Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite
► Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ► Compression tests were performed at both room and evaluated temperature. ► Temperature has great influence on compression behavior at strain above 0.5. ► Stress Relaxation Tests were carried out at both room and...
Saved in:
Published in | Materials science & engineering. A, Structural materials : properties, microstructure and processing Vol. 528; no. 13; pp. 4830 - 4836 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
01.01.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ► Compression tests were performed at both room and evaluated temperature. ► Temperature has great influence on compression behavior at strain above 0.5. ► Stress Relaxation Tests were carried out at both room and evaluated temperature. ► Stress relaxation mechanisms analyzed by Scanning Electron Microscope.
Aerogel has been used for thermal insulation because of its extremely low thermal conductivity, but the application has been restricted to non-loading-bearing structures by its low strength properties. Fiber-reinforced aerogel was prepared with higher strength but without sacrificing much of its thermal conductivity. While fiber-reinforced aerogel performs as load-bearing insulation, two behaviors must be investigated: compression and stress relaxation at evaluated temperature. At first, compression test was performed on a fiber-reinforced aerogel composite at both room and evaluated temperature, then the effects of temperature on compression properties of the fiber-reinforced aerogel were analyzed. Stress Relaxation Test was carried out at a constant strain of 0.1 for 1200
s at both room and evaluated temperature. The experimental results show that the stress relaxations increase with the temperature rise from 200
°C to 800
°C. Previous research and Scanning Electron Microscope (SEM) analysis of specimens showed that two time-dependent behaviors: (1) cracks induced by collapse of the pores, and (2) fiber failures subject to interfaces that debond and slide, might be possible reasons for the stress relaxation and the small inelastic strain of specimen tested at 25
°C. While three time dependent phenomena: (1) fusing of aerogel nanoparticles to form nanoparticle clusters, (2) fiber stress relaxation and (3) fiber failures subject to interfaces that debond and slide, would be possible reasons for the remarkable stress relaxation behavior at 800
°C. |
---|---|
AbstractList | Highlights ao Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ao Compression tests were performed at both room and evaluated temperature. ao Temperature has great influence on compression behavior at strain above 0.5. ao Stress Relaxation Tests were carried out at both room and evaluated temperature. ao Stress relaxation mechanisms analyzed by Scanning Electron Microscope. Aerogel has been used for thermal insulation because of its extremely low thermal conductivity, but the application has been restricted to non-loading-bearing structures by its low strength properties. Fiber-reinforced aerogel was prepared with higher strength but without sacrificing much of its thermal conductivity. While fiber-reinforced aerogel performs as load-bearing insulation, two behaviors must be investigated: compression and stress relaxation at evaluated temperature. At first, compression test was performed on a fiber-reinforced aerogel composite at both room and evaluated temperature, then the effects of temperature on compression properties of the fiber-reinforced aerogel were analyzed. Stress Relaxation Test was carried out at a constant strain of 0.1 for 1200s at both room and evaluated temperature. The experimental results show that the stress relaxations increase with the temperature rise from 200ADGC to 800ADGC. Previous research and Scanning Electron Microscope (SEM) analysis of specimens showed that two time-dependent behaviors: (1) cracks induced by collapse of the pores, and (2) fiber failures subject to interfaces that debond and slide, might be possible reasons for the stress relaxation and the small inelastic strain of specimen tested at 25ADGC. While three time dependent phenomena: (1) fusing of aerogel nanoparticles to form nanoparticle clusters, (2) fiber stress relaxation and (3) fiber failures subject to interfaces that debond and slide, would be possible reasons for the remarkable stress relaxation behavior at 800ADGC. Fibre-reinforced aerogels have been prepared with higher strength but without sacrificing much of their thermal conductivity. While fibre-reinforced aerogels behaved as load-bearing insulation, the compression and stress relaxation were assessed at elevated temperatures. A compression test was performed on a fibre-reinforced aerogel composite at both room and elevated temperatures, then the effects of temperature on the compression properties of the fibre-reinforced aerogels were analysed. A stress relaxation test was carried out at a constant strain of 0.1 for 1200 s at both room and elevated temperatures. The experimental results showed that the stress relaxation increased with the temperature from 200 to 800 C. Previous research and SEM analysis of specimens showed that two time-dependent behaviours (cracks induced by collapse of the pores; and fibre failures subject to interfaces that debond and slide) might be possible reasons for the stress relaxation and the small inelastic strain of specimen tested at 25 C. Three time-dependent phenomena (fusing of aerogel nanoparticles to form nanoparticle clusters; fibre stress relaxation; and fibre failure subject to interfaces that debond and slide) would be possible reasons for the remarkable stress relaxation behaviour at 800 C. ► Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ► Compression tests were performed at both room and evaluated temperature. ► Temperature has great influence on compression behavior at strain above 0.5. ► Stress Relaxation Tests were carried out at both room and evaluated temperature. ► Stress relaxation mechanisms analyzed by Scanning Electron Microscope. Aerogel has been used for thermal insulation because of its extremely low thermal conductivity, but the application has been restricted to non-loading-bearing structures by its low strength properties. Fiber-reinforced aerogel was prepared with higher strength but without sacrificing much of its thermal conductivity. While fiber-reinforced aerogel performs as load-bearing insulation, two behaviors must be investigated: compression and stress relaxation at evaluated temperature. At first, compression test was performed on a fiber-reinforced aerogel composite at both room and evaluated temperature, then the effects of temperature on compression properties of the fiber-reinforced aerogel were analyzed. Stress Relaxation Test was carried out at a constant strain of 0.1 for 1200 s at both room and evaluated temperature. The experimental results show that the stress relaxations increase with the temperature rise from 200 °C to 800 °C. Previous research and Scanning Electron Microscope (SEM) analysis of specimens showed that two time-dependent behaviors: (1) cracks induced by collapse of the pores, and (2) fiber failures subject to interfaces that debond and slide, might be possible reasons for the stress relaxation and the small inelastic strain of specimen tested at 25 °C. While three time dependent phenomena: (1) fusing of aerogel nanoparticles to form nanoparticle clusters, (2) fiber stress relaxation and (3) fiber failures subject to interfaces that debond and slide, would be possible reasons for the remarkable stress relaxation behavior at 800 °C. |
Author | Liu, Jinlong Shi, Duoqi Yang, Xiaoguang Sun, Yantao |
Author_xml | – sequence: 1 givenname: Xiaoguang surname: Yang fullname: Yang, Xiaoguang email: yxg@buaa.edu.cn – sequence: 2 givenname: Yantao surname: Sun fullname: Sun, Yantao – sequence: 3 givenname: Duoqi surname: Shi fullname: Shi, Duoqi – sequence: 4 givenname: Jinlong surname: Liu fullname: Liu, Jinlong |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24080935$$DView record in Pascal Francis |
BookMark | eNqFkTtrHDEUhUWwIevHH0g1TUiamVxJoxkJ0gTjJAZDmrgW2rtXjpYZaSONTfzvrfU6TYoNCG6h79zHOWfsJKZIjL3j0HHgw6dtNxdynQDOO5AdcPmGrbgeZdsbOZywFRjBWwVGvmVnpWwBgPegVmx9_WdHOcwUFzc1IT5SWcK9W0KKTX0z4S8XA9a_XU6VXAKVJvnGNT6sKbeZQvQpI22aEqYKNo5yuqepwTTvUgkLXbBT76ZCl6_1nN19vf559b29_fHt5urLbYt1x6V1YjP0_Wj8WmtEryRqZfgIqAUp40AoJ8zGC-F8P3gYBHejN3I9kCJEjvKcfTj0rZv-fqh32DkUpGlykdJDsQZGow035r-kHoxWXPSikh-PknwwQspeclnR96-oK9Uvn13EUOyumuvykxU96Gq_qpw-cJhTKZm8xbC8GL5kFybLwe4jtVu7j9TuI7UgLbyMEP9I_3Y_Kvp8EFH1_jFQtgUDxZpYyISL3aRwTP4M3ly9Wg |
CitedBy_id | crossref_primary_10_1177_0731684417728585 crossref_primary_10_34984_SCFTP_2018_13_4_009 crossref_primary_10_1016_j_compositesa_2018_05_026 crossref_primary_10_1007_s12633_023_02611_3 crossref_primary_10_1016_j_jiec_2014_04_015 crossref_primary_10_1520_JTE20130023 crossref_primary_10_1007_s11431_016_9092_2 crossref_primary_10_7567_JJAP_54_085001 crossref_primary_10_1016_j_compscitech_2022_109798 crossref_primary_10_1177_10996362211025571 crossref_primary_10_3390_nano7020044 crossref_primary_10_1039_D1CC05486D crossref_primary_10_1155_2018_1781930 crossref_primary_10_1016_j_matdes_2019_107869 crossref_primary_10_1016_j_compstruct_2024_118277 crossref_primary_10_1016_j_carbpol_2012_01_075 crossref_primary_10_3390_nano11020258 crossref_primary_10_1371_journal_pone_0303293 crossref_primary_10_1039_C5RA00424A crossref_primary_10_1016_j_compositesa_2024_108135 crossref_primary_10_1080_15440478_2021_1993486 crossref_primary_10_1016_j_ceramint_2022_04_240 crossref_primary_10_1016_j_matpr_2022_09_147 crossref_primary_10_1007_s10971_013_3124_4 crossref_primary_10_1002_adfm_202415921 crossref_primary_10_1142_S0219581X19500170 crossref_primary_10_3390_molecules23071522 crossref_primary_10_1016_j_jnoncrysol_2011_11_028 crossref_primary_10_1039_C9TA04811A crossref_primary_10_1016_j_compstruct_2018_08_057 crossref_primary_10_1002_adfm_202005928 crossref_primary_10_1016_j_msea_2014_12_007 crossref_primary_10_1021_acs_chemmater_8b02926 crossref_primary_10_1021_acs_langmuir_7b00434 crossref_primary_10_1007_s10934_019_00834_7 crossref_primary_10_4191_kcers_2017_54_3_12 crossref_primary_10_1007_s10971_017_4359_2 crossref_primary_10_1016_j_supflu_2019_02_010 crossref_primary_10_1016_j_msea_2013_07_029 crossref_primary_10_1016_j_jnoncrysol_2016_10_015 crossref_primary_10_1039_D1NJ04397H crossref_primary_10_1016_j_compscitech_2021_109152 crossref_primary_10_1016_j_enbuild_2019_06_027 crossref_primary_10_1016_j_csite_2024_104284 crossref_primary_10_1016_j_matdes_2022_111228 crossref_primary_10_1179_1743289814Y_0000000107 crossref_primary_10_1016_j_applthermaleng_2020_115770 crossref_primary_10_1016_j_jclepro_2021_129138 crossref_primary_10_1111_jace_19967 crossref_primary_10_1016_j_matchemphys_2015_05_077 crossref_primary_10_1007_s10853_024_09879_9 crossref_primary_10_1016_j_jnoncrysol_2023_122349 crossref_primary_10_1016_j_msea_2014_04_099 crossref_primary_10_1007_s11665_023_08271_z crossref_primary_10_1016_j_cej_2024_157621 crossref_primary_10_1021_acs_langmuir_4c02757 crossref_primary_10_1111_ijac_13049 crossref_primary_10_1021_acs_chemmater_7b03911 crossref_primary_10_1016_j_expthermflusci_2017_01_021 crossref_primary_10_1016_j_coco_2023_101531 crossref_primary_10_3390_ma15227897 crossref_primary_10_1007_s10934_021_01091_3 crossref_primary_10_1021_acsapm_0c00295 crossref_primary_10_1016_j_supflu_2015_07_018 crossref_primary_10_1021_acsanm_3c06127 crossref_primary_10_3390_en12102001 crossref_primary_10_1007_s12221_023_00432_0 crossref_primary_10_1016_j_jnoncrysol_2017_07_032 crossref_primary_10_1016_j_matdes_2016_11_080 crossref_primary_10_1002_pamm_201410184 crossref_primary_10_1016_j_compositesa_2016_02_014 crossref_primary_10_1007_s10973_019_09043_5 crossref_primary_10_1016_j_ceramint_2019_03_089 crossref_primary_10_1016_j_ijthermalsci_2017_07_014 crossref_primary_10_1016_j_jnoncrysol_2018_09_029 crossref_primary_10_1007_s10934_020_00929_6 crossref_primary_10_1007_s10971_022_05759_3 crossref_primary_10_1016_j_ceramint_2018_11_069 crossref_primary_10_1007_s11051_020_04958_9 crossref_primary_10_1007_s10971_022_05944_4 crossref_primary_10_1007_s10853_015_8897_0 crossref_primary_10_1007_s10934_017_0554_3 crossref_primary_10_1080_00405000_2018_1534305 crossref_primary_10_3390_ma17091938 crossref_primary_10_1007_s10934_023_01432_4 crossref_primary_10_1088_2053_1591_ab590a crossref_primary_10_1002_app_48196 crossref_primary_10_1515_polyeng_2017_0402 crossref_primary_10_1007_s10853_016_0646_5 crossref_primary_10_1016_j_apmt_2023_102038 crossref_primary_10_1016_j_csite_2021_100966 crossref_primary_10_1007_s10765_019_2565_6 crossref_primary_10_1021_la5026735 crossref_primary_10_1016_j_enbuild_2016_12_022 crossref_primary_10_1016_j_eurpolymj_2024_112766 crossref_primary_10_1016_j_compositesa_2019_105718 crossref_primary_10_1080_01457632_2013_863090 crossref_primary_10_1007_s10971_017_4470_4 crossref_primary_10_1016_j_matlet_2012_01_114 crossref_primary_10_1016_j_cemconcomp_2022_104535 crossref_primary_10_3139_120_111577 crossref_primary_10_1016_j_jeurceramsoc_2022_06_068 crossref_primary_10_1007_s10971_012_2806_7 crossref_primary_10_1016_j_matdes_2016_03_063 crossref_primary_10_1039_c3ta12431b crossref_primary_10_1002_app_52499 crossref_primary_10_1016_j_micromeso_2011_11_053 crossref_primary_10_1080_00405000_2023_2274630 crossref_primary_10_1016_j_ceramint_2020_07_045 crossref_primary_10_1016_j_ceramint_2024_05_472 crossref_primary_10_1007_s00396_024_05255_w crossref_primary_10_1039_C6RA11801A crossref_primary_10_1016_j_tsep_2023_101906 crossref_primary_10_1002_adma_202308519 crossref_primary_10_1016_j_compositesa_2024_108472 crossref_primary_10_1016_j_apsusc_2017_12_146 crossref_primary_10_1016_j_ceramint_2024_10_018 crossref_primary_10_1016_j_conbuildmat_2017_09_177 crossref_primary_10_1007_s10971_020_05444_3 crossref_primary_10_1016_j_micromeso_2015_06_025 crossref_primary_10_1039_D4TA05605A crossref_primary_10_1051_e3sconf_202017221007 crossref_primary_10_1007_s10853_021_06862_6 crossref_primary_10_1016_j_cej_2025_160453 crossref_primary_10_1134_S1990793119070182 crossref_primary_10_1016_j_ceramint_2018_09_223 crossref_primary_10_12677_MS_2021_1111130 |
Cites_doi | 10.4028/www.scientific.net/KEM.423.167 10.1155/2010/409310 10.1111/j.1151-2916.1992.tb04461.x 10.1016/S0022-3093(97)00430-4 10.1016/j.micromeso.2010.04.025 10.1016/S0022-3093(98)00054-4 10.1007/s10971-007-1674-z 10.1007/BFb0036965 10.1016/S0040-6090(96)09441-2 10.1016/S0022-3093(98)00106-9 10.1016/S0022-3093(98)00135-5 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.msea.2011.03.013 |
DatabaseName | CrossRef Pascal-Francis Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1873-4936 |
EndPage | 4836 |
ExternalDocumentID | 24080935 10_1016_j_msea_2011_03_013 S0921509311002838 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSZ T5K WUQ ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH AFXIZ EFKBS IQODW 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c493t-a2d64479fb88ccf53c859170c82e59a025a29df22af46f0621a7f93b6e5ecc1c3 |
IEDL.DBID | .~1 |
ISSN | 0921-5093 |
IngestDate | Tue Aug 05 11:23:05 EDT 2025 Thu Jul 10 23:44:35 EDT 2025 Fri Jul 11 04:41:12 EDT 2025 Mon Jul 21 09:13:18 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Tue Jul 01 03:13:02 EDT 2025 Tue Jul 16 04:30:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Mechanical properties Compression Stress relaxation Thermal Protection System Aerogel Evaluated temperature Scanning electron microscopy Fibre fracture Inorganic compounds Particle cluster Compressive testing Fiber reinforced material Silica Aerogels Time dependence Inelasticity Composite materials Temperature effects Stress relaxation test |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-a2d64479fb88ccf53c859170c82e59a025a29df22af46f0621a7f93b6e5ecc1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 1692334313 |
PQPubID | 23500 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_907989199 proquest_miscellaneous_869851242 proquest_miscellaneous_1692334313 pascalfrancis_primary_24080935 crossref_citationtrail_10_1016_j_msea_2011_03_013 crossref_primary_10_1016_j_msea_2011_03_013 elsevier_sciencedirect_doi_10_1016_j_msea_2011_03_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20110101 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 20110101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Koravos, Miller, Fesmire, Coffman (bib0065) 2010; 55 Hrubesh (bib0015) 1990; 24 Smith, Maskara, Boes (bib0040) 1998; 225 M.L. Blosser, R.R. Chen, I.H. Schmidt, J.T. Dorsey, C.C. Poteet, R.K. Bird, AIAA 2002-0504 (2002). Friche, Emmerling (bib0005) 1992; 75. Kislter (bib0020) 1931; 127 Schmidt, Schwertfeger (bib0045) 1998; 225 de la Rosa-Fox, Toledo Femandez, Morales-Florez (bib0075) 2010; 423 Yang, Li, Yan, Liu, Wang (bib0100) 2010; 133 Friche, Emmering (bib0010) 1992; 77 Evans, Zok (bib0090) 1994; 29 Gao, Feng, Zhang, Feng, Wu, Jiang (bib0070) 2009; 37 Toledo Fernández, Mendoza-Serna, Santos, Piñero, de la Rosa-Fox, Esquivias (bib0060) 2008; 45 Parmenter, Milstein (bib0050) 1998; 223 Deng, Wang, Wu, Shen, Zhou (bib0055) 1998; 225 Fricke, Tillotson (bib0035) 1997; 297 Gurav, Jung, Park, Kang, Nadargi (bib0030) 2010; 2010 Wang (bib0095) 2006 Hrubesh (bib0025) 1998; 225 DIN EN 12291 (bib0085) 2003 Gurav (10.1016/j.msea.2011.03.013_bib0030) 2010; 2010 de la Rosa-Fox (10.1016/j.msea.2011.03.013_bib0075) 2010; 423 Gao (10.1016/j.msea.2011.03.013_bib0070) 2009; 37 Schmidt (10.1016/j.msea.2011.03.013_bib0045) 1998; 225 Toledo Fernández (10.1016/j.msea.2011.03.013_bib0060) 2008; 45 10.1016/j.msea.2011.03.013_bib0080 Deng (10.1016/j.msea.2011.03.013_bib0055) 1998; 225 Friche (10.1016/j.msea.2011.03.013_bib0005) 1992; 75. Evans (10.1016/j.msea.2011.03.013_bib0090) 1994; 29 Smith (10.1016/j.msea.2011.03.013_bib0040) 1998; 225 Friche (10.1016/j.msea.2011.03.013_bib0010) 1992; 77 Parmenter (10.1016/j.msea.2011.03.013_bib0050) 1998; 223 DIN EN 12291 (10.1016/j.msea.2011.03.013_bib0085) 2003 Wang (10.1016/j.msea.2011.03.013_bib0095) 2006 Koravos (10.1016/j.msea.2011.03.013_bib0065) 2010; 55 Yang (10.1016/j.msea.2011.03.013_bib0100) 2010; 133 Hrubesh (10.1016/j.msea.2011.03.013_bib0015) 1990; 24 Kislter (10.1016/j.msea.2011.03.013_bib0020) 1931; 127 Hrubesh (10.1016/j.msea.2011.03.013_bib0025) 1998; 225 Fricke (10.1016/j.msea.2011.03.013_bib0035) 1997; 297 |
References_xml | – year: 2003 ident: bib0085 article-title: Mechanical Prosperities of Ceramic Composites at High Temperature at Atmospheric Pressure – volume: 423 start-page: 167 year: 2010 end-page: 172 ident: bib0075 publication-title: Key Eng. Mater. – volume: 297 start-page: 212 year: 1997 end-page: 223 ident: bib0035 publication-title: Thin Solid Films – volume: 223 start-page: 179 year: 1998 end-page: 189 ident: bib0050 publication-title: J. Non-Cryst. Solids – volume: 133 start-page: 134 year: 2010 end-page: 140 ident: bib0100 publication-title: Micropor. Mesopor. Mater. – volume: 75. start-page: 2027 year: 1992 end-page: 2036 ident: bib0005 publication-title: J. Am. Ceram. Soc. – volume: 2010 start-page: 1 year: 2010 end-page: 11 ident: bib0030 publication-title: J. Nanomater. – volume: 225 start-page: 101 year: 1998 end-page: 104 ident: bib0055 publication-title: J. Non-Cryst. Solids – year: 2006 ident: bib0095 article-title: Base Research on the Application of Nanoporous SiO – volume: 225 start-page: 254 year: 1998 end-page: 259 ident: bib0040 publication-title: J. Ceram. Solids – volume: 127 start-page: 741 year: 1931 ident: bib0020 publication-title: Nature – volume: 225 start-page: 364 year: 1998 end-page: 368 ident: bib0045 publication-title: J. Non-Cryst. Solids – volume: 24 start-page: 824 year: 1990 end-page: 827 ident: bib0015 publication-title: Chem. Ind. – volume: 55 start-page: 921 year: 2010 end-page: 927 ident: bib0065 publication-title: Adv. Cryog. Eng.: Trans. Cryog. Eng. Conf. – volume: 37 start-page: 1 year: 2009 end-page: 5 ident: bib0070 publication-title: Chin. Ceram. Soc. – volume: 29 start-page: 3858 year: 1994 end-page: 3896 ident: bib0090 publication-title: J. Mater. Sci. – volume: 77 start-page: 37 year: 1992 end-page: 87 ident: bib0010 publication-title: Struct. Bond. – volume: 225 start-page: 335 year: 1998 end-page: 342 ident: bib0025 publication-title: J. Non-Cryst. Solids – volume: 45 start-page: 261 year: 2008 end-page: 267 ident: bib0060 publication-title: J. Sol-Gel Sci. Technol. – reference: M.L. Blosser, R.R. Chen, I.H. Schmidt, J.T. Dorsey, C.C. Poteet, R.K. Bird, AIAA 2002-0504 (2002). – volume: 225 start-page: 254 year: 1998 ident: 10.1016/j.msea.2011.03.013_bib0040 publication-title: J. Ceram. Solids – volume: 423 start-page: 167 year: 2010 ident: 10.1016/j.msea.2011.03.013_bib0075 publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.423.167 – year: 2003 ident: 10.1016/j.msea.2011.03.013_bib0085 – volume: 2010 start-page: 1 year: 2010 ident: 10.1016/j.msea.2011.03.013_bib0030 publication-title: J. Nanomater. doi: 10.1155/2010/409310 – volume: 75. start-page: 2027 year: 1992 ident: 10.1016/j.msea.2011.03.013_bib0005 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1151-2916.1992.tb04461.x – year: 2006 ident: 10.1016/j.msea.2011.03.013_bib0095 – volume: 223 start-page: 179 year: 1998 ident: 10.1016/j.msea.2011.03.013_bib0050 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(97)00430-4 – volume: 133 start-page: 134 year: 2010 ident: 10.1016/j.msea.2011.03.013_bib0100 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2010.04.025 – volume: 37 start-page: 1 year: 2009 ident: 10.1016/j.msea.2011.03.013_bib0070 publication-title: Chin. Ceram. Soc. – volume: 225 start-page: 364 year: 1998 ident: 10.1016/j.msea.2011.03.013_bib0045 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00054-4 – ident: 10.1016/j.msea.2011.03.013_bib0080 – volume: 45 start-page: 261 year: 2008 ident: 10.1016/j.msea.2011.03.013_bib0060 publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-007-1674-z – volume: 77 start-page: 37 year: 1992 ident: 10.1016/j.msea.2011.03.013_bib0010 publication-title: Struct. Bond. doi: 10.1007/BFb0036965 – volume: 24 start-page: 824 year: 1990 ident: 10.1016/j.msea.2011.03.013_bib0015 publication-title: Chem. Ind. – volume: 297 start-page: 212 year: 1997 ident: 10.1016/j.msea.2011.03.013_bib0035 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(96)09441-2 – volume: 225 start-page: 101 year: 1998 ident: 10.1016/j.msea.2011.03.013_bib0055 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00106-9 – volume: 225 start-page: 335 year: 1998 ident: 10.1016/j.msea.2011.03.013_bib0025 publication-title: J. Non-Cryst. Solids doi: 10.1016/S0022-3093(98)00135-5 – volume: 127 start-page: 741 year: 1931 ident: 10.1016/j.msea.2011.03.013_bib0020 publication-title: Nature – volume: 55 start-page: 921 year: 2010 ident: 10.1016/j.msea.2011.03.013_bib0065 publication-title: Adv. Cryog. Eng.: Trans. Cryog. Eng. Conf. – volume: 29 start-page: 3858 year: 1994 ident: 10.1016/j.msea.2011.03.013_bib0090 publication-title: J. Mater. Sci. |
SSID | ssj0001405 |
Score | 2.395026 |
Snippet | ► Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ► Compression tests were performed at both room and evaluated... Fibre-reinforced aerogels have been prepared with higher strength but without sacrificing much of their thermal conductivity. While fibre-reinforced aerogels... Highlights ao Mechanical properties of fiber-reinforced aerogel were investigated by experiments. ao Compression tests were performed at both room and... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4830 |
SubjectTerms | Aerogel Aerogels Anelasticity, internal friction, stress relaxation, and mechanical resonances Compression Compression tests Condensed matter: structure, mechanical and thermal properties Debonding Evaluated temperature Exact sciences and technology Failure Fiber composites Fibers Fibre High temperature Mechanical and acoustical properties of condensed matter Mechanical properties Physics Scanning electron microscopy Strain Stress relaxation Thermal conductivity Thermal Protection System |
Title | Experimental investigation on mechanical properties of a fiber-reinforced silica aerogel composite |
URI | https://dx.doi.org/10.1016/j.msea.2011.03.013 https://www.proquest.com/docview/1692334313 https://www.proquest.com/docview/869851242 https://www.proquest.com/docview/907989199 |
Volume | 528 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQuwxN0xigdbDKk7ih0CSOfx1R1arbpF6gEjfLdm1UBEnVluv-9r2XHwU0lQNSTtFzEr_n-H22P38m5Lxw3jkuAiA3lidFUDxRXvtEWikKz1iQ85rlOxWTWfH7lt_ukWG3FwZplW3f3_TpdW_d3hm03hwsF4vBdaohXcGAHEXPIEniht-ikNjKL_8-0zxgAFHTGME4Qet240zD8XqE5tTKeLLLNGO7ktOnpV2Dy2Jz1sV_3Xadi8ZfyOcWRNKr5jsPyV4ov5KDF9KCR8SNXkj308WzmkZVUrgeA-74xQDRJU7Hr1BXlVaRWhqRQ5KsQi2pCv6h6wVO7FEbVtVdeKBIQkemVzgms_HoZjhJ2vMUEl9otklsPgf0I3V0SnkfOfMoXidTr_LAtQX0Y3M9j3luYyFiKvLMyqiZE4FDoDPPTsh-WZXhG6EcYK6ywnkVPUAQ7hBZWum4BTiQiXmPZJ0jjW_FxvHMiwfTscruDTrfoPNNygw4v0cutmWWjdTGm9a8i4951WAM5II3y_VfBXP7KtR6w1XhHvnZRdfAr4brJ7YM1dPaZALQMIPqwkPoDhslNGBYwD27TXQqtdKZ1t_fWYVT8rGZ2cbrjOxvVk_hB0CjjevXbb9PPlz9-jOZ_gPxKQ9G |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8rBNE9qnVgbMk_Y2ZU3i2LEfEQKVwfoykHizbNdGnSCp2vL_c5ePDjSVByQ_ReckvrPvfrbPPwN8L5x3TsiAyI3nSRGUSJTXPiltKQvPeSinTZbvRI4vi19X4moLjvqzMJRW2fn-1qc33rp7Muq0OZrPZqM_qcZwhRNyIj3DIKlewDaxU4kBbB-eno0na4eMc4gmkxHlE6rQnZ1p07xusUd1TJ78Z5rxTfHpzdwuUWuxve7iP8_dhKOTt7DT4Uh22P7qO9gK1Xt4_YBd8AO44wfs_Wz2j1CjrhiW20CHfslGbE4r8guiVmV1ZJZFSiNJFqFhVUUVseWM1vaYDYv6OtwwykOnZK_wES5Pji-Oxkl3pULiC81Xic2nCIBKHZ1S3kfBPfHXlalXeRDaIgCyuZ7GPLexkDGVeWbLqLmTQaCtM88_waCqq_AZmECkq6x0XkWPKEQ4Ape2dMIiIsjkdAhZr0jjO75xuvbixvSJZX8NKd-Q8k3KDSp_CD_WdeYt28aT0qK3j3nUZwyGgyfrHTwy5vpTRPdGG8ND-NZb1-Booy0UW4X6bmkyiYCYY3PxJWyDjJIaYSxCn80iOi210pnWu89swld4Ob74fW7OTydnX-BVu9BNZQ8Gq8Vd2EektHIH3Ui4By2YEfc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+on+mechanical+properties+of+a+fiber-reinforced+silica+aerogel+composite&rft.jtitle=Materials+science+%26+engineering.+A%2C+Structural+materials+%3A+properties%2C+microstructure+and+processing&rft.au=XIAOGUANG+YANG&rft.au=YANTAO+SUN&rft.au=DUOQI+SHI&rft.au=JINLONG+LIU&rft.date=2011-01-01&rft.pub=Elsevier&rft.issn=0921-5093&rft.volume=528&rft.issue=13-14&rft.spage=4830&rft.epage=4836&rft_id=info:doi/10.1016%2Fj.msea.2011.03.013&rft.externalDBID=n%2Fa&rft.externalDocID=24080935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-5093&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-5093&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-5093&client=summon |