Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in Streptomyces spp

The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently int...

Full description

Saved in:
Bibliographic Details
Published inJournal of Bacteriology Vol. 195; no. 21; pp. 4924 - 4935
Main Authors Smith, Margaret C. M, Hendrix, Roger W, Dedrick, Rebekah, Mitchell, Kaitlin, Ko, Ching-Chung, Russell, Daniel, Bell, Emma, Gregory, Matthew, Bibb, Maureen J, Pethick, Florence, Jacobs-Sera, Deborah, Herron, Paul, Buttner, Mark J, Hatfull, Graham F
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species.
AbstractList Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue JB About JB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0021-9193 Online ISSN: 1098-5530 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to JB .asm.org, visit: JB       
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species.
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, phi Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage phi Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species.
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species.
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ...Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ...Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species. (ProQuest: ... denotes formulae/symbols omitted.)
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage ϕHau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species.
Author Buttner, Mark J
Smith, Margaret C. M
Dedrick, Rebekah
Russell, Daniel
Mitchell, Kaitlin
Jacobs-Sera, Deborah
Herron, Paul
Gregory, Matthew
Hendrix, Roger W
Bell, Emma
Bibb, Maureen J
Hatfull, Graham F
Ko, Ching-Chung
Pethick, Florence
Author_xml – sequence: 1
  fullname: Smith, Margaret C. M
– sequence: 2
  fullname: Hendrix, Roger W
– sequence: 3
  fullname: Dedrick, Rebekah
– sequence: 4
  fullname: Mitchell, Kaitlin
– sequence: 5
  fullname: Ko, Ching-Chung
– sequence: 6
  fullname: Russell, Daniel
– sequence: 7
  fullname: Bell, Emma
– sequence: 8
  fullname: Gregory, Matthew
– sequence: 9
  fullname: Bibb, Maureen J
– sequence: 10
  fullname: Pethick, Florence
– sequence: 11
  fullname: Jacobs-Sera, Deborah
– sequence: 12
  fullname: Herron, Paul
– sequence: 13
  fullname: Buttner, Mark J
– sequence: 14
  fullname: Hatfull, Graham F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23995638$$D View this record in MEDLINE/PubMed
BookMark eNqNks1v1DAQxS1URLeFE3ew4IKEUvyRxPYFaVuVQlUJROnZchJ741ViB9vZqv89TrdUwImTLc9vRvPe8xE4cN5pAF5idIIx4R8uT08QqjEvMH0CVhgJXlQVRQdghRDBhcCCHoKjGLcI4bKsyDNwSKgQVU35CpjznR_mZL1T4Q5-14Na7rG3U4Rq9G4D122yzk-92uj85Dqo4Lc5ZWyn4bpTU7rvgMYHeBH8beqhdfA6BT0lP961uSlO03Pw1Kgh6hcP5zG4-XT-4-xzcfX14svZ-qpoS0FToWrBBKGsaWpF2k6bpuK00abrRNPWy841bkypDKuV6EinVFVyYwxrCWNVg-gx-LifO83NqLtWuxTUIKdgx6xPemXl3xVne7nxO0k5YiUTecC7hwHB_5x1THK0sdXDoJz2c5TZQU5wtrf8H5SWBBNGMvr2H3Tr5-CyEwtFOOYlo5l6v6fa4GMM2jzujZFcopaXp_I-aokX-tWfUh_Z39lm4M0e6O2mv7VBSxVHuW0kFpUkWJaCLCJe7yGjvFSbYKO8uSYIV8tnqWvE6C9fxrwS
CODEN JOBAAY
CitedBy_id crossref_primary_10_1128_microbiolspec_MGM2_0032_2013
crossref_primary_10_1016_j_gene_2015_02_053
crossref_primary_10_17537_2023_18_323
crossref_primary_10_1016_j_jmb_2020_05_010
crossref_primary_10_1038_ncomms5459
crossref_primary_10_1128_mBio_00971_19
crossref_primary_10_1093_nar_gkx1233
crossref_primary_10_1002_jobm_201500658
crossref_primary_10_1128_genomeA_01019_16
crossref_primary_10_1128_genomeA_01589_15
crossref_primary_10_1039_C9NP00025A
crossref_primary_10_1128_MRA_00993_18
crossref_primary_10_1080_15476286_2023_2270812
crossref_primary_10_1128_genomeA_00502_17
crossref_primary_10_1146_annurev_virology_122019_070009
crossref_primary_10_1128_genomeA_00875_16
crossref_primary_10_1128_JVI_03363_13
crossref_primary_10_1016_j_virol_2014_10_016
crossref_primary_10_1186_1472_6750_14_51
crossref_primary_10_3390_v12101065
crossref_primary_10_1093_nar_gkw530
crossref_primary_10_1038_nrg3963
crossref_primary_10_1038_s41598_023_36938_z
crossref_primary_10_1371_journal_pone_0180517
crossref_primary_10_1128_genomeA_01146_17
crossref_primary_10_1186_s12864_016_3018_2
crossref_primary_10_1146_annurev_ecolsys_112414_054126
crossref_primary_10_1016_j_synbio_2022_05_006
crossref_primary_10_1128_genomeA_01480_17
Cites_doi 10.1128/jb.152.3.1288-1291.1982
10.1073/pnas.96.5.2192
10.1099/mic.0.030486-0
10.1186/1471-2164-8-261
10.1371/journal.pone.0016329
10.1111/j.1365-2958.2011.07696.x
10.1046/j.1365-2958.2001.02510.x
10.1128/jb.177.16.4681-4689.1995
10.1016/0378-1119(91)90022-4
10.1093/nar/22.5.821
10.1093/nar/gki487
10.1093/nar/27.23.4636
10.1101/gr.8.3.195
10.1128/JB.00123-10
10.1186/1743-422X-7-356
10.1073/pnas.101589398
10.1099/00221287-115-2-431
10.1111/j.1365-2958.1991.tb01992.x
10.1016/j.virol.2004.10.028
10.1093/nar/gkl732
10.1016/j.virol.2012.09.026
10.1016/0378-1119(85)90101-5
10.1126/science.2830666
10.1111/j.1365-2958.1995.tb02398.x
10.1007/BF02932089
10.1146/annurev.genet.42.110807.091545
10.1128/jb.175.7.1995-2005.1993
10.1093/bioinformatics/btm039
10.1093/nar/23.3.370
10.1016/S0022-2836(05)80360-2
10.1111/j.1365-2958.2011.07543.x
10.1128/JVI.02681-12
10.1093/nar/gkh152
10.1007/s10295-011-1069-6
10.1128/AEM.01952-10
10.1126/science.1127981
10.1016/j.virol.2010.03.044
10.1006/jmbi.2000.3729
10.1093/nar/gki366
10.1099/00221287-110-2-479
10.1093/emboj/16.19.5914
10.1016/0378-1119(92)90627-2
10.1073/pnas.88.6.2461
10.1099/00221287-144-12-3351
10.1093/nar/26.10.2457
10.1371/journal.pgen.0020092
10.1128/JB.185.17.5320-5323.2003
10.1128/jb.176.7.2096-2099.1994
10.1128/JB.187.3.1091-1104.2005
10.1111/j.1365-2958.1993.tb01256.x
10.1038/emboj.2008.170
10.1186/1471-2105-12-395
10.1007/BF00339591
10.1006/jmbi.2000.3731
ContentType Journal Article
Copyright Copyright American Society for Microbiology Nov 2013
Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology
Copyright_xml – notice: Copyright American Society for Microbiology Nov 2013
– notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1128/JB.00618-13
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

Bacteriology Abstracts (Microbiology B)
CrossRef
MEDLINE
Genetics Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5530
1067-8832
EndPage 4935
ExternalDocumentID 3102402771
10_1128_JB_00618_13
23995638
jb_195_21_4924
US201500146607
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/J/00000015
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H001212/1
– fundername: NIGMS NIH HHS
  grantid: GM093901
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H05447/1
– fundername: NIGMS NIH HHS
  grantid: R24 GM093901
– fundername: NIGMS NIH HHS
  grantid: R01 GM047795
– fundername: NIGMS NIH HHS
  grantid: GM47795
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
186
18M
1VV
29J
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
79B
85S
8WZ
9M8
A6W
ABPPZ
ABPTK
ABTAH
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AEQTP
AFDAS
AFFDN
AFFNX
AFMIJ
AFRAH
AGCDD
AI.
AIDAL
AJUXI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HYE
HZ~
IH2
KQ8
L7B
MVM
NHB
O9-
OHT
OK1
P-S
P2P
PQQKQ
QZG
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UCJ
UHB
UKR
UPT
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
Y6R
YQT
YR2
YZZ
ZA5
ZCA
ZCG
ZGI
ZXP
ZY4
~02
~KM
AGVNZ
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
P-O
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c493t-a6979237bb6a2cdefb583befdd9bc6995661bf4af76a9d2daa548fff7c2775b03
IEDL.DBID RPM
ISSN 0021-9193
IngestDate Tue Sep 17 21:07:05 EDT 2024
Fri Oct 25 07:13:28 EDT 2024
Sat Oct 26 06:07:27 EDT 2024
Thu Oct 10 18:49:45 EDT 2024
Fri Dec 06 05:43:00 EST 2024
Sat Nov 02 11:55:29 EDT 2024
Wed May 18 15:26:54 EDT 2016
Wed Dec 27 19:01:06 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-a6979237bb6a2cdefb583befdd9bc6995661bf4af76a9d2daa548fff7c2775b03
Notes http://dx.doi.org/10.1128/JB.00618-13
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Kaitlin Mitchell, Department of Biology, University of Wisconsin, Madison, Wisconsin, USA; Margaret C. M. Smith, Department of Biology, University of York, York, United Kingdom.
OpenAccessLink https://jb.asm.org/content/jb/195/21/4924.full.pdf
PMID 23995638
PQID 1442818473
PQPubID 40724
PageCount 12
ParticipantIDs proquest_miscellaneous_1448215304
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807479
proquest_journals_1442818473
highwire_asm_jb_195_21_4924
fao_agris_US201500146607
proquest_miscellaneous_1443421272
pubmed_primary_23995638
crossref_primary_10_1128_JB_00618_13
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of Bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2013
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Rao VB (e_1_3_3_58_2) 2008; 42
Sampson T (e_1_3_3_19_2) 2009; 155
Ravin V (e_1_3_3_33_2) 2000; 299
Stuttard C (e_1_3_3_30_2) 1989
Sinclair RB (e_1_3_3_44_2) 1988; 213
Wang S (e_1_3_3_11_2) 2010; 403
e_1_3_3_37_2
Monson R (e_1_3_3_55_2) 2012; 86
Kieser T (e_1_3_3_4_2) 2000
e_1_3_3_35_2
e_1_3_3_56_2
Morino T (e_1_3_3_29_2) 1983; 47
Fouts DE (e_1_3_3_20_2) 2006; 34
Bierman M (e_1_3_3_6_2) 1992; 116
Baltz RH (e_1_3_3_5_2) 2012; 39
Pettersson BM (e_1_3_3_50_2) 2011; 79
Van Dessel W (e_1_3_3_10_2) 2005; 331
e_1_3_3_27_2
Lanning S (e_1_3_3_18_2) 1982; 128
e_1_3_3_23_2
e_1_3_3_48_2
Bedford DJ (e_1_3_3_60_2) 1995; 17
e_1_3_3_25_2
e_1_3_3_3_2
Smith MCM (e_1_3_3_43_2) 1991; 5
Huang WM (e_1_3_3_46_2) 1988; 239
Kuhstoss S (e_1_3_3_7_2) 1991; 97
Cowlishaw DA (e_1_3_3_53_2) 2001; 41
Farkasovska J (e_1_3_3_12_2) 2007; 52
e_1_3_3_17_2
Ingham CJ (e_1_3_3_40_2) 1993; 9
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_34_2
Chater KF (e_1_3_3_14_2) 1979; 115
e_1_3_3_32_2
Ingham CJ (e_1_3_3_38_2) 1994; 22
Foor F (e_1_3_3_15_2) 1985; 39
Wilson SE (e_1_3_3_39_2) 1995; 16
Hatfull GF (e_1_3_3_31_2) 2006; 2
Van Mellaert L (e_1_3_3_21_2) 1998; 144
Khaleel T (e_1_3_3_52_2) 2011; 80
Wilson SE (e_1_3_3_42_2) 1998; 26
Wills NM (e_1_3_3_47_2) 2008; 27
Ingham CJ (e_1_3_3_41_2) 1995; 23
e_1_3_3_8_2
e_1_3_3_28_2
Leskiw BK (e_1_3_3_51_2) 1991; 88
e_1_3_3_49_2
Lomovskaya N (e_1_3_3_9_2) 1970; 6
Stuttard C (e_1_3_3_16_2) 1979; 110
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_22_2
Burke J (e_1_3_3_54_2) 2001; 98
Lander GC (e_1_3_3_57_2) 2006; 312
References_xml – ident: e_1_3_3_32_2
  doi: 10.1128/jb.152.3.1288-1291.1982
– ident: e_1_3_3_2_2
  doi: 10.1073/pnas.96.5.2192
– volume: 6
  start-page: 135
  year: 1970
  ident: e_1_3_3_9_2
  article-title: Isolation and characterisation of Streptomyces coelicolor actinophage
  publication-title: Genetika
  contributor:
    fullname: Lomovskaya N
– volume: 155
  start-page: 2962
  issue: 9
  year: 2009
  ident: e_1_3_3_19_2
  article-title: Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements
  publication-title: Microbiology
  doi: 10.1099/mic.0.030486-0
  contributor:
    fullname: Sampson T
– ident: e_1_3_3_48_2
  doi: 10.1186/1471-2164-8-261
– ident: e_1_3_3_37_2
  doi: 10.1371/journal.pone.0016329
– volume: 80
  start-page: 1450
  year: 2011
  ident: e_1_3_3_52_2
  article-title: A phage protein that binds phiC31 integrase to switch its directionality
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07696.x
  contributor:
    fullname: Khaleel T
– volume: 41
  start-page: 601
  year: 2001
  ident: e_1_3_3_53_2
  article-title: Glycosylation of a Streptomyces coelicolor A3(2) cell envelope protein is required for infection by bacteriophage phi C31
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2001.02510.x
  contributor:
    fullname: Cowlishaw DA
– volume: 17
  start-page: 4681
  year: 1995
  ident: e_1_3_3_60_2
  article-title: Two genes involved in the phase-variable phiC31 resistance mechanism of Streptomyces coelicolor A(3)2
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.177.16.4681-4689.1995
  contributor:
    fullname: Bedford DJ
– volume: 97
  start-page: 143
  issue: 1
  year: 1991
  ident: e_1_3_3_7_2
  article-title: Plasmid cloning vectors that integrate site-specifically in Streptomyces spp
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90022-4
  contributor:
    fullname: Kuhstoss S
– volume: 22
  start-page: 821
  year: 1994
  ident: e_1_3_3_38_2
  article-title: An operator associated with autoregulation of the repressor gene in actinophage phi-c31 is found in highly conserved regions in the phage genome
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.5.821
  contributor:
    fullname: Ingham CJ
– ident: e_1_3_3_23_2
  doi: 10.1093/nar/gki487
– ident: e_1_3_3_22_2
  doi: 10.1093/nar/27.23.4636
– ident: e_1_3_3_59_2
  doi: 10.1101/gr.8.3.195
– ident: e_1_3_3_13_2
  doi: 10.1128/JB.00123-10
– ident: e_1_3_3_45_2
  doi: 10.1186/1743-422X-7-356
– volume: 98
  start-page: 6289
  year: 2001
  ident: e_1_3_3_54_2
  article-title: Generalized transduction in Streptomyces coelicolor
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.101589398
  contributor:
    fullname: Burke J
– start-page: 157
  volume-title: Genetics and molecular biology of industrial microorganisms
  year: 1989
  ident: e_1_3_3_30_2
  contributor:
    fullname: Stuttard C
– volume: 115
  start-page: 431
  year: 1979
  ident: e_1_3_3_14_2
  article-title: A new, wide host-range, temperate bacteriophage (R4) of Streptomyces and its interaction with some restriction-modification systems
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-115-2-431
  contributor:
    fullname: Chater KF
– volume: 5
  start-page: 2833
  year: 1991
  ident: e_1_3_3_43_2
  article-title: Three in-frame N-terminally different proteins are produced from the repressor locus of the Streptomyces bacteriophage phi C31
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1991.tb01992.x
  contributor:
    fullname: Smith MCM
– volume: 331
  start-page: 325
  year: 2005
  ident: e_1_3_3_10_2
  article-title: Complete genomic nucleotide sequence and analysis of the temperate bacteriophage VWB
  publication-title: Virology
  doi: 10.1016/j.virol.2004.10.028
  contributor:
    fullname: Van Dessel W
– volume: 34
  start-page: 5839
  year: 2006
  ident: e_1_3_3_20_2
  article-title: Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl732
  contributor:
    fullname: Fouts DE
– ident: e_1_3_3_35_2
  doi: 10.1016/j.virol.2012.09.026
– volume: 39
  start-page: 11
  year: 1985
  ident: e_1_3_3_15_2
  article-title: Isolation and characterization of the Streptomyces cattleya temperate phage TG1
  publication-title: Gene
  doi: 10.1016/0378-1119(85)90101-5
  contributor:
    fullname: Foor F
– volume: 239
  start-page: 1005
  year: 1988
  ident: e_1_3_3_46_2
  article-title: A persistent untranslated sequence within bacteriophage T4 DNA topoisomerase gene 60
  publication-title: Science
  doi: 10.1126/science.2830666
  contributor:
    fullname: Huang WM
– volume: 16
  start-page: 131
  year: 1995
  ident: e_1_3_3_39_2
  article-title: Control of lytic development in the Streptomyces temperate phage phi-c31
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1995.tb02398.x
  contributor:
    fullname: Wilson SE
– volume: 52
  start-page: 347
  year: 2007
  ident: e_1_3_3_12_2
  article-title: Complete genome sequence and analysis of the Streptomyces aureofaciens phage mu1/6
  publication-title: Folia Microbiol. (Praha)
  doi: 10.1007/BF02932089
  contributor:
    fullname: Farkasovska J
– volume: 42
  start-page: 647
  year: 2008
  ident: e_1_3_3_58_2
  article-title: The bacteriophage DNA packaging motor
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.42.110807.091545
  contributor:
    fullname: Rao VB
– ident: e_1_3_3_49_2
  doi: 10.1128/jb.175.7.1995-2005.1993
– ident: e_1_3_3_24_2
  doi: 10.1093/bioinformatics/btm039
– volume: 23
  start-page: 370
  year: 1995
  ident: e_1_3_3_41_2
  article-title: Rho-independent terminators without 3′ poly-U tails from the early region of actinophage phi-c31
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.3.370
  contributor:
    fullname: Ingham CJ
– ident: e_1_3_3_25_2
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 79
  start-page: 1602
  year: 2011
  ident: e_1_3_3_50_2
  article-title: tRNA accumulation and suppression of the bldA phenotype during development in Streptomyces coelicolor
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07543.x
  contributor:
    fullname: Pettersson BM
– volume: 86
  start-page: 13860
  year: 2012
  ident: e_1_3_3_55_2
  article-title: Genome sequence of a new Streptomyces coelicolor generalized transducing bacteriophage, PhiCAM
  publication-title: J. Virol.
  doi: 10.1128/JVI.02681-12
  contributor:
    fullname: Monson R
– ident: e_1_3_3_27_2
  doi: 10.1093/nar/gkh152
– volume: 39
  start-page: 661
  year: 2012
  ident: e_1_3_3_5_2
  article-title: Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms)
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-011-1069-6
  contributor:
    fullname: Baltz RH
– ident: e_1_3_3_34_2
  doi: 10.1128/AEM.01952-10
– volume: 312
  start-page: 1791
  year: 2006
  ident: e_1_3_3_57_2
  article-title: The structure of an infectious P22 virion shows the signal for headful DNA packaging
  publication-title: Science
  doi: 10.1126/science.1127981
  contributor:
    fullname: Lander GC
– volume: 403
  start-page: 78
  year: 2010
  ident: e_1_3_3_11_2
  article-title: Complete genomic sequence analysis of the temperate bacteriophage phiSASD1 of Streptomyces avermitilis
  publication-title: Virology
  doi: 10.1016/j.virol.2010.03.044
  contributor:
    fullname: Wang S
– ident: e_1_3_3_3_2
  doi: 10.1006/jmbi.2000.3729
– volume-title: Practical Streptomyces genetics
  year: 2000
  ident: e_1_3_3_4_2
  contributor:
    fullname: Kieser T
– ident: e_1_3_3_28_2
  doi: 10.1093/nar/gki366
– volume: 110
  start-page: 479
  year: 1979
  ident: e_1_3_3_16_2
  article-title: Transduction of auxotrophic markers in a chloramphenicol-producing strain of Streptomyces
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-110-2-479
  contributor:
    fullname: Stuttard C
– ident: e_1_3_3_36_2
  doi: 10.1093/emboj/16.19.5914
– volume: 116
  start-page: 43
  year: 1992
  ident: e_1_3_3_6_2
  article-title: Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp
  publication-title: Gene
  doi: 10.1016/0378-1119(92)90627-2
  contributor:
    fullname: Bierman M
– volume: 88
  start-page: 2461
  year: 1991
  ident: e_1_3_3_51_2
  article-title: TTA codons in some genes prevent their expression in a class of developmental, antibiotic-negative, Streptomyces mutants
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.88.6.2461
  contributor:
    fullname: Leskiw BK
– volume: 144
  start-page: 3351
  issue: 12
  year: 1998
  ident: e_1_3_3_21_2
  article-title: Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector
  publication-title: Microbiology
  doi: 10.1099/00221287-144-12-3351
  contributor:
    fullname: Van Mellaert L
– volume: 26
  start-page: 2457
  year: 1998
  ident: e_1_3_3_42_2
  article-title: Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.10.2457
  contributor:
    fullname: Wilson SE
– volume: 2
  start-page: e92
  issue: 6
  year: 2006
  ident: e_1_3_3_31_2
  article-title: Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0020092
  contributor:
    fullname: Hatfull GF
– volume: 128
  start-page: 2063
  year: 1982
  ident: e_1_3_3_18_2
  article-title: Methods for the direct isolation and enumeration of actinophages in soil
  publication-title: J. Gen. Microbiol.
  contributor:
    fullname: Lanning S
– ident: e_1_3_3_8_2
  doi: 10.1128/JB.185.17.5320-5323.2003
– ident: e_1_3_3_17_2
  doi: 10.1128/jb.176.7.2096-2099.1994
– ident: e_1_3_3_56_2
  doi: 10.1128/JB.187.3.1091-1104.2005
– volume: 9
  start-page: 1267
  year: 1993
  ident: e_1_3_3_40_2
  article-title: Mutiple novel promoters from the early region in the Streptomyces temperate phage phi-c31 are activated during lytic development
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1993.tb01256.x
  contributor:
    fullname: Ingham CJ
– volume: 27
  start-page: 2533
  year: 2008
  ident: e_1_3_3_47_2
  article-title: Translational bypassing without peptidyl-tRNA anticodon scanning of coding gap mRNA
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.170
  contributor:
    fullname: Wills NM
– volume: 47
  start-page: 1873
  year: 1983
  ident: e_1_3_3_29_2
  article-title: Cleavage analysis of actinophage R4 and its deletion mutants
  publication-title: Agric. Biol. Chem.
  contributor:
    fullname: Morino T
– ident: e_1_3_3_26_2
  doi: 10.1186/1471-2105-12-395
– volume: 213
  start-page: 269
  issue: 2
  year: 1988
  ident: e_1_3_3_44_2
  article-title: The repressor gene (c) of the Streptomyces temperate phage phi c31: nucleotide sequence, analysis and functional cloning
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00339591
  contributor:
    fullname: Sinclair RB
– volume: 299
  start-page: 53
  year: 2000
  ident: e_1_3_3_33_2
  article-title: Genomic sequence and analysis of the atypical temperate bacteriophage N15
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3731
  contributor:
    fullname: Ravin V
SSID ssj0014452
Score 2.3231094
Snippet The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated...
Article Usage Stats Services JB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley...
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, Hau3, and SV1 were isolated...
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ϕHau3, and SV1 were isolated...
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, ...Hau3, and SV1 were isolated...
The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, phi Hau3, and SV1 were isolated...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4924
SubjectTerms Adaptation, Physiological
Amino Acid Sequence
ancestry
Bacteria
Bacteriology
bacteriophages
Bacteriophages - genetics
Bacteriophages - physiology
Base Sequence
Biological Evolution
Gene Expression Regulation, Viral - physiology
genes
Genome, Viral
Genomes
Molecular Sequence Data
nucleotide sequences
Prophages - genetics
Prophages - metabolism
Proteins
sequence homology
Species Specificity
Streptomyces
Streptomyces - classification
Streptomyces - virology
Streptomyces venezuelae
Streptomycetes
translation (genetics)
Viral Proteins - genetics
Viral Proteins - metabolism
Yeast
Title Evolutionary Relationships among Actinophages and a Putative Adaptation for Growth in Streptomyces spp
URI http://jb.asm.org/content/195/21/4924.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23995638
https://www.proquest.com/docview/1442818473
https://search.proquest.com/docview/1443421272
https://search.proquest.com/docview/1448215304
https://pubmed.ncbi.nlm.nih.gov/PMC3807479
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-awmAvY91XvbZDg766sS3Zih_T0q4EOgpboG9CH9aS0cimcQb573eS7ZCOsYe92vKX7nS6n-_udwDnprBMaqljlSNcZWmSxCVlNMa9wMhE5VRW_tfA3dfids5mD_nDAeRDLUxI2tdqeeEeVxduuQi5lc1Kj4c8sfH93ZUnSWe8HI9ghNvvANH70AFjeU8RnuJKLmlflId2eDy79GlcKcIm3z6nq-r0hSl7O9LIynqPK_hvfuef6ZN7-9HNa3jVO5Jk2r3wERxU7g286FpLbt-Cvf7VK5V82pJdytti2axJaDBEpmjpXN0s0KDgIWeIJPebNvCAk6mRTRejJ-jUki-I1dsFWTrig9hNW6-2aF7Iumnewfzm-vvVbdz3VIg1K2kby6L0jIFcqUJm2lRW5ROqKmtMqXThJ6RIFYrP8kKWJjNSIqSx1nKdcZ6rhL6HQ1e76hiIlpZKXSrKNWOIIxU6a0zzRKGPgH6aiuB8mFfRdNQZIkCObCJmlyJIQqQ0gmOccyF_oFET82-Z_wXjGW2KhEdwMghCyPVK_FQiLXORpYIhbIzgdJCN6BfeGpEM8_xWjON9P-9O45LxcRDpqnoTxlAfCOfZP8dM0BuiCT7mQyfu3UcMihMBf6YIuwGesvv5GdTkQN3da-7H_77yBF5mviFHqIY8hcP2aVOdoVvUqk9hGfwGUgALTA
link.rule.ids 230,314,727,780,784,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQwheEN8LG2CkvWZNYieuH7tpo5R1msQq7c2ynZgW0SRaU6T-95ydpOoQ4oHXxPnync_3y939DuAkzyxTRplQpwhXWRxFoaCMhrgX5CrSKVWF-zUwvc7GMza5S-_2IO1rYXzSvtGL0_Ln8rRczH1uZb00gz5PbHAzPXck6YyLwT48SikXcQ_Su-ABY2lHEh7jWha0K8tDSzyYnLlErhiBk2ug09Z1utKUnT1p36pqhy34b57nnwmUOzvS5XN41rmSZNS-8gvYK8qX8LhtLrl5BfbiV6dW6n5Dtklv80W9Ir7FEBmhrSureo4mBQ-VOVHkZt14JnAyylXdRukJurXkM6L1Zk4WJXFh7Lqplhs0MGRV169hdnlxez4Ou64KoWGCNqHKhOMM5FpnKjF5YXU6pLqweS60ydyEZLFGAVqeKZEnuVIIaqy13CScpzqib-CgrMriEIhRliojNOWGMUSSGt01Znik0UtAT00HcNLPq6xb8gzpQUcylJMz6SUhYxrAIc65VN_RrMnZt8T9hHGcNlnEAzjqBSHVail_aBmLVCaxZAgcAzjuZSO7pbdCLMMcwxXjeN9P29O4aFwkRJVFtfZjqAuF8-SfY4boD9EIH_O2Fff2I3rFCYA_UITtAEfa_fAM6rIn7-50991_X_kRnoxvp1fy6sv11yN4mrj2HL428hgOmvt18R6dpEZ_8EviN4R8DqE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcG0yZepn0TYJsn8RryYSeuHwujsG6gSlsl3ix_xGsRTSKaTup_v7OTVGVCe9hr7Hz5zuf7-c6_Q-jY5JZKLXWoMoCrNInjkBNKQlgLjIxVRmThtgaurvPLKR3fZDdbpb580r5W85PybnFSzmc-t7Je6KjPE4smV2eOJJ0yHtXGRjvoaUZAyXqg3gUQKM06ovAE5jMn3dE8sMbR-NQlcyUAnlwRnfZspzuesrUu7VhZbTEGP-Z9_p1EubUqjV6iF507iYftZ79CT4ryNXrWFphcv0H2_HenWvJ-jTeJb7N5vcS-zBAegr0rq3oGZgUulQZLPFk1ng0cD42s20g9BtcWXwBib2Z4XmIXyq6barEGI4OXdf0WTUfnP88uw66yQqgpJ00oc-54A5lSuUy1KazKBkQV1hiudO4GJE8UCNGyXHKTGikB2FhrmU4Zy1RM3qHdsiqLfYS1tERqrgjTlAKaVOCyUc1iBZ4CeGsqQMf9uIq6JdAQHnikAzE-FV4SIiEB2ocxF_IXmDYx_ZG6jRjHa5PHLECHvSCEXC7ErRIJz0SaCArgMUBHvWxEN_2WgGeoY7miDJ77edMME8dFQ2RZVCvfh7hwOEv_2WcAPhGJ4TXvW3FvfqJXnACxB4qw6eCIux-2gD57Au9Ofw_--85P6Pnky0h8_3r97RDtpa5Chz8eeYR2m_tV8QH8pEZ99DPiD2qgD7Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+relationships+among+actinophages+and+a+putative+adaptation+for+growth+in+Streptomyces+spp&rft.jtitle=Journal+of+bacteriology&rft.au=Smith%2C+Margaret+C+M&rft.au=Hendrix%2C+Roger+W&rft.au=Dedrick%2C+Rebekah&rft.au=Mitchell%2C+Kaitlin&rft.date=2013-11-01&rft.eissn=1098-5530&rft.volume=195&rft.issue=21&rft.spage=4924&rft.epage=4935&rft_id=info:doi/10.1128%2FJB.00618-13&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon