Brain Development From Newborn to Adolescence: Evaluation by Neurite Orientation Dispersion and Density Imaging
Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent studies suggesting that NODDI modeling might be more sensitive to brain development than diffusion tensor imaging (DTI), these studies were limit...
Saved in:
Published in | Frontiers in human neuroscience Vol. 15; p. 616132 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
15.03.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5161 1662-5161 |
DOI | 10.3389/fnhum.2021.616132 |
Cover
Loading…
Abstract | Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent studies suggesting that NODDI modeling might be more sensitive to brain development than diffusion tensor imaging (DTI), these studies were limited to a relatively small age range and mainly based on the manually operated region of interest analysis. Therefore, this study applied NODDI to investigate brain development in a large sample size of 214 subjects ranging in ages from 0 to 14. The whole brain was automatically segmented into 122 regions. The maturation trajectory of each region was characterized by the time course of diffusion metrics and further quantified using nonlinear regression. The NODDI-derived metrics, neurite density index (NDI) and orientation dispersion index (ODI), increased with age. And these two metrics were superior to the DTI-derived metrics in SVM regression models of age. The NDI in white matter exhibited a more rapid growth than that in gray matter (including the cortex and deep nucleus). These diffusion indicators experienced conspicuous increases during early childhood and the growth speed slowed down in adolescence. Region-specific maturation patterns were described throughout the brain, including white matter, cortical and deep gray matter. These development patterns were evaluated and discussed on the basis of NODDI’s model assumptions. To summarize, this study verified the high sensitivity of NODDI to age over a crucial developmental period from newborn to adolescence. Moreover, the existing knowledge of brain development has been complemented, suggesting that NODDI has a potential capability in the investigation of brain development. |
---|---|
AbstractList | Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent studies suggesting that NODDI modeling might be more sensitive to brain development than diffusion tensor imaging (DTI), these studies were limited to a relatively small age range and mainly based on the manually operated region of interest analysis. Therefore, this study applied NODDI to investigate brain development in a large sample size of 214 subjects ranging in ages from 0 to 14. The whole brain was automatically segmented into 122 regions. The maturation trajectory of each region was characterized by the time course of diffusion metrics and further quantified using nonlinear regression. The NODDI-derived metrics, neurite density index (NDI) and orientation dispersion index (ODI), increased with age. And these two metrics were superior to the DTI-derived metrics in SVM regression models of age. The NDI in white matter exhibited a more rapid growth than that in gray matter (including the cortex and deep nucleus). These diffusion indicators experienced conspicuous increases during early childhood and the growth speed slowed down in adolescence. Region-specific maturation patterns were described throughout the brain, including white matter, cortical and deep gray matter. These development patterns were evaluated and discussed on the basis of NODDI's model assumptions. To summarize, this study verified the high sensitivity of NODDI to age over a crucial developmental period from newborn to adolescence. Moreover, the existing knowledge of brain development has been complemented, suggesting that NODDI has a potential capability in the investigation of brain development.Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent studies suggesting that NODDI modeling might be more sensitive to brain development than diffusion tensor imaging (DTI), these studies were limited to a relatively small age range and mainly based on the manually operated region of interest analysis. Therefore, this study applied NODDI to investigate brain development in a large sample size of 214 subjects ranging in ages from 0 to 14. The whole brain was automatically segmented into 122 regions. The maturation trajectory of each region was characterized by the time course of diffusion metrics and further quantified using nonlinear regression. The NODDI-derived metrics, neurite density index (NDI) and orientation dispersion index (ODI), increased with age. And these two metrics were superior to the DTI-derived metrics in SVM regression models of age. The NDI in white matter exhibited a more rapid growth than that in gray matter (including the cortex and deep nucleus). These diffusion indicators experienced conspicuous increases during early childhood and the growth speed slowed down in adolescence. Region-specific maturation patterns were described throughout the brain, including white matter, cortical and deep gray matter. These development patterns were evaluated and discussed on the basis of NODDI's model assumptions. To summarize, this study verified the high sensitivity of NODDI to age over a crucial developmental period from newborn to adolescence. Moreover, the existing knowledge of brain development has been complemented, suggesting that NODDI has a potential capability in the investigation of brain development. Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent studies suggesting that NODDI modeling might be more sensitive to brain development than diffusion tensor imaging (DTI), these studies were limited to a relatively small age range and mainly based on the manually operated region of interest analysis. Therefore, this study applied NODDI to investigate brain development in a large sample size of 214 subjects ranging in ages from 0 to 14. The whole brain was automatically segmented into 122 regions. The maturation trajectory of each region was characterized by the time course of diffusion metrics and further quantified using nonlinear regression. The NODDI-derived metrics, neurite density index (NDI) and orientation dispersion index (ODI), increased with age. And these two metrics were superior to the DTI-derived metrics in SVM regression models of age. The NDI in white matter exhibited a more rapid growth than that in gray matter (including the cortex and deep nucleus). These diffusion indicators experienced conspicuous increases during early childhood and the growth speed slowed down in adolescence. Region-specific maturation patterns were described throughout the brain, including white matter, cortical and deep gray matter. These development patterns were evaluated and discussed on the basis of NODDI’s model assumptions. To summarize, this study verified the high sensitivity of NODDI to age over a crucial developmental period from newborn to adolescence. Moreover, the existing knowledge of brain development has been complemented, suggesting that NODDI has a potential capability in the investigation of brain development. |
Author | Shi, Jingjing Wang, He Wei, Lei Zhao, Xueying Yu, Xuchen Zhu, Wenzhen Zhang, Boyu Dai, Fei Wang, Chengyan |
AuthorAffiliation | 1 Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University , Shanghai , China 3 Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China 4 Human Phenome Institute, Fudan University , Shanghai , China 2 Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education , Shanghai , China |
AuthorAffiliation_xml | – name: 4 Human Phenome Institute, Fudan University , Shanghai , China – name: 1 Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University , Shanghai , China – name: 2 Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education , Shanghai , China – name: 3 Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China |
Author_xml | – sequence: 1 givenname: Xueying surname: Zhao fullname: Zhao, Xueying – sequence: 2 givenname: Jingjing surname: Shi fullname: Shi, Jingjing – sequence: 3 givenname: Fei surname: Dai fullname: Dai, Fei – sequence: 4 givenname: Lei surname: Wei fullname: Wei, Lei – sequence: 5 givenname: Boyu surname: Zhang fullname: Zhang, Boyu – sequence: 6 givenname: Xuchen surname: Yu fullname: Yu, Xuchen – sequence: 7 givenname: Chengyan surname: Wang fullname: Wang, Chengyan – sequence: 8 givenname: Wenzhen surname: Zhu fullname: Zhu, Wenzhen – sequence: 9 givenname: He surname: Wang fullname: Wang, He |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33790750$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhS1URB_wA9igSGzYzOBH_AgLpD6hUkU3sLac-HrqUWIPdjJo_j2epkVtJVa2r8_5dHXvOUYHIQZA6D3BS8ZU89mFu2lYUkzJUhBBGH2FjogQdMHL6-DJ_RAd57zGWFDByRt0yJhssOT4CMWzZHyoLmALfdwMEMbqKsWh-gF_2phCNcbq1MYecgehgy_V5db0kxl9DFW7K6op-RGq2-SLcy5f-LyBlPdXE2whh-zHXXU9mJUPq7fotTN9hncP5wn6dXX58_z74ub22_X56c2iqxs2LkzXKGCtdR1TIIRiggFRhBJrLIZGcNkw2joGzgkjXFsb0zgCslaKMascO0HXM9dGs9ab5AeTdjoar-8LMa20SaPvetDW2oZabKQRvObOKKcwENfVrq4tc7awvs6szdQOYMskxmT6Z9DnP8Hf6VXcaoUx55wUwKcHQIq_J8ijHnwZaN-bAHHKmnIsJZW8EUX68YV0HacUyqj2KsJqSQQrqg9PO_rXyuNei0DOgi7FnBM43fl5P6VB32uC9T5B-j5Bep8gPSeoOMkL5yP8_56_4rDMjQ |
CitedBy_id | crossref_primary_10_1016_j_biopsych_2024_01_005 crossref_primary_10_1016_j_jaac_2023_12_011 crossref_primary_10_1002_dev_22234 crossref_primary_10_1097_RLI_0000000000001120 crossref_primary_10_1016_j_nicl_2021_102887 crossref_primary_10_1111_ejn_16217 crossref_primary_10_3389_fnins_2023_1144802 crossref_primary_10_1016_j_dcn_2025_101540 crossref_primary_10_1162_imag_a_00050 crossref_primary_10_1007_s00429_022_02605_8 crossref_primary_10_1016_j_jadohealth_2024_10_007 crossref_primary_10_1017_S0033291723003422 crossref_primary_10_1016_j_sleep_2024_01_007 crossref_primary_10_1038_s42003_025_07725_5 crossref_primary_10_1111_adb_70019 crossref_primary_10_1016_j_neuroimage_2024_120734 crossref_primary_10_1002_hbm_26528 |
Cites_doi | 10.1016/B978-0-7236-7017-9.50018-1 10.1016/j.neuroimage.2011.01.051 10.1016/j.neuroimage.2005.01.028 10.1016/j.neuroimage.2005.08.017 10.1109/TMI.2020.3001175 10.1371/journal.pone.0096985 10.3174/ajnr.A1241 10.1016/j.nicl.2018.04.032 10.1016/j.neuroimage.2007.12.053 10.1371/journal.pone.0123656 10.1038/s41593-018-0195-0 10.1016/j.neuroimage.2016.06.002 10.1002/hbm.24706 10.1097/00005072-198705000-00005 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2014.10.026 10.1016/j.neuroimage.2014.12.009 10.1002/jmri.20281 10.3174/ajnr.A3465 10.1371/journal.pone.0154146 10.1371/journal.pone.0182340 10.1016/j.ejrad.2019.108690 10.1002/aur.1243 10.1007/s00247-012-2427-x 10.2307/3802723 10.1016/j.neuroimage.2009.01.002 10.1148/radiology.166.1.3336675 10.1007/s00234-003-1154-2 10.1016/j.tics.2017.11.002 10.1007/s00276-011-0796-8 10.1016/j.neuroimage.2009.08.053 10.1148/radiol.2212001702 10.1177/1073858404263960 10.1016/j.neuroimage.2011.08.062 10.1016/j.neuroimage.2010.04.238 10.1007/s11065-010-9148-4 10.3174/ajnr.A3764 10.1111/dmcn.14050 10.1159/000437413 10.1016/j.neuroimage.2017.01.023 10.1371/journal.pone.0217118 10.1073/pnas.1812156116 10.3389/fnana.2010.00012 10.1016/j.neuroimage.2009.04.057 10.1016/j.neuroimage.2015.02.036 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Zhao, Shi, Dai, Wei, Zhang, Yu, Wang, Zhu and Wang. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Zhao, Shi, Dai, Wei, Zhang, Yu, Wang, Zhu and Wang. 2021 Zhao, Shi, Dai, Wei, Zhang, Yu, Wang, Zhu and Wang |
Copyright_xml | – notice: Copyright © 2021 Zhao, Shi, Dai, Wei, Zhang, Yu, Wang, Zhu and Wang. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Zhao, Shi, Dai, Wei, Zhang, Yu, Wang, Zhu and Wang. 2021 Zhao, Shi, Dai, Wei, Zhang, Yu, Wang, Zhu and Wang |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2021.616132 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_ddd92d0a7a6545fa8f80e1fc4f44d3fd PMC8005551 33790750 10_3389_fnhum_2021_616132 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai grantid: 20ZR1406400 – fundername: National Natural Science Foundation of China grantid: 81971583 – fundername: National Key Research and Development Program of China grantid: 2018YFC1312900 – fundername: Science and Technology Commission of Shanghai Municipality grantid: 2017SHZDZX01; 2018SHZDZX01 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IHW IPNFZ IPY ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-ac98e3bdfc38e668363e18121dad0e9657932bf3eff6a6fb4aa9f1e748833d8f3 |
IEDL.DBID | BENPR |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:31:17 EDT 2025 Thu Aug 21 14:14:07 EDT 2025 Thu Jul 10 17:51:49 EDT 2025 Fri Jul 25 11:45:27 EDT 2025 Thu Jan 02 22:57:25 EST 2025 Tue Jul 01 03:44:33 EDT 2025 Thu Apr 24 22:59:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | brain development NODDI diffusion MRI diffusion tensor imaging neurite density pediatric |
Language | English |
License | Copyright © 2021 Zhao, Shi, Dai, Wei, Zhang, Yu, Wang, Zhu and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-ac98e3bdfc38e668363e18121dad0e9657932bf3eff6a6fb4aa9f1e748833d8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain Imaging and Stimulation, a section of the journal Frontiers in Human Neuroscience These authors share first authorship Edited by: Dan Wu, Zhejiang University, China Reviewed by: Pew-Thian Yap, University of North Carolina at Chapel Hill, United States; Tengda Zhao, Beijing Normal University, China |
OpenAccessLink | https://www.proquest.com/docview/2501347163?pq-origsite=%requestingapplication% |
PMID | 33790750 |
PQID | 2501347163 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ddd92d0a7a6545fa8f80e1fc4f44d3fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_8005551 proquest_miscellaneous_2507727596 proquest_journals_2501347163 pubmed_primary_33790750 crossref_citationtrail_10_3389_fnhum_2021_616132 crossref_primary_10_3389_fnhum_2021_616132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-15 |
PublicationDateYYYYMMDD | 2021-03-15 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2021 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Blockx (B4) 2012; 59 Ceritoglu (B7) 2009; 47 Talairach (B43) 1988 Huntenburg (B22) 2018; 22 Ouyang (B34) 2019; 116 Burt (B6) 2018; 21 Faria (B12) 2010; 52 Wagstyl (B46) 2015; 111 Chang (B8) 2015; 10 Karmacharya (B27) 2018; 19 Herculano-Houzel (B19) 2010; 4 Mah (B29) 2017; 12 Oishi (B33) 2011; 56 Geeraert (B13) 2019; 40 Sowell (B41) 2004; 10 Huynh (B23) 2019 Hermoye (B21) 2006; 29 Gilles (B15) 1983 Pannek (B35) 2012; 42 Kaden (B26) 2016; 139 Oishi (B32) 2009; 46 Yakovlev (B48) 1967 Cho (B9) 2011; 33 Stiles (B42) 2010; 20 Daducci (B10) 2015; 105 Schneider (B37) 2004; 46 Ben (B3) 2005; 21 Dudink (B11) 2008; 29 Herculano-Houzel (B20) 2015; 86 Albajara Saenz (B1) 2019; 61 Mukherjee (B30) 2001; 221 Genc (B14) 2017; 148 Lebel (B28) 2008; 40 Heemskerk (B18) 2013; 34 Song (B40) 2005; 26 Mukherjee (B31) 2002; 23 Barkovich (B2) 1988; 166 Brody (B5) 1987; 46 Wang (B47) 2014 Jelescu (B24) 2015; 107 Guerrero (B16) 2019; 14 Paydar (B36) 2014; 35 Shi (B39) 2019; 120 Guthery (B17) 2003 Travers (B45) 2012; 5 Yakovlev (B49) 1962; 39 Jespersen (B25) 2010; 49 Shi (B38) 2016; 11 Zhang (B50) 2012; 61 Tang (B44) 2014; 9 |
References_xml | – volume: 39 start-page: 3 year: 1962 ident: B49 article-title: Morphological criteria of growth and maturation of the nervous system in man. publication-title: Res. Publ. Assoc. Nerv. Ment. Dis. – start-page: 117 year: 1983 ident: B15 article-title: Myelinated tracts: growth patterns publication-title: The Developing Human Brain doi: 10.1016/B978-0-7236-7017-9.50018-1 – volume: 56 start-page: 8 year: 2011 ident: B33 article-title: Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.051 – volume: 26 start-page: 132 year: 2005 ident: B40 article-title: Demyelination increases radial diffusivity in corpus callosum of mouse brain. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.01.028 – volume: 29 start-page: 493 year: 2006 ident: B21 article-title: Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.08.017 – year: 2019 ident: B23 article-title: Probing tissue microarchitecture of the baby brain via spherical mean spectrum imaging. publication-title: arXiv doi: 10.1109/TMI.2020.3001175 – volume: 9 year: 2014 ident: B44 article-title: Multi-contrast multi-atlas parcellation of diffusion tensor imaging of the human brain. publication-title: PLoS One doi: 10.1371/journal.pone.0096985 – volume: 29 start-page: 1966 year: 2008 ident: B11 article-title: “High b-value diffusion tensor imaging of the neonatal brain at 3T”. publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A1241 – start-page: 3 year: 1967 ident: B48 article-title: The myelogenetic cycles of regional maturation of the brain – volume: 19 start-page: 360 year: 2018 ident: B27 article-title: Advanced diffusion imaging for assessing normal white matter development in neonates and characterizing aberrant development in congenital heart disease. publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.04.032 – volume: 40 start-page: 1044 year: 2008 ident: B28 article-title: Microstructural maturation of the human brain from childhood to adulthood. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.053 – volume: 10 year: 2015 ident: B8 article-title: White matter changes of neurite density and fiber orientation dispersion during human brain maturation. publication-title: PLoS One doi: 10.1371/journal.pone.0123656 – volume: 21 start-page: 1251 year: 2018 ident: B6 article-title: Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0195-0 – volume: 139 start-page: 346 year: 2016 ident: B26 article-title: Multi-compartment microscopic diffusion imaging. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.002 – volume: 40 start-page: 4345 year: 2019 ident: B13 article-title: A multiparametric analysis of white matter maturation during late childhood and adolescence. publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24706 – volume: 46 start-page: 283 year: 1987 ident: B5 article-title: Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. publication-title: J. Neuropathol Exp. Neurol. doi: 10.1097/00005072-198705000-00005 – volume: 61 start-page: 1000 year: 2012 ident: B50 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 105 start-page: 32 year: 2015 ident: B10 article-title: Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.026 – volume: 107 start-page: 242 year: 2015 ident: B24 article-title: One diffusion acquisition and different white matter models: how does microstructure change in human early development based on WMTI and NODDI? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.12.009 – volume: 21 start-page: 503 year: 2005 ident: B3 article-title: Normal white matter development from infancy to adulthood: comparing diffusion tensor and high b value diffusion weighted MR images. publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.20281 – volume: 34 start-page: 1496 year: 2013 ident: B18 article-title: Acquisition guidelines and quality assessment tools for analyzing neonatal diffusion tensor MRI data. publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3465 – volume: 11 year: 2016 ident: B38 article-title: Initial application of diffusional kurtosis imaging in evaluating brain development of healthy preterm infants. publication-title: PLoS One doi: 10.1371/journal.pone.0154146 – volume: 12 year: 2017 ident: B29 article-title: Detailing neuroanatomical development in late childhood and early adolescence using NODDI. publication-title: PLoS One doi: 10.1371/journal.pone.0182340 – volume: 23 start-page: 1445 year: 2002 ident: B31 article-title: Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. publication-title: AJNR Am. J. Neuroradiol. – volume: 120 year: 2019 ident: B39 article-title: Detecting normal pediatric brain development with diffusional kurtosis imaging. publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2019.108690 – volume: 5 start-page: 289 year: 2012 ident: B45 article-title: Diffusion tensor imaging in autism spectrum disorder: a review. publication-title: Autism. Res. doi: 10.1002/aur.1243 – volume: 42 start-page: 1169 year: 2012 ident: B35 article-title: Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques. publication-title: Pediatr. Radiol. doi: 10.1007/s00247-012-2427-x – start-page: 655 year: 2003 ident: B17 publication-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach doi: 10.2307/3802723 – volume: 46 start-page: 486 year: 2009 ident: B32 article-title: Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.002 – volume: 166 start-page: 173 year: 1988 ident: B2 article-title: Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. publication-title: Radiology doi: 10.1148/radiology.166.1.3336675 – volume: 46 start-page: 258 year: 2004 ident: B37 article-title: Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. publication-title: Neuroradiology doi: 10.1007/s00234-003-1154-2 – volume: 22 start-page: 21 year: 2018 ident: B22 article-title: Large-scale gradients in human cortical organization. publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2017.11.002 – volume: 33 start-page: 523 year: 2011 ident: B9 article-title: Early fetal development of the human cerebellum. publication-title: Surg. Radiol. Anat. doi: 10.1007/s00276-011-0796-8 – volume: 49 start-page: 205 year: 2010 ident: B25 article-title: Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.08.053 – volume: 221 start-page: 349 year: 2001 ident: B30 article-title: Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. publication-title: Radiology doi: 10.1148/radiol.2212001702 – volume: 10 start-page: 372 year: 2004 ident: B41 article-title: Mapping changes in the human cortex throughout the span of life. publication-title: Neuroscientist doi: 10.1177/1073858404263960 – year: 2014 ident: B47 article-title: The performance of NODDI estimation using a common 2-shell protocol publication-title: Proceedings of the International Society for Magnetic Resonance in Medicine – volume: 59 start-page: 957 year: 2012 ident: B4 article-title: Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.062 – volume: 52 start-page: 415 year: 2010 ident: B12 article-title: Atlas-based analysis of neurodevelopment from infancy to adulthood using diffusion tensor imaging and applications for automated abnormality detection. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.238 – volume: 20 start-page: 327 year: 2010 ident: B42 article-title: The basics of brain development. publication-title: Neuropsychol. Rev. doi: 10.1007/s11065-010-9148-4 – volume: 35 start-page: 808 year: 2014 ident: B36 article-title: Diffusional kurtosis imaging of the developing brain. publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A3764 – volume: 61 start-page: 399 year: 2019 ident: B1 article-title: Structural and functional neuroimaging in attention-deficit/hyperactivity disorder. publication-title: Dev. Med. Child. Neurol. doi: 10.1111/dmcn.14050 – volume: 86 start-page: 145 year: 2015 ident: B20 article-title: Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. publication-title: Brain Behav. Evol. doi: 10.1159/000437413 – volume: 148 start-page: 373 year: 2017 ident: B14 article-title: Neurite density index is sensitive to age related differences in the developing brain. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.01.023 – volume: 14 year: 2019 ident: B16 article-title: Optimizing the intrinsic parallel diffusivity in NODDI: an extensive empirical evaluation. publication-title: PLoS One doi: 10.1371/journal.pone.0217118 – volume: 116 year: 2019 ident: B34 article-title: Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1812156116 – volume: 4 year: 2010 ident: B19 article-title: Coordinated scaling of cortical and cerebellar numbers of neurons. publication-title: Front. Neuroanat. doi: 10.3389/fnana.2010.00012 – year: 1988 ident: B43 publication-title: Co-Planar Stereotaxic Atlas of the Human Brain: Three Dimensional Proportional System: an Approach to Cerebral Imaging. – volume: 47 start-page: 618 year: 2009 ident: B7 article-title: Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.04.057 – volume: 111 start-page: 241 year: 2015 ident: B46 article-title: Cortical thickness gradients in structural hierarchies. publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.036 |
SSID | ssj0062651 |
Score | 2.3900836 |
Snippet | Neurite orientation dispersion and density imaging (NODDI) is a diffusion model specifically designed for brain magnetic resonance imaging. Despite recent... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 616132 |
SubjectTerms | Adolescents Age brain development Brain research Child development Children Datasets Developmental stages diffusion MRI diffusion tensor imaging Image processing Magnetic resonance imaging neurite density Neuroimaging Neuroscience NODDI pediatric Pediatrics Registration Regression analysis Substantia alba Substantia grisea |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQUD4CLTIS4oAUuo4dJ-a2RV0VJOBCpd4sx_aoK7EOWnYP_fedcbLRLkJw4Zo4luMZe97YM28YeyPARB-hKoWOnhyUpnSNE6WhWtvSNV3MWfxfvurLK_X5ur7eK_VFMWEDPfAwcWchBFOFGXag0diDa6GdRQFegVJBQqDdF23ezpka9mBE6bUY7jDRBTNnkG62lHZeifcaIY6sDqxQJuv_E8L8PVByz_IsHrIHI2Tk82Goj9i9mB6z43lCd3l1y9_yHMSZT8ePWX9OJR_4XigQX6z7Fce9DIWd-Kbn8x2Hk48f-MVE9s27W05MHQhB-bf1ckxJwq6WxCVOZ2rcpYA9J4ri4J9WubzRE3a1uPj-8bIcayqUXhm5KZ03bZRdAC_bqHUrtYxk5EVwYRaNrnG9Vh3ICKCdhk45Z0DERlFR4tCCfMqOUp_ic8aDQldEQg0StMINt3MQpdIo7uhNkHXBZrs5tn4kHKe6Fz8sOh4kFpvFYkksdhBLwd5Nn_wc2Db-1vicBDc1JKLs_ADVx47qY_-lPgU72Yndjqv3l0VYSBm2CFUL9np6jeuOLlNciv02t0HHpKmNLtizQUumkUjZGIJiBWsO9OdgqIdv0vImc3u3RIpWixf_499esvs0XRQxJ-oTdrRZb-MpQqhN9yqvljvytx7B priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA-lvvgiav3YWiWC-CBsvVyy2Y0gcpUeVai-eNC3JbvJ2INeVtc78P57Z7If9OTo6-aDkJnJ_GYz-Q1jbwQYX3uYpkL7mgKUPLW5FamhWtvS5pWPr_gvv-mLhfp6lV0dsKG8Vb-Bf_aGdlRPatHenP79vf2EBv-RIk70t-8hXG_oUflUnGoEMBJP5HvomHKy00s1XiogdM9Ed7G5f9iOa4oM_vtg5__Zk7fc0fwhe9DjSD7rBP-IHfjwmB3NAsbQqy1_y2NmZ_xlfsSaM6oDwW_lB_F526w4HnCoAYGvGz4biJ1q_4GfjwzgvNpyou9AXMq_t8v-nRJOtSSCcfrRxm1wOHOg1A7-ZRVrHj1hi_n5j88XaV9oIa2VkevU1qbwsnJQy8JrXUgtPXl-4aybeKMzNOJpBdIDaKuhUtYaED5XVKnYFSCfssPQBP-ccacwPpGQgQSt8BSuLHipNOqAr42TWcImwx6Xdc9CTsUwbkqMRkgsZRRLSWIpO7Ek7N045FdHwXFX5zMS3NiR2LPjh6b9WfbGWDrnzNRNUCk1AkiwBRQTL6BWoJST4BJ2Moi9HDSyRKxIz24Rvybs9diMxkg3LDb4ZhP7YLSSZ0Yn7FmnJeNKpMwN4bOE5Tv6s7PU3ZawvI6E3wUxpWXi-O5lvWD3aSMoQU5kJ-xw3W78S0RM6-pVtIN_Ry0YcA priority: 102 providerName: Scholars Portal |
Title | Brain Development From Newborn to Adolescence: Evaluation by Neurite Orientation Dispersion and Density Imaging |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33790750 https://www.proquest.com/docview/2501347163 https://www.proquest.com/docview/2507727596 https://pubmed.ncbi.nlm.nih.gov/PMC8005551 https://doaj.org/article/ddd92d0a7a6545fa8f80e1fc4f44d3fd |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkESmUkxAEpdB07TswF7aJdClILQlTaW-T4QVdinbLdPfTfM-N4QxehXnJInMjx5xnPjMffEPKaeeWM80XOpDPooFS5rjTLFdba5rpqXTzFf3omT87Fl3k5TwG3q5RWudWJUVHbzmCM_BiWajz1CObDh8vfOVaNwt3VVELjLtkHFVyD87U_mZ59-77VxWCtl6zfywRXTB37cLHB4-cFeyfB1OHFzmoUSfv_Z2n-mzB5YwWaPSD3k-lIxz3WD8kdFx6Rg3EAt3l5Td_QmMwZo-QHpJtg6Qd6IyWIzlbdkoJOA9ADXXd0vOVyMu49nQ6k37S9psjYAb9Nv64W6WgSfGqBnOIYW6M6WPhywGwO-nkZyxw9Juez6Y-PJ3mqrZAbofg610bVjrfWG147KWsuucPFnlltR07JEuS2aD133kstfSu0Vp65SmBxYlt7_oTshS64Z4RaAS4J96XnXgpQvK32jgsJsDujLC8zMtqOcWMS8TjWv_jVgAOCsDQRlgZhaXpYMvJ2eOWyZ924rfEEgRsaImF2vNGtfjZJ_hprrSrsCOahBJvR69rXI8e8EV4Iy73NyOEW9iZJ8VXzd85l5NXwGOQPN1V0cN0mtgEHpSqVzMjTfpYMPeG8UmiSZaTamT87Xd19EhYXkeO7RnK0kj2_vVsvyD0cCMyJY-Uh2VuvNu4lGEnr9ihJwlEMMsD105zB9VTUfwDsZRiw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a3QO8IGBcAgOMBDwghTWx48RICLXQqmVbQWiT9pY5sc0q0WR0rVD_FL-Rc3IpK0J722vsWJbP5-Pz2ecC8DJwyubWhX4gbU4EJfZ1rANfUa1truPMVlH8hxM5OhafT6KTLfjdxsKQW2WrEytFbcqc7sj38KimqEc0Hz6c__SpahS9rrYlNGpY7NvVL6RsF-_Hn1C-r8JwODj6OPKbqgJ-LhRf-DpXieWZcTlPrJQJl9zSMRcYbbpWyQgRG2aOW-ekli4TWisX2FhQWV6TOI7j3oBtwZHKdGC7P5h8_dbqfmQHUVC_nSL1U3uuOFtSuHsYvJVoWvFw4_SrigT8z7L910Hz0ok3vAO3G1OV9Wps3YUtW9yDnV6BNH22Yq9Z5Txa3crvQNmnUhPskgsSG87LGUMdiiAr2KJkvTZ3VG7fscE6yTjLVowyhOAysy_zaRMKhUNNKYc53eUxXRgcuSDvETaeVWWV7sPxtaz6A-gUZWEfATMCKRB3keNOClT0mXaWC4kws7kyPPKg265xmjeJzqnexo8UCQ-JJa3EkpJY0losHrxZ_3JeZ_m4qnOfBLfuSAm6qw_l_Hva7PfUGKNC00XcS7RRnU5c0rWBy4UTwnBnPNhtxZ42WuMi_YtxD16sm3G_0yOOLmy5rPogIYojJT14WKNkPRPOY0UmoAfxBn42prrZUkzPqpziCSVji4LHV0_rOdwcHR0epAfjyf4TuEWLQv54QbQLncV8aZ-igbbInjW7gsHpdW_EP2UgU_k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IGB8ZAwwEvCAFJrEiRMjIdSyViuDMiEm7S04sc0qrcnoWqH-a_x13OWLFaG97TV2LMv3bd_dD-CFb6XJjQ1cX5icApTYVbHyXUlY21zFmamq-D9PxcFx-PEkOtmC320tDKVVtjqxUtS6zOmOvI-mmqoe0X3o2yYt4mh__P78p0sIUvTS2sJp1CxyaNa_MHy7eDfZR1q_DILx6NuHA7dBGHDzUPKlq3KZGJ5pm_PECJFwwQ2ZPF8r7RkpIuTeILPcWCuUsFmolLS-iUOC6NWJ5bjuDdiOMSryerA9HE2PvrZ2ACOFyK_fUTEMlH1bnK6o9D3w3wh0s3iwYQkrwID_ebn_Jmtesn7jO3C7cVvZoOazu7BlinuwMygwZJ-v2StWJZJWN_Q7UA4JdoJdSkdi40U5Z6hPkeEKtizZoO0jlZu3bNQ1HGfZmlG3EDxm9mUxa8qicKkZ9TOnez2mCo0rF5RJwibzCmLpPhxfy6k_gF5RFuYRMB1iOMRtZLkVISr9TFnDQ4EsZ3KpeeSA155xmjdNzwl74yzF4IfIklZkSYksaU0WB153v5zXHT-umjwkwnUTqVl39aFc_Egb2U-11jLQHsqAQH_VqsQmnvFtHtow1NxqB_ZasqeNBrlI__K7A8-7YZR9etBRhSlX1RwMjuJICgce1lzS7YTzWJI76EC8wT8bW90cKWanVX_xhBqzRf7u1dt6BjdRANNPk-nhY7hFZ0KpeX60B73lYmWeoK-2zJ42QsHg-3XL4R_lM1gu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Development+From+Newborn+to+Adolescence%3A+Evaluation+by+Neurite+Orientation+Dispersion+and+Density+Imaging&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Zhao%2C+Xueying&rft.au=Shi%2C+Jingjing&rft.au=Dai%2C+Fei&rft.au=Wei%2C+Lei&rft.date=2021-03-15&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5161&rft_id=info:doi/10.3389%2Ffnhum.2021.616132&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |