Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite

► Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ► Compression tests were performed at both room and evaluated temperature. ► Temperature has great influence on compression behavior at strain above 0.5. ► Stress Relaxation Tests were carried out at both room and...

Full description

Saved in:
Bibliographic Details
Published inMaterials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 528; no. 13; pp. 4830 - 4836
Main Authors Yang, Xiaoguang, Sun, Yantao, Shi, Duoqi, Liu, Jinlong
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 01.01.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ► Compression tests were performed at both room and evaluated temperature. ► Temperature has great influence on compression behavior at strain above 0.5. ► Stress Relaxation Tests were carried out at both room and evaluated temperature. ► Stress relaxation mechanisms analyzed by Scanning Electron Microscope. Aerogel has been used for thermal insulation because of its extremely low thermal conductivity, but the application has been restricted to non-loading-bearing structures by its low strength properties. Fiber-reinforced aerogel was prepared with higher strength but without sacrificing much of its thermal conductivity. While fiber-reinforced aerogel performs as load-bearing insulation, two behaviors must be investigated: compression and stress relaxation at evaluated temperature. At first, compression test was performed on a fiber-reinforced aerogel composite at both room and evaluated temperature, then the effects of temperature on compression properties of the fiber-reinforced aerogel were analyzed. Stress Relaxation Test was carried out at a constant strain of 0.1 for 1200 s at both room and evaluated temperature. The experimental results show that the stress relaxations increase with the temperature rise from 200 °C to 800 °C. Previous research and Scanning Electron Microscope (SEM) analysis of specimens showed that two time-dependent behaviors: (1) cracks induced by collapse of the pores, and (2) fiber failures subject to interfaces that debond and slide, might be possible reasons for the stress relaxation and the small inelastic strain of specimen tested at 25 °C. While three time dependent phenomena: (1) fusing of aerogel nanoparticles to form nanoparticle clusters, (2) fiber stress relaxation and (3) fiber failures subject to interfaces that debond and slide, would be possible reasons for the remarkable stress relaxation behavior at 800 °C.
AbstractList Highlights ao Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ao Compression tests were performed at both room and evaluated temperature. ao Temperature has great influence on compression behavior at strain above 0.5. ao Stress Relaxation Tests were carried out at both room and evaluated temperature. ao Stress relaxation mechanisms analyzed by Scanning Electron Microscope. Aerogel has been used for thermal insulation because of its extremely low thermal conductivity, but the application has been restricted to non-loading-bearing structures by its low strength properties. Fiber-reinforced aerogel was prepared with higher strength but without sacrificing much of its thermal conductivity. While fiber-reinforced aerogel performs as load-bearing insulation, two behaviors must be investigated: compression and stress relaxation at evaluated temperature. At first, compression test was performed on a fiber-reinforced aerogel composite at both room and evaluated temperature, then the effects of temperature on compression properties of the fiber-reinforced aerogel were analyzed. Stress Relaxation Test was carried out at a constant strain of 0.1 for 1200s at both room and evaluated temperature. The experimental results show that the stress relaxations increase with the temperature rise from 200ADGC to 800ADGC. Previous research and Scanning Electron Microscope (SEM) analysis of specimens showed that two time-dependent behaviors: (1) cracks induced by collapse of the pores, and (2) fiber failures subject to interfaces that debond and slide, might be possible reasons for the stress relaxation and the small inelastic strain of specimen tested at 25ADGC. While three time dependent phenomena: (1) fusing of aerogel nanoparticles to form nanoparticle clusters, (2) fiber stress relaxation and (3) fiber failures subject to interfaces that debond and slide, would be possible reasons for the remarkable stress relaxation behavior at 800ADGC.
Fibre-reinforced aerogels have been prepared with higher strength but without sacrificing much of their thermal conductivity. While fibre-reinforced aerogels behaved as load-bearing insulation, the compression and stress relaxation were assessed at elevated temperatures. A compression test was performed on a fibre-reinforced aerogel composite at both room and elevated temperatures, then the effects of temperature on the compression properties of the fibre-reinforced aerogels were analysed. A stress relaxation test was carried out at a constant strain of 0.1 for 1200 s at both room and elevated temperatures. The experimental results showed that the stress relaxation increased with the temperature from 200 to 800 C. Previous research and SEM analysis of specimens showed that two time-dependent behaviours (cracks induced by collapse of the pores; and fibre failures subject to interfaces that debond and slide) might be possible reasons for the stress relaxation and the small inelastic strain of specimen tested at 25 C. Three time-dependent phenomena (fusing of aerogel nanoparticles to form nanoparticle clusters; fibre stress relaxation; and fibre failure subject to interfaces that debond and slide) would be possible reasons for the remarkable stress relaxation behaviour at 800 C.
► Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ► Compression tests were performed at both room and evaluated temperature. ► Temperature has great influence on compression behavior at strain above 0.5. ► Stress Relaxation Tests were carried out at both room and evaluated temperature. ► Stress relaxation mechanisms analyzed by Scanning Electron Microscope. Aerogel has been used for thermal insulation because of its extremely low thermal conductivity, but the application has been restricted to non-loading-bearing structures by its low strength properties. Fiber-reinforced aerogel was prepared with higher strength but without sacrificing much of its thermal conductivity. While fiber-reinforced aerogel performs as load-bearing insulation, two behaviors must be investigated: compression and stress relaxation at evaluated temperature. At first, compression test was performed on a fiber-reinforced aerogel composite at both room and evaluated temperature, then the effects of temperature on compression properties of the fiber-reinforced aerogel were analyzed. Stress Relaxation Test was carried out at a constant strain of 0.1 for 1200 s at both room and evaluated temperature. The experimental results show that the stress relaxations increase with the temperature rise from 200 °C to 800 °C. Previous research and Scanning Electron Microscope (SEM) analysis of specimens showed that two time-dependent behaviors: (1) cracks induced by collapse of the pores, and (2) fiber failures subject to interfaces that debond and slide, might be possible reasons for the stress relaxation and the small inelastic strain of specimen tested at 25 °C. While three time dependent phenomena: (1) fusing of aerogel nanoparticles to form nanoparticle clusters, (2) fiber stress relaxation and (3) fiber failures subject to interfaces that debond and slide, would be possible reasons for the remarkable stress relaxation behavior at 800 °C.
Author Liu, Jinlong
Shi, Duoqi
Yang, Xiaoguang
Sun, Yantao
Author_xml – sequence: 1
  givenname: Xiaoguang
  surname: Yang
  fullname: Yang, Xiaoguang
  email: yxg@buaa.edu.cn
– sequence: 2
  givenname: Yantao
  surname: Sun
  fullname: Sun, Yantao
– sequence: 3
  givenname: Duoqi
  surname: Shi
  fullname: Shi, Duoqi
– sequence: 4
  givenname: Jinlong
  surname: Liu
  fullname: Liu, Jinlong
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24080935$$DView record in Pascal Francis
BookMark eNqFkTtrHDEUhUWwIevHH0g1TUiamVxJoxkJ0gTjJAZDmrgW2rtXjpYZaSONTfzvrfU6TYoNCG6h79zHOWfsJKZIjL3j0HHgw6dtNxdynQDOO5AdcPmGrbgeZdsbOZywFRjBWwVGvmVnpWwBgPegVmx9_WdHOcwUFzc1IT5SWcK9W0KKTX0z4S8XA9a_XU6VXAKVJvnGNT6sKbeZQvQpI22aEqYKNo5yuqepwTTvUgkLXbBT76ZCl6_1nN19vf559b29_fHt5urLbYt1x6V1YjP0_Wj8WmtEryRqZfgIqAUp40AoJ8zGC-F8P3gYBHejN3I9kCJEjvKcfTj0rZv-fqh32DkUpGlykdJDsQZGow035r-kHoxWXPSikh-PknwwQspeclnR96-oK9Uvn13EUOyumuvykxU96Gq_qpw-cJhTKZm8xbC8GL5kFybLwe4jtVu7j9TuI7UgLbyMEP9I_3Y_Kvp8EFH1_jFQtgUDxZpYyISL3aRwTP4M3ly9Wg
CitedBy_id crossref_primary_10_1177_0731684417728585
crossref_primary_10_34984_SCFTP_2018_13_4_009
crossref_primary_10_1016_j_compositesa_2018_05_026
crossref_primary_10_1007_s12633_023_02611_3
crossref_primary_10_1016_j_jiec_2014_04_015
crossref_primary_10_1520_JTE20130023
crossref_primary_10_1007_s11431_016_9092_2
crossref_primary_10_7567_JJAP_54_085001
crossref_primary_10_1016_j_compscitech_2022_109798
crossref_primary_10_1177_10996362211025571
crossref_primary_10_3390_nano7020044
crossref_primary_10_1039_D1CC05486D
crossref_primary_10_1155_2018_1781930
crossref_primary_10_1016_j_matdes_2019_107869
crossref_primary_10_1016_j_compstruct_2024_118277
crossref_primary_10_1016_j_carbpol_2012_01_075
crossref_primary_10_3390_nano11020258
crossref_primary_10_1371_journal_pone_0303293
crossref_primary_10_1039_C5RA00424A
crossref_primary_10_1016_j_compositesa_2024_108135
crossref_primary_10_1080_15440478_2021_1993486
crossref_primary_10_1016_j_ceramint_2022_04_240
crossref_primary_10_1016_j_matpr_2022_09_147
crossref_primary_10_1007_s10971_013_3124_4
crossref_primary_10_1002_adfm_202415921
crossref_primary_10_1142_S0219581X19500170
crossref_primary_10_3390_molecules23071522
crossref_primary_10_1016_j_jnoncrysol_2011_11_028
crossref_primary_10_1039_C9TA04811A
crossref_primary_10_1016_j_compstruct_2018_08_057
crossref_primary_10_1002_adfm_202005928
crossref_primary_10_1016_j_msea_2014_12_007
crossref_primary_10_1021_acs_chemmater_8b02926
crossref_primary_10_1021_acs_langmuir_7b00434
crossref_primary_10_1007_s10934_019_00834_7
crossref_primary_10_4191_kcers_2017_54_3_12
crossref_primary_10_1007_s10971_017_4359_2
crossref_primary_10_1016_j_supflu_2019_02_010
crossref_primary_10_1016_j_msea_2013_07_029
crossref_primary_10_1016_j_jnoncrysol_2016_10_015
crossref_primary_10_1039_D1NJ04397H
crossref_primary_10_1016_j_compscitech_2021_109152
crossref_primary_10_1016_j_enbuild_2019_06_027
crossref_primary_10_1016_j_csite_2024_104284
crossref_primary_10_1016_j_matdes_2022_111228
crossref_primary_10_1179_1743289814Y_0000000107
crossref_primary_10_1016_j_applthermaleng_2020_115770
crossref_primary_10_1016_j_jclepro_2021_129138
crossref_primary_10_1111_jace_19967
crossref_primary_10_1016_j_matchemphys_2015_05_077
crossref_primary_10_1007_s10853_024_09879_9
crossref_primary_10_1016_j_jnoncrysol_2023_122349
crossref_primary_10_1016_j_msea_2014_04_099
crossref_primary_10_1007_s11665_023_08271_z
crossref_primary_10_1016_j_cej_2024_157621
crossref_primary_10_1021_acs_langmuir_4c02757
crossref_primary_10_1111_ijac_13049
crossref_primary_10_1021_acs_chemmater_7b03911
crossref_primary_10_1016_j_expthermflusci_2017_01_021
crossref_primary_10_1016_j_coco_2023_101531
crossref_primary_10_3390_ma15227897
crossref_primary_10_1007_s10934_021_01091_3
crossref_primary_10_1021_acsapm_0c00295
crossref_primary_10_1016_j_supflu_2015_07_018
crossref_primary_10_1021_acsanm_3c06127
crossref_primary_10_3390_en12102001
crossref_primary_10_1007_s12221_023_00432_0
crossref_primary_10_1016_j_jnoncrysol_2017_07_032
crossref_primary_10_1016_j_matdes_2016_11_080
crossref_primary_10_1002_pamm_201410184
crossref_primary_10_1016_j_compositesa_2016_02_014
crossref_primary_10_1007_s10973_019_09043_5
crossref_primary_10_1016_j_ceramint_2019_03_089
crossref_primary_10_1016_j_ijthermalsci_2017_07_014
crossref_primary_10_1016_j_jnoncrysol_2018_09_029
crossref_primary_10_1007_s10934_020_00929_6
crossref_primary_10_1007_s10971_022_05759_3
crossref_primary_10_1016_j_ceramint_2018_11_069
crossref_primary_10_1007_s11051_020_04958_9
crossref_primary_10_1007_s10971_022_05944_4
crossref_primary_10_1007_s10853_015_8897_0
crossref_primary_10_1007_s10934_017_0554_3
crossref_primary_10_1080_00405000_2018_1534305
crossref_primary_10_3390_ma17091938
crossref_primary_10_1007_s10934_023_01432_4
crossref_primary_10_1088_2053_1591_ab590a
crossref_primary_10_1002_app_48196
crossref_primary_10_1515_polyeng_2017_0402
crossref_primary_10_1007_s10853_016_0646_5
crossref_primary_10_1016_j_apmt_2023_102038
crossref_primary_10_1016_j_csite_2021_100966
crossref_primary_10_1007_s10765_019_2565_6
crossref_primary_10_1021_la5026735
crossref_primary_10_1016_j_enbuild_2016_12_022
crossref_primary_10_1016_j_eurpolymj_2024_112766
crossref_primary_10_1016_j_compositesa_2019_105718
crossref_primary_10_1080_01457632_2013_863090
crossref_primary_10_1007_s10971_017_4470_4
crossref_primary_10_1016_j_matlet_2012_01_114
crossref_primary_10_1016_j_cemconcomp_2022_104535
crossref_primary_10_3139_120_111577
crossref_primary_10_1016_j_jeurceramsoc_2022_06_068
crossref_primary_10_1007_s10971_012_2806_7
crossref_primary_10_1016_j_matdes_2016_03_063
crossref_primary_10_1039_c3ta12431b
crossref_primary_10_1002_app_52499
crossref_primary_10_1016_j_micromeso_2011_11_053
crossref_primary_10_1080_00405000_2023_2274630
crossref_primary_10_1016_j_ceramint_2020_07_045
crossref_primary_10_1016_j_ceramint_2024_05_472
crossref_primary_10_1007_s00396_024_05255_w
crossref_primary_10_1039_C6RA11801A
crossref_primary_10_1016_j_tsep_2023_101906
crossref_primary_10_1002_adma_202308519
crossref_primary_10_1016_j_compositesa_2024_108472
crossref_primary_10_1016_j_apsusc_2017_12_146
crossref_primary_10_1016_j_ceramint_2024_10_018
crossref_primary_10_1016_j_conbuildmat_2017_09_177
crossref_primary_10_1007_s10971_020_05444_3
crossref_primary_10_1016_j_micromeso_2015_06_025
crossref_primary_10_1039_D4TA05605A
crossref_primary_10_1051_e3sconf_202017221007
crossref_primary_10_1007_s10853_021_06862_6
crossref_primary_10_1016_j_cej_2025_160453
crossref_primary_10_1134_S1990793119070182
crossref_primary_10_1016_j_ceramint_2018_09_223
crossref_primary_10_12677_MS_2021_1111130
Cites_doi 10.4028/www.scientific.net/KEM.423.167
10.1155/2010/409310
10.1111/j.1151-2916.1992.tb04461.x
10.1016/S0022-3093(97)00430-4
10.1016/j.micromeso.2010.04.025
10.1016/S0022-3093(98)00054-4
10.1007/s10971-007-1674-z
10.1007/BFb0036965
10.1016/S0040-6090(96)09441-2
10.1016/S0022-3093(98)00106-9
10.1016/S0022-3093(98)00135-5
ContentType Journal Article
Copyright 2011 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SR
8BQ
8FD
JG9
DOI 10.1016/j.msea.2011.03.013
DatabaseName CrossRef
Pascal-Francis
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-4936
EndPage 4836
ExternalDocumentID 24080935
10_1016_j_msea_2011_03_013
S0921509311002838
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
WUQ
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
AFXIZ
EFKBS
IQODW
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c493t-a2d64479fb88ccf53c859170c82e59a025a29df22af46f0621a7f93b6e5ecc1c3
IEDL.DBID .~1
ISSN 0921-5093
IngestDate Tue Aug 05 11:23:05 EDT 2025
Thu Jul 10 23:44:35 EDT 2025
Fri Jul 11 04:41:12 EDT 2025
Mon Jul 21 09:13:18 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Tue Jul 01 03:13:02 EDT 2025
Tue Jul 16 04:30:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Mechanical properties
Compression
Stress relaxation
Thermal Protection System
Aerogel
Evaluated temperature
Scanning electron microscopy
Fibre fracture
Inorganic compounds
Particle cluster
Compressive testing
Fiber reinforced material
Silica
Aerogels
Time dependence
Inelasticity
Composite materials
Temperature effects
Stress relaxation test
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-a2d64479fb88ccf53c859170c82e59a025a29df22af46f0621a7f93b6e5ecc1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1692334313
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_907989199
proquest_miscellaneous_869851242
proquest_miscellaneous_1692334313
pascalfrancis_primary_24080935
crossref_citationtrail_10_1016_j_msea_2011_03_013
crossref_primary_10_1016_j_msea_2011_03_013
elsevier_sciencedirect_doi_10_1016_j_msea_2011_03_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20110101
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 20110101
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Materials science & engineering. A, Structural materials : properties, microstructure and processing
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Koravos, Miller, Fesmire, Coffman (bib0065) 2010; 55
Hrubesh (bib0015) 1990; 24
Smith, Maskara, Boes (bib0040) 1998; 225
M.L. Blosser, R.R. Chen, I.H. Schmidt, J.T. Dorsey, C.C. Poteet, R.K. Bird, AIAA 2002-0504 (2002).
Friche, Emmerling (bib0005) 1992; 75.
Kislter (bib0020) 1931; 127
Schmidt, Schwertfeger (bib0045) 1998; 225
de la Rosa-Fox, Toledo Femandez, Morales-Florez (bib0075) 2010; 423
Yang, Li, Yan, Liu, Wang (bib0100) 2010; 133
Friche, Emmering (bib0010) 1992; 77
Evans, Zok (bib0090) 1994; 29
Gao, Feng, Zhang, Feng, Wu, Jiang (bib0070) 2009; 37
Toledo Fernández, Mendoza-Serna, Santos, Piñero, de la Rosa-Fox, Esquivias (bib0060) 2008; 45
Parmenter, Milstein (bib0050) 1998; 223
Deng, Wang, Wu, Shen, Zhou (bib0055) 1998; 225
Fricke, Tillotson (bib0035) 1997; 297
Gurav, Jung, Park, Kang, Nadargi (bib0030) 2010; 2010
Wang (bib0095) 2006
Hrubesh (bib0025) 1998; 225
DIN EN 12291 (bib0085) 2003
Gurav (10.1016/j.msea.2011.03.013_bib0030) 2010; 2010
de la Rosa-Fox (10.1016/j.msea.2011.03.013_bib0075) 2010; 423
Gao (10.1016/j.msea.2011.03.013_bib0070) 2009; 37
Schmidt (10.1016/j.msea.2011.03.013_bib0045) 1998; 225
Toledo Fernández (10.1016/j.msea.2011.03.013_bib0060) 2008; 45
10.1016/j.msea.2011.03.013_bib0080
Deng (10.1016/j.msea.2011.03.013_bib0055) 1998; 225
Friche (10.1016/j.msea.2011.03.013_bib0005) 1992; 75.
Evans (10.1016/j.msea.2011.03.013_bib0090) 1994; 29
Smith (10.1016/j.msea.2011.03.013_bib0040) 1998; 225
Friche (10.1016/j.msea.2011.03.013_bib0010) 1992; 77
Parmenter (10.1016/j.msea.2011.03.013_bib0050) 1998; 223
DIN EN 12291 (10.1016/j.msea.2011.03.013_bib0085) 2003
Wang (10.1016/j.msea.2011.03.013_bib0095) 2006
Koravos (10.1016/j.msea.2011.03.013_bib0065) 2010; 55
Yang (10.1016/j.msea.2011.03.013_bib0100) 2010; 133
Hrubesh (10.1016/j.msea.2011.03.013_bib0015) 1990; 24
Kislter (10.1016/j.msea.2011.03.013_bib0020) 1931; 127
Hrubesh (10.1016/j.msea.2011.03.013_bib0025) 1998; 225
Fricke (10.1016/j.msea.2011.03.013_bib0035) 1997; 297
References_xml – year: 2003
  ident: bib0085
  article-title: Mechanical Prosperities of Ceramic Composites at High Temperature at Atmospheric Pressure
– volume: 423
  start-page: 167
  year: 2010
  end-page: 172
  ident: bib0075
  publication-title: Key Eng. Mater.
– volume: 297
  start-page: 212
  year: 1997
  end-page: 223
  ident: bib0035
  publication-title: Thin Solid Films
– volume: 223
  start-page: 179
  year: 1998
  end-page: 189
  ident: bib0050
  publication-title: J. Non-Cryst. Solids
– volume: 133
  start-page: 134
  year: 2010
  end-page: 140
  ident: bib0100
  publication-title: Micropor. Mesopor. Mater.
– volume: 75.
  start-page: 2027
  year: 1992
  end-page: 2036
  ident: bib0005
  publication-title: J. Am. Ceram. Soc.
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 11
  ident: bib0030
  publication-title: J. Nanomater.
– volume: 225
  start-page: 101
  year: 1998
  end-page: 104
  ident: bib0055
  publication-title: J. Non-Cryst. Solids
– year: 2006
  ident: bib0095
  article-title: Base Research on the Application of Nanoporous SiO
– volume: 225
  start-page: 254
  year: 1998
  end-page: 259
  ident: bib0040
  publication-title: J. Ceram. Solids
– volume: 127
  start-page: 741
  year: 1931
  ident: bib0020
  publication-title: Nature
– volume: 225
  start-page: 364
  year: 1998
  end-page: 368
  ident: bib0045
  publication-title: J. Non-Cryst. Solids
– volume: 24
  start-page: 824
  year: 1990
  end-page: 827
  ident: bib0015
  publication-title: Chem. Ind.
– volume: 55
  start-page: 921
  year: 2010
  end-page: 927
  ident: bib0065
  publication-title: Adv. Cryog. Eng.: Trans. Cryog. Eng. Conf.
– volume: 37
  start-page: 1
  year: 2009
  end-page: 5
  ident: bib0070
  publication-title: Chin. Ceram. Soc.
– volume: 29
  start-page: 3858
  year: 1994
  end-page: 3896
  ident: bib0090
  publication-title: J. Mater. Sci.
– volume: 77
  start-page: 37
  year: 1992
  end-page: 87
  ident: bib0010
  publication-title: Struct. Bond.
– volume: 225
  start-page: 335
  year: 1998
  end-page: 342
  ident: bib0025
  publication-title: J. Non-Cryst. Solids
– volume: 45
  start-page: 261
  year: 2008
  end-page: 267
  ident: bib0060
  publication-title: J. Sol-Gel Sci. Technol.
– reference: M.L. Blosser, R.R. Chen, I.H. Schmidt, J.T. Dorsey, C.C. Poteet, R.K. Bird, AIAA 2002-0504 (2002).
– volume: 225
  start-page: 254
  year: 1998
  ident: 10.1016/j.msea.2011.03.013_bib0040
  publication-title: J. Ceram. Solids
– volume: 423
  start-page: 167
  year: 2010
  ident: 10.1016/j.msea.2011.03.013_bib0075
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.423.167
– year: 2003
  ident: 10.1016/j.msea.2011.03.013_bib0085
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.msea.2011.03.013_bib0030
  publication-title: J. Nanomater.
  doi: 10.1155/2010/409310
– volume: 75.
  start-page: 2027
  year: 1992
  ident: 10.1016/j.msea.2011.03.013_bib0005
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1992.tb04461.x
– year: 2006
  ident: 10.1016/j.msea.2011.03.013_bib0095
– volume: 223
  start-page: 179
  year: 1998
  ident: 10.1016/j.msea.2011.03.013_bib0050
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(97)00430-4
– volume: 133
  start-page: 134
  year: 2010
  ident: 10.1016/j.msea.2011.03.013_bib0100
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2010.04.025
– volume: 37
  start-page: 1
  year: 2009
  ident: 10.1016/j.msea.2011.03.013_bib0070
  publication-title: Chin. Ceram. Soc.
– volume: 225
  start-page: 364
  year: 1998
  ident: 10.1016/j.msea.2011.03.013_bib0045
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00054-4
– ident: 10.1016/j.msea.2011.03.013_bib0080
– volume: 45
  start-page: 261
  year: 2008
  ident: 10.1016/j.msea.2011.03.013_bib0060
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-007-1674-z
– volume: 77
  start-page: 37
  year: 1992
  ident: 10.1016/j.msea.2011.03.013_bib0010
  publication-title: Struct. Bond.
  doi: 10.1007/BFb0036965
– volume: 24
  start-page: 824
  year: 1990
  ident: 10.1016/j.msea.2011.03.013_bib0015
  publication-title: Chem. Ind.
– volume: 297
  start-page: 212
  year: 1997
  ident: 10.1016/j.msea.2011.03.013_bib0035
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(96)09441-2
– volume: 225
  start-page: 101
  year: 1998
  ident: 10.1016/j.msea.2011.03.013_bib0055
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00106-9
– volume: 225
  start-page: 335
  year: 1998
  ident: 10.1016/j.msea.2011.03.013_bib0025
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/S0022-3093(98)00135-5
– volume: 127
  start-page: 741
  year: 1931
  ident: 10.1016/j.msea.2011.03.013_bib0020
  publication-title: Nature
– volume: 55
  start-page: 921
  year: 2010
  ident: 10.1016/j.msea.2011.03.013_bib0065
  publication-title: Adv. Cryog. Eng.: Trans. Cryog. Eng. Conf.
– volume: 29
  start-page: 3858
  year: 1994
  ident: 10.1016/j.msea.2011.03.013_bib0090
  publication-title: J. Mater. Sci.
SSID ssj0001405
Score 2.395026
Snippet ► Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ► Compression tests were performed at both room and evaluated...
Fibre-reinforced aerogels have been prepared with higher strength but without sacrificing much of their thermal conductivity. While fibre-reinforced aerogels...
Highlights ao Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ao Compression tests were performed at both room and...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4830
SubjectTerms Aerogel
Aerogels
Anelasticity, internal friction, stress relaxation, and mechanical resonances
Compression
Compression tests
Condensed matter: structure, mechanical and thermal properties
Debonding
Evaluated temperature
Exact sciences and technology
Failure
Fiber composites
Fibers
Fibre
High temperature
Mechanical and acoustical properties of condensed matter
Mechanical properties
Physics
Scanning electron microscopy
Strain
Stress relaxation
Thermal conductivity
Thermal Protection System
Title Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite
URI https://dx.doi.org/10.1016/j.msea.2011.03.013
https://www.proquest.com/docview/1692334313
https://www.proquest.com/docview/869851242
https://www.proquest.com/docview/907989199
Volume 528
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQuwxN0xigdbDKk7ih0CSOfx1R1arbpF6gEjfLdm1UBEnVluv-9r2XHwU0lQNSTtFzEr_n-H22P38m5Lxw3jkuAiA3lidFUDxRXvtEWikKz1iQ85rlOxWTWfH7lt_ukWG3FwZplW3f3_TpdW_d3hm03hwsF4vBdaohXcGAHEXPIEniht-ikNjKL_8-0zxgAFHTGME4Qet240zD8XqE5tTKeLLLNGO7ktOnpV2Dy2Jz1sV_3Xadi8ZfyOcWRNKr5jsPyV4ov5KDF9KCR8SNXkj308WzmkZVUrgeA-74xQDRJU7Hr1BXlVaRWhqRQ5KsQi2pCv6h6wVO7FEbVtVdeKBIQkemVzgms_HoZjhJ2vMUEl9otklsPgf0I3V0SnkfOfMoXidTr_LAtQX0Y3M9j3luYyFiKvLMyqiZE4FDoDPPTsh-WZXhG6EcYK6ywnkVPUAQ7hBZWum4BTiQiXmPZJ0jjW_FxvHMiwfTscruDTrfoPNNygw4v0cutmWWjdTGm9a8i4951WAM5II3y_VfBXP7KtR6w1XhHvnZRdfAr4brJ7YM1dPaZALQMIPqwkPoDhslNGBYwD27TXQqtdKZ1t_fWYVT8rGZ2cbrjOxvVk_hB0CjjevXbb9PPlz9-jOZ_gPxKQ9G
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rBNE9qnVgbMk_Y2ZU3i2LEfEQKVwfoykHizbNdGnSCp2vL_c5ePDjSVByQ_ReckvrPvfrbPPwN8L5x3TsiAyI3nSRGUSJTXPiltKQvPeSinTZbvRI4vi19X4moLjvqzMJRW2fn-1qc33rp7Muq0OZrPZqM_qcZwhRNyIj3DIKlewDaxU4kBbB-eno0na4eMc4gmkxHlE6rQnZ1p07xusUd1TJ78Z5rxTfHpzdwuUWuxve7iP8_dhKOTt7DT4Uh22P7qO9gK1Xt4_YBd8AO44wfs_Wz2j1CjrhiW20CHfslGbE4r8guiVmV1ZJZFSiNJFqFhVUUVseWM1vaYDYv6OtwwykOnZK_wES5Pji-Oxkl3pULiC81Xic2nCIBKHZ1S3kfBPfHXlalXeRDaIgCyuZ7GPLexkDGVeWbLqLmTQaCtM88_waCqq_AZmECkq6x0XkWPKEQ4Ape2dMIiIsjkdAhZr0jjO75xuvbixvSJZX8NKd-Q8k3KDSp_CD_WdeYt28aT0qK3j3nUZwyGgyfrHTwy5vpTRPdGG8ND-NZb1-Booy0UW4X6bmkyiYCYY3PxJWyDjJIaYSxCn80iOi210pnWu89swld4Ob74fW7OTydnX-BVu9BNZQ8Gq8Vd2EektHIH3Ui4By2YEfc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+mechanical+properties+of+a+fiber-reinforced+silica+aerogel+composite&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=XIAOGUANG+YANG&rft.au=YANTAO+SUN&rft.au=DUOQI+SHI&rft.au=JINLONG+LIU&rft.date=2011-01-01&rft.pub=Elsevier&rft.issn=0921-5093&rft.volume=528&rft.issue=13-14&rft.spage=4830&rft.epage=4836&rft_id=info:doi/10.1016%2Fj.msea.2011.03.013&rft.externalDBID=n%2Fa&rft.externalDocID=24080935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon