Computational Study of Asian Propolis Compounds as Potential Anti-Type 2 Diabetes Mellitus Agents by Using Inverse Virtual Screening with the DIA-DB Web Server, Tanimoto Similarity Analysis, and Molecular Dynamic Simulation

Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis co...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 13; p. 3972
Main Authors Syaifie, Putri Hawa, Harisna, Azza Hanif, Nasution, Mochammad Arfin Fardiansyah, Arda, Adzani Gaisani, Nugroho, Dwi Wahyu, Jauhar, Muhammad Miftah, Mardliyati, Etik, Maulana, Nurwenda Novan, Rochman, Nurul Taufiqu, Noviyanto, Alfian, Banegas-Luna, Antonio J., Pérez-Sánchez, Horacio
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.06.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.
AbstractList Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.
Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.
Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2 R )-7,4′-dihydroxy-5-methoxy-8-methylflavone; ( RR )-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3- O -butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.
Author Pérez-Sánchez, Horacio
Banegas-Luna, Antonio J.
Syaifie, Putri Hawa
Nugroho, Dwi Wahyu
Noviyanto, Alfian
Harisna, Azza Hanif
Nasution, Mochammad Arfin Fardiansyah
Arda, Adzani Gaisani
Mardliyati, Etik
Rochman, Nurul Taufiqu
Jauhar, Muhammad Miftah
Maulana, Nurwenda Novan
AuthorAffiliation 2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia; marfin.f@sci.ui.ac.id
3 Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
4 Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; nurul@nano.or.id
1 Nano Center Indonesia, South Tangerang 15314, Indonesia; putri@nano.or.id (P.H.S.); harisna@nano.or.id (A.H.H.); gaisani.arda@nano.or.id (A.G.A.); wahyu@nano.or.id (D.W.N.); mmiftahjauhar@nano.or.id (M.M.J.); novan@nano.or.id (N.N.M.); a.noviyanto@nano.or.id (A.N.)
6 Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; ajbanegas@ucam.edu
5 Department of Mechanical Engineering, Faculty of Engineering, Mercu Buana University, Jakarta 11650, Indonesia
AuthorAffiliation_xml – name: 2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia; marfin.f@sci.ui.ac.id
– name: 6 Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; ajbanegas@ucam.edu
– name: 3 Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
– name: 4 Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; nurul@nano.or.id
– name: 1 Nano Center Indonesia, South Tangerang 15314, Indonesia; putri@nano.or.id (P.H.S.); harisna@nano.or.id (A.H.H.); gaisani.arda@nano.or.id (A.G.A.); wahyu@nano.or.id (D.W.N.); mmiftahjauhar@nano.or.id (M.M.J.); novan@nano.or.id (N.N.M.); a.noviyanto@nano.or.id (A.N.)
– name: 5 Department of Mechanical Engineering, Faculty of Engineering, Mercu Buana University, Jakarta 11650, Indonesia
Author_xml – sequence: 1
  givenname: Putri Hawa
  orcidid: 0000-0001-8566-7960
  surname: Syaifie
  fullname: Syaifie, Putri Hawa
– sequence: 2
  givenname: Azza Hanif
  surname: Harisna
  fullname: Harisna, Azza Hanif
– sequence: 3
  givenname: Mochammad Arfin Fardiansyah
  orcidid: 0000-0001-5243-8969
  surname: Nasution
  fullname: Nasution, Mochammad Arfin Fardiansyah
– sequence: 4
  givenname: Adzani Gaisani
  orcidid: 0000-0002-2674-6295
  surname: Arda
  fullname: Arda, Adzani Gaisani
– sequence: 5
  givenname: Dwi Wahyu
  orcidid: 0000-0002-7020-8582
  surname: Nugroho
  fullname: Nugroho, Dwi Wahyu
– sequence: 6
  givenname: Muhammad Miftah
  orcidid: 0000-0002-5826-5904
  surname: Jauhar
  fullname: Jauhar, Muhammad Miftah
– sequence: 7
  givenname: Etik
  surname: Mardliyati
  fullname: Mardliyati, Etik
– sequence: 8
  givenname: Nurwenda Novan
  surname: Maulana
  fullname: Maulana, Nurwenda Novan
– sequence: 9
  givenname: Nurul Taufiqu
  surname: Rochman
  fullname: Rochman, Nurul Taufiqu
– sequence: 10
  givenname: Alfian
  orcidid: 0000-0002-6371-6765
  surname: Noviyanto
  fullname: Noviyanto, Alfian
– sequence: 11
  givenname: Antonio J.
  orcidid: 0000-0003-1158-8877
  surname: Banegas-Luna
  fullname: Banegas-Luna, Antonio J.
– sequence: 12
  givenname: Horacio
  orcidid: 0000-0003-4468-7898
  surname: Pérez-Sánchez
  fullname: Pérez-Sánchez, Horacio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35807241$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9u0zAUxiM0xLbCA3CDLHHDxQK248TJDVJp-VNpE5PawWXkOCetK8fubGcoT8ur4K5j2obElR2f3_mO_eU7TY6MNZAkrwl-n2UV_tBbDXLQ4Ckn8YDTZ8kJYRSnGWbV0YP9cXLq_RZjShjJXyTHWV5iThk5SX7PbL8bggjKGqHRMgztiGyHpl4Jgy6d3VmtPNpTdjCtR8KjSxvABBXxaVzS1bgDRNFciQYCeHQBWqsweDRdR8yjZkRXXpk1WpgbcB7QD-XCsB8mHYDZV36psEFhA2i-mKbzT-gnNGgJLuJnaCWM6m2waKl6pYVTYYxzhR698mdImBZdHGwQDs1HI3ol92j83r_pZfK8E9rDq7t1klx9-byafUvPv39dzKbnqWRVFtKq66CqhGjagpaiid5E67DAkkkJVJZ5KxmFWO5YkZUNaRkr2pIVwGSHK9Jlk2Rx0G2t2NY7p3rhxtoKVd8eWLeuhQtKaqglx6TJKc8wEMahFWWBc85B5gXGmSij1seD1m5oemhldNEJ_Uj0ccWoTb22N3VFizLnWRR4dyfg7PUAPtS98jL-FmHADr6OGOc0jssj-vYJurWDi_beUgXmOYvZmiRvHt7o_ip_cxQBcgCks9476O4Rgut9Vut_shp7-JMeqQ5BjI9S-j-dfwD_zvWj
CitedBy_id crossref_primary_10_1016_j_compbiolchem_2024_108057
crossref_primary_10_1016_j_heliyon_2024_e33636
crossref_primary_10_1002_cbdv_202401947
crossref_primary_10_1016_j_jksus_2023_102933
crossref_primary_10_1080_07391102_2023_2301534
crossref_primary_10_1016_j_jff_2023_105688
crossref_primary_10_1177_11779322231224187
crossref_primary_10_3389_fgene_2022_937309
Cites_doi 10.1016/j.diabres.2013.11.002
10.1371/journal.pone.0176629
10.1016/j.foodchem.2006.03.045
10.1186/s12906-019-2677-3
10.1016/j.intimp.2015.01.012
10.1021/np010486c
10.3390/molecules24193576
10.1002/iub.1996
10.1590/S1517-83822010000400030
10.1155/2013/549627
10.1016/j.fct.2010.05.053
10.1007/s11274-007-9430-7
10.1021/jf071187h
10.1016/j.compbiomed.2021.105025
10.3390/ph12030102
10.1016/j.sjbs.2016.12.012
10.1007/s00114-008-0383-y
10.2337/diaspect.17.3.183
10.1111/jam.14633
10.1021/ci500588j
10.1016/S0009-2797(02)00214-4
10.1016/j.phytol.2014.08.022
10.1111/j.1474-9726.2011.00786.x
10.1016/j.fitote.2013.04.008
10.7717/peerj.4756
10.1016/B978-012369520-8.50018-8
10.1016/j.ejphar.2020.173664
10.1248/cpb.55.926
10.1021/acs.jcim.1c00203
10.1002/cbdv.201200165
10.1248/bpb.32.2075
10.1002/jcc.21334
10.1016/j.biopha.2017.08.067
10.1016/j.phymed.2003.09.007
10.1016/j.intimp.2010.06.013
10.3390/molecules16043444
10.1016/S0308-8146(03)00216-4
10.1016/j.bbrc.2008.05.146
10.3390/nu11112705
10.3390/molecules25235503
10.1016/S2095-4964(17)60360-1
10.1016/S0169-409X(96)00423-1
10.1371/journal.pone.0103866
10.1038/s41598-019-55465-4
10.1007/s00436-010-2039-z
10.1016/j.jfda.2017.10.002
10.3390/ijms20235913
10.1902/jop.2016.150694
10.1016/j.bioorg.2020.104110
10.1038/srep41453
10.1038/s41598-019-43838-8
10.1016/j.foodres.2019.05.028
10.1016/j.phrs.2018.01.015
10.1134/S0026893308040195
10.1016/j.coph.2004.09.001
10.1016/j.fitote.2017.08.011
10.1007/s00580-014-1967-x
10.1002/cbdv.201900094
10.1021/np9002433
10.1016/j.bmcl.2014.05.065
10.1016/j.chemosphere.2017.07.127
10.4161/bioe.21546
10.1016/j.biopha.2016.11.057
10.1016/j.fct.2011.06.060
10.1021/jm020017n
10.1111/jfbc.12958
10.1155/2016/9641965
10.1186/1472-6882-12-27
10.1097/CM9.0000000000000006
10.1021/np900118z
10.1016/j.biopha.2020.110435
10.1016/j.intimp.2016.10.008
10.1110/ps.051681605
10.1080/10629360802083871
10.1002/jsfa.3969
10.1371/journal.pone.0119264
10.1371/journal.pone.0128311
10.1002/cbdv.201900492
10.1515/znc-2001-11-1231
10.1016/j.jdiacomp.2017.08.005
10.1186/s13321-018-0283-x
10.3390/molecules191219610
10.1016/j.cccn.2005.05.009
10.1271/bbb.120580
10.1038/ejcn.2017.94
10.7150/ijms.7373
10.4014/jmb.1905.05027
10.1021/np050009k
10.1080/14786419.2010.509060
10.1021/acs.jnatprod.7b00375
10.1080/07391102.2018.1465851
10.1038/nature03711
10.1021/acs.jnatprod.8b00541
10.1515/znc-2001-7-828
10.1016/j.foodchem.2006.10.006
10.1515/znc-2000-9-1019
10.1016/j.phytochem.2012.02.018
10.1016/j.jep.2005.01.046
10.1063/1.470117
10.1186/1752-153X-4-8
10.1186/1758-2946-3-33
10.1016/j.jep.2012.02.047
10.3389/fendo.2017.00006
10.1021/acs.jpcb.8b01321
10.1021/acsomega.7b00294
10.1016/j.phymed.2019.153098
10.3390/ijms17060920
10.3390/s130810539
10.1016/j.bjp.2018.12.004
10.1016/j.lwt.2017.08.060
10.2337/db11-1511
10.1186/1472-6882-13-2
10.1002/jcc.21816
10.1039/C9FO02051A
10.1086/301790
10.1016/j.chroma.2014.04.068
10.1101/gr.1239303
10.1186/s12906-015-0759-4
10.3390/foods9040491
10.1002/cbdv.201900189
10.1515/znc-2002-9-1025
10.2337/db12-1249
10.1038/414799a
10.1371/journal.pone.0216074
10.1016/j.mce.2009.09.024
10.2337/diaspect.27.2.100
10.1371/journal.pone.0126886
10.1002/ptr.6356
10.1056/NEJMoa054862
10.1016/j.phymed.2017.06.001
10.1002/cbdv.201900489
10.1007/s00125-017-4342-z
10.1016/j.phyplu.2022.100280
10.1155/2014/278493
10.1021/jf3042775
10.1016/S0140-6736(02)07952-7
10.1186/1752-153X-7-158
10.1530/JOE-15-0447
10.3390/molecules24102002
10.1186/s12906-018-2215-8
10.3390/molecules24071369
10.1016/S2095-4964(17)60315-7
10.1186/s13321-016-0117-7
10.1016/j.bjp.2015.03.006
10.1016/j.bbamcr.2015.09.022
10.1016/j.anaerobe.2007.02.001
10.1038/nrdp.2015.19
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.3109/13880209.2016.1151444
10.1155/2018/7971842
10.1155/2017/7074147
10.3389/fphys.2019.00148
10.1038/oby.2008.505
10.25135/rnp.48.17.11.075
10.1021/acs.jcim.0c00107
10.1038/s41387-019-0095-8
10.1002/jcc.21287
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/molecules27133972
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Medicine
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_c701b52730e147eda860577ec56003a8
PMC9268573
35807241
10_3390_molecules27133972
Genre Journal Article
GeographicLocations Asia
GeographicLocations_xml – name: Asia
GrantInformation_xml – fundername: Fundación Séneca del Centro de Coordi-nación de la Investigación de la Región de Murcia
  grantid: 20988/PI/18
– fundername: Spanish Ministry of Economy and Competitiveness
  grantid: CTQ2017-87974-R
– fundername: Arctic University of Norway
– fundername: Poznan Supercomputing Centre
– fundername: Research Council of Norway
– fundername: Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia
  grantid: 20988/PI/18
– fundername: NLHPC
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-9ffe99aabd628ab7244200a0c4cce2c85dc42eabdf4638b1d446d846e4cf091f3
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:11:47 EDT 2025
Thu Aug 21 13:37:14 EDT 2025
Fri Jul 11 03:54:31 EDT 2025
Fri Jul 25 19:55:18 EDT 2025
Wed Feb 19 02:25:06 EST 2025
Tue Jul 01 03:12:27 EDT 2025
Thu Apr 24 22:53:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords propolis
DIA-DB
in silico
virtual screening
molecular dynamic
type-2 diabetes mellitus
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-9ffe99aabd628ab7244200a0c4cce2c85dc42eabdf4638b1d446d846e4cf091f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6371-6765
0000-0003-1158-8877
0000-0002-2674-6295
0000-0001-8566-7960
0000-0003-4468-7898
0000-0001-5243-8969
0000-0002-7020-8582
0000-0002-5826-5904
OpenAccessLink https://doaj.org/article/c701b52730e147eda860577ec56003a8
PMID 35807241
PQID 2686075471
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_c701b52730e147eda860577ec56003a8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9268573
proquest_miscellaneous_2687725605
proquest_journals_2686075471
pubmed_primary_35807241
crossref_primary_10_3390_molecules27133972
crossref_citationtrail_10_3390_molecules27133972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220621
PublicationDateYYYYMMDD 2022-06-21
PublicationDate_xml – month: 6
  year: 2022
  text: 20220621
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Seckl (ref_122) 2004; 4
Guariguata (ref_2) 2014; 103
ref_139
Aronoff (ref_118) 2004; 17
Ahamad (ref_165) 2021; 890
Chi (ref_55) 2020; 17
ref_99
ref_98
Usman (ref_60) 2016; 27
Okamoto (ref_64) 2015; 25
Nakamura (ref_116) 2010; 10
Essmann (ref_177) 1995; 103
Gauthier (ref_134) 2012; 2012
Graham (ref_126) 2006; 354
Burwinkel (ref_133) 1998; 62
Zander (ref_138) 2002; 359
Koru (ref_114) 2007; 13
Munoz (ref_19) 2020; 60
Shi (ref_32) 2012; 60
Chen (ref_137) 2018; 6
Duran (ref_82) 2011; 108
Yang (ref_35) 2010; 90
Mohammadzadeh (ref_50) 2007; 103
Ragasa (ref_71) 2015; 25
Soares (ref_3) 2017; 71
Popova (ref_69) 2013; 7
Zhan (ref_128) 2019; 37
Tanvir (ref_21) 2019; 43
Sun (ref_88) 2018; 2018
Chen (ref_95) 2018; 26
Bakhashwain (ref_14) 2017; 2017
Trusheva (ref_46) 2010; 4
ref_20
Shrestha (ref_68) 2007; 55
Saito (ref_153) 2008; 372
Usia (ref_38) 2002; 65
ref_28
Hatjina (ref_80) 2013; 68
Sander (ref_170) 2015; 55
Ralph (ref_1) 2015; 1
Naik (ref_43) 2013; 10
Brooks (ref_174) 2009; 30
Kartal (ref_86) 2002; 57
Nie (ref_31) 2013; 13
Djebli (ref_13) 2020; 44
Said (ref_76) 2006; 19
Saltiel (ref_124) 2001; 414
Abdalla (ref_161) 2022; 141
Sulaiman (ref_52) 2011; 49
Nguyen (ref_105) 2017; 80
Abutaha (ref_57) 2019; 30
Popova (ref_108) 2005; 12
Shaheen (ref_56) 2011; 25
Ohsawa (ref_65) 2016; 40
Morton (ref_123) 2010; 316
Asgharpur (ref_48) 2020; 11
Siheri (ref_10) 2017; 7
ref_152
ref_155
Narter (ref_77) 2018; 12
ref_73
ref_156
Zhang (ref_26) 2016; 54
An (ref_144) 2016; 228
ref_160
Gooley (ref_163) 2005; 14
Veber (ref_148) 2002; 45
Anees (ref_17) 2016; 87
Yuan (ref_44) 2020; 11
Elnakady (ref_74) 2017; 7
Ahn (ref_89) 2007; 101
Karimian (ref_16) 2019; 33
Visinoni (ref_130) 2012; 61
Paluch (ref_67) 2020; 129
ref_140
Sadhana (ref_41) 2017; 15
ref_143
ref_146
Fernandes (ref_132) 2018; 122
Matschinsky (ref_131) 2019; 10
Mirasierra (ref_125) 2012; 11
Banck (ref_169) 2011; 3
Kumazawa (ref_102) 2004; 84
Patlewicz (ref_171) 2008; 19
Chaudhury (ref_4) 2017; 8
Lee (ref_90) 2014; 24
Noureddine (ref_58) 2017; 95
Yusuf (ref_7) 2022; 2
Aru (ref_79) 2019; 16
Lyoussi (ref_39) 2019; 16
Xuan (ref_27) 2016; 2016
Guzelmeric (ref_84) 2018; 87
Bayaqoob (ref_106) 2017; 24
Frankland (ref_47) 2015; 18
Zakerkish (ref_12) 2019; 9
Guzelmeric (ref_81) 2019; 16
Lipinski (ref_147) 1997; 23
Zoete (ref_175) 2011; 32
Pang (ref_5) 2019; 132
Miyata (ref_45) 2019; 82
ref_172
Popova (ref_94) 2010; 21
Wagner (ref_120) 2013; 62
Desamero (ref_70) 2019; 9
Eberhardt (ref_167) 2021; 61
Shimomura (ref_91) 2013; 93
Shimizu (ref_151) 2012; 3
Nagao (ref_157) 2009; 17
ref_59
(ref_22) 2020; 129
Yang (ref_34) 2011; 16
Shuai (ref_29) 2014; 79
Rena (ref_145) 2017; 60
Shannon (ref_168) 2003; 13
Hanif (ref_115) 2021; 26
Ozdal (ref_107) 2019; 122
Xu (ref_6) 2018; 130
Lei (ref_150) 2016; 8
Monsalve (ref_135) 2013; 2013
Sha (ref_37) 2009; 4
Trott (ref_166) 2009; 31
ref_164
ref_66
Shimomura (ref_93) 2012; 76
Samadi (ref_11) 2017; 15
Bazmandegan (ref_49) 2017; 85
Athikomkulchai (ref_96) 2013; 88
Kumazawa (ref_53) 2007; 55
Keskin (ref_87) 2001; 56
Awale (ref_63) 2005; 68
Kargar (ref_85) 2017; 186
Wang (ref_30) 2013; 2013
Li (ref_154) 2019; 9
Sorkun (ref_112) 2001; 56
Lobanov (ref_162) 2008; 42
James (ref_173) 2015; 1
ref_119
ref_33
Chewchinda (ref_101) 2019; 29
ref_110
Sha (ref_36) 2009; 72
Velikova (ref_113) 2000; 55
Sever (ref_159) 2020; 102
Jin (ref_92) 2005; 362
Hu (ref_15) 2012; 2012
Popova (ref_104) 2021; 86
Bursal (ref_83) 2010; 48
Seyhan (ref_78) 2019; 71
Kristinsson (ref_121) 2015; 1853
Silici (ref_109) 2005; 99
Li (ref_61) 2009; 72
ref_103
Gourgari (ref_141) 2017; 31
Dong (ref_149) 2018; 10
Kumazawa (ref_54) 2008; 95
DeFronzo (ref_142) 2014; 27
Almutairi (ref_72) 2014; 10
Kasote (ref_40) 2017; 122
Huang (ref_9) 2014; 19
Srivastava (ref_127) 2003; 143–144
ref_100
Jerz (ref_75) 2014; 1347
Yang (ref_158) 2005; 436
Chen (ref_136) 2014; 2014
Sun (ref_117) 2015; 2015
Boonsai (ref_97) 2014; 11
Mahmood (ref_129) 2016; 25
Tukmechi (ref_51) 2010; 41
Li (ref_62) 2009; 32
ref_8
Li (ref_25) 2016; 1012
Cao (ref_23) 2017; 34
Bekas (ref_18) 2015; 9044
Hess (ref_176) 1997; 18
Silici (ref_111) 2007; 23
Botta (ref_24) 2017; 2
Choudhari (ref_42) 2012; 141
References_xml – volume: 103
  start-page: 137
  year: 2014
  ident: ref_2
  article-title: Global estimates of diabetes prevalence for 2013 and projections for 2035
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2013.11.002
– ident: ref_59
  doi: 10.1371/journal.pone.0176629
– volume: 101
  start-page: 1383
  year: 2007
  ident: ref_89
  article-title: Antioxidant activity and constituents of propolis collected in various areas of China
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.03.045
– ident: ref_143
  doi: 10.1186/s12906-019-2677-3
– volume: 25
  start-page: 189
  year: 2015
  ident: ref_64
  article-title: Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2015.01.012
– volume: 65
  start-page: 673
  year: 2002
  ident: ref_38
  article-title: Constituents of Chinese propolis and their antiproliferative activities
  publication-title: J. Nat. Prod.
  doi: 10.1021/np010486c
– ident: ref_140
  doi: 10.3390/molecules24193576
– volume: 71
  start-page: 619
  year: 2019
  ident: ref_78
  article-title: Different propolis samples, phenolic content, and breast cancer cell lines: Variable cytotoxicity ranging from ineffective to potent
  publication-title: IUBMB Life
  doi: 10.1002/iub.1996
– volume: 41
  start-page: 1086
  year: 2010
  ident: ref_51
  article-title: In vitro antibacterial activities of ethanol extract of Iranian propolis (EEIP) against fish pathogenic bacteria (Aeromonas hydrophila, Yersinia ruckeri & Streptococcus iniae)
  publication-title: Braz. J. Microbiol.
  doi: 10.1590/S1517-83822010000400030
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref_135
  article-title: Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases
  publication-title: Mediat. Inflamm.
  doi: 10.1155/2013/549627
– volume: 48
  start-page: 2227
  year: 2010
  ident: ref_83
  article-title: Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2010.05.053
– volume: 18
  start-page: 18
  year: 2015
  ident: ref_47
  article-title: Chemoprotection of MNNG-initiated gastric cancer in rats using Iranian propolis
  publication-title: Arch. Iran. Med.
– volume: 23
  start-page: 1797
  year: 2007
  ident: ref_111
  article-title: Antibacterial activity and phytochemical evidence for the plant origin of Turkish propolis from different regions
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-007-9430-7
– volume: 55
  start-page: 7722
  year: 2007
  ident: ref_53
  article-title: Antioxidant prenylated flavonoids from propolis collected in Okinawa, Japan
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf071187h
– volume: 141
  start-page: 105025
  year: 2022
  ident: ref_161
  article-title: Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.105025
– ident: ref_139
  doi: 10.3390/ph12030102
– volume: 24
  start-page: 1094
  year: 2017
  ident: ref_106
  article-title: Chemical compositions and characteristics of organic compounds in propolis from Yemen
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2016.12.012
– ident: ref_172
– volume: 68
  start-page: 429
  year: 2013
  ident: ref_80
  article-title: More insight into the chemical composition of Greek propolis; Differences and similarities with Turkish propolis
  publication-title: Z. Nat. C
– volume: 95
  start-page: 781
  year: 2008
  ident: ref_54
  article-title: Plant origin of Okinawan propolis: Honeybee behavior observation and phytochemical analysis
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-008-0383-y
– volume: 17
  start-page: 183
  year: 2004
  ident: ref_118
  article-title: Glucose Metabolism and Regulation: Beyond Insulin and Glucagon
  publication-title: Diabetes Spectr.
  doi: 10.2337/diaspect.17.3.183
– volume: 129
  start-page: 296
  year: 2020
  ident: ref_22
  article-title: Phenolic composition and biological activities of geographically different type of propolis and black cottonwood resins against oral streptococci, vaginal microbiota and phytopathogenic Fusarium species
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14633
– volume: 55
  start-page: 460
  year: 2015
  ident: ref_170
  article-title: DataWarrior: An open-source program for chemistry aware data visualization and analysis
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci500588j
– volume: 27
  start-page: 46
  year: 2016
  ident: ref_60
  article-title: Phytochemical composition and activity against hyperglycaemia of Malaysian propolis in diabetic rats
  publication-title: Biomed. Res.
– volume: 143–144
  start-page: 333
  year: 2003
  ident: ref_127
  article-title: Regulation of aldose reductase and the polyol pathway activity by nitric oxide
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/S0009-2797(02)00214-4
– volume: 10
  start-page: 160
  year: 2014
  ident: ref_72
  article-title: Isolation of diterpenes and flavonoids from a new type of propolis from Saudi Arabia
  publication-title: Phytochem. Lett.
  doi: 10.1016/j.phytol.2014.08.022
– volume: 11
  start-page: 284
  year: 2012
  ident: ref_125
  article-title: Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2011.00786.x
– volume: 44
  start-page: e13267
  year: 2020
  ident: ref_13
  article-title: In vivo and in vitro anti-diabetic activity of ethanolic propolis extract
  publication-title: J. Food Biochem.
– volume: 88
  start-page: 96
  year: 2013
  ident: ref_96
  article-title: Chemical constituents of Thai propolis
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2013.04.008
– volume: 6
  start-page: e4756
  year: 2018
  ident: ref_137
  article-title: A strategy to find novel candidate anti-Alzheimer’s disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants
  publication-title: PeerJ
  doi: 10.7717/peerj.4756
– volume: 26
  start-page: 100969
  year: 2021
  ident: ref_115
  article-title: In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis
  publication-title: Biochem. Biophys. Rep.
– ident: ref_152
  doi: 10.1016/B978-012369520-8.50018-8
– volume: 890
  start-page: 173664
  year: 2021
  ident: ref_165
  article-title: Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 Mpro, using molecular docking and dynamics simulation studies
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2020.173664
– volume: 55
  start-page: 926
  year: 2007
  ident: ref_68
  article-title: Chemical constituents of Nepalese propolis (II)
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.55.926
– volume: 11
  start-page: 191
  year: 2020
  ident: ref_48
  article-title: Applying GC-MS analysis to identify chemical composition of Iranian propolis prepared with different solvent and evaluation of its biological activity
  publication-title: Casp. J. Intern. Med.
– volume: 61
  start-page: 3891
  year: 2021
  ident: ref_167
  article-title: AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.1c00203
– volume: 10
  start-page: 649
  year: 2013
  ident: ref_43
  article-title: Essential Oil of Indian Propolis: Chemical Composition and Repellency against the Honeybee Apis florea
  publication-title: Chem. Biodivers.
  doi: 10.1002/cbdv.201200165
– volume: 32
  start-page: 2075
  year: 2009
  ident: ref_62
  article-title: Cytotoxic constituents of propolis from Myanmar and their structure–activity relationship
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.32.2075
– volume: 31
  start-page: 455
  year: 2009
  ident: ref_166
  article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– volume: 95
  start-page: 298
  year: 2017
  ident: ref_58
  article-title: Chemical characterization and cytotoxic activity evaluation of Lebanese propolis
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.08.067
– volume: 12
  start-page: 221
  year: 2005
  ident: ref_108
  article-title: Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2003.09.007
– volume: 10
  start-page: 1107
  year: 2010
  ident: ref_116
  article-title: Effects of propolis from different areas on mast cell degranulation and identification of the effective components in propolis
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2010.06.013
– volume: 16
  start-page: 3444
  year: 2011
  ident: ref_34
  article-title: Antioxidant compounds from propolis collected in Anhui, China
  publication-title: Molecules
  doi: 10.3390/molecules16043444
– volume: 84
  start-page: 329
  year: 2004
  ident: ref_102
  article-title: Antioxidant activity of propolis of various geographic origins
  publication-title: Food Chem.
  doi: 10.1016/S0308-8146(03)00216-4
– volume: 372
  start-page: 835
  year: 2008
  ident: ref_153
  article-title: Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ2
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2008.05.146
– ident: ref_8
  doi: 10.3390/nu11112705
– ident: ref_156
  doi: 10.3390/molecules25235503
– volume: 15
  start-page: 483
  year: 2017
  ident: ref_41
  article-title: Marker-based standardization and investigation of nutraceutical potential of Indian propolis
  publication-title: J. Integr. Med.
  doi: 10.1016/S2095-4964(17)60360-1
– volume: 23
  start-page: 3
  year: 1997
  ident: ref_147
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(96)00423-1
– ident: ref_164
  doi: 10.1371/journal.pone.0103866
– volume: 9
  start-page: 19635
  year: 2019
  ident: ref_70
  article-title: Tumor-suppressing potential of stingless bee propolis in in vitro and in vivo models of differentiated-type gastric adenocarcinoma
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55465-4
– volume: 108
  start-page: 95
  year: 2011
  ident: ref_82
  article-title: GC-MS analysis and antileishmanial activities of two Turkish propolis types
  publication-title: Parasitol. Res.
  doi: 10.1007/s00436-010-2039-z
– volume: 26
  start-page: 761
  year: 2018
  ident: ref_95
  article-title: Antibacterial activity of propolins from Taiwanese green propolis
  publication-title: J. Food Drug Anal.
  doi: 10.1016/j.jfda.2017.10.002
– ident: ref_146
  doi: 10.3390/ijms20235913
– volume: 87
  start-page: 1418
  year: 2016
  ident: ref_17
  article-title: Propolis Improves Periodontal Status and Glycemic Control in Patients With Type 2 Diabetes Mellitus and Chronic Periodontitis: A Randomized Clinical Trial
  publication-title: J. Periodontol.
  doi: 10.1902/jop.2016.150694
– volume: 102
  start-page: 104110
  year: 2020
  ident: ref_159
  article-title: Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds
  publication-title: Bioorg. Chem.
  doi: 10.1016/j.bioorg.2020.104110
– volume: 7
  start-page: 41453
  year: 2017
  ident: ref_74
  article-title: Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia
  publication-title: Sci. Rep.
  doi: 10.1038/srep41453
– volume: 9
  start-page: 7289
  year: 2019
  ident: ref_12
  article-title: The Effect of Iranian Propolis on Glucose Metabolism, Lipid Profile, Insulin Resistance, Renal Function and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Clinical Trial
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43838-8
– volume: 122
  start-page: 528
  year: 2019
  ident: ref_107
  article-title: Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2019.05.028
– volume: 130
  start-page: 451
  year: 2018
  ident: ref_6
  article-title: Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2018.01.015
– volume: 42
  start-page: 623
  year: 2008
  ident: ref_162
  article-title: V Radius of gyration as an indicator of protein structure compactness
  publication-title: Mol. Biol.
  doi: 10.1134/S0026893308040195
– volume: 4
  start-page: 597
  year: 2004
  ident: ref_122
  article-title: 11β-hydroxysteroid dehydrogenases: Changing glucocorticoid action
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/j.coph.2004.09.001
– volume: 122
  start-page: 52
  year: 2017
  ident: ref_40
  article-title: HPLC, NMR based chemical profiling and biological characterisation of Indian propolis
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2017.08.011
– volume: 25
  start-page: 1253
  year: 2016
  ident: ref_129
  article-title: A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes
  publication-title: Comp. Clin. Path.
  doi: 10.1007/s00580-014-1967-x
– volume: 16
  start-page: e1900094
  year: 2019
  ident: ref_39
  article-title: Insight on Propolis from Mediterranean Countries: Chemical Composition, Biological Activities and Application Fields
  publication-title: Chem. Biodivers.
  doi: 10.1002/cbdv.201900094
– volume: 72
  start-page: 1283
  year: 2009
  ident: ref_61
  article-title: Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line
  publication-title: J. Nat. Prod.
  doi: 10.1021/np9002433
– volume: 24
  start-page: 3503
  year: 2014
  ident: ref_90
  article-title: Phenylpropanoid acid esters from Korean propolis and their antioxidant activities
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2014.05.065
– volume: 186
  start-page: 140
  year: 2017
  ident: ref_85
  article-title: Biomonitoring, status and source risk assessment of polycyclic aromatic hydrocarbons (PAHs) using honeybees, pine tree leaves, and propolis
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.127
– volume: 3
  start-page: 352
  year: 2012
  ident: ref_151
  article-title: The potential bioproduction of the pharmaceutical agent sakuranetin, a flavonoid phytoalexin in rice
  publication-title: Bioengineered
  doi: 10.4161/bioe.21546
– volume: 19
  start-page: 58
  year: 2006
  ident: ref_76
  article-title: Chemical composition of Egyptian and UAE propolis
  publication-title: Pak. J. Pharm. Sci.
– volume: 85
  start-page: 503
  year: 2017
  ident: ref_49
  article-title: Brown propolis attenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.11.057
– volume: 49
  start-page: 2415
  year: 2011
  ident: ref_52
  article-title: Chemical characterization of iraqi propolis samples and assessing their antioxidant potentials
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2011.06.060
– volume: 45
  start-page: 2615
  year: 2002
  ident: ref_148
  article-title: Molecular properties that influence the oral bioavailability of drug candidates
  publication-title: J. Med. Chem.
  doi: 10.1021/jm020017n
– volume: 43
  start-page: e12958
  year: 2019
  ident: ref_21
  article-title: Ameliorative effects of ethanolic constituents of Bangladeshi propolis against tetracycline-induced hepatic and renal toxicity in rats
  publication-title: J. Food Biochem.
  doi: 10.1111/jfbc.12958
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_27
  article-title: Bioactive Components of Chinese Propolis Water Extract on Antitumor Activity and Quality Control
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1155/2016/9641965
– ident: ref_100
  doi: 10.1186/1472-6882-12-27
– volume: 132
  start-page: 78
  year: 2019
  ident: ref_5
  article-title: Herbal medicine in the treatment of patients with type 2 diabetes mellitus
  publication-title: Chin. Med. J. (Engl.)
  doi: 10.1097/CM9.0000000000000006
– volume: 72
  start-page: 799
  year: 2009
  ident: ref_36
  article-title: Cytotoxic constituents of Chinese propolis
  publication-title: J. Nat. Prod.
  doi: 10.1021/np900118z
– volume: 129
  start-page: 110435
  year: 2020
  ident: ref_67
  article-title: Antimicrobial activity of Apis mellifera L. and Trigona sp. propolis from Nepal and its phytochemical analysis
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110435
– volume: 40
  start-page: 550
  year: 2016
  ident: ref_65
  article-title: Inhibitory effects of flavonoids extracted from Nepalese propolis on the LPS signaling pathway
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2016.10.008
– volume: 14
  start-page: 2955
  year: 2005
  ident: ref_163
  article-title: A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics
  publication-title: Protein Sci.
  doi: 10.1110/ps.051681605
– volume: 19
  start-page: 495
  year: 2008
  ident: ref_171
  article-title: An evaluation of the implementation of the Cramer classification scheme in the Toxtree software
  publication-title: SAR QSAR Environ. Res.
  doi: 10.1080/10629360802083871
– volume: 90
  start-page: 1268
  year: 2010
  ident: ref_35
  article-title: Common aroma-active components of propolis from 23 regions of China
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.3969
– ident: ref_160
  doi: 10.1371/journal.pone.0119264
– ident: ref_73
  doi: 10.1371/journal.pone.0128311
– volume: 16
  start-page: e1900492
  year: 2019
  ident: ref_81
  article-title: A New Type of Anatolian Propolis: Evaluation of Its Chemical Composition, Activity Profile and Botanical Origin
  publication-title: Chem. Biodivers.
  doi: 10.1002/cbdv.201900492
– volume: 56
  start-page: 1112
  year: 2001
  ident: ref_87
  article-title: Antibacterial activity and chemical composition of Turkish propolis
  publication-title: Z. Naturforsch. C
  doi: 10.1515/znc-2001-11-1231
– volume: 31
  start-page: 1719
  year: 2017
  ident: ref_141
  article-title: A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data
  publication-title: J. Diabetes Complicat.
  doi: 10.1016/j.jdiacomp.2017.08.005
– volume: 10
  start-page: 29
  year: 2018
  ident: ref_149
  article-title: ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-018-0283-x
– volume: 19
  start-page: 19610
  year: 2014
  ident: ref_9
  article-title: Recent advances in the chemical composition of propolis
  publication-title: Molecules
  doi: 10.3390/molecules191219610
– volume: 362
  start-page: 57
  year: 2005
  ident: ref_92
  article-title: Caffeic acid phenyl ester in propolis is a strong inhibitor of matrix metalloproteinase-9 and invasion inhibitor: Isolation and identification
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cccn.2005.05.009
– volume: 76
  start-page: 2135
  year: 2012
  ident: ref_93
  article-title: Identification of the plant origin of propolis from jeju Island, Korea, by observation of honeybee behavior and phytochemical analysis
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.120580
– volume: 71
  start-page: 801
  year: 2017
  ident: ref_3
  article-title: Type 2 diabetes in Asia: Where do we go from here?
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/ejcn.2017.94
– volume: 9044
  start-page: 655
  year: 2015
  ident: ref_18
  article-title: DIA-DB: A web-accessible database for the prediction of diabetes drugs
  publication-title: Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.)
– volume: 11
  start-page: 327
  year: 2014
  ident: ref_97
  article-title: Antibacterial activity of a cardanol from Thai Apis mellifera propolis
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.7373
– volume: 30
  start-page: 893
  year: 2019
  ident: ref_57
  article-title: Apoptotic Potential and Chemical Composition of Jordanian Propolis Extract against Different Cancer Cell Lines
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1905.05027
– volume: 68
  start-page: 858
  year: 2005
  ident: ref_63
  article-title: Neoflavonoids and related constituents from nepalese propolis and their nitric oxide production inhibitory activity
  publication-title: J. Nat. Prod.
  doi: 10.1021/np050009k
– volume: 2015
  start-page: 1
  year: 2015
  ident: ref_117
  article-title: Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts
  publication-title: Evid. Based Complement. Altern. Med.
– volume: 25
  start-page: 1312
  year: 2011
  ident: ref_56
  article-title: Chemical constituents of Jordanian propolis
  publication-title: Nat. Prod. Res.
  doi: 10.1080/14786419.2010.509060
– volume: 80
  start-page: 2345
  year: 2017
  ident: ref_105
  article-title: Chemical Constituents of Propolis from Vietnamese Trigona minor and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.7b00375
– volume: 2012
  start-page: 1
  year: 2012
  ident: ref_15
  article-title: Effects of encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats
  publication-title: Evid.-Based Complement. Altern. Med.
– volume: 37
  start-page: 1724
  year: 2019
  ident: ref_128
  article-title: Exploring the interactional details between aldose reductase (AKR1B1) and 3-Mercapto-5H-1,2,4-triazino [5,6-b]indole-5-acetic acid through molecular dynamics simulations
  publication-title: J. Biomol. Struct. Dyn.
  doi: 10.1080/07391102.2018.1465851
– volume: 436
  start-page: 356
  year: 2005
  ident: ref_158
  article-title: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature03711
– volume: 82
  start-page: 205
  year: 2019
  ident: ref_45
  article-title: Propolis Components from Stingless Bees Collected on South Sulawesi, Indonesia, and Their Xanthine Oxidase Inhibitory Activity
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.8b00541
– volume: 56
  start-page: 666
  year: 2001
  ident: ref_112
  article-title: Determination of chemical composition of Turkish propolis
  publication-title: Z. Naturforsch. C
  doi: 10.1515/znc-2001-7-828
– volume: 103
  start-page: 1097
  year: 2007
  ident: ref_50
  article-title: Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2006.10.006
– volume: 55
  start-page: 790
  year: 2000
  ident: ref_113
  article-title: Propolis from the Mediterranean region: Chemical composition and antimicrobial activity
  publication-title: Z. Naturforsch. C
  doi: 10.1515/znc-2000-9-1019
– volume: 93
  start-page: 222
  year: 2013
  ident: ref_91
  article-title: Component analysis of propolis collected on Jeju Island, Korea
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2012.02.018
– volume: 99
  start-page: 69
  year: 2005
  ident: ref_109
  article-title: Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2005.01.046
– volume: 103
  start-page: 8577
  year: 1995
  ident: ref_177
  article-title: A smooth particle mesh Ewald method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume: 4
  start-page: 8
  year: 2010
  ident: ref_46
  article-title: Antibacterial mono-and sesquiterpene esters of benzoic acids from Iranian propolis
  publication-title: Chem. Cent. J.
  doi: 10.1186/1752-153X-4-8
– volume: 79
  start-page: C1315
  year: 2014
  ident: ref_29
  article-title: Development of high-performance liquid chromatographic for quality and authenticity control of Chinese propolis
  publication-title: J. Food Sci.
– volume: 3
  start-page: 33
  year: 2011
  ident: ref_169
  article-title: Open Babel: An open chemical toolbox
  publication-title: J. Cheminform.
  doi: 10.1186/1758-2946-3-33
– volume: 141
  start-page: 363
  year: 2012
  ident: ref_42
  article-title: Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2012.02.047
– volume: 8
  start-page: 6
  year: 2017
  ident: ref_4
  article-title: Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2017.00006
– volume: 122
  start-page: 3889
  year: 2018
  ident: ref_132
  article-title: Mechanistic Pathway on Human α-Glucosidase Maltase-Glucoamylase Unveiled by QM/MM Calculations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b01321
– volume: 2
  start-page: 2515
  year: 2017
  ident: ref_24
  article-title: Laccase-Mediated Enhancement of the Antioxidant Activity of Propolis and Poplar Bud Exudates
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00294
– volume: 86
  start-page: 153098
  year: 2021
  ident: ref_104
  article-title: Propolis of stingless bees: A phytochemist’s guide through the jungle of tropical biodiversity
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2019.153098
– ident: ref_119
  doi: 10.3390/ijms17060920
– volume: 13
  start-page: 10539
  year: 2013
  ident: ref_31
  article-title: Application of visible and near infrared spectroscopy for rapid analysis of chrysin and galangin in chinese propolis
  publication-title: Sensors
  doi: 10.3390/s130810539
– volume: 29
  start-page: 333
  year: 2019
  ident: ref_101
  article-title: Development and validation of a high-performance thin layer chromatography method for the simultaneous quantitation of α- and γ-mangostins in Thai stingless bee propolis
  publication-title: Rev. Bras. Farmacogn.
  doi: 10.1016/j.bjp.2018.12.004
– volume: 87
  start-page: 23
  year: 2018
  ident: ref_84
  article-title: Authentication of Turkish propolis through HPTLC fingerprints combined with multivariate analysis and palynological data and their comparative antioxidant activity
  publication-title: LWT Food Sci. Technol.
  doi: 10.1016/j.lwt.2017.08.060
– volume: 61
  start-page: 1122
  year: 2012
  ident: ref_130
  article-title: The role of liver fructose-1,6-bisphosphatase in regulating appetite and adiposity
  publication-title: Diabetes
  doi: 10.2337/db11-1511
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_14
  article-title: The antidiabetic activity of Nigella sativa and propolis on streptozotocin-induced diabetes and diabetic nephropathy in male rats
  publication-title: Evid.-Based Complement. Altern. Med.
– volume: 2012
  start-page: 1
  year: 2012
  ident: ref_134
  article-title: Islet β -Cell Mass Preservation and Regeneration in Diabetes Mellitus: Four Factors with Potential Therapeutic Interest
  publication-title: J. Transplant.
– volume: 21
  start-page: 186
  year: 2010
  ident: ref_94
  article-title: A validated spectrophotometric method for quantification of prenylated flavanones in pacific propolis from Taiwan
  publication-title: Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech.
– volume: 2013
  start-page: 2
  year: 2013
  ident: ref_30
  article-title: Molecular mechanisms underlying the in vitro anti-inflammatory effects of a flavonoid-rich ethanol extract from chinese propolis (poplar type)
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1186/1472-6882-13-2
– volume: 32
  start-page: 2359
  year: 2011
  ident: ref_175
  article-title: SwissParam: A fast force field generation tool for small organic molecules
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21816
– volume: 11
  start-page: 2368
  year: 2020
  ident: ref_44
  article-title: A comparative study between Chinese propolis and Brazilian green propolis: Metabolite profile and bioactivity
  publication-title: Food Funct.
  doi: 10.1039/C9FO02051A
– volume: 62
  start-page: 785
  year: 1998
  ident: ref_133
  article-title: Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI (Hers disease)
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/301790
– volume: 1347
  start-page: 17
  year: 2014
  ident: ref_75
  article-title: Preparative mass-spectrometry profiling of bioactive metabolites in Saudi-Arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2014.04.068
– volume: 13
  start-page: 2498
  year: 2003
  ident: ref_168
  article-title: Cytoscape: A software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Res.
  doi: 10.1101/gr.1239303
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_88
  article-title: Potential antinociceptive effects of Chinese propolis and identification on its active compounds
  publication-title: J. Immunol. Res.
– ident: ref_28
  doi: 10.1186/s12906-015-0759-4
– ident: ref_33
  doi: 10.3390/foods9040491
– volume: 16
  start-page: e1900189
  year: 2019
  ident: ref_79
  article-title: Antiproliferative Activity of Chemically Characterized Propolis from Turkey and Its Mechanisms of Action
  publication-title: Chem. Biodivers.
  doi: 10.1002/cbdv.201900189
– volume: 57
  start-page: 905
  year: 2002
  ident: ref_86
  article-title: GC-MS analysis of propolis samples from two different regions of Turkey
  publication-title: Z. Naturforsch. Sect. C J. Biosci.
  doi: 10.1515/znc-2002-9-1025
– volume: 62
  start-page: 2106
  year: 2013
  ident: ref_120
  article-title: Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans
  publication-title: Diabetes
  doi: 10.2337/db12-1249
– volume: 414
  start-page: 799
  year: 2001
  ident: ref_124
  article-title: Insulin signalling and the regulation of glucose and lipid metabolism
  publication-title: Nature
  doi: 10.1038/414799a
– ident: ref_103
  doi: 10.1371/journal.pone.0216074
– volume: 316
  start-page: 154
  year: 2010
  ident: ref_123
  article-title: Obesity and corticosteroids: 11β-Hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2009.09.024
– volume: 27
  start-page: 100
  year: 2014
  ident: ref_142
  article-title: Novel agents for the treatment of type 2 diabetes
  publication-title: Diabetes Spectr.
  doi: 10.2337/diaspect.27.2.100
– ident: ref_98
  doi: 10.1371/journal.pone.0126886
– volume: 33
  start-page: 1616
  year: 2019
  ident: ref_16
  article-title: The efficacy of propolis on markers of glycemic control in adults with type 2 diabetes mellitus: A systematic review and meta-analysis
  publication-title: Phyther. Res.
  doi: 10.1002/ptr.6356
– volume: 354
  start-page: 2552
  year: 2006
  ident: ref_126
  article-title: Retinol-Binding Protein 4 and Insulin Resistance in Lean, Obese, and Diabetic Subjects
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa054862
– volume: 34
  start-page: 76
  year: 2017
  ident: ref_23
  article-title: Phytomedicine Mechanisms underlying the wound healing potential of propolis based on its in vitro antioxidant activity
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2017.06.001
– volume: 17
  start-page: e1900489
  year: 2020
  ident: ref_55
  article-title: Chemical Composition and Antioxidant Activity of Essential Oil of Chinese Propolis
  publication-title: Chem. Biodivers.
  doi: 10.1002/cbdv.201900489
– volume: 60
  start-page: 1577
  year: 2017
  ident: ref_145
  article-title: The mechanisms of action of metformin
  publication-title: Diabetologia
  doi: 10.1007/s00125-017-4342-z
– volume: 2
  start-page: 100280
  year: 2022
  ident: ref_7
  article-title: Herbal medications and natural products for patients with covid-19 and diabetes mellitus: Potentials and challenges
  publication-title: Phytomed. Plus
  doi: 10.1016/j.phyplu.2022.100280
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_136
  article-title: Potential retinoid X receptor agonists for treating Alzheimer’s disease from traditional Chinese medicine
  publication-title: Evid. Based Complement. Altern. Med.
  doi: 10.1155/2014/278493
– volume: 60
  start-page: 12403
  year: 2012
  ident: ref_32
  article-title: Identification and quantification of phytochemical composition and anti-inflammatory and radical scavenging properties of methanolic extracts of Chinese propolis
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf3042775
– volume: 359
  start-page: 824
  year: 2002
  ident: ref_138
  article-title: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: A parallel-group study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)07952-7
– volume: 7
  start-page: 158
  year: 2013
  ident: ref_69
  article-title: Omani propolis: Chemical profiling, antibacterial activity and new propolis plant sources
  publication-title: Chem. Cent. J.
  doi: 10.1186/1752-153X-7-158
– volume: 228
  start-page: R97
  year: 2016
  ident: ref_144
  article-title: Current understanding of metformin effect on the control of hyperglycemia in diabetes
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-15-0447
– ident: ref_20
  doi: 10.3390/molecules24102002
– ident: ref_110
  doi: 10.1186/s12906-018-2215-8
– ident: ref_66
  doi: 10.3390/molecules24071369
– volume: 15
  start-page: 124
  year: 2017
  ident: ref_11
  article-title: Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: A randomized, double-blind clinical trial
  publication-title: J. Integr. Med.
  doi: 10.1016/S2095-4964(17)60315-7
– volume: 8
  start-page: 51
  year: 2016
  ident: ref_150
  article-title: ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-016-0117-7
– volume: 25
  start-page: 177
  year: 2015
  ident: ref_71
  article-title: Propolins and glyasperin a from stingless bee nests
  publication-title: Rev. Bras. Farmacogn.
  doi: 10.1016/j.bjp.2015.03.006
– volume: 1853
  start-page: 3248
  year: 2015
  ident: ref_121
  article-title: Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2015.09.022
– volume: 13
  start-page: 140
  year: 2007
  ident: ref_114
  article-title: In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2007.02.001
– volume: 4
  start-page: 1934578X0900400615
  year: 2009
  ident: ref_37
  article-title: Simultaneous quantification of eight major bioactive phenolic compounds in Chinese propolis by high-performance liquid chromatography
  publication-title: Nat. Prod. Commun.
– volume: 1
  start-page: 15019
  year: 2015
  ident: ref_1
  article-title: Type 2 diabetes mellitus
  publication-title: Nat. Rev. Dis. Prim.
  doi: 10.1038/nrdp.2015.19
– volume: 1
  start-page: 19
  year: 2015
  ident: ref_173
  article-title: ScienceDirect GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
– volume: 18
  start-page: 1463
  year: 1997
  ident: ref_176
  article-title: LINCS: A linear constraint solver for molecular simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 54
  start-page: 2220
  year: 2016
  ident: ref_26
  article-title: Antioxidant activities and molecular mechanisms of the ethanol extracts of Baccharis propolis and Eucalyptus propolis in RAW64.7 cells
  publication-title: Pharm. Biol.
  doi: 10.3109/13880209.2016.1151444
– ident: ref_155
  doi: 10.1155/2018/7971842
– ident: ref_99
  doi: 10.1155/2017/7074147
– volume: 10
  start-page: 148
  year: 2019
  ident: ref_131
  article-title: The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00148
– volume: 17
  start-page: 310
  year: 2009
  ident: ref_157
  article-title: A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes
  publication-title: Obesity
  doi: 10.1038/oby.2008.505
– volume: 7
  start-page: 137
  year: 2017
  ident: ref_10
  article-title: Bee Products-Chemical and Biological Properties
  publication-title: JB Metzler
– volume: 12
  start-page: 445
  year: 2018
  ident: ref_77
  article-title: Anatolian propolis prevents oxalate kidney stones: Dramatic reduction of crystal deposition in ethylene-glycol-induced rat model
  publication-title: Rec. Nat. Prod.
  doi: 10.25135/rnp.48.17.11.075
– volume: 60
  start-page: 4124
  year: 2020
  ident: ref_19
  article-title: DIA-DB: A database and web server for the prediction of diabetes drugs
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00107
– volume: 9
  start-page: 28
  year: 2019
  ident: ref_154
  article-title: Yang Jet al. Naringenin Improves Insulin Sensitivity in Gestational Diabetes Mellitus Mice through AMPK
  publication-title: Nutr. Diabetes
  doi: 10.1038/s41387-019-0095-8
– volume: 30
  start-page: 1545
  year: 2009
  ident: ref_174
  article-title: CHARMM: The biomolecular simulation program
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21287
– volume: 1012
  start-page: 42
  year: 2016
  ident: ref_25
  article-title: Preparative separation of polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin coupled with preparative high performance liquid chromatography
  publication-title: J. Chromatogr. B
SSID ssj0021415
Score 2.4141514
Snippet Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3972
SubjectTerms Aldehyde Reductase
Asian People
Binding sites
Dehydrogenases
DIA-DB
Diabetes
Diabetes Mellitus, Type 2 - drug therapy
Disease
Drugs
Fatty acids
Flavonoids
Glucagon
Glucose
Herbal medicine
Homeostasis
Humans
in silico
Insulin Resistance
Kinases
Lipids
Medicine
Metabolism
molecular dynamic
Molecular Dynamics Simulation
propolis
Propolis - chemistry
Proteins
Retinol-Binding Proteins, Plasma
type-2 diabetes mellitus
virtual screening
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSLAXBONjgYEOiSe0aInj1MkT6lamgVQ0aRv0LbIdByLRZCTpQ_9a_hXuEqejgPZUqb6kVv3zffjO92PsLTdGFGio_cRG2hdKGj8titjneVCguU1DW_RVvp8nZ1fi0yJeuAO31pVVjjqxV9R5beiM_IhPkgmaN9Sl769_-sQaRdlVR6Fxl92j1mWEarm4CbhCtE5DJjPC0P5oORDO2pZTZJZKvmWL-pb9__Mz_y6X_MP-nD5iD53jCNNhpR-zO7baYw9ORr62PXZ_7tLkT9ivgavBnfMB1QquoS5gSjcm4bwnRihbICliVWpBtXBed1Q4RD-BHz7Fp8DBFcy0MKfGnd2qhSndxWpBr6GvNgBq1NG0Fr6UDV1FgQtDlTw0Qke8gP4lzD5O_dkxfLUaSDXZ5hAuVUUgqeGiXJYYXGMsAGN_lENQVQ7zkbcXZutKLUtDoo5r7Cm7Ov1weXLmOyYH34g06mj5bZoqpfMJT5SW6FPg7lSBEcZYbpI4N4JbHC4E6gMd5hik5ugZWWEKdGiK6BnbqerK7jPIpRaUPFLcopSJtc21CRFpSsTSmtBjwbimmXFtzolt40eG4Q7BIPsHBh57t3nkeujxcZvwMQFlI0jtufsv6uZb5nZ7ZmQQamptF9hQSJsrxG4scXrkX0Yq8djBCLPM6Yw2u0G4x95shhFElMJRla1XvQyGQ_iW2GPPB1RuZkIJbfxn8Wm5hdetqW6PVOX3vqN4iu-NZfTi9mm9ZLucLn8EE5-HB2yna1b2FbpknX7d77vf1f8-HA
  priority: 102
  providerName: ProQuest
Title Computational Study of Asian Propolis Compounds as Potential Anti-Type 2 Diabetes Mellitus Agents by Using Inverse Virtual Screening with the DIA-DB Web Server, Tanimoto Similarity Analysis, and Molecular Dynamic Simulation
URI https://www.ncbi.nlm.nih.gov/pubmed/35807241
https://www.proquest.com/docview/2686075471
https://www.proquest.com/docview/2687725605
https://pubmed.ncbi.nlm.nih.gov/PMC9268573
https://doaj.org/article/c701b52730e147eda860577ec56003a8
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAF8cZQokHihGrVXq-z9jFpGgpSq4i2kJu1L6uWiI1i55Bfy19hxo-oAQQXLomUHa82nm89M96Z-Rh7x40RORpqP3GR9oWSxk_zPPa5DXI0t2no8jbL92J8di0-LePlLaovygnr2gN3N-7YyCDU1CUscKGQzqoEHXApnSFTHam2zBdt3hBM9aFWiHapO8OMMKg_XnVUs67mFJOlku9ZobZZ_588zF8TJW9Znvkj9rB3GWHSLfUxu-PKJ-z-ycDU9pT96KgZ-td6QKmBW6hymFCBJCxaHoSiBpIiEqUaVA2LqqE8IZoXv3wKR4FDnx9Twzn16Ww2NUyo9KoGvYU2uQCoL8e6dvClWFPlCVwaStyhEXqjC-hOwuzjxJ9N4avTQE8itz6CK1USJiq4LFYFxtLo-sPQDuUIVGnhfKDphdm2VKvCkGhPLfaMXc9Pr07O_J64wTcijRrStktTpbQd80RpiS4EbkYVGGGM4yaJrRHc4XAucPvr0GJMatERcsLkqMs8es4Oyqp0LxlYqQWdFSnuUMrE2lltQgSWEjGCIPRYMCgyM31XcyLX-JZhdEO6z37Tvcfe7y753rX0-JvwlNCxE6Ru3O0PiNGsx2j2L4x67HDAVtY_IuqMj1FKxugceOztbhiRQyc2qnTVppXB6AdniT32ooPibiV0fo13Fq-WeyDdW-r-SFnctA3EU5w3ltGr__HfXrMHnCpCgrHPw0N20Kw37g36aY0esbtyKfEzmX8YsXvT04vF51G7TX8CeZxFpA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlEuCMorUGCQ4IJq1V6vXweE0oaQ0Kaq1BR6M7vrNVgidokdofwp_hJ_hRk_AgHUW0-RsmNnlf12Zmfn8TH2gmstUjTUVmhcZQkZaCtKU8_iiZ2iuY0ck9ZZvsf-6Ey8P_fON9iPrhaG0io7nVgr6qTQdEe-x_3QR_OGuvTNxTeLWKMoutpRaDSwODTL7-iyla_HA1zfl5wP304PRlbLKmBpEbkVTcVEkZQq8XkoVYD2DZEibS20NlyHXqIFNzicCsSmchJ0mBK00kboFI1r6uJ7r7HrwkVLTpXpw3crB89Ba9hETnHQ3ps1BLem5OQJRgFfs301RcD_zrV_p2f-Ye-Gt9mt9qAK_QZZd9iGybfZ1kHHD7fNbkzasPxd9rPhhmjvFYFyE5dQpNCnCk04qYkYshJIilicSpAlnBQVJSrRT-CHRf4wcGgTdEqYUKPQalFCn2q_SlBLqLMbgBqDzEsDH7I5lb7AqabMIRqhK2XA8ywMxn1rsA8fjQJShWa-C1OZEygLOM1mGTrz6HtA149lF2SewKTjCYbBMpezTJNoy212j51dyRrfZ5t5kZuHDJJACQpWSW5QSnvKJEo7iGwpvMBop8fsbk1j3bZVJ3aPrzG6VwSD-B8Y9Nir1SMXTU-Ry4T3CSgrQWoHXn9RzD_HrXaJdWA7ilrp2cYRgUkk7hUvwOnRedaVYY_tdDCLWx1Vxr93VI89Xw0jiChkJHNTLGoZdL_wLV6PPWhQuZoJBdDxn8WngzW8rk11fSTPvtQdzCN8rxe4jy6f1jO2NZpOjuKj8fHhY3aTU-GJ7Vvc2WGb1XxhnuBxsFJP6z0I7NNVb_pfZ1h8og
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJw1eEIx_hQGHBC9oURPHSZoHhNp11cpoVbGN7S3YjgORaDKaVqhfjS_DV-EufwoFtLc9RaovjlX_fOfzne_H2EuutUjQUFtd4ypLyEBbYZJ4Fo_tBM1t6JikzPKd-Edn4t2Fd7HFfjR3YSitstGJpaKOc01n5B3ud300b6hLO0mdFjEdDN9efrOIQYoirQ2dRgWRY7P6ju5b8WY0wLl-xfnw8PTgyKoZBiwtQndBwzJhKKWKfd6VKkBbh6iRthZaG667XqwFN9icCMSpcmJ0nmK02EboBA1t4mK_N9h2QF5Ri233DyfTD2t3z0HbWMVRXTe0O7OK7tYUnPzCMOAblrAkDPjfLvfvZM0_rN_wDrtdb1uhV-HsLtsy2S67edCwxe2ynXEdpL_HflZMEfUpI1Cm4gryBHp0XxOmJS1DWgBJEadTAbKAab6gtCX6BD4s8o6BQ52uU8CYyoYulgX06CZYAWoFZa4DUJmQeWHgYzqnizBwoimPiFrogBlwdwuDUc8a9OHcKCDFaOb7cCozgmgOJ-ksRdcePRFoqrPsg8xiGDeswTBYZXKWahKtmc7us7NrmeUHrJXlmXnEIA6UoNCV5AaltKdMrLSDOJfCC4x22sxu5jTSdZF14vr4GqGzRTCI_oFBm71ev3JZVRi5SrhPQFkLUnHw8od8_jmqdU2kA9tRVFjPNo4ITCxx5XgBDo92t67sttleA7Oo1lhF9Ht9tdmLdTOCiAJIMjP5spRBZwx78drsYYXK9UgonI7_LL4dbOB1Y6ibLVn6paxnHmK_XuA-vnpYz9kOLvjo_Why_ITd4nQLxfYt7uyx1mK-NE9xb7hQz-pFCOzTda_7X-zbgjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Study+of+Asian+Propolis+Compounds+as+Potential+Anti-Type+2+Diabetes+Mellitus+Agents+by+Using+Inverse+Virtual+Screening+with+the+DIA-DB+Web+Server%2C+Tanimoto+Similarity+Analysis%2C+and+Molecular+Dynamic+Simulation&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Syaifie%2C+Putri+Hawa&rft.au=Harisna%2C+Azza+Hanif&rft.au=Nasution%2C+Mochammad+Arfin+Fardiansyah&rft.au=Arda%2C+Adzani+Gaisani&rft.date=2022-06-21&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=27&rft.issue=13&rft.spage=3972&rft_id=info:doi/10.3390%2Fmolecules27133972&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules27133972
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon