New Deoxycholic Acid Derived Tyrosyl-DNA Phosphodiesterase 1 Inhibitors Also Inhibit Tyrosyl-DNA Phosphodiesterase 2

A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromoph...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 1; p. 72
Main Authors Salomatina, Oksana V., Dyrkheeva, Nadezhda S., Popadyuk, Irina I., Zakharenko, Alexandra L., Ilina, Ekaterina S., Komarova, Nina I., Reynisson, Jóhannes, Salakhutdinov, Nariman F., Lavrik, Olga I., Volcho, Konstantin P.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 23.12.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π–π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.
AbstractList A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π–π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.
A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para -bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC 50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para -bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π–π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.
A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a -bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide and -bromoanilide derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π-π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.
A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π-π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and 2 (TDP2) enzymes. In addition, 1,2,4- and 1,3,4-oxadiazole derivatives were synthesized to study the linker influence between a para-bromophenyl moiety and the steroid scaffold. The DCA derivatives demonstrated promising inhibitory activity against TDP1 with IC50 in the submicromolar range. Furthermore, the amides and the 1,3,4-oxadiazole derivatives inhibited the TDP2 enzyme but at substantially higher concentration. Tryptamide 5 and para-bromoanilide 8 derivatives containing benzyloxy substituent at the C-3 position and non-substituted hydroxy group at C-12 on the DCA scaffold inhibited both TDP1 and TDP2 as well as enhanced the cytotoxicity of topotecan in non-toxic concentration in vitro. According to molecular modeling, ligand 5 is anchored into the catalytic pocket of TDP1 by one hydrogen bond to the backbone of Gly458 as well as by π-π stacking between the indolyl rings of the ligand and Tyr590, resulting in excellent activity. It can therefore be concluded that these derivatives contribute to the development of specific TDP1 and TDP2 inhibitors for adjuvant therapy against cancer in combination with topoisomerase poisons.
Author Salomatina, Oksana V.
Zakharenko, Alexandra L.
Ilina, Ekaterina S.
Lavrik, Olga I.
Dyrkheeva, Nadezhda S.
Reynisson, Jóhannes
Volcho, Konstantin P.
Popadyuk, Irina I.
Salakhutdinov, Nariman F.
Komarova, Nina I.
AuthorAffiliation 1 N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., 630090 Novosibirsk, Russia; ana@nioch.nsc.ru (O.V.S.); popadyuk@nioch.nsc.ru (I.I.P.); komar@nioch.nsc.ru (N.I.K.); anvar@nioch.nsc.ru (N.F.S.)
3 School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; j.reynisson@keele.ac.uk
2 Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., 630090 Novosibirsk, Russia; elpida80@mail.ru (N.S.D.); sashaz@niboch.nsc.ru (A.L.Z.); katya.plekhanova@gmail.com (E.S.I.); lavrik@niboch.nsc.ru (O.I.L.)
AuthorAffiliation_xml – name: 1 N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., 630090 Novosibirsk, Russia; ana@nioch.nsc.ru (O.V.S.); popadyuk@nioch.nsc.ru (I.I.P.); komar@nioch.nsc.ru (N.I.K.); anvar@nioch.nsc.ru (N.F.S.)
– name: 2 Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., 630090 Novosibirsk, Russia; elpida80@mail.ru (N.S.D.); sashaz@niboch.nsc.ru (A.L.Z.); katya.plekhanova@gmail.com (E.S.I.); lavrik@niboch.nsc.ru (O.I.L.)
– name: 3 School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK; j.reynisson@keele.ac.uk
Author_xml – sequence: 1
  givenname: Oksana V.
  surname: Salomatina
  fullname: Salomatina, Oksana V.
– sequence: 2
  givenname: Nadezhda S.
  surname: Dyrkheeva
  fullname: Dyrkheeva, Nadezhda S.
– sequence: 3
  givenname: Irina I.
  surname: Popadyuk
  fullname: Popadyuk, Irina I.
– sequence: 4
  givenname: Alexandra L.
  surname: Zakharenko
  fullname: Zakharenko, Alexandra L.
– sequence: 5
  givenname: Ekaterina S.
  orcidid: 0000-0002-6887-0913
  surname: Ilina
  fullname: Ilina, Ekaterina S.
– sequence: 6
  givenname: Nina I.
  surname: Komarova
  fullname: Komarova, Nina I.
– sequence: 7
  givenname: Jóhannes
  orcidid: 0000-0003-4174-9512
  surname: Reynisson
  fullname: Reynisson, Jóhannes
– sequence: 8
  givenname: Nariman F.
  surname: Salakhutdinov
  fullname: Salakhutdinov, Nariman F.
– sequence: 9
  givenname: Olga I.
  orcidid: 0000-0001-5980-8889
  surname: Lavrik
  fullname: Lavrik, Olga I.
– sequence: 10
  givenname: Konstantin P.
  orcidid: 0000-0002-4083-9324
  surname: Volcho
  fullname: Volcho, Konstantin P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35011303$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhUeoiD7gB7BBI7Fhk-LX2J4NUtQCjVQVFmVt-XGn48gZB3umJf8ep2lQW4RY2T4-59PVvfe4OhjiAFX1FqNTSlv0cRUD2ClAJgJhhAR5UR1hRtCMItYePLofVsc5LxEimOHmVXVIG4QxRfSoGq_grj6H-Gtj-xi8refWuyIkfwuuvt6kmDdhdn41r7_3Ma_76DzkEZLOUON6MfTe-DGmXM9Djvv3f3LkdfWy0yHDm4fzpPrx5fP12cXs8tvXxdn8cmZZS8eZEVg2hjHmsGgFajpZZC7bFgQzwkhqG8eto5QaLhF0FgGxxdlRiRvHHD2pFjuui3qp1smvdNqoqL26F2K6UTqN3gZQljMwVGsmCGOd5sZaiQTDpGNNazpTWJ92rPVkVuAsDGPS4Qn06c_ge3UTb5UUjPOWF8CHB0CKP6fSDLXy2UIIeoA4ZUU4li3iTMhiff_MuoxTGkqr7l2EFdsW-O5xRX9K2Q-3GMTOYMs0coJOWT_q0cdtgT4ojNR2jdRfa1SS-FlyD_935jd0aM29
CitedBy_id crossref_primary_10_1016_j_bioorg_2024_108072
crossref_primary_10_3389_fchem_2022_910953
crossref_primary_10_3390_ijms24065148
crossref_primary_10_1002_ardp_202400801
crossref_primary_10_3390_biology12030415
crossref_primary_10_3390_molecules29030581
crossref_primary_10_1016_j_bioorg_2022_105789
crossref_primary_10_3390_genes14101931
crossref_primary_10_1002_cmdc_202200593
crossref_primary_10_3390_ijms24065781
Cites_doi 10.1074/jbc.M112.393983
10.1016/j.steroids.2020.108771
10.1093/nar/gkm463
10.1016/j.bmc.2016.09.016
10.1158/1078-0432.CCR-04-1087
10.2174/1871520619666181207094243
10.1074/jbc.M111.333963
10.3390/ijms222111336
10.3390/ijms19010081
10.3390/molecules24203711
10.1021/acs.jmedchem.5b01973
10.1021/acs.jmedchem.6b01565
10.1002/minf.201200103
10.1021/ja00205a003
10.1016/j.bmc.2015.03.020
10.1039/D0SC05411A
10.1002/minf.201800068
10.3390/molecules26113128
10.1042/BCJ20160180
10.1021/acs.jmedchem.1c00318
10.1016/j.ejmech.2019.03.034
10.1517/13543776.2011.604314
10.1021/ci800298z
10.1016/j.dnarep.2014.03.020
10.1021/acs.jnatprod.9b01089
10.1002/prot.20588
10.1016/j.bioorg.2017.12.005
10.3390/ijms21010126
10.1016/j.ejmech.2018.10.055
10.1021/ja00205a002
10.1021/acs.jnatprod.6b00979
10.3390/molecules23030679
10.1016/j.bmc.2018.02.017
10.1006/jmbi.1996.0897
10.1002/qsar.200730051
10.1111/cas.12366
10.3390/biom11070973
10.1093/nar/gkp1206
10.1021/jm500294a
10.1021/jm901061s
10.1021/jm400568p
10.1021/jm3014458
10.3390/app9132767
10.1023/A:1007996124545
10.1002/prot.10465
10.1021/ja00205a001
10.3389/fphar.2018.01283
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules27010072
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_c64eb3aa47244fa6bcc807412f459bfb
PMC8746696
35011303
10_3390_molecules27010072
Genre Journal Article
GrantInformation_xml – fundername: Russian Science Foundation
  grantid: 19-13-00040
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-b7185b444d179705f84936899e74b7b83c5d6cd333b680efc0e2c797f3815d4d3
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:24:13 EDT 2025
Thu Aug 21 14:11:47 EDT 2025
Fri Jul 11 07:32:41 EDT 2025
Fri Jul 25 19:54:45 EDT 2025
Wed Feb 19 02:27:02 EST 2025
Thu Apr 24 22:57:55 EDT 2025
Tue Jul 01 03:12:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords TDP1 inhibitor
TDP2 inhibitor
amide
molecular modeling
tumor
oxadiazoles
cancer
deoxycholic acid
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-b7185b444d179705f84936899e74b7b83c5d6cd333b680efc0e2c797f3815d4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4083-9324
0000-0003-4174-9512
0000-0001-5980-8889
0000-0002-6887-0913
OpenAccessLink https://doaj.org/article/c64eb3aa47244fa6bcc807412f459bfb
PMID 35011303
PQID 2618240646
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_c64eb3aa47244fa6bcc807412f459bfb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746696
proquest_miscellaneous_2618906478
proquest_journals_2618240646
pubmed_primary_35011303
crossref_citationtrail_10_3390_molecules27010072
crossref_primary_10_3390_molecules27010072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211223
PublicationDateYYYYMMDD 2021-12-23
PublicationDate_xml – month: 12
  year: 2021
  text: 20211223
  day: 23
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Jones (ref_44) 1997; 267
Zakharenko (ref_29) 2015; 23
ref_14
ref_11
Zakharenko (ref_18) 2016; 79
Ponomarev (ref_21) 2018; 76
Lii (ref_42) 1989; 111
ref_19
ref_16
Eurtivong (ref_38) 2019; 38
Zhao (ref_34) 2004; 10
Ioakimidis (ref_50) 2008; 27
Hu (ref_7) 2021; 64
Eldridge (ref_45) 1997; 11
Luzina (ref_15) 2020; 83
Kankanala (ref_24) 2016; 59
ref_22
Gao (ref_5) 2012; 287
ref_20
Lacbay (ref_27) 2018; 26
Raoof (ref_25) 2013; 56
Zhao (ref_35) 2021; 12
ref_28
Dexheimer (ref_3) 2010; 38
Murai (ref_4) 2012; 287
Zhu (ref_37) 2012; 31
Stanimirov (ref_32) 2018; 9
Pommier (ref_2) 2014; 19
Lii (ref_41) 1989; 111
(ref_43) 1993; 2
Dexheimer (ref_10) 2009; 52
ref_31
Zakharenko (ref_17) 2019; 161
Reddy (ref_8) 2013; 56
Mozhaitsev (ref_23) 2019; 19
Lv (ref_9) 2014; 57
Mooij (ref_48) 2005; 61
Salomatina (ref_12) 2021; 165
ref_39
Verdonk (ref_46) 2003; 52
Antony (ref_30) 2007; 35
Liang (ref_33) 2019; 171
Khomenko (ref_13) 2016; 24
Wang (ref_26) 2017; 60
Huang (ref_6) 2011; 21
Allinger (ref_40) 1989; 111
ref_49
Hosoya (ref_1) 2014; 105
Hornyak (ref_36) 2016; 473
Korb (ref_47) 2009; 49
References_xml – volume: 287
  start-page: 30842
  year: 2012
  ident: ref_5
  article-title: Biochemical Characterization of Human Tyrosyl-DNA Phosphodiesterase 2 (TDP2/TTRAP): A Mg2+/Mn2+-dependent phosphodiesterase specific for the repair of topoisomerase cleavage complexes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.393983
– ident: ref_49
– volume: 165
  start-page: 108771
  year: 2021
  ident: ref_12
  article-title: Deoxycholic acid as a molecular scaffold for tyrosyl-DNA phosphodiesterase 1 inhibition: A synthesis, structure-activity relationship and molecular modeling study
  publication-title: Steroids
  doi: 10.1016/j.steroids.2020.108771
– volume: 35
  start-page: 4474
  year: 2007
  ident: ref_30
  article-title: Novel high-throughput electrochemiluminescent assay for identification of human tyrosyl–DNA phosphodiesterase (Tdp1) inhibitors and characterization of furamidine (NSC 305831) as an inhibitor of Tdp1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm463
– volume: 24
  start-page: 5573
  year: 2016
  ident: ref_13
  article-title: New inhibitors of tyrosyl-DNA phosphodiesterase I (Tdp1) combining 7-hydroxycoumarin and monoterpenoid moieties
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2016.09.016
– volume: 10
  start-page: 7994
  year: 2004
  ident: ref_34
  article-title: Evaluation of combination chemotherapy: Integration of nonlinear regression, curve shift, isobologram, and combination index analyses
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-04-1087
– volume: 19
  start-page: 463
  year: 2019
  ident: ref_23
  article-title: Novel Inhibitors of DNA Repair Enzyme Tdp1 Combining Monoterpenoid and Adamantane Fragments
  publication-title: Anti-Cancer Agents Med. Chem.
  doi: 10.2174/1871520619666181207094243
– volume: 2
  start-page: 187
  year: 1993
  ident: ref_43
  article-title: An Efficient Algorithm for Searching Low-Energy Conformers of Cyclic and Acyclic Molecules
  publication-title: J. Chem. Soc.
– volume: 287
  start-page: 12848
  year: 2012
  ident: ref_4
  article-title: Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Repairs DNA Damage Induced by Topoisomerases I and II and Base Alkylation in Vertebrate Cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.333963
– ident: ref_39
– ident: ref_31
  doi: 10.3390/ijms222111336
– ident: ref_28
  doi: 10.3390/ijms19010081
– ident: ref_16
  doi: 10.3390/molecules24203711
– volume: 59
  start-page: 2734
  year: 2016
  ident: ref_24
  article-title: Isoquinoline-1,3-diones as Selective Inhibitors of Tyrosyl DNA Phosphodiesterase II (TDP2
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01973
– volume: 60
  start-page: 3275
  year: 2017
  ident: ref_26
  article-title: Synthesis and biological evaluation of the first triple inhibitors of human topoisomerase 1, tyrosyl–DNA phosphodiesterase 1 (Tdp1), and tyrosyl–DNA phosphodiesterase 2 (Tdp2)
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b01565
– volume: 31
  start-page: 847
  year: 2012
  ident: ref_37
  article-title: Wine Compounds as a Source for HTS Screening Collections. A Feasibility Study
  publication-title: Mol. Inform.
  doi: 10.1002/minf.201200103
– volume: 111
  start-page: 8576
  year: 1989
  ident: ref_42
  article-title: Molecular Mechanics the MM3 Force Field for Hydrocarbons. 3. The Van Der Waals’ Potentials and Crystal Data for Aliphatic and Aromatic Hydrocarbons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00205a003
– volume: 23
  start-page: 2044
  year: 2015
  ident: ref_29
  article-title: Synthesis and biological evaluation of novel tyrosyl-DNA phosphodiesterase 1 inhibitors with a benzopentathiepine moiety
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2015.03.020
– volume: 12
  start-page: 3876
  year: 2021
  ident: ref_35
  article-title: Small Molecule Microarray Identifies Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 that Simultaneously Access the Catalytic Pocket and Two Substrate Binding Sites
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC05411A
– volume: 38
  start-page: e1800068
  year: 2019
  ident: ref_38
  article-title: The Development of a Weighted Index to Optimise Compound Libraries for High Throughput Screening
  publication-title: Mol. Inform.
  doi: 10.1002/minf.201800068
– ident: ref_20
  doi: 10.3390/molecules26113128
– volume: 473
  start-page: 1869
  year: 2016
  ident: ref_36
  article-title: Mode of Action of DNA-Competitive Small Molecule Inhibitors of Tyrosyl DNA Phosphodiesterase 2
  publication-title: Biochem. J.
  doi: 10.1042/BCJ20160180
– volume: 64
  start-page: 7617
  year: 2021
  ident: ref_7
  article-title: Synthesis of Methoxy-, Methylenedioxy-, Hydroxy-, and Halo-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors and Their Biological Activity for Drug-Resistant Cancer
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.1c00318
– volume: 171
  start-page: 129
  year: 2019
  ident: ref_33
  article-title: A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2019.03.034
– volume: 21
  start-page: 1285
  year: 2011
  ident: ref_6
  article-title: Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) inhibitors
  publication-title: Expert Opin. Ther. Pat.
  doi: 10.1517/13543776.2011.604314
– volume: 49
  start-page: 84
  year: 2009
  ident: ref_47
  article-title: Empirical Scoring Functions for Advanced Protein−Ligand Docking with PLANTS
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci800298z
– volume: 19
  start-page: 114
  year: 2014
  ident: ref_2
  article-title: Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2)
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2014.03.020
– volume: 83
  start-page: 2320
  year: 2020
  ident: ref_15
  article-title: Usnic acid conjugates with monoterpenoids as potent tyrosyl-DNA phosphodiesterase 1 inhibitors
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.9b01089
– volume: 61
  start-page: 272
  year: 2005
  ident: ref_48
  article-title: General and Targeted Statistical Potentials for Protein–ligand Interactions
  publication-title: Proteins
  doi: 10.1002/prot.20588
– volume: 76
  start-page: 392
  year: 2018
  ident: ref_21
  article-title: Aminoadamantanes containing monoterpene-derived fragments as potent tyrosyl-DNA phosphodiesterase 1 inhibitors
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2017.12.005
– ident: ref_14
  doi: 10.3390/ijms21010126
– volume: 161
  start-page: 581
  year: 2019
  ident: ref_17
  article-title: Novel tyrosyl-DNA phosphodiesterase 1 inhibitors enhance the therapeutic impact of topotecan on in vivo tumor models
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.10.055
– volume: 111
  start-page: 8566
  year: 1989
  ident: ref_41
  article-title: Molecular Mechanics. The MM3 FOrce Field for Hydrocarbons. 2. Vibrational Frequencies and Thermodynamics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00205a002
– volume: 79
  start-page: 2961
  year: 2016
  ident: ref_18
  article-title: Tyrosyl-DNA Phosphodiesterase 1 Inhibitors: Usnic Acid Enamines Enhance the Cytotoxic Effect of Camptothecin
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.6b00979
– ident: ref_11
  doi: 10.3390/molecules23030679
– volume: 26
  start-page: 1713
  year: 2018
  ident: ref_27
  article-title: Pharmacophore requirements for HIV-1 reverse transcriptase inhibitors that selectively “Freeze” the pre-translocated complex during the polymerization catalytic cycle
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2018.02.017
– volume: 267
  start-page: 727
  year: 1997
  ident: ref_44
  article-title: Development and Validation of a Genetic Algorithm for Flexible Docking
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0897
– volume: 27
  start-page: 445
  year: 2008
  ident: ref_50
  article-title: Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200730051
– volume: 105
  start-page: 370
  year: 2014
  ident: ref_1
  article-title: Targeting DNA damage response in cancer therapy
  publication-title: Cancer Sci.
  doi: 10.1111/cas.12366
– ident: ref_19
  doi: 10.3390/biom11070973
– volume: 38
  start-page: 2444
  year: 2010
  ident: ref_3
  article-title: The DNA binding and 3′-end preferential activity of human tyrosyl-DNA phosphodiesterase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp1206
– volume: 57
  start-page: 4324
  year: 2014
  ident: ref_9
  article-title: Design, synthesis, and biological evaluation of O-2-modified indenoisoquinolines as dual topoisomerase I-tyrosyl-DNA phosphodiesterase I inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm500294a
– volume: 52
  start-page: 7122
  year: 2009
  ident: ref_10
  article-title: 4-Pregnen-21-ol-3,20-dione-21-(4-bromobenzenesufonate) (NSC 88915) and related novel steroid derivatives as tyrosyl-DNA phosphodiesterase (Tdp1) inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901061s
– volume: 56
  start-page: 6352
  year: 2013
  ident: ref_25
  article-title: Toxoflavins and deazaflavins as the first reported selective small molecule inhibitors of tyrosyl-DNA phosphodiesterase II
  publication-title: J. Med. Chem.
  doi: 10.1021/jm400568p
– volume: 56
  start-page: 182
  year: 2013
  ident: ref_8
  article-title: Synthesis and biological evaluation of indenoisoquinolines that inhibit both tyrosyl-DNA phosphodiesterase I (Tdp1) and topoisomerase I (Top1)
  publication-title: J. Med. Chem.
  doi: 10.1021/jm3014458
– ident: ref_22
  doi: 10.3390/app9132767
– volume: 11
  start-page: 425
  year: 1997
  ident: ref_45
  article-title: Empirical Scoring Functions: I. the Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes
  publication-title: J. Comp. Aided Mol. Des.
  doi: 10.1023/A:1007996124545
– volume: 52
  start-page: 609
  year: 2003
  ident: ref_46
  article-title: Improved Protein-Ligand Docking using GOLD
  publication-title: Proteins
  doi: 10.1002/prot.10465
– volume: 111
  start-page: 8551
  year: 1989
  ident: ref_40
  article-title: Molecular Mechnics the MM3 Force Filed for Hydrocarbons. 1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00205a001
– volume: 9
  start-page: 1283
  year: 2018
  ident: ref_32
  article-title: Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2018.01283
SSID ssj0021415
Score 2.4043026
Snippet A series of deoxycholic acid (DCA) amides containing benzyl ether groups on the steroid core were tested against the tyrosyl-DNA phosphodiesterase 1 (TDP1) and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 72
SubjectTerms Acids
amide
Apoptosis
Binding Sites
cancer
Cancer therapies
Cell Line
Chemical Phenomena
Chemistry Techniques, Synthetic
Chromatography
Cytotoxicity
deoxycholic acid
Deoxycholic Acid - analogs & derivatives
Deoxycholic Acid - chemistry
Deoxycholic Acid - pharmacology
DNA repair
Enzyme Activation - drug effects
Enzymes
Humans
Models, Molecular
Molecular Conformation
Molecular Structure
Organic chemicals
oxadiazoles
Peptides
Phosphodiesterase Inhibitors - chemical synthesis
Phosphodiesterase Inhibitors - chemistry
Phosphodiesterase Inhibitors - pharmacology
Phosphoric Diester Hydrolases - chemistry
Phosphoric Diester Hydrolases - metabolism
Protein Binding
Recombinant Proteins - chemistry
Steroids
Structure-Activity Relationship
TDP1 inhibitor
TDP2 inhibitor
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LaxRBEG40HvQivp0YpQVPQpPZfu9J1sQQBYOHBPY2TL_cgXVm3dlA8u-tmsfGVYnH6amGoqvr0V3VXxHyTqeQIIx3oOJOMalyyazjniXljA5ChbJr3_b1TJ9eyC9zNR8u3NqhrHK0iZ2hDo3HO_JDiPQteh-pP6x-MuwahdnVoYXGXXIPocuwpMvMbw5cE_BOfSZTwNH-8EffcDa23ORYHMB3fFEH2f-vOPPPcsnf_M_JI_JwCBzprJf0Y3In1k_I_aOxX9tTsgF7RY9jc9VZtMrTma8CDKzBngV6fg0sXC_Z8dmMfls07WrRYP0gvj9uI53Qz_WichW23qGzZduM3_-Zx5-Ri5NP50enbOipwLycig1z4IuUk1IG0ESTq2RhWIO0opHOOCu8CtoHIYTTNo_J55F7oEzg2VWQQTwne3VTx5eE5gFix7J00kiNEIcOwb_A51rrbYC5GcnH1S38ADiOfS-WBRw8UCDFXwLJyPvtlFWPtnEb8UcU2ZYQgbK7gWb9vRj0rvBaRifKUhqIY1KpnfcI_zPhSaqpSy4jB6PAi0F72-Jmr2Xk7fY3iBOTKWUdm8ueZtq91M3Ii35_bDnBZC3GBhkxOztnh9XdP3W16LC9LSymnur929l6RR5wrK2ZcMbFAdnbrC_jawiONu5NpwG_ANeMEis
  priority: 102
  providerName: ProQuest
Title New Deoxycholic Acid Derived Tyrosyl-DNA Phosphodiesterase 1 Inhibitors Also Inhibit Tyrosyl-DNA Phosphodiesterase 2
URI https://www.ncbi.nlm.nih.gov/pubmed/35011303
https://www.proquest.com/docview/2618240646
https://www.proquest.com/docview/2618906478
https://pubmed.ncbi.nlm.nih.gov/PMC8746696
https://doaj.org/article/c64eb3aa47244fa6bcc807412f459bfb
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ja9tAFH606aG9lO5Vm5op9FQQkWf30VmcpFATSgK-Cc2GBY4UIgeaf983WkzcluSSi0Azb2A0b2eevgfwTQYXMIw3qOJGpFxkPNWG2jQIo6RjwhVt-7afc3lywX8sxOJOq69YE9bBA3cHt2clx3yvKLhCRxQKaayN-C1jGriYmGCi9UWfNyRTfao1Rr_U3WEyTOr3LrtWs76hKotlAXTLC7Vg_f-LMP8ulLzjeWav4GUfMpJpt9XX8MRXb-D5wdCp7S2s0VKRQ1__bm1ZacnUlg4HrtGSOXJ-i1u4XaWH8yk5W9bN1bKOlYPxz-PGkzE5rZalKWPTHTJdNfXw_sA6-g4uZkfnBydp300htXzC1qlBLyQM59yhDqpMBI3DEvnkFTfKaGaFk9YxxozUmQ8289QiZUCfLhx37D3sVHXlPwLJHEaNRWG44jKCG5oI-4XeVmurHa5NIBtON7c91HjseLHKMeWIDMn_YUgC3zdLrjqcjfuI9yPLNoQRIrsdQMHJe8HJHxKcBHYHhue93jY55pM6xjhcJvB1M43sjNcoReXrm45m0v6jm8CHTj42O4nXtDEqSEBtSc7WVrdnqnLZonprPEw5kZ8e49s-wwsaa2_GNKVsF3bW1zf-CwZPazOCp2qh8KlnxyN4tn80P_s1anXnD3wYHt8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigXxBuXAkaCC5JVZ3e9dg4IhYaQ0DbikEq9Ge_DxFKw0zgV5E_xG5nxCwKonHrM7mw02nmud3Y-gJcyNSmm8QpNXAWeCHzhRYppLw1UKA0PTFLBt51O5fhMfDwPznfgR_sWhsoqW59YOWpTaPpGfoiZfkTRR8i3ywuPUKPodrWF0KjV4thuvuGRrXwzGaJ8XzE2ej87GnsNqoCnRZ-vPYXeOFBCCIO6GPpBGuGwRH5tKFSoIq4DI7XhnCsZ-TbVvmUaKVOMbYERhuP_3oCbgvM-WVQ0-tAd8HoYDeubU5z0D7_WALe2ZKFPxQhsK_ZVEAH_ymv_LM_8Ld6N7sDtJlF1B7Vm3YUdm9-DvaMWH-4-rNE_ukNbfK88aKbdgc4MDqzQfxp3tkEWNgtvOB24n-ZFuZwXVK9I751L6_bcST7PVEZQP-5gURbt7_-sYw_g7Fp2-yHs5kVuH4PrG8xVk0SJUEhqqaio2RjG-CjSkcG1Dvjt7sa6aXBOOBuLGA86JJD4L4E48Lpbsqy7e1xF_I5E1hFSY-5qoFh9iRs7j7UUVvEkESHmTWkildbUbqjHUhH0VaocOGgFHjfeoox_6bYDL7ppFCdd3iS5LS5rmn71MtiBR7V-dJzQ5TDlIg6EW5qzxer2TJ7Nq17iEW6m7Mv9q9l6Dnvj2elJfDKZHj-BW4zqenrMY_wAdterS_sUE7O1elZZgwufr9v8fgI1eE2t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXxLO4FDASXJCsOPuyc0AoNEQNhaiHVsrNeB8mkYKdxqkgf41fx4wfKQFUTj16PWuNdp7rnZ0P4JXKbIZpvEYT1zIQMhRBrJkJMqkjZbm0aQXf9nmsjs7Ex4mc7MDP9i4MlVW2PrFy1LYw9I-8g5l-TNFHqE7WlEWcDIbvFucBIUjRSWsLp1GryLFbf8ftW_l2NEBZv2Zs-OH08ChoEAYCI3p8FWj0zFILISzqZRTKLMZhhby7SOhIx9xIq4zlnGsVhy4zoWMGKTOMc9IKy_G7N-BmxGWXbCyaXG72uhgZ61NUznth51sNdutKFoVUmMC24mAFF_CvHPfPUs3fYt_wHtxtkla_X2vZfdhx-QO4fdhixT2EFfpKf-CKH5U3nRm_b2YWB5boS61_ukYW1vNgMO77J9OiXEwLql2ku8-l87v-KJ_O9Ixgf_z-vCza5__MY4_g7FpW-zHs5kXunoAfWsxb01SLSChqr6ip8RjG-zg2scW5HoTt6iamaXZOmBvzBDc9JJDkL4F48GYzZVF3-riK-D2JbENITbqrgWL5NWlsPjFKOM3TVESYQ2Wp0sZQ66Euy4Ts6Ux7cNAKPGk8R5lc6rkHLzevUZx0kJPmrrioaXrVLWEP9mr92HBCB8WUl3gQbWnOFqvbb_LZtOorHuNiqp7av5qtF3ALDS_5NBofP4U7jEp8uixg_AB2V8sL9wxztJV-XhmDD1-u2_p-AW8nUdo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Deoxycholic+Acid+Derived+Tyrosyl-DNA+Phosphodiesterase+1+Inhibitors+Also+Inhibit+Tyrosyl-DNA+Phosphodiesterase+2&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Oksana+V.+Salomatina&rft.au=Nadezhda+S.+Dyrkheeva&rft.au=Irina+I.+Popadyuk&rft.au=Alexandra+L.+Zakharenko&rft.date=2021-12-23&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=27&rft.issue=1&rft.spage=72&rft_id=info:doi/10.3390%2Fmolecules27010072&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c64eb3aa47244fa6bcc807412f459bfb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon