Social media engagement analysis of U.S. Federal health agencies on Facebook
It is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide variety of purposes including disseminating, discussing and seeking health related information. U.S. Federal health agencies are leveraging these platf...
Saved in:
Published in | BMC medical informatics and decision making Vol. 17; no. 1; p. 49 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
21.04.2017
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide variety of purposes including disseminating, discussing and seeking health related information. U.S. Federal health agencies are leveraging these platforms to 'engage' social media users to read, spread, promote and encourage health related discussions. However, different agencies and their communications get varying levels of engagement. In this study we use statistical models to identify factors that associate with engagement.
We analyze over 45,000 Facebook posts from 72 Facebook accounts belonging to 24 health agencies. Account usage, user activity, sentiment and content of these posts are studied. We use the hurdle regression model to identify factors associated with the level of engagement and Cox proportional hazards model to identify factors associated with duration of engagement.
In our analysis we find that agencies and accounts vary widely in their usage of social media and activity they generate. Statistical analysis shows, for instance, that Facebook posts with more visual cues such as photos or videos or those which express positive sentiment generate more engagement. We further find that posts on certain topics such as occupation or organizations negatively affect the duration of engagement.
We present the first comprehensive analyses of engagement with U.S. Federal health agencies on Facebook. In addition, we briefly compare and contrast findings from this study to our earlier study with similar focus but on Twitter to show the robustness of our methods. |
---|---|
AbstractList | BACKGROUNDIt is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide variety of purposes including disseminating, discussing and seeking health related information. U.S. Federal health agencies are leveraging these platforms to 'engage' social media users to read, spread, promote and encourage health related discussions. However, different agencies and their communications get varying levels of engagement. In this study we use statistical models to identify factors that associate with engagement.METHODSWe analyze over 45,000 Facebook posts from 72 Facebook accounts belonging to 24 health agencies. Account usage, user activity, sentiment and content of these posts are studied. We use the hurdle regression model to identify factors associated with the level of engagement and Cox proportional hazards model to identify factors associated with duration of engagement.RESULTSIn our analysis we find that agencies and accounts vary widely in their usage of social media and activity they generate. Statistical analysis shows, for instance, that Facebook posts with more visual cues such as photos or videos or those which express positive sentiment generate more engagement. We further find that posts on certain topics such as occupation or organizations negatively affect the duration of engagement.CONCLUSIONSWe present the first comprehensive analyses of engagement with U.S. Federal health agencies on Facebook. In addition, we briefly compare and contrast findings from this study to our earlier study with similar focus but on Twitter to show the robustness of our methods. Background It is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide variety of purposes including disseminating, discussing and seeking health related information. U.S. Federal health agencies are leveraging these platforms to ‘engage’ social media users to read, spread, promote and encourage health related discussions. However, different agencies and their communications get varying levels of engagement. In this study we use statistical models to identify factors that associate with engagement. Methods We analyze over 45,000 Facebook posts from 72 Facebook accounts belonging to 24 health agencies. Account usage, user activity, sentiment and content of these posts are studied. We use the hurdle regression model to identify factors associated with the level of engagement and Cox proportional hazards model to identify factors associated with duration of engagement. Results In our analysis we find that agencies and accounts vary widely in their usage of social media and activity they generate. Statistical analysis shows, for instance, that Facebook posts with more visual cues such as photos or videos or those which express positive sentiment generate more engagement. We further find that posts on certain topics such as occupation or organizations negatively affect the duration of engagement. Conclusions We present the first comprehensive analyses of engagement with U.S. Federal health agencies on Facebook. In addition, we briefly compare and contrast findings from this study to our earlier study with similar focus but on Twitter to show the robustness of our methods. It is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide variety of purposes including disseminating, discussing and seeking health related information. U.S. Federal health agencies are leveraging these platforms to 'engage' social media users to read, spread, promote and encourage health related discussions. However, different agencies and their communications get varying levels of engagement. In this study we use statistical models to identify factors that associate with engagement. We analyze over 45,000 Facebook posts from 72 Facebook accounts belonging to 24 health agencies. Account usage, user activity, sentiment and content of these posts are studied. We use the hurdle regression model to identify factors associated with the level of engagement and Cox proportional hazards model to identify factors associated with duration of engagement. In our analysis we find that agencies and accounts vary widely in their usage of social media and activity they generate. Statistical analysis shows, for instance, that Facebook posts with more visual cues such as photos or videos or those which express positive sentiment generate more engagement. We further find that posts on certain topics such as occupation or organizations negatively affect the duration of engagement. We present the first comprehensive analyses of engagement with U.S. Federal health agencies on Facebook. In addition, we briefly compare and contrast findings from this study to our earlier study with similar focus but on Twitter to show the robustness of our methods. Abstract Background It is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide variety of purposes including disseminating, discussing and seeking health related information. U.S. Federal health agencies are leveraging these platforms to ‘engage’ social media users to read, spread, promote and encourage health related discussions. However, different agencies and their communications get varying levels of engagement. In this study we use statistical models to identify factors that associate with engagement. Methods We analyze over 45,000 Facebook posts from 72 Facebook accounts belonging to 24 health agencies. Account usage, user activity, sentiment and content of these posts are studied. We use the hurdle regression model to identify factors associated with the level of engagement and Cox proportional hazards model to identify factors associated with duration of engagement. Results In our analysis we find that agencies and accounts vary widely in their usage of social media and activity they generate. Statistical analysis shows, for instance, that Facebook posts with more visual cues such as photos or videos or those which express positive sentiment generate more engagement. We further find that posts on certain topics such as occupation or organizations negatively affect the duration of engagement. Conclusions We present the first comprehensive analyses of engagement with U.S. Federal health agencies on Facebook. In addition, we briefly compare and contrast findings from this study to our earlier study with similar focus but on Twitter to show the robustness of our methods. |
ArticleNumber | 49 |
Author | Bhattacharya, Sanmitra Polgreen, Philip Srinivasan, Padmini |
Author_xml | – sequence: 1 givenname: Sanmitra orcidid: 0000-0002-1697-3179 surname: Bhattacharya fullname: Bhattacharya, Sanmitra email: sanmitra-bhattacharya@uiowa.edu, sanmitra-bhattacharya@uiowa.edu organization: Linguamatics Solutions Inc., Westborough, MA, 01581, USA. sanmitra-bhattacharya@uiowa.edu – sequence: 2 givenname: Padmini surname: Srinivasan fullname: Srinivasan, Padmini organization: Department of Computer Science, The University of Iowa, Iowa City, IA, 52242, USA – sequence: 3 givenname: Philip surname: Polgreen fullname: Polgreen, Philip organization: Department of Internal Medicine, The University of Iowa, Iowa City, IA, 52242, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28431582$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1vEzEQhi1URD_gB3BBK3HhssEf468LEqoIVIrEofRseb2zicNmXexNpfbX4zalajnZ8jzzyDPvKTma0oSEvGd0wZhRnwvjlrGWMt1SAN3evSInDDRvlQV99Ox-TE5L2dIKGiHfkGNuQDBp-AlZXaYQ_djssI--wWnt17jDaW785MfbEkuThuZqcblolthjruQG_ThvmspNIWKtT83SB-xS-v2WvB78WPDd43lGrpbffp3_aFc_v1-cf121AayY245qr5AHlFphp0FQiTZYA6EP1qJBr6SUbGBUcsl6ZdVAqeiUoAjQ8U6ckYuDt09-665z3Pl865KP7uEh5bXzeY5hREettD5oAyAkcA7Wg9UchO00syBFdX05uK73XV1CqLPXKV9IX1amuHHrdOMkUCaMrIJPj4Kc_uyxzG4XS8Bx9BOmfXHM1IxACc4r-vE_dJv2uS76gRJGME6hUuxAhZxKyTg8fYZRd5-7O-TuapzuPnd3V3s-PJ_iqeNf0OIvB1Gn3Q |
CitedBy_id | crossref_primary_10_3389_fpubh_2021_657082 crossref_primary_10_1016_j_techsoc_2019_101211 crossref_primary_10_1093_inthealth_ihy087 crossref_primary_10_17065_huniibf_898867 crossref_primary_10_3390_ijerph16040591 crossref_primary_10_2196_38541 crossref_primary_10_1080_10810730_2023_2176575 crossref_primary_10_11144_Javeriana_syp41_csrs crossref_primary_10_1016_j_jsurg_2021_10_014 crossref_primary_10_2196_12375 crossref_primary_10_1186_s12889_022_13324_4 crossref_primary_10_2196_14731 crossref_primary_10_3390_ijerph17061814 crossref_primary_10_7759_cureus_23734 crossref_primary_10_1177_00027162231215655 crossref_primary_10_1108_OIR_06_2021_0307 crossref_primary_10_1093_heapro_daad151 crossref_primary_10_1186_s12889_022_13213_w crossref_primary_10_1016_j_chb_2021_107019 crossref_primary_10_1177_10776990221084606 crossref_primary_10_2196_21204 crossref_primary_10_2196_21501 crossref_primary_10_2196_27942 crossref_primary_10_2196_14546 crossref_primary_10_2196_41969 crossref_primary_10_1080_01900692_2021_1993906 crossref_primary_10_1007_s11192_022_04468_6 crossref_primary_10_29024_aogh_2381 crossref_primary_10_3390_bs14030201 crossref_primary_10_2196_17917 crossref_primary_10_1371_journal_pone_0275534 crossref_primary_10_1016_j_chb_2020_106380 crossref_primary_10_3390_ijerph15061188 crossref_primary_10_2196_30973 crossref_primary_10_1001_jamaoncol_2021_2680 crossref_primary_10_1038_s41538_020_00074_z crossref_primary_10_7189_jogh_13_06005 crossref_primary_10_1186_s12911_021_01433_w crossref_primary_10_3389_fpubh_2021_775729 crossref_primary_10_7717_peerj_cs_1121 |
Cites_doi | 10.1371/journal.pone.0058356 10.1111/j.2517-6161.1972.tb00899.x 10.1002/asi.21416 10.2196/jmir.3275 10.1145/1958824.1958876 10.1890/07-0043.1 10.4315/0362-028X-67.8.1806 10.1080/1369118X.2013.782330 10.1371/journal.pone.0134811 10.2196/jmir.3970 10.2105/AJPH.2012.301166 10.1016/j.chb.2016.03.047 10.1001/archinte.165.22.2618 10.1145/2531602.2531603 10.1016/j.annemergmed.2011.04.006 10.1145/2808797.2809421 10.1609/icwsm.v4i1.14039 10.2196/jmir.3430 10.1371/journal.pone.0112235 10.1371/journal.pone.0172972 10.1002/sim.1088 10.1016/j.emj.2014.05.001 10.2196/jmir.1878 10.1002/ab.21474 10.1093/bioinformatics/btr223 10.1016/j.giq.2014.11.001 10.1007/s10900-015-0083-4 10.2196/jmir.4575 10.1080/03461238.1980.10408643 10.1186/1471-2458-12-242 10.3115/1572392.1572412 10.1509/jppm.27.2.117 10.1017/CBO9781139013567 10.1046/j.1532-5415.2001.49188.x 10.1016/j.socnet.2013.11.003 10.1177/1524839912469378 10.1007/s13278-013-0098-8 10.1109/ICTAI.2011.44 10.1136/bmj.e1717 |
ContentType | Journal Article |
Copyright | Copyright BioMed Central 2017 The Author(s). 2017 |
Copyright_xml | – notice: Copyright BioMed Central 2017 – notice: The Author(s). 2017 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1186/s12911-017-0447-z |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Healthcare Administration Database Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health Ecology |
EISSN | 1472-6947 |
EndPage | 49 |
ExternalDocumentID | oai_doaj_org_article_0959ac78443542249a4972439b719453 10_1186_s12911_017_0447_z 28431582 |
Genre | Journal Article |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | --- -A0 0R~ 23N 2WC 3V. 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACRMQ ADBBV ADINQ ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS ECM EIF EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0N M0T M1P M48 M7P M~E NPM O5R O5S OK1 P2P P62 PGMZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION 7QO 7SC 7XB 8AL 8FD 8FK COVID FR3 JQ2 K9. L7M L~C L~D P64 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c493t-b07a6e2ce576eb74305e9c984cdc99e8ea65551f105251d696f003b630e44b2b3 |
IEDL.DBID | RPM |
ISSN | 1472-6947 |
IngestDate | Tue Oct 22 15:15:08 EDT 2024 Tue Sep 17 21:25:45 EDT 2024 Sat Oct 26 05:58:13 EDT 2024 Thu Oct 10 22:05:27 EDT 2024 Thu Sep 12 21:11:00 EDT 2024 Sat Nov 02 12:30:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Social media mining Statistical modeling Engagement analysis Data mining Hurdle model Proportional hazards model |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-b07a6e2ce576eb74305e9c984cdc99e8ea65551f105251d696f003b630e44b2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1697-3179 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5401385/ |
PMID | 28431582 |
PQID | 1893831204 |
PQPubID | 42572 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0959ac78443542249a4972439b719453 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5401385 proquest_miscellaneous_1891146322 proquest_journals_1893831204 crossref_primary_10_1186_s12911_017_0447_z pubmed_primary_28431582 |
PublicationCentury | 2000 |
PublicationDate | 2017-04-21 |
PublicationDateYYYYMMDD | 2017-04-21 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC medical informatics and decision making |
PublicationTitleAlternate | BMC Med Inform Decis Mak |
PublicationYear | 2017 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | 447_CR44 MW Newman (447_CR8) 2011 B Marder (447_CR54) 2016; 61 YB Cheung (447_CR43) 2002; 21 447_CR40 R Thackeray (447_CR12) 2012; 12 447_CR48 J Wang (447_CR49) 2015; 10 IP Cvijikj (447_CR59) 2013; 3 ME Morris (447_CR7) 2011 S Stieglitz (447_CR57) 2012 J Yang (447_CR50) 2010; 10 447_CR30 JC Duke (447_CR33) 2014; 16 RD Dvorak (447_CR52) 2013; 39 447_CR2 447_CR1 N Newman (447_CR16) 2009; 8 447_CR36 LH Aiken (447_CR25) 2012; 344 CE Lipscomb (447_CR38) 2000; 88 447_CR4 447_CR3 447_CR35 J Thrul (447_CR10) 2015; 17 F Sabate (447_CR32) 2014; 32 AR Aronson (447_CR37) 2004; 11 A Jha (447_CR14) 2016; 41 A Malhotra (447_CR31) 2013; 54 K-W Fu (447_CR45) 2013; 8 E Bonsón (447_CR56) 2015; 32 C Giordano (447_CR5) 2011; 40 S Bhattacharya (447_CR39) 2011; 27 M Thelwall (447_CR34) 2010; 61 AT McCray (447_CR41) 2001; 1 BJ Reynolds (447_CR6) 2010; 30 JK Harris (447_CR13) 2013; 103 P Keller (447_CR24) 2008; 27 GS Enli (447_CR17) 2013; 16 447_CR20 A Bohn (447_CR46) 2014; 37 JM Ver Hoef (447_CR42) 2007; 88 447_CR29 447_CR23 S Gittelman (447_CR9) 2015; 17 Y Ulusu (447_CR55) 2010; 18 ER Pedersen (447_CR11) 2017; 12 BL Neiger (447_CR15) 2013; 14 447_CR51 447_CR18 447_CR19 447_CR58 N Ithete (447_CR21) 2013 B Timbo (447_CR22) 2004; 67 S Bhattacharya (447_CR47) 2014; 9 DE Ramo (447_CR28) 2012; 14 BE Robinson (447_CR27) 2001; 49 BW Hesse (447_CR26) 2005; 165 TM Hale (447_CR53) 2014; 16 |
References_xml | – volume: 8 start-page: e58356 issue: 3 year: 2013 ident: 447_CR45 publication-title: PLoS One doi: 10.1371/journal.pone.0058356 contributor: fullname: K-W Fu – ident: 447_CR51 doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 61 start-page: 2544 issue: 12 year: 2010 ident: 447_CR34 publication-title: J Am Soc Inf Sci Technol doi: 10.1002/asi.21416 contributor: fullname: M Thelwall – volume: 18 start-page: 2949 issue: 5 year: 2010 ident: 447_CR55 publication-title: J Yasar Univ contributor: fullname: Y Ulusu – start-page: 443 volume-title: CHI ′11 Extended Abstracts on Human Factors in Computing Systems year: 2011 ident: 447_CR7 contributor: fullname: ME Morris – volume: 16 start-page: e182 issue: 8 year: 2014 ident: 447_CR53 publication-title: J Med Internet Res doi: 10.2196/jmir.3275 contributor: fullname: TM Hale – start-page: 98 volume-title: ECIS: 2012 year: 2012 ident: 447_CR57 contributor: fullname: S Stieglitz – start-page: 341 volume-title: Proceedings of the ACM 2011 conference on Computer supported cooperative work year: 2011 ident: 447_CR8 doi: 10.1145/1958824.1958876 contributor: fullname: MW Newman – volume: 88 start-page: 2766 issue: 11 year: 2007 ident: 447_CR42 publication-title: Ecology doi: 10.1890/07-0043.1 contributor: fullname: JM Ver Hoef – ident: 447_CR2 – volume-title: Close Relative of Human Middle East Respiratory Syndrome Coronavirus in Bat, South Africa-Volume 19, Number 10—October 2013-Emerging Infectious Disease journal-CDC year: 2013 ident: 447_CR21 contributor: fullname: N Ithete – volume: 67 start-page: 1806 issue: 8 year: 2004 ident: 447_CR22 publication-title: J Food Prot doi: 10.4315/0362-028X-67.8.1806 contributor: fullname: B Timbo – volume: 16 start-page: 757 issue: 5 year: 2013 ident: 447_CR17 publication-title: Inf Commun Soc doi: 10.1080/1369118X.2013.782330 contributor: fullname: GS Enli – ident: 447_CR29 – ident: 447_CR30 – volume: 10 start-page: e0134811 issue: 9 year: 2015 ident: 447_CR49 publication-title: PLoS One doi: 10.1371/journal.pone.0134811 contributor: fullname: J Wang – volume: 8 start-page: 1 issue: 2 year: 2009 ident: 447_CR16 publication-title: Reuters Inst Study J contributor: fullname: N Newman – volume: 17 start-page: e98 issue: 4 year: 2015 ident: 447_CR9 publication-title: J Med Internet Res doi: 10.2196/jmir.3970 contributor: fullname: S Gittelman – volume: 103 start-page: 1700 issue: 9 year: 2013 ident: 447_CR13 publication-title: Am J Public Health doi: 10.2105/AJPH.2012.301166 contributor: fullname: JK Harris – volume: 61 start-page: 280 year: 2016 ident: 447_CR54 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2016.03.047 contributor: fullname: B Marder – volume: 54 start-page: 18 issue: 2 year: 2013 ident: 447_CR31 publication-title: MIT Sloan Manag Rev contributor: fullname: A Malhotra – volume: 165 start-page: 2618 issue: 22 year: 2005 ident: 447_CR26 publication-title: Arch Intern Med doi: 10.1001/archinte.165.22.2618 contributor: fullname: BW Hesse – ident: 447_CR58 doi: 10.1145/2531602.2531603 – volume: 30 start-page: 18 issue: 2 year: 2010 ident: 447_CR6 publication-title: Mark Health Serv contributor: fullname: BJ Reynolds – ident: 447_CR3 – ident: 447_CR23 doi: 10.1016/j.annemergmed.2011.04.006 – ident: 447_CR35 doi: 10.1145/2808797.2809421 – volume: 10 start-page: 355 year: 2010 ident: 447_CR50 publication-title: ICWSM doi: 10.1609/icwsm.v4i1.14039 contributor: fullname: J Yang – volume: 40 start-page: 78 issue: 2 year: 2011 ident: 447_CR5 publication-title: J Allied Health contributor: fullname: C Giordano – ident: 447_CR4 – volume: 16 start-page: e169 issue: 7 year: 2014 ident: 447_CR33 publication-title: J Med Internet Res doi: 10.2196/jmir.3430 contributor: fullname: JC Duke – volume: 1 start-page: 216 year: 2001 ident: 447_CR41 publication-title: Stud Health Technol Inform contributor: fullname: AT McCray – volume: 9 start-page: e112235 issue: 11 year: 2014 ident: 447_CR47 publication-title: PLoS One doi: 10.1371/journal.pone.0112235 contributor: fullname: S Bhattacharya – volume: 12 start-page: e0172972 issue: 3 year: 2017 ident: 447_CR11 publication-title: PLoS One doi: 10.1371/journal.pone.0172972 contributor: fullname: ER Pedersen – volume: 21 start-page: 1461 issue: 10 year: 2002 ident: 447_CR43 publication-title: Stat Med doi: 10.1002/sim.1088 contributor: fullname: YB Cheung – volume: 32 start-page: 1001 issue: 6 year: 2014 ident: 447_CR32 publication-title: Eur Manag J doi: 10.1016/j.emj.2014.05.001 contributor: fullname: F Sabate – ident: 447_CR36 – volume: 14 start-page: e28 issue: 1 year: 2012 ident: 447_CR28 publication-title: J Med Internet Res doi: 10.2196/jmir.1878 contributor: fullname: DE Ramo – volume: 39 start-page: 222 issue: 3 year: 2013 ident: 447_CR52 publication-title: Aggress Behav doi: 10.1002/ab.21474 contributor: fullname: RD Dvorak – volume: 27 start-page: i120 issue: 13 year: 2011 ident: 447_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr223 contributor: fullname: S Bhattacharya – volume: 88 start-page: 265 issue: 3 year: 2000 ident: 447_CR38 publication-title: Bull Med Libr Assoc contributor: fullname: CE Lipscomb – ident: 447_CR18 – volume: 32 start-page: 52 issue: 1 year: 2015 ident: 447_CR56 publication-title: Gov Inf Q doi: 10.1016/j.giq.2014.11.001 contributor: fullname: E Bonsón – ident: 447_CR20 – ident: 447_CR1 – volume: 41 start-page: 174 issue: 1 year: 2016 ident: 447_CR14 publication-title: J Community Health doi: 10.1007/s10900-015-0083-4 contributor: fullname: A Jha – volume: 17 start-page: e244 issue: 11 year: 2015 ident: 447_CR10 publication-title: J Med Internet Res doi: 10.2196/jmir.4575 contributor: fullname: J Thrul – ident: 447_CR48 doi: 10.1080/03461238.1980.10408643 – volume: 12 start-page: 242 issue: 1 year: 2012 ident: 447_CR12 publication-title: BMC Public Health doi: 10.1186/1471-2458-12-242 contributor: fullname: R Thackeray – ident: 447_CR40 doi: 10.3115/1572392.1572412 – volume: 27 start-page: 117 issue: 2 year: 2008 ident: 447_CR24 publication-title: J Public Policy Mark doi: 10.1509/jppm.27.2.117 contributor: fullname: P Keller – ident: 447_CR44 doi: 10.1017/CBO9781139013567 – volume: 49 start-page: 963 issue: 7 year: 2001 ident: 447_CR27 publication-title: J Am Geriatr Soc doi: 10.1046/j.1532-5415.2001.49188.x contributor: fullname: BE Robinson – volume: 37 start-page: 29 year: 2014 ident: 447_CR46 publication-title: Soc Networks doi: 10.1016/j.socnet.2013.11.003 contributor: fullname: A Bohn – volume: 14 start-page: 157 issue: 2 year: 2013 ident: 447_CR15 publication-title: Health Promot Pract doi: 10.1177/1524839912469378 contributor: fullname: BL Neiger – volume: 3 start-page: 843 issue: 4 year: 2013 ident: 447_CR59 publication-title: Soc Netw Anal Min doi: 10.1007/s13278-013-0098-8 contributor: fullname: IP Cvijikj – ident: 447_CR19 doi: 10.1109/ICTAI.2011.44 – volume: 344 start-page: e1717 year: 2012 ident: 447_CR25 publication-title: BMJ doi: 10.1136/bmj.e1717 contributor: fullname: LH Aiken – volume: 11 start-page: 268 issue: Pt 1 year: 2004 ident: 447_CR37 publication-title: Medinfo contributor: fullname: AR Aronson |
SSID | ssj0017835 |
Score | 2.4047604 |
Snippet | It is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide variety of... Background It is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide... BACKGROUNDIt is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used for a wide... Abstract Background It is becoming increasingly common for individuals and organizations to use social media platforms such as Facebook. These are being used... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 49 |
SubjectTerms | Adults Aggressive behavior Alcoholic beverages Bioinformatics CAI Children Classification Colleges & universities Communication Community involvement Complexity Computer applications Computer assisted instruction Data acquisition Data collection Data mining Data processing Disease control Drug addiction Ecology Emotional behavior Engagement analysis Finite element method Health care Health sciences Hum Humans Hurdle model Impulsive behavior Information Dissemination Information Seeking Behavior Internet Intervention Lability Language Learning algorithms Lists Local government Machine learning Marketing Medical personnel Messages Models, Statistical Multimedia Natural language processing Networking Patient Acceptance of Health Care Politics Polls & surveys Proportional hazards model Public concern Public health Regression analysis Semantics Smoking Social Media Social media mining Social Networking Social networks Social organization Social research Survival Translation United States United States Dept. of Health and Human Services |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQHhAXRIG2oYCMxKmS2cSZ-HFsESuEgAtdiZvlOA7tJYtg97K_nvFjV2xVqReusRU539iZGc_MN4ScB1a6Xjcd876VDCT3zAIA407Ysu5R6LF7w929uJ7CzWPz-K7VV8gJS_TACbhxuKeyTipAvQ6ob7QFLTmq0Vbie5rE81nylTOV4wfhPiPHMCslxq-o1WL9mGQlgGTLDS0Uyfr_ZWH-nSj5TvNM9shuNhnpj7TUT2TLD_tk-y4HxQ_IbSqxpbEIhPrhKeezUJsJR-isp9OLhws6CcwRODMVP1Ib6i7RU6azgU6si3HTQzKdXP26vGa5SQJzoOs5a0tphefOo-OAcAcGL6-dVuA6p7VX3ooGraK-Cg3rqk5o0eNBbkVdeoCWt_VnMhpmg_9KaKtrJ73sSnAaoe6UUAK9EdeBCG3Wy4J8X4FmnhMXhok-hBImIWwQYRMQNsuC_AywricGGuv4AIVrsnDN_4RbkOOVUEw-W6-mQhNL1RUvoSBn62E8FSHUYQc_W8Q5odwa_1YF-ZJkuF4JKuS6ahSOyA3pbix1c2T48zsybzfBG1XN0Ud82zeyw9OGZLw6JqP5y8KfoIEzb0_jXn4Di__x7A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BEQgJIVhegYKMxAnJbeI4fpwQoIYKUS6wUm-W4ziFS1K62wP99cw43oVFiGtsKdbM2PP-BuAVodINtul5jJ3mUovIvZSSi6B8WQ_I9DS94eSzOl7Kj6fNaQ64rXJZ5eZNTA91PwWKkR9WqFhNXYlSvjn_wWlqFGVX8wiN63CjElpRSZ9pP2yzCBTVyJnMyqjDFeq21EWmeSml5lc7uihB9v_Lzvy7XPIP_dPeg7vZcGRvZ07fh2txXMDNowQ6_XMBt05yknwBd-ZQHJs7jB7Ap7kFl6UmERbHs1zvwnwGJGHTwJYHXw5YS8gSuHNujmSe-jLRk2bTyFofUl71ISzbo6_vj3keosCDtPWad6X2KooQ0bFAdhDCV7TBGhn6YG000asGraahooF2Va-sGvCid6ouo5Sd6OpHsDdOY3wCrLN10FH3pQxWCtEbZRR6K6GXisawlwW83pDTnc9YGS75GEa5mfYOae-I9u6qgHdE8O1GgrlOH6aLM5dvjaMgpQ_aSDTq8I_Semm1QBuq0yhETV3A_oZdLt-9lfstKQW83C7jraFUiB_jdJn2UDs2vmYFPJ65uz0JKuy6agyu6B2-7xx1d2X8_i0hczfkrZrm6f-P9Qxui1kIuaj2YW99cRmfo2mz7l4k-f0FDw30Dg priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiEuFW9CCzISJyQviTPx44CqglhViOUCK_VmOY5TkFAC261U-us7dpKFRXviGtuKNQ_PjMfzDcCriErXmqrhIdSKoxKBO0TkwkuXly0xPXVvWHyWp0v8eFad7cHU3mok4MXO0C72k1qufsyufv0-JoV_mxReyzcXZLNSdZjiOaLi17fgtiDDGF94LfBPUiFecoyJzZ3LIjCwpnWVFltWKoH57_JA_31I-Zdlmt-Dg9GlZCeDDNyHvdA9gDuLMWn-ED4NJbgsFYmw0J2P712YGwFJWN-y5ezLjM0jsgTNHIojmYt1mRRJs75jc-dTXvURLOcfvr4_5WMTBe7RlGte58rJIHygwILYERG-gvFGo2-8MUEHJyvymtoiNrQrGmlkS4peyzIPiLWoy8ew3_VdeAqsNqVXQTU5eoNCNFpqSdGKb1DGNux5Bq8notmfA1aGTTGGlnYgtiVi20hse53Bu0jWzcQIc50-9KtzO2qNjZeUziuN5NTRH9E4NIpYa2pFQlSVGRxNTLGT6NiCXDBdFiLHDF5uhklrYirEdaG_THNiOTadZhk8GXi42ckkAxmoLe5ubXV7pPv-LSFzVzFa1dWz_155CHfFIJBcFEewv15dhufk9azrF0mWbwB2qPzA priority: 102 providerName: Scholars Portal |
Title | Social media engagement analysis of U.S. Federal health agencies on Facebook |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28431582 https://www.proquest.com/docview/1893831204 https://search.proquest.com/docview/1891146322 https://pubmed.ncbi.nlm.nih.gov/PMC5401385 https://doaj.org/article/0959ac78443542249a4972439b719453 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ0K8IL7JNioj8YTkNnEcfzzSsjIQHdOgqOLFShxnTGLJtHUv--s5O05FEU-8OFLiKNbdOXfnu_sdwBuPStfooqbOVZJyyRwtOeeUWVGmeYNMD90bFifieMk_rYrVDhRDLUxI2rfVxbj9dTluL36G3MqrSzsZ8sQmp4tZ4Z0CVUx2YRfV7-Cix9CBP8qI4ctMickNKrRQOiZpyrmkdx7-V6HaLBTb0kUBsv9fdubf6ZJ_6J_5I3gYDUfyrl_gY9hx7RO4v4ih8afwuS-0JaEUhLj2PGa1kDLCjpCuIcvx1zGZe_wInNmXQJLSV1-iv0y6lsxLG6Knz2A5P_o2O6axVQK1XOdrWqWyFI5Zh-4DEt3jeDltteK2tlo75UpRoG3UZL5tXVYLLRrczpXIU8d5xar8Oey1XeteAql0bqWTdcqt5ozVSiiBPomtufDN1tME3g5EM1c9IoYJnoQSpie2QWIbT2xzl8DUk3Uz0YNZhxvd9bmJLDX-KLK0UnE03fCLXJdcS4aWUiVRVIo8gcOBKSbusBuToaGl8oylPIHXm8e4N3zAo2xddxvm-KJr_Gcl8KLn4WYlgwwkILe4u7XU7ScojgF_O4rf_n-_eQAPWC-QlGWHsLe-vnWv0LZZVyOU6JXEUc0_jODe9Ojk9Ayvsy_fP74fhfMCHBdc4Xg2_TEKkv8bJ8b8_g |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,12765,21388,24318,27924,27925,31719,31720,33373,33374,33744,33745,38516,43310,43600,43805,43895,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB5BKh4SQhCgBAoYiROS212v148ToihRgCRC0Ei9WV6vt_SyW5r0QH89Y68TCEJc15bWmofn5fkG4E1ApWt0WVPvK0m5ZJ5azjllTtisaJDpcXrDfCGmS_7ptDxNCbdVela5uRPjRV13LuTIj3I0rKrIWcbfXfygYWpUqK6mERo3YS8gp5cD2DseL7583dYRQl4j1TJzJY5WaN1iH5mkGeeSXu9Yowja_y9P8-8Hk39YoMkDuJ9cR_K-5_VDuOHbIdwaR9jpn0O4PU9l8iHc65NxpO8xegSzvgmXxDYR4tuz9OKF2ARJQrqGLA-_HZJJwJbAnX17JLGhMxNjadK1ZGJdrKw-huVkfPJhStMYBeq4Lta0yqQVnjmPoQUyJGB8ee204q52WnvlrSjRb2ryMNIur4UWDap6JYrMc16xqngCg7Zr_VMglS6c9LLOuNOcsVoJJTBecTUXYRB7NoK3G3Kaix4tw8QoQwnT094g7U2gvbkewXEg-HZjALqOH7rLM5P0xoQ0pXVScXTr8I9cW64lQy-qkihGZTGCgw27TNK-lfktKyN4vV1GvQnFENv67iruCQ3ZeJ-NYL_n7vYkaLKLvFS4Inf4vnPU3ZX2_HvE5i5DvKrKZ_8_1iu4Mz2Zz8zs4-Lzc7jLeoGkLD-Awfryyr9AR2ddvUzS_AvRqPhf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkSouiDcpBYzECcm7ieP4cYRCVKBbVYKVerMcxymVaLJqt5f--o4dZ9VFnLjGjmLNIzPjmfkG4ENApet01VLvG0m5ZJ5azjllTti87JDpcXrD4lgcLvn30-r0zqivWLTvmvNZ_-di1p__jrWVqws3n-rE5ieLgyoEBaqar9pufh8eVCUK2RSopwRCuNBIScxCifkVmrXYQCZpzrmkNwEEWKHxrBTbskgRuP9f3ubfRZN3rFD9GB4l95F8Go_5BO75_insLlKC_Bkcje22JDaEEN-fpdoWYhP4CBk6spz9nJE6oEjgzrERktjQg4lRMxl6UlsXc6jPYVl__XVwSNPABOq4Lte0yaUVnjmPQQSSPqB5ee204q51WnvlrajQQ-qKMLyuaIUWHSp1I8rcc96wpnwBO_3Q-1dAGl066WWbc6c5Y60SSmBk4louwsj1PIOPE9HMasTFMDGeUMKMxDZIbBOIbW4y-BzIutkYIK3jg-HyzCTGmnAhaZ1UHB04_CLXlmvJ0F9qJApMVWawPzHFJD27MgW6W6osWM4zeL9ZRg0JaQ_b--E67gmt1_jnyuDlyMPNSSYZyEBucXfrqNsrKJQRhTsJ4d5_v_kOdk--1Obo2_GP1_CQjbJJWbEPO-vLa_8GnZ118zaK9S0gjvmJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+media+engagement+analysis+of+U.S.+Federal+health+agencies+on+Facebook&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Bhattacharya%2C+Sanmitra&rft.au=Srinivasan%2C+Padmini&rft.au=Polgreen%2C+Philip&rft.date=2017-04-21&rft.pub=BioMed+Central&rft.eissn=1472-6947&rft.volume=17&rft_id=info:doi/10.1186%2Fs12911-017-0447-z&rft_id=info%3Apmid%2F28431582&rft.externalDBID=PMC5401385 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |