Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in Streptomyces spp
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently int...
Saved in:
Published in | Journal of Bacteriology Vol. 195; no. 21; pp. 4924 - 4935 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. |
---|---|
AbstractList | Article Usage Stats
Services
JB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
JB
About
JB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0021-9193
Online ISSN:
1098-5530
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JB
.asm.org, visit:
JB
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, phi Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage phi Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ...Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ...Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. (ProQuest: ... denotes formulae/symbols omitted.) The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. |
Author | Buttner, Mark J Smith, Margaret C. M Dedrick, Rebekah Russell, Daniel Mitchell, Kaitlin Jacobs-Sera, Deborah Herron, Paul Gregory, Matthew Hendrix, Roger W Bell, Emma Bibb, Maureen J Hatfull, Graham F Ko, Ching-Chung Pethick, Florence |
Author_xml | – sequence: 1 fullname: Smith, Margaret C. M – sequence: 2 fullname: Hendrix, Roger W – sequence: 3 fullname: Dedrick, Rebekah – sequence: 4 fullname: Mitchell, Kaitlin – sequence: 5 fullname: Ko, Ching-Chung – sequence: 6 fullname: Russell, Daniel – sequence: 7 fullname: Bell, Emma – sequence: 8 fullname: Gregory, Matthew – sequence: 9 fullname: Bibb, Maureen J – sequence: 10 fullname: Pethick, Florence – sequence: 11 fullname: Jacobs-Sera, Deborah – sequence: 12 fullname: Herron, Paul – sequence: 13 fullname: Buttner, Mark J – sequence: 14 fullname: Hatfull, Graham F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23995638$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1v1DAQxS1URLeFE3ew4IKEUvyRxPYFaVuVQlUJROnZchJ741ViB9vZqv89TrdUwImTLc9vRvPe8xE4cN5pAF5idIIx4R8uT08QqjEvMH0CVhgJXlQVRQdghRDBhcCCHoKjGLcI4bKsyDNwSKgQVU35CpjznR_mZL1T4Q5-14Na7rG3U4Rq9G4D122yzk-92uj85Dqo4Lc5ZWyn4bpTU7rvgMYHeBH8beqhdfA6BT0lP961uSlO03Pw1Kgh6hcP5zG4-XT-4-xzcfX14svZ-qpoS0FToWrBBKGsaWpF2k6bpuK00abrRNPWy841bkypDKuV6EinVFVyYwxrCWNVg-gx-LifO83NqLtWuxTUIKdgx6xPemXl3xVne7nxO0k5YiUTecC7hwHB_5x1THK0sdXDoJz2c5TZQU5wtrf8H5SWBBNGMvr2H3Tr5-CyEwtFOOYlo5l6v6fa4GMM2jzujZFcopaXp_I-aokX-tWfUh_Z39lm4M0e6O2mv7VBSxVHuW0kFpUkWJaCLCJe7yGjvFSbYKO8uSYIV8tnqWvE6C9fxrwS |
CODEN | JOBAAY |
CitedBy_id | crossref_primary_10_1128_microbiolspec_MGM2_0032_2013 crossref_primary_10_1016_j_gene_2015_02_053 crossref_primary_10_17537_2023_18_323 crossref_primary_10_1016_j_jmb_2020_05_010 crossref_primary_10_1038_ncomms5459 crossref_primary_10_1128_mBio_00971_19 crossref_primary_10_1093_nar_gkx1233 crossref_primary_10_1002_jobm_201500658 crossref_primary_10_1128_genomeA_01019_16 crossref_primary_10_1128_genomeA_01589_15 crossref_primary_10_1039_C9NP00025A crossref_primary_10_1128_MRA_00993_18 crossref_primary_10_1080_15476286_2023_2270812 crossref_primary_10_1128_genomeA_00502_17 crossref_primary_10_1146_annurev_virology_122019_070009 crossref_primary_10_1128_genomeA_00875_16 crossref_primary_10_1128_JVI_03363_13 crossref_primary_10_1016_j_virol_2014_10_016 crossref_primary_10_1186_1472_6750_14_51 crossref_primary_10_3390_v12101065 crossref_primary_10_1093_nar_gkw530 crossref_primary_10_1038_nrg3963 crossref_primary_10_1038_s41598_023_36938_z crossref_primary_10_1371_journal_pone_0180517 crossref_primary_10_1128_genomeA_01146_17 crossref_primary_10_1186_s12864_016_3018_2 crossref_primary_10_1146_annurev_ecolsys_112414_054126 crossref_primary_10_1016_j_synbio_2022_05_006 crossref_primary_10_1128_genomeA_01480_17 |
Cites_doi | 10.1128/jb.152.3.1288-1291.1982 10.1073/pnas.96.5.2192 10.1099/mic.0.030486-0 10.1186/1471-2164-8-261 10.1371/journal.pone.0016329 10.1111/j.1365-2958.2011.07696.x 10.1046/j.1365-2958.2001.02510.x 10.1128/jb.177.16.4681-4689.1995 10.1016/0378-1119(91)90022-4 10.1093/nar/22.5.821 10.1093/nar/gki487 10.1093/nar/27.23.4636 10.1101/gr.8.3.195 10.1128/JB.00123-10 10.1186/1743-422X-7-356 10.1073/pnas.101589398 10.1099/00221287-115-2-431 10.1111/j.1365-2958.1991.tb01992.x 10.1016/j.virol.2004.10.028 10.1093/nar/gkl732 10.1016/j.virol.2012.09.026 10.1016/0378-1119(85)90101-5 10.1126/science.2830666 10.1111/j.1365-2958.1995.tb02398.x 10.1007/BF02932089 10.1146/annurev.genet.42.110807.091545 10.1128/jb.175.7.1995-2005.1993 10.1093/bioinformatics/btm039 10.1093/nar/23.3.370 10.1016/S0022-2836(05)80360-2 10.1111/j.1365-2958.2011.07543.x 10.1128/JVI.02681-12 10.1093/nar/gkh152 10.1007/s10295-011-1069-6 10.1128/AEM.01952-10 10.1126/science.1127981 10.1016/j.virol.2010.03.044 10.1006/jmbi.2000.3729 10.1093/nar/gki366 10.1099/00221287-110-2-479 10.1093/emboj/16.19.5914 10.1016/0378-1119(92)90627-2 10.1073/pnas.88.6.2461 10.1099/00221287-144-12-3351 10.1093/nar/26.10.2457 10.1371/journal.pgen.0020092 10.1128/JB.185.17.5320-5323.2003 10.1128/jb.176.7.2096-2099.1994 10.1128/JB.187.3.1091-1104.2005 10.1111/j.1365-2958.1993.tb01256.x 10.1038/emboj.2008.170 10.1186/1471-2105-12-395 10.1007/BF00339591 10.1006/jmbi.2000.3731 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology Nov 2013 Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
Copyright_xml | – notice: Copyright American Society for Microbiology Nov 2013 – notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1128/JB.00618-13 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5530 1067-8832 |
EndPage | 4935 |
ExternalDocumentID | 3102402771 10_1128_JB_00618_13 23995638 jb_195_21_4924 US201500146607 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/J/00000015 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H001212/1 – fundername: NIGMS NIH HHS grantid: GM093901 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H05447/1 – fundername: NIGMS NIH HHS grantid: R24 GM093901 – fundername: NIGMS NIH HHS grantid: R01 GM047795 – fundername: NIGMS NIH HHS grantid: GM47795 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 186 18M 1VV 29J 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 79B 85S 8WZ 9M8 A6W ABPPZ ABPTK ABTAH ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AEQTP AFDAS AFFDN AFFNX AFMIJ AFRAH AGCDD AI. AIDAL AJUXI ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FBQ FRP GX1 HYE HZ~ IH2 KQ8 L7B MVM NHB O9- OHT OK1 P-S P2P PQQKQ QZG RHF RHI RNS RPM RSF RXW TAE TR2 UCJ UHB UKR UPT VH1 VQA W8F WH7 WHG WOQ X7M XFK Y6R YQT YR2 YZZ ZA5 ZCA ZCG ZGI ZXP ZY4 ~02 ~KM AGVNZ CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION P-O 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c493t-a6979237bb6a2cdefb583befdd9bc6995661bf4af76a9d2daa548fff7c2775b03 |
IEDL.DBID | RPM |
ISSN | 0021-9193 |
IngestDate | Tue Sep 17 21:07:05 EDT 2024 Fri Oct 25 07:13:28 EDT 2024 Sat Oct 26 06:07:27 EDT 2024 Thu Oct 10 18:49:45 EDT 2024 Fri Dec 06 05:43:00 EST 2024 Sat Nov 02 11:55:29 EDT 2024 Wed May 18 15:26:54 EDT 2016 Wed Dec 27 19:01:06 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-a6979237bb6a2cdefb583befdd9bc6995661bf4af76a9d2daa548fff7c2775b03 |
Notes | http://dx.doi.org/10.1128/JB.00618-13 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Kaitlin Mitchell, Department of Biology, University of Wisconsin, Madison, Wisconsin, USA; Margaret C. M. Smith, Department of Biology, University of York, York, United Kingdom. |
OpenAccessLink | https://jb.asm.org/content/jb/195/21/4924.full.pdf |
PMID | 23995638 |
PQID | 1442818473 |
PQPubID | 40724 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1448215304 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807479 proquest_journals_1442818473 highwire_asm_jb_195_21_4924 fao_agris_US201500146607 proquest_miscellaneous_1443421272 pubmed_primary_23995638 crossref_primary_10_1128_JB_00618_13 |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of Bacteriology |
PublicationTitleAlternate | J Bacteriol |
PublicationYear | 2013 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Rao VB (e_1_3_3_58_2) 2008; 42 Sampson T (e_1_3_3_19_2) 2009; 155 Ravin V (e_1_3_3_33_2) 2000; 299 Stuttard C (e_1_3_3_30_2) 1989 Sinclair RB (e_1_3_3_44_2) 1988; 213 Wang S (e_1_3_3_11_2) 2010; 403 e_1_3_3_37_2 Monson R (e_1_3_3_55_2) 2012; 86 Kieser T (e_1_3_3_4_2) 2000 e_1_3_3_35_2 e_1_3_3_56_2 Morino T (e_1_3_3_29_2) 1983; 47 Fouts DE (e_1_3_3_20_2) 2006; 34 Bierman M (e_1_3_3_6_2) 1992; 116 Baltz RH (e_1_3_3_5_2) 2012; 39 Pettersson BM (e_1_3_3_50_2) 2011; 79 Van Dessel W (e_1_3_3_10_2) 2005; 331 e_1_3_3_27_2 Lanning S (e_1_3_3_18_2) 1982; 128 e_1_3_3_23_2 e_1_3_3_48_2 Bedford DJ (e_1_3_3_60_2) 1995; 17 e_1_3_3_25_2 e_1_3_3_3_2 Smith MCM (e_1_3_3_43_2) 1991; 5 Huang WM (e_1_3_3_46_2) 1988; 239 Kuhstoss S (e_1_3_3_7_2) 1991; 97 Cowlishaw DA (e_1_3_3_53_2) 2001; 41 Farkasovska J (e_1_3_3_12_2) 2007; 52 e_1_3_3_17_2 Ingham CJ (e_1_3_3_40_2) 1993; 9 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_34_2 Chater KF (e_1_3_3_14_2) 1979; 115 e_1_3_3_32_2 Ingham CJ (e_1_3_3_38_2) 1994; 22 Foor F (e_1_3_3_15_2) 1985; 39 Wilson SE (e_1_3_3_39_2) 1995; 16 Hatfull GF (e_1_3_3_31_2) 2006; 2 Van Mellaert L (e_1_3_3_21_2) 1998; 144 Khaleel T (e_1_3_3_52_2) 2011; 80 Wilson SE (e_1_3_3_42_2) 1998; 26 Wills NM (e_1_3_3_47_2) 2008; 27 Ingham CJ (e_1_3_3_41_2) 1995; 23 e_1_3_3_8_2 e_1_3_3_28_2 Leskiw BK (e_1_3_3_51_2) 1991; 88 e_1_3_3_49_2 Lomovskaya N (e_1_3_3_9_2) 1970; 6 Stuttard C (e_1_3_3_16_2) 1979; 110 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_22_2 Burke J (e_1_3_3_54_2) 2001; 98 Lander GC (e_1_3_3_57_2) 2006; 312 |
References_xml | – ident: e_1_3_3_32_2 doi: 10.1128/jb.152.3.1288-1291.1982 – ident: e_1_3_3_2_2 doi: 10.1073/pnas.96.5.2192 – volume: 6 start-page: 135 year: 1970 ident: e_1_3_3_9_2 article-title: Isolation and characterisation of Streptomyces coelicolor actinophage publication-title: Genetika contributor: fullname: Lomovskaya N – volume: 155 start-page: 2962 issue: 9 year: 2009 ident: e_1_3_3_19_2 article-title: Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements publication-title: Microbiology doi: 10.1099/mic.0.030486-0 contributor: fullname: Sampson T – ident: e_1_3_3_48_2 doi: 10.1186/1471-2164-8-261 – ident: e_1_3_3_37_2 doi: 10.1371/journal.pone.0016329 – volume: 80 start-page: 1450 year: 2011 ident: e_1_3_3_52_2 article-title: A phage protein that binds phiC31 integrase to switch its directionality publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07696.x contributor: fullname: Khaleel T – volume: 41 start-page: 601 year: 2001 ident: e_1_3_3_53_2 article-title: Glycosylation of a Streptomyces coelicolor A3(2) cell envelope protein is required for infection by bacteriophage phi C31 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2001.02510.x contributor: fullname: Cowlishaw DA – volume: 17 start-page: 4681 year: 1995 ident: e_1_3_3_60_2 article-title: Two genes involved in the phase-variable phiC31 resistance mechanism of Streptomyces coelicolor A(3)2 publication-title: J. Bacteriol. doi: 10.1128/jb.177.16.4681-4689.1995 contributor: fullname: Bedford DJ – volume: 97 start-page: 143 issue: 1 year: 1991 ident: e_1_3_3_7_2 article-title: Plasmid cloning vectors that integrate site-specifically in Streptomyces spp publication-title: Gene doi: 10.1016/0378-1119(91)90022-4 contributor: fullname: Kuhstoss S – volume: 22 start-page: 821 year: 1994 ident: e_1_3_3_38_2 article-title: An operator associated with autoregulation of the repressor gene in actinophage phi-c31 is found in highly conserved regions in the phage genome publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.5.821 contributor: fullname: Ingham CJ – ident: e_1_3_3_23_2 doi: 10.1093/nar/gki487 – ident: e_1_3_3_22_2 doi: 10.1093/nar/27.23.4636 – ident: e_1_3_3_59_2 doi: 10.1101/gr.8.3.195 – ident: e_1_3_3_13_2 doi: 10.1128/JB.00123-10 – ident: e_1_3_3_45_2 doi: 10.1186/1743-422X-7-356 – volume: 98 start-page: 6289 year: 2001 ident: e_1_3_3_54_2 article-title: Generalized transduction in Streptomyces coelicolor publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.101589398 contributor: fullname: Burke J – start-page: 157 volume-title: Genetics and molecular biology of industrial microorganisms year: 1989 ident: e_1_3_3_30_2 contributor: fullname: Stuttard C – volume: 115 start-page: 431 year: 1979 ident: e_1_3_3_14_2 article-title: A new, wide host-range, temperate bacteriophage (R4) of Streptomyces and its interaction with some restriction-modification systems publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-115-2-431 contributor: fullname: Chater KF – volume: 5 start-page: 2833 year: 1991 ident: e_1_3_3_43_2 article-title: Three in-frame N-terminally different proteins are produced from the repressor locus of the Streptomyces bacteriophage phi C31 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1991.tb01992.x contributor: fullname: Smith MCM – volume: 331 start-page: 325 year: 2005 ident: e_1_3_3_10_2 article-title: Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB publication-title: Virology doi: 10.1016/j.virol.2004.10.028 contributor: fullname: Van Dessel W – volume: 34 start-page: 5839 year: 2006 ident: e_1_3_3_20_2 article-title: Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl732 contributor: fullname: Fouts DE – ident: e_1_3_3_35_2 doi: 10.1016/j.virol.2012.09.026 – volume: 39 start-page: 11 year: 1985 ident: e_1_3_3_15_2 article-title: Isolation and characterization of the Streptomyces cattleya temperate phage TG1 publication-title: Gene doi: 10.1016/0378-1119(85)90101-5 contributor: fullname: Foor F – volume: 239 start-page: 1005 year: 1988 ident: e_1_3_3_46_2 article-title: A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60 publication-title: Science doi: 10.1126/science.2830666 contributor: fullname: Huang WM – volume: 16 start-page: 131 year: 1995 ident: e_1_3_3_39_2 article-title: Control of lytic development in the Streptomyces temperate phage phi-c31 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1995.tb02398.x contributor: fullname: Wilson SE – volume: 52 start-page: 347 year: 2007 ident: e_1_3_3_12_2 article-title: Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6 publication-title: Folia Microbiol. (Praha) doi: 10.1007/BF02932089 contributor: fullname: Farkasovska J – volume: 42 start-page: 647 year: 2008 ident: e_1_3_3_58_2 article-title: The bacteriophage DNA packaging motor publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.42.110807.091545 contributor: fullname: Rao VB – ident: e_1_3_3_49_2 doi: 10.1128/jb.175.7.1995-2005.1993 – ident: e_1_3_3_24_2 doi: 10.1093/bioinformatics/btm039 – volume: 23 start-page: 370 year: 1995 ident: e_1_3_3_41_2 article-title: Rho-independent terminators without 3′ poly-U tails from the early region of actinophage phi-c31 publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.3.370 contributor: fullname: Ingham CJ – ident: e_1_3_3_25_2 doi: 10.1016/S0022-2836(05)80360-2 – volume: 79 start-page: 1602 year: 2011 ident: e_1_3_3_50_2 article-title: tRNA accumulation and suppression of the bldA phenotype during development in Streptomyces coelicolor publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07543.x contributor: fullname: Pettersson BM – volume: 86 start-page: 13860 year: 2012 ident: e_1_3_3_55_2 article-title: Genome sequence of a new Streptomyces coelicolor generalized transducing bacteriophage, PhiCAM publication-title: J. Virol. doi: 10.1128/JVI.02681-12 contributor: fullname: Monson R – ident: e_1_3_3_27_2 doi: 10.1093/nar/gkh152 – volume: 39 start-page: 661 year: 2012 ident: e_1_3_3_5_2 article-title: Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms) publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-011-1069-6 contributor: fullname: Baltz RH – ident: e_1_3_3_34_2 doi: 10.1128/AEM.01952-10 – volume: 312 start-page: 1791 year: 2006 ident: e_1_3_3_57_2 article-title: The structure of an infectious P22 virion shows the signal for headful DNA packaging publication-title: Science doi: 10.1126/science.1127981 contributor: fullname: Lander GC – volume: 403 start-page: 78 year: 2010 ident: e_1_3_3_11_2 article-title: Complete genomic sequence analysis of the temperate bacteriophage phiSASD1 of Streptomyces avermitilis publication-title: Virology doi: 10.1016/j.virol.2010.03.044 contributor: fullname: Wang S – ident: e_1_3_3_3_2 doi: 10.1006/jmbi.2000.3729 – volume-title: Practical Streptomyces genetics year: 2000 ident: e_1_3_3_4_2 contributor: fullname: Kieser T – ident: e_1_3_3_28_2 doi: 10.1093/nar/gki366 – volume: 110 start-page: 479 year: 1979 ident: e_1_3_3_16_2 article-title: Transduction of auxotrophic markers in a chloramphenicol-producing strain of Streptomyces publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-110-2-479 contributor: fullname: Stuttard C – ident: e_1_3_3_36_2 doi: 10.1093/emboj/16.19.5914 – volume: 116 start-page: 43 year: 1992 ident: e_1_3_3_6_2 article-title: Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp publication-title: Gene doi: 10.1016/0378-1119(92)90627-2 contributor: fullname: Bierman M – volume: 88 start-page: 2461 year: 1991 ident: e_1_3_3_51_2 article-title: TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.88.6.2461 contributor: fullname: Leskiw BK – volume: 144 start-page: 3351 issue: 12 year: 1998 ident: e_1_3_3_21_2 article-title: Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector publication-title: Microbiology doi: 10.1099/00221287-144-12-3351 contributor: fullname: Van Mellaert L – volume: 26 start-page: 2457 year: 1998 ident: e_1_3_3_42_2 article-title: Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31 publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.10.2457 contributor: fullname: Wilson SE – volume: 2 start-page: e92 issue: 6 year: 2006 ident: e_1_3_3_31_2 article-title: Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020092 contributor: fullname: Hatfull GF – volume: 128 start-page: 2063 year: 1982 ident: e_1_3_3_18_2 article-title: Methods for the direct isolation and enumeration of actinophages in soil publication-title: J. Gen. Microbiol. contributor: fullname: Lanning S – ident: e_1_3_3_8_2 doi: 10.1128/JB.185.17.5320-5323.2003 – ident: e_1_3_3_17_2 doi: 10.1128/jb.176.7.2096-2099.1994 – ident: e_1_3_3_56_2 doi: 10.1128/JB.187.3.1091-1104.2005 – volume: 9 start-page: 1267 year: 1993 ident: e_1_3_3_40_2 article-title: Mutiple novel promoters from the early region in the Streptomyces temperate phage phi-c31 are activated during lytic development publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01256.x contributor: fullname: Ingham CJ – volume: 27 start-page: 2533 year: 2008 ident: e_1_3_3_47_2 article-title: Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA publication-title: EMBO J. doi: 10.1038/emboj.2008.170 contributor: fullname: Wills NM – volume: 47 start-page: 1873 year: 1983 ident: e_1_3_3_29_2 article-title: Cleavage analysis of actinophage R4 and its deletion mutants publication-title: Agric. Biol. Chem. contributor: fullname: Morino T – ident: e_1_3_3_26_2 doi: 10.1186/1471-2105-12-395 – volume: 213 start-page: 269 issue: 2 year: 1988 ident: e_1_3_3_44_2 article-title: The repressor gene (c) of the Streptomyces temperate phage phi c31: nucleotide sequence, analysis and functional cloning publication-title: Mol. Gen. Genet. doi: 10.1007/BF00339591 contributor: fullname: Sinclair RB – volume: 299 start-page: 53 year: 2000 ident: e_1_3_3_33_2 article-title: Genomic sequence and analysis of the atypical temperate bacteriophage N15 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3731 contributor: fullname: Ravin V |
SSID | ssj0014452 |
Score | 2.3231094 |
Snippet | The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated... Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley... The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, Hau3, and SV1 were isolated... The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated... The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ...Hau3, and SV1 were isolated... The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, phi Hau3, and SV1 were isolated... |
SourceID | pubmedcentral proquest crossref pubmed highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4924 |
SubjectTerms | Adaptation, Physiological Amino Acid Sequence ancestry Bacteria Bacteriology bacteriophages Bacteriophages - genetics Bacteriophages - physiology Base Sequence Biological Evolution Gene Expression Regulation, Viral - physiology genes Genome, Viral Genomes Molecular Sequence Data nucleotide sequences Prophages - genetics Prophages - metabolism Proteins sequence homology Species Specificity Streptomyces Streptomyces - classification Streptomyces - virology Streptomyces venezuelae Streptomycetes translation (genetics) Viral Proteins - genetics Viral Proteins - metabolism Yeast |
Title | Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in Streptomyces spp |
URI | http://jb.asm.org/content/195/21/4924.abstract https://www.ncbi.nlm.nih.gov/pubmed/23995638 https://www.proquest.com/docview/1442818473 https://search.proquest.com/docview/1443421272 https://search.proquest.com/docview/1448215304 https://pubmed.ncbi.nlm.nih.gov/PMC3807479 |
Volume | 195 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-awmAvY91XvbZDg766sS3Zih_T0q4EOgpboG9CH9aS0cimcQb573eS7ZCOsYe92vKX7nS6n-_udwDnprBMaqljlSNcZWmSxCVlNMa9wMhE5VRW_tfA3dfids5mD_nDAeRDLUxI2tdqeeEeVxduuQi5lc1Kj4c8sfH93ZUnSWe8HI9ghNvvANH70AFjeU8RnuJKLmlflId2eDy79GlcKcIm3z6nq-r0hSl7O9LIynqPK_hvfuef6ZN7-9HNa3jVO5Jk2r3wERxU7g286FpLbt-Cvf7VK5V82pJdytti2axJaDBEpmjpXN0s0KDgIWeIJPebNvCAk6mRTRejJ-jUki-I1dsFWTrig9hNW6-2aF7Iumnewfzm-vvVbdz3VIg1K2kby6L0jIFcqUJm2lRW5ROqKmtMqXThJ6RIFYrP8kKWJjNSIqSx1nKdcZ6rhL6HQ1e76hiIlpZKXSrKNWOIIxU6a0zzRKGPgH6aiuB8mFfRdNQZIkCObCJmlyJIQqQ0gmOccyF_oFET82-Z_wXjGW2KhEdwMghCyPVK_FQiLXORpYIhbIzgdJCN6BfeGpEM8_xWjON9P-9O45LxcRDpqnoTxlAfCOfZP8dM0BuiCT7mQyfu3UcMihMBf6YIuwGesvv5GdTkQN3da-7H_77yBF5mviFHqIY8hcP2aVOdoVvUqk9hGfwGUgALTA |
link.rule.ids | 230,314,727,780,784,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwheEN8LG2CkvWZNYieuH7tpo5R1msQq7c2ynZgW0SRaU6T-95ydpOoQ4oHXxPnync_3y939DuAkzyxTRplQpwhXWRxFoaCMhrgX5CrSKVWF-zUwvc7GMza5S-_2IO1rYXzSvtGL0_Ln8rRczH1uZb00gz5PbHAzPXck6YyLwT48SikXcQ_Su-ABY2lHEh7jWha0K8tDSzyYnLlErhiBk2ug09Z1utKUnT1p36pqhy34b57nnwmUOzvS5XN41rmSZNS-8gvYK8qX8LhtLrl5BfbiV6dW6n5Dtklv80W9Ir7FEBmhrSureo4mBQ-VOVHkZt14JnAyylXdRukJurXkM6L1Zk4WJXFh7Lqplhs0MGRV169hdnlxez4Ou64KoWGCNqHKhOMM5FpnKjF5YXU6pLqweS60ydyEZLFGAVqeKZEnuVIIaqy13CScpzqib-CgrMriEIhRliojNOWGMUSSGt01Znik0UtAT00HcNLPq6xb8gzpQUcylJMz6SUhYxrAIc65VN_RrMnZt8T9hHGcNlnEAzjqBSHVail_aBmLVCaxZAgcAzjuZSO7pbdCLMMcwxXjeN9P29O4aFwkRJVFtfZjqAuF8-SfY4boD9EIH_O2Fff2I3rFCYA_UITtAEfa_fAM6rIn7-50991_X_kRnoxvp1fy6sv11yN4mrj2HL428hgOmvt18R6dpEZ_8EviN4R8DqE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcG0yZepn0TYJsn8RryYSeuHwujsG6gSlsl3ix_xGsRTSKaTup_v7OTVGVCe9hr7Hz5zuf7-c6_Q-jY5JZKLXWoMoCrNInjkBNKQlgLjIxVRmThtgaurvPLKR3fZDdbpb580r5W85PybnFSzmc-t7Je6KjPE4smV2eOJJ0yHtXGRjvoaUZAyXqg3gUQKM06ovAE5jMn3dE8sMbR-NQlcyUAnlwRnfZspzuesrUu7VhZbTEGP-Z9_p1EubUqjV6iF507iYftZ79CT4ryNXrWFphcv0H2_HenWvJ-jTeJb7N5vcS-zBAegr0rq3oGZgUulQZLPFk1ng0cD42s20g9BtcWXwBib2Z4XmIXyq6barEGI4OXdf0WTUfnP88uw66yQqgpJ00oc-54A5lSuUy1KazKBkQV1hiudO4GJE8UCNGyXHKTGikB2FhrmU4Zy1RM3qHdsiqLfYS1tERqrgjTlAKaVOCyUc1iBZ4CeGsqQMf9uIq6JdAQHnikAzE-FV4SIiEB2ocxF_IXmDYx_ZG6jRjHa5PHLECHvSCEXC7ErRIJz0SaCArgMUBHvWxEN_2WgGeoY7miDJ77edMME8dFQ2RZVCvfh7hwOEv_2WcAPhGJ4TXvW3FvfqJXnACxB4qw6eCIux-2gD57Au9Ofw_--85P6Pnky0h8_3r97RDtpa5Chz8eeYR2m_tV8QH8pEZ99DPiD2qgD7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+relationships+among+actinophages+and+a+putative+adaptation+for+growth+in+Streptomyces+spp&rft.jtitle=Journal+of+bacteriology&rft.au=Smith%2C+Margaret+C+M&rft.au=Hendrix%2C+Roger+W&rft.au=Dedrick%2C+Rebekah&rft.au=Mitchell%2C+Kaitlin&rft.date=2013-11-01&rft.eissn=1098-5530&rft.volume=195&rft.issue=21&rft.spage=4924&rft.epage=4935&rft_id=info:doi/10.1128%2FJB.00618-13&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |