Robust integer and fractional helical modes in the quantum Hall effect

Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majora...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 14; no. 4; pp. 411 - 416
Main Authors Ronen, Yuval, Cohen, Yonatan, Banitt, Daniel, Heiblum, Moty, Umansky, Vladimir
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1745-2473
1745-2481
DOI10.1038/s41567-017-0035-2

Cover

Loading…
Abstract Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers. Helical modes are induced in a high-mobility two-dimensional electron gas without strong spin–orbit coupling. This platform provides a versatile playground for investigating compounded quantum Hall edge states.
AbstractList Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of its own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that due to spin-protection, these helical modes remain ballistic for large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge modes based interferometers.Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of its own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that due to spin-protection, these helical modes remain ballistic for large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge modes based interferometers.
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of its own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that due to spin-protection, these helical modes remain ballistic for large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge modes based interferometers.
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers.
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When coupled to a conventional superconductor, such systems are expected to manifest topological superconductivity; a unique phase hosting exotic Majorana zero modes. Even more interesting are fractional helical modes, yet to be observed, which open the route for realizing generalized parafermions. Possessing non-Abelian exchange statistics, these quasiparticles may serve as building blocks in topological quantum computing. Here, we present a new approach to form protected one-dimensional helical edge modes in the quantum Hall regime. The novel platform is based on a carefully designed double-quantum-well structure in a GaAs-based system hosting two electronic sub-bands; each tuned to the quantum Hall effect regime. By electrostatic gating of different areas of the structure, counter-propagating integer, as well as fractional, edge modes with opposite spins are formed. We demonstrate that, due to spin protection, these helical modes remain ballistic over large distances. In addition to the formation of helical modes, this platform can serve as a rich playground for artificial induction of compounded fractional edge modes, and for construction of edge-mode-based interferometers. Helical modes are induced in a high-mobility two-dimensional electron gas without strong spin–orbit coupling. This platform provides a versatile playground for investigating compounded quantum Hall edge states.
Author Banitt, Daniel
Umansky, Vladimir
Ronen, Yuval
Cohen, Yonatan
Heiblum, Moty
Author_xml – sequence: 1
  givenname: Yuval
  surname: Ronen
  fullname: Ronen, Yuval
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 2
  givenname: Yonatan
  orcidid: 0000-0002-2641-483X
  surname: Cohen
  fullname: Cohen, Yonatan
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 3
  givenname: Daniel
  surname: Banitt
  fullname: Banitt, Daniel
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 4
  givenname: Moty
  surname: Heiblum
  fullname: Heiblum, Moty
  email: moty.heiblum@weizmann.ac.il
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 5
  givenname: Vladimir
  surname: Umansky
  fullname: Umansky, Vladimir
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29736182$$D View this record in MEDLINE/PubMed
BookMark eNp9kctq3jAQhUVJaW59gG6CIZts3OpueRMIoblAoFCatZDlcX4FWUokudC3r8yfSxtoF2IG9J3DYc4-2gkxAEKfCP5MMFNfMidCdi0m9WEmWvoO7ZGO14UrsvOyd2wX7ed8jzGnkrAPaJf2HZNE0T108T0OSy6NCwXuIDUmjM2UjC0uBuObDXhn65zjCLlCTdlA87iYUJa5uTLeNzBNYMshej8Zn-Hj0zxAtxdff5xftTffLq_Pz25ay3tW2kGNSnWyl0AVt0YOvVDKYGEBlLScA7cw2XGkWEyW8Q6P0GGBh34cpOilYAfodOv7sAwzjBZCScbrh-Rmk37paJz--ye4jb6LP7XomaC0rwYnTwYpPi6Qi55dtuC9CRCXrClmkmKiMK_o8Rv0Pi6pXmWlKBUUS74mOvoz0UuU5xNXoNsCNsWcE0zaumLW-9aAzmuC9Vqm3papa5l6LVOvSvJG-Wz-Pw3danJlQ230NfS_Rb8Bbwawng
CitedBy_id crossref_primary_10_1103_PhysRevApplied_16_014043
crossref_primary_10_1103_PhysRevB_110_155404
crossref_primary_10_1103_PhysRevB_107_L121408
crossref_primary_10_1103_PhysRevLett_129_146801
crossref_primary_10_1063_10_0010207
crossref_primary_10_1103_PhysRevX_13_031024
crossref_primary_10_1016_j_cap_2021_04_001
crossref_primary_10_1016_j_physc_2019_1353592
crossref_primary_10_1103_PhysRevLett_122_236802
crossref_primary_10_1103_PhysRevB_97_235139
crossref_primary_10_1103_PhysRevB_103_L180505
crossref_primary_10_1038_s41467_019_09920_5
crossref_primary_10_1103_PhysRevB_99_161302
crossref_primary_10_1038_s41467_021_25631_2
crossref_primary_10_1103_PhysRevB_98_115408
crossref_primary_10_1103_PhysRevLett_123_137701
crossref_primary_10_1103_PhysRevB_105_195417
crossref_primary_10_1103_PhysRevB_104_085304
crossref_primary_10_1103_PhysRevB_110_245309
crossref_primary_10_1103_PhysRevLett_125_076802
crossref_primary_10_1103_PhysRevB_105_L081402
crossref_primary_10_1088_1361_648X_ab5560
crossref_primary_10_1103_PhysRevLett_121_036802
crossref_primary_10_1103_PhysRevLett_133_076503
crossref_primary_10_1016_j_cej_2020_128036
crossref_primary_10_1103_PhysRevB_110_035402
Cites_doi 10.1038/nphys2479
10.1038/nphys3036
10.1038/s41467-017-00315-y
10.1038/nphys2429
10.1126/science.1148047
10.1016/S0003-4916(02)00018-0
10.1103/PhysRevLett.100.096407
10.1103/PhysRevLett.108.046804
10.1126/science.1222360
10.1103/PhysRevLett.107.266802
10.1038/npjqi.2015.1
10.1038/nature09277
10.1070/1063-7869/44/10S/S29
10.1038/nphys4010
10.1038/nphys4070
10.1103/PhysRevLett.113.266803
10.1016/j.aop.2005.10.005
10.1038/ncomms2340
10.1103/PhysRevB.95.235305
10.1103/PhysRevLett.107.136603
10.1103/PhysRevB.87.241401
10.1103/PhysRevLett.61.2797
10.1038/nnano.2016.214
10.1021/nl303758w
10.1103/RevModPhys.80.1083
10.1103/PhysRevLett.105.177002
10.1103/PhysRevB.94.075309
10.1088/0034-4885/75/7/076501
10.1016/j.physleta.2015.11.030
10.1103/PhysRevLett.105.077001
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Nature Publishing Group Apr 2018
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Nature Publishing Group Apr 2018
DBID AAYXX
CITATION
NPM
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41567-017-0035-2
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Central Student

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 416
ExternalDocumentID PMC5935229
29736182
10_1038_s41567_017_0035_2
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 339070
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
AEZWR
AFHIU
AHWEU
AIXLP
NFIDA
NPM
PQGLB
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c493t-b8d887696e284ca6b9588a05cee86c44e4cefcdd205fc3470de7050b9db659653
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Thu Aug 21 13:40:30 EDT 2025
Thu Sep 04 22:42:18 EDT 2025
Sat Aug 23 12:42:08 EDT 2025
Mon Jul 21 06:03:12 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Tue Jul 01 00:25:38 EDT 2025
Fri Feb 21 02:38:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-b8d887696e284ca6b9588a05cee86c44e4cefcdd205fc3470de7050b9db659653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
equal contributions
ORCID 0000-0002-2641-483X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5935229
PMID 29736182
PQID 2022520645
PQPubID 27545
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5935229
proquest_miscellaneous_2036201804
proquest_journals_2022520645
pubmed_primary_29736182
crossref_citationtrail_10_1038_s41567_017_0035_2
crossref_primary_10_1038_s41567_017_0035_2
springer_journals_10_1038_s41567_017_0035_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationTitleAlternate Nat Phys
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Mourik (CR5) 2012; 336
Barkeshli, Qi (CR31) 2014; 4
Sanchez-Yamagishi (CR26) 2016; 12
Bid (CR32) 2010; 466
Alicea (CR4) 2012; 75
Clarke, Sau, Das Sarma (CR13) 2016; 6
Grivnin (CR34) 2014; 113
Sabo (CR33) 2017; 13
Oreg, Refael, Von Oppen (CR17) 2010; 105
Nuebler (CR29) 2012; 108
Rokhinson, Liu, Furdyna (CR6) 2012; 8
Liu (CR30) 2011; 107
Kitaev (CR2) 2003; 303
Lindner, Berg, Refael, Stern (CR20) 2012; 2
Karzig (CR11) 2017; 95
Vaezi (CR18) 2014; 4
Kammhuber (CR25) 2017; 8
Kazakov (CR27) 2016; 94
Haug (CR28) 1988; 61
Heedt (CR24) 2017; 13
Knez (CR22) 2011; 107
Deng (CR7) 2012; 12
Lutchyn, Sau, Das Sarma (CR16) 2010; 105
König (CR21) 2007; 318
Churchill (CR8) 2013; 87
Hart (CR23) 2014; 10
Das (CR9) 2012; 8
Nayak, Simon, Stern, Freedman, Das Sarma (CR14) 2008; 80
Das Sarma, Freedman, Nayak (CR12) 2015; 1
Fu, Kane (CR3) 2008; 100
Clarke, Alicea, Shtengel (CR19) 2013; 4
Cheng, He, Kou (CR15) 2016; 380
Kitaev (CR1) 2001; 44
Kitaev (CR10) 2006; 321
M König (35_CR21) 2007; 318
I Knez (35_CR22) 2011; 107
A Kitaev (35_CR10) 2006; 321
T Karzig (35_CR11) 2017; 95
M Barkeshli (35_CR31) 2014; 4
JD Sanchez-Yamagishi (35_CR26) 2016; 12
J Nuebler (35_CR29) 2012; 108
Y Oreg (35_CR17) 2010; 105
AY Kitaev (35_CR2) 2003; 303
LP Rokhinson (35_CR6) 2012; 8
DJ Clarke (35_CR19) 2013; 4
S Sarma Das (35_CR12) 2015; 1
RJ Haug (35_CR28) 1988; 61
A Kazakov (35_CR27) 2016; 94
HOH Churchill (35_CR8) 2013; 87
R Sabo (35_CR33) 2017; 13
RM Lutchyn (35_CR16) 2010; 105
L Fu (35_CR3) 2008; 100
J Kammhuber (35_CR25) 2017; 8
MT Deng (35_CR7) 2012; 12
DJ Clarke (35_CR13) 2016; 6
QB Cheng (35_CR15) 2016; 380
NH Lindner (35_CR20) 2012; 2
AY Kitaev (35_CR1) 2001; 44
A Vaezi (35_CR18) 2014; 4
S Hart (35_CR23) 2014; 10
S Heedt (35_CR24) 2017; 13
A Bid (35_CR32) 2010; 466
A Grivnin (35_CR34) 2014; 113
C Nayak (35_CR14) 2008; 80
V Mourik (35_CR5) 2012; 336
A Das (35_CR9) 2012; 8
J Alicea (35_CR4) 2012; 75
Y Liu (35_CR30) 2011; 107
References_xml – volume: 8
  start-page: 887
  year: 2012
  end-page: 895
  ident: CR9
  article-title: Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2479
– volume: 10
  start-page: 638
  year: 2014
  end-page: 643
  ident: CR23
  article-title: Induced superconductivity in the quantum spin Hall edge
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3036
– volume: 8
  year: 2017
  ident: CR25
  article-title: Conductance through a helical state in an indium antimonide nanowire
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00315-y
– volume: 8
  start-page: 795
  year: 2012
  end-page: 799
  ident: CR6
  article-title: The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2429
– volume: 318
  start-page: 766
  year: 2007
  end-page: 770
  ident: CR21
  article-title: Quantum spin Hall insulator state in HgTe quantum wells
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 303
  start-page: 2
  year: 2003
  end-page: 30
  ident: CR2
  article-title: Fault-tolerant quantum computation by anyons
  publication-title: Ann. Phys.
  doi: 10.1016/S0003-4916(02)00018-0
– volume: 100
  year: 2008
  ident: CR3
  article-title: Superconducting proximity effect and Majorana fermions at the surface of a topological insulator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.096407
– volume: 108
  year: 2012
  ident: CR29
  article-title: Quantized = 5/2 state in a two-subband quantum Hall system
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.046804
– volume: 336
  start-page: 1003–
  year: 2012
  end-page: 1007
  ident: CR5
  article-title: Signatures of Majorana fermions in hybrid superconductor–semiconductor nanowire devices
  publication-title: Science
  doi: 10.1126/science.1222360
– volume: 107
  year: 2011
  ident: CR30
  article-title: Evolution of the 7/2 fractional quantum Hall state in two-subband systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.266802
– volume: 1
  year: 2015
  ident: CR12
  article-title: Majorana zero modes and topological quantum computation
  publication-title: NPJ Quant. Inf.
  doi: 10.1038/npjqi.2015.1
– volume: 466
  start-page: 585
  year: 2010
  end-page: 590
  ident: CR32
  article-title: Observation of neutral modes in the fractional quantum Hall regime
  publication-title: Nature
  doi: 10.1038/nature09277
– volume: 44
  start-page: 131
  year: 2001
  end-page: 136
  ident: CR1
  article-title: Unpaired Majorana fermions in quantum wires
  publication-title: Phys. Usp.
  doi: 10.1070/1063-7869/44/10S/S29
– volume: 13
  start-page: 491
  year: 2017
  end-page: 496
  ident: CR33
  article-title: Edge reconstruction in fractional quantum Hall states
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4010
– volume: 13
  start-page: 563–
  year: 2017
  end-page: 567
  ident: CR24
  article-title: Signatures of interaction-induced helical gaps in nanowire quantum point contacts
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4070
– volume: 113
  year: 2014
  ident: CR34
  article-title: Nonequilibrated counterpropagating edge modes in the fractional quantum Hall regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.266803
– volume: 6
  year: 2016
  ident: CR13
  article-title: A practical phase gate for producing bell violations in Majorana wires
  publication-title: Phys. Rev. X
– volume: 321
  start-page: 2
  year: 2006
  end-page: 111
  ident: CR10
  article-title: Anyons in an exactly solved model and beyond
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2005.10.005
– volume: 4
  year: 2013
  ident: CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2340
– volume: 95
  start-page: 235305
  year: 2017
  ident: CR11
  article-title: Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.235305
– volume: 107
  year: 2011
  ident: CR22
  article-title: Evidence for helical edge modes in inverted InAs/GaSb quantum wells
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.136603
– volume: 87
  year: 2013
  ident: CR8
  article-title: Superconductor-nanowire devices from tunneling to the multichannel regime: zero-bias oscillations and magnetoconductance crossover
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.241401
– volume: 61
  year: 1988
  ident: CR28
  article-title: Quantized multichannel magnetotransport through a barrier in two dimensions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2797
– volume: 12
  start-page: 118
  year: 2016
  end-page: 122
  ident: CR26
  article-title: Helical edge states and fractional quantum Hall effect in a graphene electron–hole bilayer
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.214
– volume: 12
  start-page: 6414
  year: 2012
  end-page: 6419
  ident: CR7
  article-title: Anomalous zero-bias conductance peak in a Nb–InSb nanowire–Nb hybrid device
  publication-title: Nano Lett.
  doi: 10.1021/nl303758w
– volume: 2
  year: 2012
  ident: CR20
  article-title: Fractionalizing Majorana fermions: non-abelian statistics on the edges of abelian quantum Hall states
  publication-title: Phys. Rev. X
– volume: 4
  year: 2014
  ident: CR31
  article-title: Synthetic topological qubits in conventional bilayer quantum Hall systems
  publication-title: Phys. Rev. X
– volume: 80
  start-page: 1083
  year: 2008
  end-page: 1159
  ident: CR14
  article-title: Non-Abelian anyons and topological quantum computation
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1083
– volume: 105
  year: 2010
  ident: CR17
  article-title: Helical liquids and Majorana bound states in quantum wires
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.177002
– volume: 94
  year: 2016
  ident: CR27
  article-title: Electrostatic control of quantum Hall ferromagnetic transition: a step toward reconfigurable network of helical channels
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.075309
– volume: 75
  year: 2012
  ident: CR4
  article-title: New directions in the pursuit of Majorana fermions in solid state systems
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/7/076501
– volume: 4
  year: 2014
  ident: CR18
  article-title: Superconducting analogue of the parafermion fractional quantum Hall states
  publication-title: Phys. Rev. X
– volume: 380
  start-page: 779
  year: 2016
  end-page: 782
  ident: CR15
  article-title: Verifying non-Abelian statistics by numerical braiding Majorana fermions
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.11.030
– volume: 105
  year: 2010
  ident: CR16
  article-title: Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.077001
– volume: 318
  start-page: 766
  year: 2007
  ident: 35_CR21
  publication-title: Science
  doi: 10.1126/science.1148047
– volume: 107
  year: 2011
  ident: 35_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.266802
– volume: 8
  start-page: 887
  year: 2012
  ident: 35_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2479
– volume: 1
  year: 2015
  ident: 35_CR12
  publication-title: NPJ Quant. Inf.
  doi: 10.1038/npjqi.2015.1
– volume: 113
  year: 2014
  ident: 35_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.266803
– volume: 13
  start-page: 563–
  year: 2017
  ident: 35_CR24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4070
– volume: 6
  year: 2016
  ident: 35_CR13
  publication-title: Phys. Rev. X
– volume: 12
  start-page: 6414
  year: 2012
  ident: 35_CR7
  publication-title: Nano Lett.
  doi: 10.1021/nl303758w
– volume: 108
  year: 2012
  ident: 35_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.046804
– volume: 4
  year: 2013
  ident: 35_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2340
– volume: 380
  start-page: 779
  year: 2016
  ident: 35_CR15
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2015.11.030
– volume: 107
  year: 2011
  ident: 35_CR22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.136603
– volume: 2
  year: 2012
  ident: 35_CR20
  publication-title: Phys. Rev. X
– volume: 4
  year: 2014
  ident: 35_CR31
  publication-title: Phys. Rev. X
– volume: 75
  year: 2012
  ident: 35_CR4
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/7/076501
– volume: 94
  year: 2016
  ident: 35_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.075309
– volume: 105
  year: 2010
  ident: 35_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.177002
– volume: 8
  start-page: 795
  year: 2012
  ident: 35_CR6
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2429
– volume: 321
  start-page: 2
  year: 2006
  ident: 35_CR10
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2005.10.005
– volume: 303
  start-page: 2
  year: 2003
  ident: 35_CR2
  publication-title: Ann. Phys.
  doi: 10.1016/S0003-4916(02)00018-0
– volume: 44
  start-page: 131
  year: 2001
  ident: 35_CR1
  publication-title: Phys. Usp.
  doi: 10.1070/1063-7869/44/10S/S29
– volume: 4
  year: 2014
  ident: 35_CR18
  publication-title: Phys. Rev. X
– volume: 8
  year: 2017
  ident: 35_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00315-y
– volume: 95
  start-page: 235305
  year: 2017
  ident: 35_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.235305
– volume: 80
  start-page: 1083
  year: 2008
  ident: 35_CR14
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1083
– volume: 87
  year: 2013
  ident: 35_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.241401
– volume: 10
  start-page: 638
  year: 2014
  ident: 35_CR23
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3036
– volume: 100
  year: 2008
  ident: 35_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.096407
– volume: 105
  year: 2010
  ident: 35_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.077001
– volume: 61
  year: 1988
  ident: 35_CR28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2797
– volume: 12
  start-page: 118
  year: 2016
  ident: 35_CR26
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.214
– volume: 336
  start-page: 1003–
  year: 2012
  ident: 35_CR5
  publication-title: Science
  doi: 10.1126/science.1222360
– volume: 466
  start-page: 585
  year: 2010
  ident: 35_CR32
  publication-title: Nature
  doi: 10.1038/nature09277
– volume: 13
  start-page: 491
  year: 2017
  ident: 35_CR33
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4010
SSID ssj0042613
Score 2.4462311
Snippet Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of their own. When...
Electronic systems harboring one-dimensional helical modes, where spin and momentum are locked, have lately become an important field of its own. When coupled...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 411
SubjectTerms 142/126
639/766/119/1000
639/766/119/1001
639/766/119/2792
639/766/119/2794
Atomic
Banded structure
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Electromagnetism
Electronic systems
Gallium arsenide
Hall effect
Interferometers
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum computing
Quantum Hall effect
Quantum wells
Superconductivity
Theoretical
Title Robust integer and fractional helical modes in the quantum Hall effect
URI https://link.springer.com/article/10.1038/s41567-017-0035-2
https://www.ncbi.nlm.nih.gov/pubmed/29736182
https://www.proquest.com/docview/2022520645
https://www.proquest.com/docview/2036201804
https://pubmed.ncbi.nlm.nih.gov/PMC5935229
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAivq0vInhSiqVN0uYkKq6LoIgoeCttOkVh7a7b7f93po-VVfTQUxKaZJKZL5nJNwAnZJO8DHPjMhx3JaJxkzTkx-456iCXaYj8UPj-QQ9e5N2rem0v3Mo2rLLTibWizkaW78j5kO4rn9nVLsafLmeNYu9qm0JjEZZIBUeqB0tXNw-PT50u5vNB0DyJVK4vw6DzawbReclHFw67pI95G_15y_QLbv6OmvzhOq0tUn8NVlsoKS4b2a_DAhYbsFyHdNpyE_pPo7Qqp6ImhMCJSIpM5JPmHQM1e0O-rhsKToVTUiVBSFB8VjTR1YcYJMOhaEI9tuClf_N8PXDbrAmulSaYummUkeLQRiNZHpvo1KgoSjxF1jDSVkqUFnObZb6nchvIkEQVespLTZZqZbQKtqFXjArcBaERLcEFRJ0bSTA8CRkvEqAhSebKKAe8bsZi21KKc2aLYVy7toMobiY5pklmElIV-w6czpqMGz6N_yofdGKI261Vxt8LwYHjWTFtCvZ0JAWOKq5DdpmpyaQDO43UZn_jZF2aTlUOhHPynFVgwu35kuL9rSbeVobhqnHgrJP8d7f-HMTe_4PYhxXuaRMMdAC96aTCQ8I50_QIFqP-7VG7pL8ArT75yQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4hUNVeEPSZFoortZdWUaPEduJDhWjLanmtKgQStzRxJqLSkoXNRqh_qr-xM3GyaEFw45CTHcX2PPxN5gXwke6koMDS-AzHfYlo_CyPOdm9RB2VMo-RE4WPRnp4KvfP1NkS_OtzYTissteJraIuJpb_kbORHqqQq6ttX1753DWKvat9Cw3HFgf495pMtvrb3k-i76cwHOye_Bj6XVcB30oTzfw8KUiwtNFImtlmOjcqSbJA0W2RaCslSoulLYowUKWNZExbiQMV5KbItTKau0SQyl8hmGFIila-745-Hfe6n-2RyKVgKj-UcdT7UaPka82mEod50sN1IsPFm_AOvL0bpXnLVdvegIM1WO2gq9hxvLYOS1g9hydtCKmtX8DgeJI39Uy0BShwKrKqEOXU5U3Qa-fIvwfHglvv1DRJEPIUVw0RtrkQw2w8Fi605CWcPsp5voLlalLhGxAa0RI8QdSlkQT7s5jxKQEo4pxSGeVB0J9YarsS5txJY5y2rvQoSd0hp3TIXPRUpaEHn-evXLr6HQ9N3ujJkHaiXKc3jOfBh_kwCSF7VrIKJw3PIRzApdCkB68d1eZf4-Zgmqw4D-IFes4ncIHvxZHqz3lb6FsZhsfGgy895W-Wde8m3j68iS14Ojw5OkwP90YH7-AZr9oFIm3A8mza4CZhrFn-vmNsAb8fW5b-A6oSNlU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN6kLWAkuICiRontxAeEgHa1pbCqKir1FhJnrCIt2XazEeKv8euYiZOtloreesjJjmJ7ZjzfZF4Ar0gnRRU6EzIcDyWiCYsy5WR3hzpxskyRE4W_TvXkRH4-Vacb8GfIheGwyuFO7C7qam75Hzkb6bGKubraruvDIo72xu_PL0LuIMWe1qGdhmeRQ_z9i8y35t3BHtH6dRyP9799moR9h4HQSpMswzKrSMi00Ui3tC10aVSWFZEizZFpKyVKi85WVRwpZxOZ0rbSSEWlqUqtjOaOEXT9b6akFbMRbH7cnx4dD3qAbZPEp2OqMJZpMvhUk2y3YbOJQz7p4ZqR8bpWvAJ1r0Zs_uO27bTh-B7c7WGs-OD57j5sYP0AbnXhpLZ5COPjedk2S9EVo8CFKOpKuIXPoaDXzpB_Fc4Et-FpaJIgFCouWiJy-1NMitlM-DCTR3ByI-f5GEb1vManIDSiJaiCqJ2RZAIUKWNVAlPERU4ZFUA0nFhu-3Lm3FVjlndu9STL_SHndMhcAFXlcQBvVq-c-1oe103eGciQ92Ld5JdMGMDL1TAJJHtZihrnLc8hTMBl0WQATzzVVl_jRmGaLLoA0jV6riZwse_1kfrHWVf0WxmGyiaAtwPlL5f1301sXb-JF3CbZCj_cjA93IY7vGgfk7QDo-WixWcEt5bl856vBXy_aVH6CxaOOoE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+integer+and+fractional+helical+modes+in+the+quantum+Hall+effect&rft.jtitle=Nature+physics&rft.au=Ronen%2C+Yuval&rft.au=Cohen%2C+Yonatan&rft.au=Banitt%2C+Daniel&rft.au=Heiblum%2C+Moty&rft.date=2018-04-01&rft.issn=1745-2473&rft.volume=14&rft.issue=4&rft.spage=411&rft.epage=416&rft_id=info:doi/10.1038%2Fs41567-017-0035-2&rft_id=info%3Apmid%2F29736182&rft.externalDocID=PMC5935229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon