR7) 2012; 12 Lutchyn, Sau, Das Sarma (CR16) 2010; 105 König (CR21) 2007; 318 Churchill (CR8) 2013; 87 Hart (CR23) 2014; 10 Das (CR9) 2012; 8 Nayak, Simon, Stern, Freedman, Das Sarma (CR14) 2008; 80 Das Sarma, Freedman, Nayak (CR12) 2015; 1 Fu, Kane (CR3) 2008; 100 Clarke, Alicea, Shtengel (CR19) 2013; 4 Cheng, He, Kou (CR15) 2016; 380 Kitaev (CR1) 2001; 44 Kitaev (CR10) 2006; 321 M König (35_CR21) 2007; 318 I Knez (35_CR22) 2011; 107 A Kitaev (35_CR10) 2006; 321 T Karzig (35_CR11) 2017; 95 M Barkeshli (35_CR31) 2014; 4 JD Sanchez-Yamagishi (35_CR26) 2016; 12 J Nuebler (35_CR29) 2012; 108 Y Oreg (35_CR17) 2010; 105 AY Kitaev (35_CR2) 2003; 303 LP Rokhinson (35_CR6) 2012; 8 DJ Clarke (35_CR19) 2013; 4 S Sarma Das (35_CR12) 2015; 1 RJ Haug (35_CR28) 1988; 61 A Kazakov (35_CR27) 2016; 94 HOH Churchill (35_CR8) 2013; 87 R Sabo (35_CR33) 2017; 13 RM Lutchyn (35_CR16) 2010; 105 L Fu (35_CR3) 2008; 100 J Kammhuber (35_CR25) 2017; 8 MT Deng (35_CR7) 2012; 12 DJ Clarke (35_CR13) 2016; 6 QB Cheng (35_CR15) 2016; 380 NH Lindner (35_CR20) 2012; 2 AY Kitaev (35_CR1) 2001; 44 A Vaezi (35_CR18) 2014; 4 S Hart (35_CR23) 2014; 10 S Heedt (35_CR24) 2017; 13 A Bid (35_CR32) 2010; 466 A Grivnin (35_CR34) 2014; 113 C Nayak (35_CR14) 2008; 80 V Mourik (35_CR5) 2012; 336 A Das (35_CR9) 2012; 8 J Alicea (35_CR4) 2012; 75 Y Liu (35_CR30) 2011; 107 |
References_xml | – volume: 8 start-page: 887 year: 2012 end-page: 895 ident: CR9 article-title: Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions publication-title: Nat. Phys. doi: 10.1038/nphys2479 – volume: 10 start-page: 638 year: 2014 end-page: 643 ident: CR23 article-title: Induced superconductivity in the quantum spin Hall edge publication-title: Nat. Phys. doi: 10.1038/nphys3036 – volume: 8 year: 2017 ident: CR25 article-title: Conductance through a helical state in an indium antimonide nanowire publication-title: Nat. Commun. doi: 10.1038/s41467-017-00315-y – volume: 8 start-page: 795 year: 2012 end-page: 799 ident: CR6 article-title: The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles publication-title: Nat. Phys. doi: 10.1038/nphys2429 – volume: 318 start-page: 766 year: 2007 end-page: 770 ident: CR21 article-title: Quantum spin Hall insulator state in HgTe quantum wells publication-title: Science doi: 10.1126/science.1148047 – volume: 303 start-page: 2 year: 2003 end-page: 30 ident: CR2 article-title: Fault-tolerant quantum computation by anyons publication-title: Ann. Phys. doi: 10.1016/S0003-4916(02)00018-0 – volume: 100 year: 2008 ident: CR3 article-title: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.096407 – volume: 108 year: 2012 ident: CR29 article-title: Quantized = 5/2 state in a two-subband quantum Hall system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.046804 – volume: 336 start-page: 1003– year: 2012 end-page: 1007 ident: CR5 article-title: Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices publication-title: Science doi: 10.1126/science.1222360 – volume: 107 year: 2011 ident: CR30 article-title: Evolution of the 7/2 fractional quantum Hall state in two-subband systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.266802 – volume: 1 year: 2015 ident: CR12 article-title: Majorana zero modes and topological quantum computation publication-title: NPJ Quant. Inf. doi: 10.1038/npjqi.2015.1 – volume: 466 start-page: 585 year: 2010 end-page: 590 ident: CR32 article-title: Observation of neutral modes in the fractional quantum Hall regime publication-title: Nature doi: 10.1038/nature09277 – volume: 44 start-page: 131 year: 2001 end-page: 136 ident: CR1 article-title: Unpaired Majorana fermions in quantum wires publication-title: Phys. Usp. doi: 10.1070/1063-7869/44/10S/S29 – volume: 13 start-page: 491 year: 2017 end-page: 496 ident: CR33 article-title: Edge reconstruction in fractional quantum Hall states publication-title: Nat. Phys. doi: 10.1038/nphys4010 – volume: 13 start-page: 563– year: 2017 end-page: 567 ident: CR24 article-title: Signatures of interaction-induced helical gaps in nanowire quantum point contacts publication-title: Nat. Phys. doi: 10.1038/nphys4070 – volume: 113 year: 2014 ident: CR34 article-title: Nonequilibrated counterpropagating edge modes in the fractional quantum Hall regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.266803 – volume: 6 year: 2016 ident: CR13 article-title: A practical phase gate for producing bell violations in Majorana wires publication-title: Phys. Rev. X – volume: 321 start-page: 2 year: 2006 end-page: 111 ident: CR10 article-title: Anyons in an exactly solved model and beyond publication-title: Ann. Phys. doi: 10.1016/j.aop.2005.10.005 – volume: 4 year: 2013 ident: CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms2340 – volume: 95 start-page: 235305 year: 2017 ident: CR11 article-title: Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.235305 – volume: 107 year: 2011 ident: CR22 article-title: Evidence for helical edge modes in inverted InAs/GaSb quantum wells publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.136603 – volume: 87 year: 2013 ident: CR8 article-title: Superconductor-nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.241401 – volume: 61 year: 1988 ident: CR28 article-title: Quantized multichannel magnetotransport through a barrier in two dimensions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2797 – volume: 12 start-page: 118 year: 2016 end-page: 122 ident: CR26 article-title: Helical edge states and fractional quantum Hall effect in a graphene electron–hole bilayer publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.214 – volume: 12 start-page: 6414 year: 2012 end-page: 6419 ident: CR7 article-title: Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device publication-title: Nano Lett. doi: 10.1021/nl303758w – volume: 2 year: 2012 ident: CR20 article-title: Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states publication-title: Phys. Rev. X – volume: 4 year: 2014 ident: CR31 article-title: Synthetic topological qubits in conventional bilayer quantum Hall systems publication-title: Phys. Rev. X – volume: 80 start-page: 1083 year: 2008 end-page: 1159 ident: CR14 article-title: Non-Abelian anyons and topological quantum computation publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.1083 – volume: 105 year: 2010 ident: CR17 article-title: Helical liquids and Majorana bound states in quantum wires publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.177002 – volume: 94 year: 2016 ident: CR27 article-title: Electrostatic control of quantum Hall ferromagnetic transition: a step toward reconfigurable network of helical channels publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.075309 – volume: 75 year: 2012 ident: CR4 article-title: New directions in the pursuit of Majorana fermions in solid state systems publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/7/076501 – volume: 4 year: 2014 ident: CR18 article-title: Superconducting analogue of the parafermion fractional quantum Hall states publication-title: Phys. Rev. X – volume: 380 start-page: 779 year: 2016 end-page: 782 ident: CR15 article-title: Verifying non-Abelian statistics by numerical braiding Majorana fermions publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.11.030 – volume: 105 year: 2010 ident: CR16 article-title: Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.077001 – volume: 318 start-page: 766 year: 2007 ident: 35_CR21 publication-title: Science doi: 10.1126/science.1148047 – volume: 107 year: 2011 ident: 35_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.266802 – volume: 8 start-page: 887 year: 2012 ident: 35_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys2479 – volume: 1 year: 2015 ident: 35_CR12 publication-title: NPJ Quant. Inf. doi: 10.1038/npjqi.2015.1 – volume: 113 year: 2014 ident: 35_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.266803 – volume: 13 start-page: 563– year: 2017 ident: 35_CR24 publication-title: Nat. Phys. doi: 10.1038/nphys4070 – volume: 6 year: 2016 ident: 35_CR13 publication-title: Phys. Rev. X – volume: 12 start-page: 6414 year: 2012 ident: 35_CR7 publication-title: Nano Lett. doi: 10.1021/nl303758w – volume: 108 year: 2012 ident: 35_CR29 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.046804 – volume: 4 year: 2013 ident: 35_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms2340 – volume: 380 start-page: 779 year: 2016 ident: 35_CR15 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2015.11.030 – volume: 107 year: 2011 ident: 35_CR22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.136603 – volume: 2 year: 2012 ident: 35_CR20 publication-title: Phys. Rev. X – volume: 4 year: 2014 ident: 35_CR31 publication-title: Phys. Rev. X – volume: 75 year: 2012 ident: 35_CR4 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/7/076501 – volume: 94 year: 2016 ident: 35_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.075309 – volume: 105 year: 2010 ident: 35_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.177002 – volume: 8 start-page: 795 year: 2012 ident: 35_CR6 publication-title: Nat. Phys. doi: 10.1038/nphys2429 – volume: 321 start-page: 2 year: 2006 ident: 35_CR10 publication-title: Ann. Phys. doi: 10.1016/j.aop.2005.10.005 – volume: 303 start-page: 2 year: 2003 ident: 35_CR2 publication-title: Ann. Phys. doi: 10.1016/S0003-4916(02)00018-0 – volume: 44 start-page: 131 year: 2001 ident: 35_CR1 publication-title: Phys. Usp. doi: 10.1070/1063-7869/44/10S/S29 – volume: 4 year: 2014 ident: 35_CR18 publication-title: Phys. Rev. X – volume: 8 year: 2017 ident: 35_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00315-y – volume: 95 start-page: 235305 year: 2017 ident: 35_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.235305 – volume: 80 start-page: 1083 year: 2008 ident: 35_CR14 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.1083 – volume: 87 year: 2013 ident: 35_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.241401 – volume: 10 start-page: 638 year: 2014 ident: 35_CR23 publication-title: Nat. Phys. doi: 10.1038/nphys3036 – volume: 100 year: 2008 ident: 35_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.096407 – volume: 105 year: 2010 ident: 35_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.077001 – volume: 61 year: 1988 ident: 35_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2797 – volume: 12 start-page: 118 year: 2016 ident: 35_CR26 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.214 – volume: 336 start-page: 1003– year: 2012 ident: 35_CR5 publication-title: Science doi: 10.1126/science.1222360 – volume: 466 start-page: 585 year: 2010 ident: 35_CR32 publication-title: Nature doi: 10.1038/nature09277 – volume: 13 start-page: 491 year: 2017 ident: 35_CR33 publication-title: Nat. Phys. doi: 10.1038/nphys4010 |
SSID | ssj0042613 |
Score | 2.4462311 |
Snippet | Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When... Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of its own. When coupled... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 411 |
SubjectTerms | 142/126 639/766/119/1000 639/766/119/1001 639/766/119/2792 639/766/119/2794 Atomic Banded structure Classical and Continuum Physics Complex Systems Condensed Matter Physics Electromagnetism Electronic systems Gallium arsenide Hall effect Interferometers Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Quantum computing Quantum Hall effect Quantum wells Superconductivity Theoretical |
Title | Robust integer and fractional helical modes in the quantum Hall effect |
URI | https://link.springer.com/article/10.1038/s41567-017-0035-2 https://www.ncbi.nlm.nih.gov/pubmed/29736182 https://www.proquest.com/docview/2022520645 https://www.proquest.com/docview/2036201804 https://pubmed.ncbi.nlm.nih.gov/PMC5935229 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAivq0vInhSiqVN0uYkKq6LoIgoeCttOkVh7a7b7f93po-VVfTQUxKaZJKZL5nJNwAnZJO8DHPjMhx3JaJxkzTkx-456iCXaYj8UPj-QQ9e5N2rem0v3Mo2rLLTibWizkaW78j5kO4rn9nVLsafLmeNYu9qm0JjEZZIBUeqB0tXNw-PT50u5vNB0DyJVK4vw6DzawbReclHFw67pI95G_15y_QLbv6OmvzhOq0tUn8NVlsoKS4b2a_DAhYbsFyHdNpyE_pPo7Qqp6ImhMCJSIpM5JPmHQM1e0O-rhsKToVTUiVBSFB8VjTR1YcYJMOhaEI9tuClf_N8PXDbrAmulSaYummUkeLQRiNZHpvo1KgoSjxF1jDSVkqUFnObZb6nchvIkEQVespLTZZqZbQKtqFXjArcBaERLcEFRJ0bSTA8CRkvEqAhSebKKAe8bsZi21KKc2aLYVy7toMobiY5pklmElIV-w6czpqMGz6N_yofdGKI261Vxt8LwYHjWTFtCvZ0JAWOKq5DdpmpyaQDO43UZn_jZF2aTlUOhHPynFVgwu35kuL9rSbeVobhqnHgrJP8d7f-HMTe_4PYhxXuaRMMdAC96aTCQ8I50_QIFqP-7VG7pL8ArT75yQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hUNVeEPSZFoortZdWUaPEduJDhWjLanmtKgQStzRxJqLSkoXNRqh_qr-xM3GyaEFw45CTHcX2PPxN5gXwke6koMDS-AzHfYlo_CyPOdm9RB2VMo-RE4WPRnp4KvfP1NkS_OtzYTissteJraIuJpb_kbORHqqQq6ttX1753DWKvat9Cw3HFgf495pMtvrb3k-i76cwHOye_Bj6XVcB30oTzfw8KUiwtNFImtlmOjcqSbJA0W2RaCslSoulLYowUKWNZExbiQMV5KbItTKau0SQyl8hmGFIila-745-Hfe6n-2RyKVgKj-UcdT7UaPka82mEod50sN1IsPFm_AOvL0bpXnLVdvegIM1WO2gq9hxvLYOS1g9hydtCKmtX8DgeJI39Uy0BShwKrKqEOXU5U3Qa-fIvwfHglvv1DRJEPIUVw0RtrkQw2w8Fi605CWcPsp5voLlalLhGxAa0RI8QdSlkQT7s5jxKQEo4pxSGeVB0J9YarsS5txJY5y2rvQoSd0hp3TIXPRUpaEHn-evXLr6HQ9N3ujJkHaiXKc3jOfBh_kwCSF7VrIKJw3PIRzApdCkB68d1eZf4-Zgmqw4D-IFes4ncIHvxZHqz3lb6FsZhsfGgy895W-Wde8m3j68iS14Ojw5OkwP90YH7-AZr9oFIm3A8mza4CZhrFn-vmNsAb8fW5b-A6oSNlU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN6kLWAkuICiRontxAeEgHa1pbCqKir1FhJnrCIt2XazEeKv8euYiZOtloreesjJjmJ7ZjzfZF4Ar0gnRRU6EzIcDyWiCYsy5WR3hzpxskyRE4W_TvXkRH4-Vacb8GfIheGwyuFO7C7qam75Hzkb6bGKubraruvDIo72xu_PL0LuIMWe1qGdhmeRQ_z9i8y35t3BHtH6dRyP9799moR9h4HQSpMswzKrSMi00Ui3tC10aVSWFZEizZFpKyVKi85WVRwpZxOZ0rbSSEWlqUqtjOaOEXT9b6akFbMRbH7cnx4dD3qAbZPEp2OqMJZpMvhUk2y3YbOJQz7p4ZqR8bpWvAJ1r0Zs_uO27bTh-B7c7WGs-OD57j5sYP0AbnXhpLZ5COPjedk2S9EVo8CFKOpKuIXPoaDXzpB_Fc4Et-FpaJIgFCouWiJy-1NMitlM-DCTR3ByI-f5GEb1vManIDSiJaiCqJ2RZAIUKWNVAlPERU4ZFUA0nFhu-3Lm3FVjlndu9STL_SHndMhcAFXlcQBvVq-c-1oe103eGciQ92Ld5JdMGMDL1TAJJHtZihrnLc8hTMBl0WQATzzVVl_jRmGaLLoA0jV6riZwse_1kfrHWVf0WxmGyiaAtwPlL5f1301sXb-JF3CbZCj_cjA93IY7vGgfk7QDo-WixWcEt5bl856vBXy_aVH6CxaOOoE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+integer+and+fractional+helical+modes+in+the+quantum+Hall+effect&rft.jtitle=Nature+physics&rft.au=Ronen%2C+Yuval&rft.au=Cohen%2C+Yonatan&rft.au=Banitt%2C+Daniel&rft.au=Heiblum%2C+Moty&rft.date=2018-04-01&rft.issn=1745-2473&rft.volume=14&rft.issue=4&rft.spage=411&rft.epage=416&rft_id=info:doi/10.1038%2Fs41567-017-0035-2&rft_id=info%3Apmid%2F29736182&rft.externalDocID=PMC5935229 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |