Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies

‘Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Al...

Full description

Saved in:
Bibliographic Details
Published inMembranes (Basel) Vol. 10; no. 1; p. 10
Main Authors Franchi, Giovanni, Capocelli, Mauro, De Falco, Marcello, Piemonte, Vincenzo, Barba, Diego
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 03.01.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ‘Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale, local solutions, and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work, two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM), proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works, a one-dimensional model has been developed for mass, heat, and momentum balances. For the membrane modules, the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion, carbon dioxide yield, temperature, and pressure profile are compared for each configuration: SR, MR, and RMM. By decoupling the reaction and separation section, such as in the RMM, the overall methane conversion can be increased of about 30% improving the efficiency of the system.
AbstractList ‘Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale, local solutions, and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work, two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM), proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works, a one-dimensional model has been developed for mass, heat, and momentum balances. For the membrane modules, the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion, carbon dioxide yield, temperature, and pressure profile are compared for each configuration: SR, MR, and RMM. By decoupling the reaction and separation section, such as in the RMM, the overall methane conversion can be increased of about 30% improving the efficiency of the system.
'Hydrogen as the energy carrier of the future' has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale, local solutions, and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work, two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM), proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works, a one-dimensional model has been developed for mass, heat, and momentum balances. For the membrane modules, the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion, carbon dioxide yield, temperature, and pressure profile are compared for each configuration: SR, MR, and RMM. By decoupling the reaction and separation section, such as in the RMM, the overall methane conversion can be increased of about 30% improving the efficiency of the system.'Hydrogen as the energy carrier of the future' has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale, local solutions, and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO2 per kg H2. This paper is focused on the process optimization and decarbonization of H2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work, two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM), proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works, a one-dimensional model has been developed for mass, heat, and momentum balances. For the membrane modules, the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion, carbon dioxide yield, temperature, and pressure profile are compared for each configuration: SR, MR, and RMM. By decoupling the reaction and separation section, such as in the RMM, the overall methane conversion can be increased of about 30% improving the efficiency of the system.
‘Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale, local solutions, and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO 2 per kg H 2 . This paper is focused on the process optimization and decarbonization of H 2 production from fossil fuels to promote more efficient approaches based on membrane separation. In this work, two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM), proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works, a one-dimensional model has been developed for mass, heat, and momentum balances. For the membrane modules, the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion, carbon dioxide yield, temperature, and pressure profile are compared for each configuration: SR, MR, and RMM. By decoupling the reaction and separation section, such as in the RMM, the overall methane conversion can be increased of about 30% improving the efficiency of the system.
'Hydrogen as the energy carrier of the future' has been a topic discussed for decades and is today the subject of a new revival, especially driven by the investments in renewable electricity and the technological efforts done by high-developed industrial powers, such as Northern Europe and Japan. Although hydrogen production from renewable resources is still limited to small scale, local solutions, and R&D projects; steam reforming (SR) of natural gas at industrial scale is the cheapest and most used technology and generates around 8 kg CO per kg H . This paper is focused on the process optimization and decarbonization of H production from fossil fuels to promote more efficient approaches based on membrane separation. In this work, two emerging configurations have been compared from the numerical point of view: the membrane reactor (MR) and the reformer and membrane module (RMM), proposed and tested by this research group. The rate of hydrogen production by SR has been calculated according to other literature works, a one-dimensional model has been developed for mass, heat, and momentum balances. For the membrane modules, the rate of hydrogen permeation has been estimated according to mass transfer correlation previously reported by this research group and based on previous experimental tests carried on in the first RMM Pilot Plant. The methane conversion, carbon dioxide yield, temperature, and pressure profile are compared for each configuration: SR, MR, and RMM. By decoupling the reaction and separation section, such as in the RMM, the overall methane conversion can be increased of about 30% improving the efficiency of the system.
Author Barba, Diego
Franchi, Giovanni
De Falco, Marcello
Capocelli, Mauro
Piemonte, Vincenzo
AuthorAffiliation 1 Unit of Process Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; m.capocelli@unicampus.it (M.C.); m.defalco@unicampus.it (M.D.F.)
2 Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; v.piemonte@unicampus.it
AuthorAffiliation_xml – name: 1 Unit of Process Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; m.capocelli@unicampus.it (M.C.); m.defalco@unicampus.it (M.D.F.)
– name: 2 Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; v.piemonte@unicampus.it
Author_xml – sequence: 1
  givenname: Giovanni
  orcidid: 0000-0002-5672-9496
  surname: Franchi
  fullname: Franchi, Giovanni
– sequence: 2
  givenname: Mauro
  orcidid: 0000-0002-6167-336X
  surname: Capocelli
  fullname: Capocelli, Mauro
– sequence: 3
  givenname: Marcello
  surname: De Falco
  fullname: De Falco, Marcello
– sequence: 4
  givenname: Vincenzo
  surname: Piemonte
  fullname: Piemonte, Vincenzo
– sequence: 5
  givenname: Diego
  surname: Barba
  fullname: Barba, Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31947783$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhgep2A_7A7yRgDferOZzknghLIu1hS7KWvEyZPKxzTKT1GSmsP_ebLeWtoIhkJPkPQ8nec9xcxBTdE3zBsEPhEj4cXBDl3V0BUF4N180RxhyPoOEs4NH8WFzWsoG1tFC1hL4qjkkSFLOBTlqfp1vbU5rF8H3nOxkxpAiuA0a_BidHsDK-ZSHENefwBwschiD0T2YR91vSyggebBcAR0tWC2X4MqZ65j6tA6uvG5eet0Xd3q_njQ_z75cLc5nl9--XizmlzNDJRlnHcfeCGox8YIxjQi1RFMnNJaodZjJlmMoKPRaIqOptUJ4A5HXXd0gJ8lJc7Hn2qQ36iaHQeetSjqou4OU10rnWnXvlLStZR2RTLSMds4J4plkmCKKjCVSV9bnPetm6gZnjYtj1v0T6NObGK7VOt0qDjFmjFXA-3tATr8nV0Y1hGJc31eb0lQUJhS1GEGOqvTdM-kmTbn-a1UxKiRpW74Dvn1c0UMpf_2rArQXmJxKyc4_SBBUuzZR_7RJzeHPckwY9c74-qjQ_yfzD3XswwI
CitedBy_id crossref_primary_10_1515_revce_2020_0038
crossref_primary_10_1093_ijlct_ctaa074
crossref_primary_10_3390_en14196025
crossref_primary_10_1038_s41529_025_00572_z
crossref_primary_10_3390_en15196917
crossref_primary_10_1016_j_ijhydene_2022_07_165
crossref_primary_10_2139_ssrn_3980070
crossref_primary_10_1016_j_rser_2021_111413
crossref_primary_10_1002_gch2_202300073
crossref_primary_10_1016_j_ijhydene_2025_01_269
crossref_primary_10_1016_j_ijhydene_2023_12_278
crossref_primary_10_1016_j_fuel_2021_122419
crossref_primary_10_1016_j_ijhydene_2024_07_430
crossref_primary_10_1080_00343404_2024_2314553
crossref_primary_10_3390_catal13040710
crossref_primary_10_1016_j_ijhydene_2023_09_085
crossref_primary_10_1016_j_enconman_2022_116367
crossref_primary_10_1016_j_enconman_2022_116326
crossref_primary_10_1016_j_ijhydene_2022_12_185
crossref_primary_10_1007_s13399_021_01333_z
crossref_primary_10_1016_j_est_2023_107196
crossref_primary_10_1016_j_apenergy_2023_120850
crossref_primary_10_3390_pr11010056
crossref_primary_10_3390_su132212566
crossref_primary_10_1002_er_7186
crossref_primary_10_1016_j_jclepro_2022_134407
crossref_primary_10_1016_j_jpowsour_2021_230387
crossref_primary_10_1016_j_fuel_2022_123317
crossref_primary_10_3390_catal13030472
crossref_primary_10_3390_en15103742
crossref_primary_10_1039_D2NR04869H
crossref_primary_10_1016_j_cep_2023_109269
crossref_primary_10_3389_fceng_2022_1072761
crossref_primary_10_1016_j_csite_2023_103359
crossref_primary_10_1016_j_seppur_2021_119295
crossref_primary_10_1070_RCR5014
crossref_primary_10_1016_j_fuel_2023_130090
crossref_primary_10_3390_hydrogen2010007
crossref_primary_10_3390_jmse10121995
crossref_primary_10_1002_app_54630
crossref_primary_10_1016_j_renene_2022_06_081
crossref_primary_10_1016_j_rser_2022_112481
crossref_primary_10_1016_j_ijhydene_2024_11_480
crossref_primary_10_1016_j_ijhydene_2023_06_337
crossref_primary_10_1134_S0020168521080057
crossref_primary_10_3390_membranes10100286
crossref_primary_10_1016_j_jece_2021_107003
crossref_primary_10_3390_hydrogen3040028
crossref_primary_10_3390_su16198659
crossref_primary_10_1007_s10163_025_02183_x
crossref_primary_10_1016_j_compchemeng_2023_108278
crossref_primary_10_1016_j_est_2021_103745
crossref_primary_10_3390_lubricants10040059
crossref_primary_10_1016_j_apenergy_2022_119501
crossref_primary_10_1016_j_ijhydene_2024_07_139
crossref_primary_10_1039_D2TA08217A
crossref_primary_10_1039_D4TA02897J
crossref_primary_10_1016_j_ijhydene_2023_05_243
crossref_primary_10_1016_j_rser_2023_113341
crossref_primary_10_1520_SSMS20220027
crossref_primary_10_1039_D3EE01776A
crossref_primary_10_1134_S2517751621050024
crossref_primary_10_1016_j_ijhydene_2024_10_051
crossref_primary_10_1016_j_biortech_2022_128332
crossref_primary_10_1021_acsaem_4c02045
crossref_primary_10_3390_en17071661
crossref_primary_10_1002_smsc_202200043
crossref_primary_10_3390_su16156437
crossref_primary_10_1016_j_ijhydene_2022_02_198
crossref_primary_10_3390_polym17060743
crossref_primary_10_1002_app_54606
crossref_primary_10_1016_j_ijhydene_2024_03_062
crossref_primary_10_3390_en16176343
crossref_primary_10_1007_s10311_024_01732_4
crossref_primary_10_1002_cite_202300221
crossref_primary_10_1016_j_apenergy_2023_121407
crossref_primary_10_1002_cphc_202400513
crossref_primary_10_1016_j_energy_2024_131280
crossref_primary_10_1016_j_ijhydene_2023_10_079
Cites_doi 10.1021/bk-1982-0196.ch016
10.1016/j.ijggc.2012.09.014
10.1016/S0376-7388(98)00256-7
10.1016/j.ces.2016.12.046
10.1016/j.ijhydene.2011.01.044
10.1016/j.memsci.2010.10.011
10.1016/j.jcou.2019.02.012
10.1002/cssc.201100009
10.1002/cjce.5450470206
10.1021/acs.iecr.5b01141
10.1016/j.seppur.2007.10.010
10.1016/j.ijhydene.2013.09.066
10.5772/20603
10.1016/j.pecs.2009.11.002
10.1016/j.cattod.2010.02.032
10.1016/j.memsci.2010.11.050
10.1021/ef060083q
10.1002/aic.11510
10.1016/j.ijhydene.2010.07.116
10.1016/j.ijhydene.2010.02.050
10.1038/ncomms13237
10.1016/j.ijhydene.2013.09.102
10.1016/j.memsci.2014.04.028
10.1016/j.ijhydene.2008.04.038
10.20944/preprints201810.0551.v1
10.1007/978-3-642-39643-4_20
10.1021/jp1006582
10.1016/j.cattod.2006.09.022
10.1016/j.egypro.2013.05.204
10.1016/j.cej.2014.10.042
10.1016/j.ijhydene.2012.08.147
10.1016/B978-1-78242-362-1.00013-4
10.1021/ie049852o
10.4236/jpee.2019.71007
10.1002/aic.690350109
10.1016/j.ijhydene.2012.03.057
10.1002/aic.690350110
ContentType Journal Article
Copyright 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KB.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/membranes10010010
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
ProQuest Engineering Database (NC LIVE)
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2077-0375
ExternalDocumentID oai_doaj_org_article_9d6d5b3958654bee83f59524141cd39a
PMC7022555
31947783
10_3390_membranes10010010
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
D1I
EAD
EAP
EPL
ESX
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
I-F
KB.
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
RPM
TUS
UKHRP
3V.
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-b72fc84d23f855a134d3a4e8a2916e2596720840fa91ca4dd88fc01faba4d1e93
IEDL.DBID M48
ISSN 2077-0375
IngestDate Wed Aug 27 01:28:39 EDT 2025
Thu Aug 21 18:33:28 EDT 2025
Thu Jul 10 18:41:06 EDT 2025
Fri Jul 25 11:57:03 EDT 2025
Wed Feb 19 02:30:52 EST 2025
Thu Apr 24 23:01:57 EDT 2025
Tue Jul 01 03:32:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords mathematical model
methane
membrane
hydrogen permeation
conversion
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-b72fc84d23f855a134d3a4e8a2916e2596720840fa91ca4dd88fc01faba4d1e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5672-9496
0000-0002-6167-336X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/membranes10010010
PMID 31947783
PQID 2548936675
PQPubID 2032363
ParticipantIDs doaj_primary_oai_doaj_org_article_9d6d5b3958654bee83f59524141cd39a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7022555
proquest_miscellaneous_2341621071
proquest_journals_2548936675
pubmed_primary_31947783
crossref_primary_10_3390_membranes10010010
crossref_citationtrail_10_3390_membranes10010010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200103
PublicationDateYYYYMMDD 2020-01-03
PublicationDate_xml – month: 1
  year: 2020
  text: 20200103
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Membranes (Basel)
PublicationTitleAlternate Membranes (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Piemonte (ref_20) 2014; 39
Caravella (ref_32) 2013; 38
Haughey (ref_42) 1969; 47
Barba (ref_28) 2008; 33
Xu (ref_39) 1989; 35
ref_11
Giaconia (ref_17) 2008; 54
Pieterse (ref_21) 2010; 156
Wang (ref_10) 2012; 37
Murmura (ref_36) 2017; 162
ref_19
Salladini (ref_26) 2011; 4
Okazaki (ref_44) 2011; 366
ref_16
Marin (ref_37) 2012; 37
Boon (ref_22) 2012; 11
Caravella (ref_31) 2010; 114
Kalamaras (ref_12) 2013; 2013
Kambara (ref_13) 2019; 7
Patrascu (ref_29) 2015; 262
Zeng (ref_3) 2010; 36
Gallucci (ref_35) 2010; 35
Jia (ref_9) 2016; 7
Piemonte (ref_18) 2011; 36
Barbieri (ref_33) 2008; 61
Satyapal (ref_1) 2007; 120
Ergun (ref_41) 1952; 48
Hao (ref_24) 2013; 37
Xu (ref_38) 1989; 35
ref_43
Tosti (ref_23) 2010; 35
Salladini (ref_15) 2015; 54
ref_2
Capocelli (ref_14) 2019; 32
Abir (ref_34) 2014; 466
Shabaker (ref_7) 2004; 43
ref_27
Ward (ref_30) 1999; 153
Kechagiopoulos (ref_8) 2006; 20
Devos (ref_40) 1982; 196
ref_4
Dixon (ref_5) 2016; 2
Iaquaniello (ref_25) 2011; 368
ref_6
References_xml – volume: 196
  start-page: 181
  year: 1982
  ident: ref_40
  article-title: Steam Reforming of Natural Gas: Intrinsic Kinetics, Diffusional Influences and Reactor Design Chemical Reactor Engineering
  publication-title: Chem. React. Eng. Boston
  doi: 10.1021/bk-1982-0196.ch016
– volume: 11
  start-page: S122
  year: 2012
  ident: ref_22
  article-title: Modelling and systematic experimental investigation of mass transfer in supported palladium-based membrane separators
  publication-title: Int. J. Greenh. Gas Control.
  doi: 10.1016/j.ijggc.2012.09.014
– volume: 153
  start-page: 211
  year: 1999
  ident: ref_30
  article-title: Model of hydrogen permeation behavior in palladium membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(98)00256-7
– volume: 162
  start-page: 88
  year: 2017
  ident: ref_36
  article-title: Transport-reaction-permeation regimes in catalytic membrane reactorsfor hydrogen production. The steam reforming of methane as a casestudy
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2016.12.046
– volume: 36
  start-page: 7759
  year: 2011
  ident: ref_18
  article-title: Solar enriched methane production by steam reforming process: Reactor design
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.01.044
– volume: 366
  start-page: 212
  year: 2011
  ident: ref_44
  article-title: An investigation of thermal stabilityof thin palladium-silver alloy membranes for high temperature hydrogen separation
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.10.011
– volume: 32
  start-page: 53
  year: 2019
  ident: ref_14
  article-title: Post-combustion CO2 capture by RVPSA in a large-scale steam reforming plant
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.02.012
– volume: 4
  start-page: 1157
  year: 2011
  ident: ref_26
  article-title: Reformer and Membrane Modules for Methane Conversion: Experimental Assessment and Perspectives of an Innovative Architecture
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100009
– volume: 47
  start-page: 130
  year: 1969
  ident: ref_42
  article-title: Structural properties of packed beds—A review
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450470206
– volume: 54
  start-page: 6950
  year: 2015
  ident: ref_15
  article-title: Pd-Alloy Membrane Reactor for Natural Gas Steam Reforming: An Innovative Process Design for the Capture of CO2
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b01141
– volume: 61
  start-page: 217
  year: 2008
  ident: ref_33
  article-title: A novel model equation for the permeation of hydrogen in mixture with carbon monoxide through Pd-Ag membranes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2007.10.010
– volume: 2013
  start-page: 690627
  year: 2013
  ident: ref_12
  article-title: Hydrogen Production Technologies: Current State and Future Developments
  publication-title: Conf. Pap. Energy
– volume: 39
  start-page: 4761
  year: 2014
  ident: ref_20
  article-title: Methane membrane steam reforming: Heat duty assessment
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.066
– ident: ref_16
  doi: 10.5772/20603
– volume: 36
  start-page: 307
  year: 2010
  ident: ref_3
  article-title: Recent progress in alkaline water electrolysis for hydrogen production and application
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2009.11.002
– volume: 156
  start-page: 153
  year: 2010
  ident: ref_21
  article-title: On the potential of nickel catalysts for steam reforming in membrane reactors
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2010.02.032
– volume: 368
  start-page: 264
  year: 2011
  ident: ref_25
  article-title: Experimental tests on steam reforming of natural gas in a reformer and membrane modules (RMM) plant
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2010.11.050
– volume: 20
  start-page: 2155
  year: 2006
  ident: ref_8
  article-title: Hydrogen Production via Steam Reforming of the Aqueous Phase of Bio-Oil in a Fixed Bed Reactor
  publication-title: Energy Fuels
  doi: 10.1021/ef060083q
– volume: 54
  start-page: 1932
  year: 2008
  ident: ref_17
  article-title: Solar steam reforming of natural gas for hydrogen production using molten salt heat carriers
  publication-title: AIChE J.
  doi: 10.1002/aic.11510
– volume: 35
  start-page: 12650
  year: 2010
  ident: ref_23
  article-title: Overview of Pd-based membranes for producing pure hydrogen and state of art at ENEA laboratories
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.07.116
– ident: ref_6
– volume: 35
  start-page: 7142
  year: 2010
  ident: ref_35
  article-title: Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.02.050
– ident: ref_4
– ident: ref_2
– volume: 7
  start-page: 13237
  year: 2016
  ident: ref_9
  article-title: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13237
– volume: 38
  start-page: 16229
  year: 2013
  ident: ref_32
  article-title: Sieverts law pressure exponent for hydrogen permeation through Pd-based membranes: Coupled influence of non-ideal diffusion and multicomponent external mass transfer
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.102
– volume: 466
  start-page: 58
  year: 2014
  ident: ref_34
  article-title: Modeling H2 transport through a Pd or Pd/Ag membrane, and its inhibition by co-adsorbates, from first principles
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2014.04.028
– volume: 33
  start-page: 3700
  year: 2008
  ident: ref_28
  article-title: Membrane reforming in converting natural gas to hydrogen (part one)
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.04.038
– ident: ref_27
  doi: 10.20944/preprints201810.0551.v1
– volume: 48
  start-page: 89
  year: 1952
  ident: ref_41
  article-title: Fluid flow through packed columns
  publication-title: Chem. Eng. Prog.
– ident: ref_11
  doi: 10.1007/978-3-642-39643-4_20
– volume: 114
  start-page: 6033
  year: 2010
  ident: ref_31
  article-title: Sieverts Law Empirical Exponent for Pd-Based Membranes: Critical Analysis in Pure H2Permeation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp1006582
– volume: 120
  start-page: 246
  year: 2007
  ident: ref_1
  article-title: The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards Meeting Hydrogen-Powered Vehicle Requirements
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2006.09.022
– volume: 37
  start-page: 1076
  year: 2013
  ident: ref_24
  article-title: Pd-membranes on their Way Towards Application for CO2-capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.05.204
– volume: 262
  start-page: 862
  year: 2015
  ident: ref_29
  article-title: On-site pure hydrogen production by methane steam reforming in high flux membrane reactor: Experimental validation, model predictions and membrane inhibition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2014.10.042
– ident: ref_19
– ident: ref_43
– volume: 37
  start-page: 18433
  year: 2012
  ident: ref_37
  article-title: Modelling of hydrogen perm-selective membrane reactors forcatalytic methane steam reforming
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.08.147
– volume: 2
  start-page: 323
  year: 2016
  ident: ref_5
  article-title: Progress in hydrogen energy infrastructure development-addressing technical and institutional barriers
  publication-title: Compend. Hydrogen Energy
  doi: 10.1016/B978-1-78242-362-1.00013-4
– volume: 43
  start-page: 3105
  year: 2004
  ident: ref_7
  article-title: Kinetics of Aqueous-Phase Reforming of Oxygenated Hydrocarbons: Pt/Al2O3 and Sn-Modified Ni Catalysts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie049852o
– volume: 7
  start-page: 107
  year: 2019
  ident: ref_13
  article-title: Hydrogen Production Technologies Overview
  publication-title: J. Power Energy Eng.
  doi: 10.4236/jpee.2019.71007
– volume: 35
  start-page: 88
  year: 1989
  ident: ref_39
  article-title: Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics
  publication-title: AIChE J.
  doi: 10.1002/aic.690350109
– volume: 37
  start-page: 16287
  year: 2012
  ident: ref_10
  article-title: Comparison of thermochemical, electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production technologies
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.03.057
– volume: 35
  start-page: 97
  year: 1989
  ident: ref_38
  article-title: Methane steam limitations and reforming: II. Diffusional reactor simulation
  publication-title: Am. Inst. Chem. Eng. J.
  doi: 10.1002/aic.690350110
SSID ssj0000605630
Score 2.4784024
Snippet ‘Hydrogen as the energy carrier of the future’ has been a topic discussed for decades and is today the subject of a new revival, especially driven by the...
'Hydrogen as the energy carrier of the future' has been a topic discussed for decades and is today the subject of a new revival, especially driven by the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 10
SubjectTerms Alternative energy sources
Carbon dioxide
Configurations
Conversion
Decarbonization
Decoupling
Efficiency
Fixed bed reactors
Fluidized bed reactors
Fossil fuels
Heat transfer
Hydrogen
Hydrogen permeation
Hydrogen production
Hydrogen-based energy
Laboratories
Mass transfer
mathematical model
Mathematical models
membrane
Membrane reactors
Membranes
Methane
Modules
Natural gas
Nuclear fuels
One dimensional models
Optimization
Permeability
R&D
Reforming
Renewable resources
Research & development
Separation
Steel production
Sustainable yield
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iSQ_ib6tTIngSytYmaRJvUxxDmMhwuFtJ8wMHrpO5Cf73vrRd2VT0IvTSJoXk5eW972vSLwhdOA-ipWJhQmGSQ5Q0oeJZHFKjE8acU5H2_w737pPugN4N2XDpqC-_J6yUBy4N15QmMSwjkomE0cxaQRyTDPIOjbQhsoBGkPOWyFQZg1te-KpcxiTA65tjOwb6CeHDiw75ayURFXr9P4HMr3sll5JPZxttVagRt8vW7qA1m--izSUtwT301P0w0wm4A34oRVzB4Ph9pLDfsTvGfevRKdS8wm28ON8ALyRJ8MThXh-r3OB-r4fr7-1Ao_fRoHP7eNMNq1MTQk0lmYUZj50W1MTECcZURKghilqhYkCCFthOwuMW0DqnJIwDNUYIp1uRUxncRFaSA7SeT3J7hLBzQjGirM60plxq6YBdaMINxIVMRFGAWgsTprqSFPcnW7ykQC281dNvVg_QZf3Ka6mn8Vvlaz8udUUvhV08AAdJKwdJ_3KQADUWo5pW8_MtBVoMQC0BthSg87oYZpZfLoEmTOZQBxJ8AoyYQz8PSyeoWwKBi3IuSID4inusNHW1JB89F-rdHFATY-z4P_p2gjZiz_-LbXENtD6bzu0pgKRZdlbMh09BmhCE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7S5NIeQtKnkzSo0FPBZG29cwlJSVgKW8rS0L0ZWY820LXTzabQf5-RV3azbQj4YksGWRqNvk8afwPwPkQQrQ3PBcNJjl7S5UbWZc6cFZyHYAob_x2efBbjS_Zpxmdpw-0mhVX2PrFz1K61cY_8CIkMLq0C8e3J9a88Zo2Kp6sphcYT2IrSZTGkS87ksMcyQqwuaDrMpMjuj-Z-jiQUnUiUHorX2nLUqfY_BDX_jZi8twRd7MB2wo7kdDXYu7Dhm-fw7J6i4Av4Nv7jFi0aBfmyknLFbie_rwyJcbtzMvURo2LNY3JK-iwHpBcmIW0gkykxjSPTyYQMu-5Ipl_C5cX514_jPOVOyC3TdJnXsgxWMVfSoDg3BWWOGuaVKREPeuQ8QpYjJHfBaBwN5pxSwY6KYGq8Kbymr2CzaRv_BkgIynBqvK2tZVJbHZBjWCodeodaFUUGo74LK5uExWN-i58VEozY69V_vZ7Bh-GV65WqxmOVz-K4DBWjIHb3oF18r9L8qrQTjtcUbUBwVnuvaOCaIzxhhXVUmwwO-lGt0iy9qf7aVAbvhmKcX_HQBJvQ3mIdXOYF8mKJ3_l6ZQRDS9B9MSkVzUCumcdaU9dLmqsfnYa3ROzEOd97vFn78LSM_L4LezuAzeXi1r9FELSsDztLvwNKIAih
  priority: 102
  providerName: ProQuest
Title Hydrogen Production via Steam Reforming: A Critical Analysis of MR and RMM Technologies
URI https://www.ncbi.nlm.nih.gov/pubmed/31947783
https://www.proquest.com/docview/2548936675
https://www.proquest.com/docview/2341621071
https://pubmed.ncbi.nlm.nih.gov/PMC7022555
https://doaj.org/article/9d6d5b3958654bee83f59524141cd39a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFD6suyC7D-Ld6jpE8Emotk3SJILIruw4CF2WwcF5K2kuurDTruOsuP_ek16GHR19KbRNS5pzTvJ9afIdgJc-gGileZwzDHLsJW2sRZXFzJqcc-91asLe4eI0n8zYpzmf78CQ3qpvwB9bqV3IJzVbXrz-9f36PQb8u8A4kbK_WbgFMkvsGYKeUNJuuNrDgUmEOC16tN91zElQwwrp5hIh4pD9tfvPuf0t-3Ab_ZMJIenGoNVq-28DpH-uq7wxUI3vwp0eYZKjziXuwY6r78PBDd3BB_Blcm2XDboOOesEX9E45Oe5JmF174JMXUCyWPItOSJDLgQyyJeQxpNiSnRtybQoyHpuHin3Q5iNTz5_mMR9hoXYMEVXcSUybySzGfWSc51SZqlmTuoMUaNDZpSLLEEK6LVCmzFrpfQmSb2u8CR1ij6C3bqp3RMg3kvNqXamMoYJZZRHJmKosNiHVDJNI0iGJixNLz8esmBclEhDggHKvwwQwav1I5ed9sb_Ch8Hu6wLBtns9kKz_Fr2UVgqm1teUcVlzlnlnKSeK46-wlJjqdIRHA5WLQdXLJFCI6jLkVlF8GJ9G6Mw_FrBKjRXWAbBQI7sWeB3Pu6cYF2TwYkiEBvusVHVzTv1-bdW6VsgwuKcP_3nO5_BfhYmANp1cYewu1peueeIklbVCG6JucCjHH8cwd7xyenZdNTOOIzaqPgNKTMTQA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEG9SChgJLkhRk9iObSSEyqPa0m6FVq3YW-r4AZW6SdluQf1T_EbGedEF1FulvWTjSBN7Zvx9tvMNwAsfQLTSPM4ZBjlmSRtrUWYxsybn3HudmvDt8HgvHx2wT1M-XYFf_bcw4VhlnxObRG1rE9bIN5DI4NSaI759e_I9DlWjwu5qX0KjdYsdd_4TKdvpm-0POL4vs2zr4_77UdxVFYgNU3QRlyLzRjKbUS851ylllmrmpM4QKTlkA7nIEqQ9Xiu0k1krpTdJ6nWJF6kL4kuY8q_hxJuEiBJTMazpJMgNctptnlKqko2ZmyHpxaQVpI7Cb2n6a6oE_A_a_n1C88KUt3UbbnVYlWy2znUHVlx1F25eUDC8B19G53ZeoxOSz610LA4z-XGkSTgnPCMTFzAxtnxNNklfVYH0Qiik9mQ8IbqyZDIek2GVH8n7fTi4kl59AKtVXblHQLyXmlPtTGkME8ooj5zGUGExG5UyTSNI-i4sTCdkHuppHBdIaEKvF__0egSvhkdOWhWPyxq_C-MyNAwC3M0f9fxr0cVzoWxueUkVlzlnpXOSeq44wiGWGkuVjmC9H9WiywqnxR8fjuD5cBvjOWzSoAn1GbZBWJEjDxf4ng9bJxgswXTJhJA0ArHkHkumLt-pjr41muECsRrnfO1ys57B9dH-eLfY3d7beQw3srC20By5W4fVxfzMPUEAtiifNl5P4PCqw-w3TeJFog
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJwQLxJKWAkuCBFu4nt2EZCqFBWW8pW1YqKvaWOH1Cpm5TtFtS_xq9jnBddQL1VyiWxI03smfH32ZMZgBc-gGileZwxNHL0kjbWokhjZk3Gufc6MeHf4cleNj5gH2d8tga_un9hQlhl5xNrR20rE_bIB0hkcGnNEN8OfBsWsb89envyPQ4VpMJJa1dOo1GRXXf-E-nb6ZudbZzrl2k6-vD5_ThuKwzEhim6jAuReiOZTamXnOuEMks1c1KniJocMoNMpEOkQF4rlJlZK6U3w8TrAm8SFxIxofu_JihPgo2Jmej3d4bIEzLaHqRSqoaDuZsjAUYHFtIehWtlKawrBvwP5v4drXlh-RvdhlstbiVbjaLdgTVX3oWbF7IZ3oMv43O7qFAhyX6TRhannPw40iTEDM_J1AV8jD1fky3SVVggXVIUUnkymRJdWjKdTEi_449E_j4cXMmoPoD1sirdIyDeS82pdqYwhglllEd-Y6iw6JkKmSQRDLshzE2b1DzU1jjOkdyEUc__GfUIXvWvnDQZPS7r_C7MS98xJOOuH1SLr3lr27mymeUFVVxmnBXOSeq54giNWGIsVTqCzW5W89ZDnOZ_9DmC530z2nY4sEERqjPsgxAjQ04u8DsfNkrQS4KukwkhaQRiRT1WRF1tKY--1fnDBeI2zvnG5WI9g-toYPmnnb3dx3AjDdsMdfTdJqwvF2fuCWKxZfG0VnoCh1dtZb8BRU1J2A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Production+via+Steam+Reforming%3A+A+Critical+Analysis+of+MR+and+RMM+Technologies&rft.jtitle=Membranes+%28Basel%29&rft.au=Franchi%2C+Giovanni&rft.au=Capocelli%2C+Mauro&rft.au=De+Falco%2C+Marcello&rft.au=Piemonte%2C+Vincenzo&rft.date=2020-01-03&rft.issn=2077-0375&rft.eissn=2077-0375&rft.volume=10&rft.issue=1&rft_id=info:doi/10.3390%2Fmembranes10010010&rft_id=info%3Apmid%2F31947783&rft.externalDocID=31947783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0375&client=summon