Computational Study of Asian Propolis Compounds as Potential Anti-Type 2 Diabetes Mellitus Agents by Using Inverse Virtual Screening with the DIA-DB Web Server, Tanimoto Similarity Analysis, and Molecular Dynamic Simulation
Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis co...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 27; no. 13; p. 3972 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.06.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1. |
---|---|
AbstractList | Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1.Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1. Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2R)-7,4′-dihydroxy-5-methoxy-8-methylflavone; (RR)-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3-O-butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1. Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for treating type-2 diabetes mellitus (T2DM) owing to dysregulation of multiple metabolic processes. In this study, 275 of 658 Asian propolis compounds were evaluated as potential anti-T2DM agents using the DIA-DB web server towards 18 known anti-diabetes protein targets. More than 20% of all compounds could bind to more than five diabetes targets with high binding affinity (<−9.0 kcal/mol). Filtering with physicochemical and pharmacokinetic properties, including ADMET parameters, 12 compounds were identified as potential anti-T2DM with favorable ADMET properties. Six of those compounds, (2 R )-7,4′-dihydroxy-5-methoxy-8-methylflavone; ( RR )-(+)-3′-senecioylkhellactone; 2′,4′,6′-trihydroxy chalcone; alpinetin; pinobanksin-3- O -butyrate; and pinocembrin-5-methyl ether were first reported as anti-T2DM agents. We identified the significant T2DM targets of Asian propolis, namely retinol-binding protein-4 (RBP4) and aldose reductase (AKR1B1) that have important roles in insulin sensitivity and diabetes complication, respectively. Molecular dynamic simulations showed stable interaction of selected propolis compounds in the active site of RBP4 and AKR1B1. These findings suggest that Asian propolis compound may be effective for treatment of T2DM by targeting RBP4 and AKR1B1. |
Author | Pérez-Sánchez, Horacio Banegas-Luna, Antonio J. Syaifie, Putri Hawa Nugroho, Dwi Wahyu Noviyanto, Alfian Harisna, Azza Hanif Nasution, Mochammad Arfin Fardiansyah Arda, Adzani Gaisani Mardliyati, Etik Rochman, Nurul Taufiqu Jauhar, Muhammad Miftah Maulana, Nurwenda Novan |
AuthorAffiliation | 2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia; marfin.f@sci.ui.ac.id 3 Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia 4 Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; nurul@nano.or.id 1 Nano Center Indonesia, South Tangerang 15314, Indonesia; putri@nano.or.id (P.H.S.); harisna@nano.or.id (A.H.H.); gaisani.arda@nano.or.id (A.G.A.); wahyu@nano.or.id (D.W.N.); mmiftahjauhar@nano.or.id (M.M.J.); novan@nano.or.id (N.N.M.); a.noviyanto@nano.or.id (A.N.) 6 Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; ajbanegas@ucam.edu 5 Department of Mechanical Engineering, Faculty of Engineering, Mercu Buana University, Jakarta 11650, Indonesia |
AuthorAffiliation_xml | – name: 2 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia; marfin.f@sci.ui.ac.id – name: 6 Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; ajbanegas@ucam.edu – name: 3 Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia – name: 4 Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang 15314, Indonesia; nurul@nano.or.id – name: 1 Nano Center Indonesia, South Tangerang 15314, Indonesia; putri@nano.or.id (P.H.S.); harisna@nano.or.id (A.H.H.); gaisani.arda@nano.or.id (A.G.A.); wahyu@nano.or.id (D.W.N.); mmiftahjauhar@nano.or.id (M.M.J.); novan@nano.or.id (N.N.M.); a.noviyanto@nano.or.id (A.N.) – name: 5 Department of Mechanical Engineering, Faculty of Engineering, Mercu Buana University, Jakarta 11650, Indonesia |
Author_xml | – sequence: 1 givenname: Putri Hawa orcidid: 0000-0001-8566-7960 surname: Syaifie fullname: Syaifie, Putri Hawa – sequence: 2 givenname: Azza Hanif surname: Harisna fullname: Harisna, Azza Hanif – sequence: 3 givenname: Mochammad Arfin Fardiansyah orcidid: 0000-0001-5243-8969 surname: Nasution fullname: Nasution, Mochammad Arfin Fardiansyah – sequence: 4 givenname: Adzani Gaisani orcidid: 0000-0002-2674-6295 surname: Arda fullname: Arda, Adzani Gaisani – sequence: 5 givenname: Dwi Wahyu orcidid: 0000-0002-7020-8582 surname: Nugroho fullname: Nugroho, Dwi Wahyu – sequence: 6 givenname: Muhammad Miftah orcidid: 0000-0002-5826-5904 surname: Jauhar fullname: Jauhar, Muhammad Miftah – sequence: 7 givenname: Etik surname: Mardliyati fullname: Mardliyati, Etik – sequence: 8 givenname: Nurwenda Novan surname: Maulana fullname: Maulana, Nurwenda Novan – sequence: 9 givenname: Nurul Taufiqu surname: Rochman fullname: Rochman, Nurul Taufiqu – sequence: 10 givenname: Alfian orcidid: 0000-0002-6371-6765 surname: Noviyanto fullname: Noviyanto, Alfian – sequence: 11 givenname: Antonio J. orcidid: 0000-0003-1158-8877 surname: Banegas-Luna fullname: Banegas-Luna, Antonio J. – sequence: 12 givenname: Horacio orcidid: 0000-0003-4468-7898 surname: Pérez-Sánchez fullname: Pérez-Sánchez, Horacio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35807241$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt9u0zAUxiM0xLbCA3CDLHHDxQK248TJDVJp-VNpE5PawWXkOCetK8fubGcoT8ur4K5j2obElR2f3_mO_eU7TY6MNZAkrwl-n2UV_tBbDXLQ4Ckn8YDTZ8kJYRSnGWbV0YP9cXLq_RZjShjJXyTHWV5iThk5SX7PbL8bggjKGqHRMgztiGyHpl4Jgy6d3VmtPNpTdjCtR8KjSxvABBXxaVzS1bgDRNFciQYCeHQBWqsweDRdR8yjZkRXXpk1WpgbcB7QD-XCsB8mHYDZV36psEFhA2i-mKbzT-gnNGgJLuJnaCWM6m2waKl6pYVTYYxzhR698mdImBZdHGwQDs1HI3ol92j83r_pZfK8E9rDq7t1klx9-byafUvPv39dzKbnqWRVFtKq66CqhGjagpaiid5E67DAkkkJVJZ5KxmFWO5YkZUNaRkr2pIVwGSHK9Jlk2Rx0G2t2NY7p3rhxtoKVd8eWLeuhQtKaqglx6TJKc8wEMahFWWBc85B5gXGmSij1seD1m5oemhldNEJ_Uj0ccWoTb22N3VFizLnWRR4dyfg7PUAPtS98jL-FmHADr6OGOc0jssj-vYJurWDi_beUgXmOYvZmiRvHt7o_ip_cxQBcgCks9476O4Rgut9Vut_shp7-JMeqQ5BjI9S-j-dfwD_zvWj |
CitedBy_id | crossref_primary_10_1016_j_compbiolchem_2024_108057 crossref_primary_10_1016_j_heliyon_2024_e33636 crossref_primary_10_1002_cbdv_202401947 crossref_primary_10_1016_j_jksus_2023_102933 crossref_primary_10_1080_07391102_2023_2301534 crossref_primary_10_1016_j_jff_2023_105688 crossref_primary_10_1177_11779322231224187 crossref_primary_10_3389_fgene_2022_937309 |
Cites_doi | 10.1016/j.diabres.2013.11.002 10.1371/journal.pone.0176629 10.1016/j.foodchem.2006.03.045 10.1186/s12906-019-2677-3 10.1016/j.intimp.2015.01.012 10.1021/np010486c 10.3390/molecules24193576 10.1002/iub.1996 10.1590/S1517-83822010000400030 10.1155/2013/549627 10.1016/j.fct.2010.05.053 10.1007/s11274-007-9430-7 10.1021/jf071187h 10.1016/j.compbiomed.2021.105025 10.3390/ph12030102 10.1016/j.sjbs.2016.12.012 10.1007/s00114-008-0383-y 10.2337/diaspect.17.3.183 10.1111/jam.14633 10.1021/ci500588j 10.1016/S0009-2797(02)00214-4 10.1016/j.phytol.2014.08.022 10.1111/j.1474-9726.2011.00786.x 10.1016/j.fitote.2013.04.008 10.7717/peerj.4756 10.1016/B978-012369520-8.50018-8 10.1016/j.ejphar.2020.173664 10.1248/cpb.55.926 10.1021/acs.jcim.1c00203 10.1002/cbdv.201200165 10.1248/bpb.32.2075 10.1002/jcc.21334 10.1016/j.biopha.2017.08.067 10.1016/j.phymed.2003.09.007 10.1016/j.intimp.2010.06.013 10.3390/molecules16043444 10.1016/S0308-8146(03)00216-4 10.1016/j.bbrc.2008.05.146 10.3390/nu11112705 10.3390/molecules25235503 10.1016/S2095-4964(17)60360-1 10.1016/S0169-409X(96)00423-1 10.1371/journal.pone.0103866 10.1038/s41598-019-55465-4 10.1007/s00436-010-2039-z 10.1016/j.jfda.2017.10.002 10.3390/ijms20235913 10.1902/jop.2016.150694 10.1016/j.bioorg.2020.104110 10.1038/srep41453 10.1038/s41598-019-43838-8 10.1016/j.foodres.2019.05.028 10.1016/j.phrs.2018.01.015 10.1134/S0026893308040195 10.1016/j.coph.2004.09.001 10.1016/j.fitote.2017.08.011 10.1007/s00580-014-1967-x 10.1002/cbdv.201900094 10.1021/np9002433 10.1016/j.bmcl.2014.05.065 10.1016/j.chemosphere.2017.07.127 10.4161/bioe.21546 10.1016/j.biopha.2016.11.057 10.1016/j.fct.2011.06.060 10.1021/jm020017n 10.1111/jfbc.12958 10.1155/2016/9641965 10.1186/1472-6882-12-27 10.1097/CM9.0000000000000006 10.1021/np900118z 10.1016/j.biopha.2020.110435 10.1016/j.intimp.2016.10.008 10.1110/ps.051681605 10.1080/10629360802083871 10.1002/jsfa.3969 10.1371/journal.pone.0119264 10.1371/journal.pone.0128311 10.1002/cbdv.201900492 10.1515/znc-2001-11-1231 10.1016/j.jdiacomp.2017.08.005 10.1186/s13321-018-0283-x 10.3390/molecules191219610 10.1016/j.cccn.2005.05.009 10.1271/bbb.120580 10.1038/ejcn.2017.94 10.7150/ijms.7373 10.4014/jmb.1905.05027 10.1021/np050009k 10.1080/14786419.2010.509060 10.1021/acs.jnatprod.7b00375 10.1080/07391102.2018.1465851 10.1038/nature03711 10.1021/acs.jnatprod.8b00541 10.1515/znc-2001-7-828 10.1016/j.foodchem.2006.10.006 10.1515/znc-2000-9-1019 10.1016/j.phytochem.2012.02.018 10.1016/j.jep.2005.01.046 10.1063/1.470117 10.1186/1752-153X-4-8 10.1186/1758-2946-3-33 10.1016/j.jep.2012.02.047 10.3389/fendo.2017.00006 10.1021/acs.jpcb.8b01321 10.1021/acsomega.7b00294 10.1016/j.phymed.2019.153098 10.3390/ijms17060920 10.3390/s130810539 10.1016/j.bjp.2018.12.004 10.1016/j.lwt.2017.08.060 10.2337/db11-1511 10.1186/1472-6882-13-2 10.1002/jcc.21816 10.1039/C9FO02051A 10.1086/301790 10.1016/j.chroma.2014.04.068 10.1101/gr.1239303 10.1186/s12906-015-0759-4 10.3390/foods9040491 10.1002/cbdv.201900189 10.1515/znc-2002-9-1025 10.2337/db12-1249 10.1038/414799a 10.1371/journal.pone.0216074 10.1016/j.mce.2009.09.024 10.2337/diaspect.27.2.100 10.1371/journal.pone.0126886 10.1002/ptr.6356 10.1056/NEJMoa054862 10.1016/j.phymed.2017.06.001 10.1002/cbdv.201900489 10.1007/s00125-017-4342-z 10.1016/j.phyplu.2022.100280 10.1155/2014/278493 10.1021/jf3042775 10.1016/S0140-6736(02)07952-7 10.1186/1752-153X-7-158 10.1530/JOE-15-0447 10.3390/molecules24102002 10.1186/s12906-018-2215-8 10.3390/molecules24071369 10.1016/S2095-4964(17)60315-7 10.1186/s13321-016-0117-7 10.1016/j.bjp.2015.03.006 10.1016/j.bbamcr.2015.09.022 10.1016/j.anaerobe.2007.02.001 10.1038/nrdp.2015.19 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H 10.3109/13880209.2016.1151444 10.1155/2018/7971842 10.1155/2017/7074147 10.3389/fphys.2019.00148 10.1038/oby.2008.505 10.25135/rnp.48.17.11.075 10.1021/acs.jcim.0c00107 10.1038/s41387-019-0095-8 10.1002/jcc.21287 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/molecules27133972 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Medicine |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_c701b52730e147eda860577ec56003a8 PMC9268573 35807241 10_3390_molecules27133972 |
Genre | Journal Article |
GeographicLocations | Asia |
GeographicLocations_xml | – name: Asia |
GrantInformation_xml | – fundername: Fundación Séneca del Centro de Coordi-nación de la Investigación de la Región de Murcia grantid: 20988/PI/18 – fundername: Spanish Ministry of Economy and Competitiveness grantid: CTQ2017-87974-R – fundername: Arctic University of Norway – fundername: Poznan Supercomputing Centre – fundername: Research Council of Norway – fundername: Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia grantid: 20988/PI/18 – fundername: NLHPC |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-9ffe99aabd628ab7244200a0c4cce2c85dc42eabdf4638b1d446d846e4cf091f3 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:11:47 EDT 2025 Thu Aug 21 13:37:14 EDT 2025 Fri Jul 11 03:54:31 EDT 2025 Fri Jul 25 19:55:18 EDT 2025 Wed Feb 19 02:25:06 EST 2025 Tue Jul 01 03:12:27 EDT 2025 Thu Apr 24 22:53:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | propolis DIA-DB in silico virtual screening molecular dynamic type-2 diabetes mellitus |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-9ffe99aabd628ab7244200a0c4cce2c85dc42eabdf4638b1d446d846e4cf091f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6371-6765 0000-0003-1158-8877 0000-0002-2674-6295 0000-0001-8566-7960 0000-0003-4468-7898 0000-0001-5243-8969 0000-0002-7020-8582 0000-0002-5826-5904 |
OpenAccessLink | https://doaj.org/article/c701b52730e147eda860577ec56003a8 |
PMID | 35807241 |
PQID | 2686075471 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c701b52730e147eda860577ec56003a8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9268573 proquest_miscellaneous_2687725605 proquest_journals_2686075471 pubmed_primary_35807241 crossref_primary_10_3390_molecules27133972 crossref_citationtrail_10_3390_molecules27133972 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220621 |
PublicationDateYYYYMMDD | 2022-06-21 |
PublicationDate_xml | – month: 6 year: 2022 text: 20220621 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Seckl (ref_122) 2004; 4 Guariguata (ref_2) 2014; 103 ref_139 Aronoff (ref_118) 2004; 17 Ahamad (ref_165) 2021; 890 Chi (ref_55) 2020; 17 ref_99 ref_98 Usman (ref_60) 2016; 27 Okamoto (ref_64) 2015; 25 Nakamura (ref_116) 2010; 10 Essmann (ref_177) 1995; 103 Gauthier (ref_134) 2012; 2012 Graham (ref_126) 2006; 354 Burwinkel (ref_133) 1998; 62 Zander (ref_138) 2002; 359 Koru (ref_114) 2007; 13 Munoz (ref_19) 2020; 60 Shi (ref_32) 2012; 60 Chen (ref_137) 2018; 6 Duran (ref_82) 2011; 108 Yang (ref_35) 2010; 90 Mohammadzadeh (ref_50) 2007; 103 Ragasa (ref_71) 2015; 25 Soares (ref_3) 2017; 71 Popova (ref_69) 2013; 7 Zhan (ref_128) 2019; 37 Tanvir (ref_21) 2019; 43 Sun (ref_88) 2018; 2018 Chen (ref_95) 2018; 26 Bakhashwain (ref_14) 2017; 2017 Trusheva (ref_46) 2010; 4 ref_20 Shrestha (ref_68) 2007; 55 Saito (ref_153) 2008; 372 Usia (ref_38) 2002; 65 ref_28 Hatjina (ref_80) 2013; 68 Sander (ref_170) 2015; 55 Ralph (ref_1) 2015; 1 Naik (ref_43) 2013; 10 Brooks (ref_174) 2009; 30 Kartal (ref_86) 2002; 57 Nie (ref_31) 2013; 13 Djebli (ref_13) 2020; 44 Said (ref_76) 2006; 19 Saltiel (ref_124) 2001; 414 Abdalla (ref_161) 2022; 141 Sulaiman (ref_52) 2011; 49 Nguyen (ref_105) 2017; 80 Abutaha (ref_57) 2019; 30 Popova (ref_108) 2005; 12 Shaheen (ref_56) 2011; 25 Ohsawa (ref_65) 2016; 40 Morton (ref_123) 2010; 316 Asgharpur (ref_48) 2020; 11 Siheri (ref_10) 2017; 7 ref_152 ref_155 Narter (ref_77) 2018; 12 ref_73 ref_156 Zhang (ref_26) 2016; 54 An (ref_144) 2016; 228 ref_160 Gooley (ref_163) 2005; 14 Veber (ref_148) 2002; 45 Anees (ref_17) 2016; 87 Yuan (ref_44) 2020; 11 Elnakady (ref_74) 2017; 7 Ahn (ref_89) 2007; 101 Karimian (ref_16) 2019; 33 Visinoni (ref_130) 2012; 61 Paluch (ref_67) 2020; 129 ref_140 Sadhana (ref_41) 2017; 15 ref_143 ref_146 Fernandes (ref_132) 2018; 122 Matschinsky (ref_131) 2019; 10 Mirasierra (ref_125) 2012; 11 Banck (ref_169) 2011; 3 Kumazawa (ref_102) 2004; 84 Patlewicz (ref_171) 2008; 19 Chaudhury (ref_4) 2017; 8 Lee (ref_90) 2014; 24 Noureddine (ref_58) 2017; 95 Yusuf (ref_7) 2022; 2 Aru (ref_79) 2019; 16 Lyoussi (ref_39) 2019; 16 Xuan (ref_27) 2016; 2016 Guzelmeric (ref_84) 2018; 87 Bayaqoob (ref_106) 2017; 24 Frankland (ref_47) 2015; 18 Zakerkish (ref_12) 2019; 9 Guzelmeric (ref_81) 2019; 16 Lipinski (ref_147) 1997; 23 Zoete (ref_175) 2011; 32 Pang (ref_5) 2019; 132 Miyata (ref_45) 2019; 82 ref_172 Popova (ref_94) 2010; 21 Wagner (ref_120) 2013; 62 Desamero (ref_70) 2019; 9 Eberhardt (ref_167) 2021; 61 Shimomura (ref_91) 2013; 93 Shimizu (ref_151) 2012; 3 Nagao (ref_157) 2009; 17 ref_59 (ref_22) 2020; 129 Yang (ref_34) 2011; 16 Shuai (ref_29) 2014; 79 Rena (ref_145) 2017; 60 Shannon (ref_168) 2003; 13 Hanif (ref_115) 2021; 26 Ozdal (ref_107) 2019; 122 Xu (ref_6) 2018; 130 Lei (ref_150) 2016; 8 Monsalve (ref_135) 2013; 2013 Sha (ref_37) 2009; 4 Trott (ref_166) 2009; 31 ref_164 ref_66 Shimomura (ref_93) 2012; 76 Samadi (ref_11) 2017; 15 Bazmandegan (ref_49) 2017; 85 Athikomkulchai (ref_96) 2013; 88 Kumazawa (ref_53) 2007; 55 Keskin (ref_87) 2001; 56 Awale (ref_63) 2005; 68 Kargar (ref_85) 2017; 186 Wang (ref_30) 2013; 2013 Li (ref_154) 2019; 9 Sorkun (ref_112) 2001; 56 Lobanov (ref_162) 2008; 42 James (ref_173) 2015; 1 ref_119 ref_33 Chewchinda (ref_101) 2019; 29 ref_110 Sha (ref_36) 2009; 72 Velikova (ref_113) 2000; 55 Sever (ref_159) 2020; 102 Jin (ref_92) 2005; 362 Hu (ref_15) 2012; 2012 Popova (ref_104) 2021; 86 Bursal (ref_83) 2010; 48 Seyhan (ref_78) 2019; 71 Kristinsson (ref_121) 2015; 1853 Silici (ref_109) 2005; 99 Li (ref_61) 2009; 72 ref_103 Gourgari (ref_141) 2017; 31 Dong (ref_149) 2018; 10 Kumazawa (ref_54) 2008; 95 DeFronzo (ref_142) 2014; 27 Almutairi (ref_72) 2014; 10 Kasote (ref_40) 2017; 122 Huang (ref_9) 2014; 19 Srivastava (ref_127) 2003; 143–144 ref_100 Jerz (ref_75) 2014; 1347 Yang (ref_158) 2005; 436 Chen (ref_136) 2014; 2014 Sun (ref_117) 2015; 2015 Boonsai (ref_97) 2014; 11 Mahmood (ref_129) 2016; 25 Tukmechi (ref_51) 2010; 41 Li (ref_62) 2009; 32 ref_8 Li (ref_25) 2016; 1012 Cao (ref_23) 2017; 34 Bekas (ref_18) 2015; 9044 Hess (ref_176) 1997; 18 Silici (ref_111) 2007; 23 Botta (ref_24) 2017; 2 Choudhari (ref_42) 2012; 141 |
References_xml | – volume: 103 start-page: 137 year: 2014 ident: ref_2 article-title: Global estimates of diabetes prevalence for 2013 and projections for 2035 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2013.11.002 – ident: ref_59 doi: 10.1371/journal.pone.0176629 – volume: 101 start-page: 1383 year: 2007 ident: ref_89 article-title: Antioxidant activity and constituents of propolis collected in various areas of China publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.03.045 – ident: ref_143 doi: 10.1186/s12906-019-2677-3 – volume: 25 start-page: 189 year: 2015 ident: ref_64 article-title: Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2015.01.012 – volume: 65 start-page: 673 year: 2002 ident: ref_38 article-title: Constituents of Chinese propolis and their antiproliferative activities publication-title: J. Nat. Prod. doi: 10.1021/np010486c – ident: ref_140 doi: 10.3390/molecules24193576 – volume: 71 start-page: 619 year: 2019 ident: ref_78 article-title: Different propolis samples, phenolic content, and breast cancer cell lines: Variable cytotoxicity ranging from ineffective to potent publication-title: IUBMB Life doi: 10.1002/iub.1996 – volume: 41 start-page: 1086 year: 2010 ident: ref_51 article-title: In vitro antibacterial activities of ethanol extract of Iranian propolis (EEIP) against fish pathogenic bacteria (Aeromonas hydrophila, Yersinia ruckeri & Streptococcus iniae) publication-title: Braz. J. Microbiol. doi: 10.1590/S1517-83822010000400030 – volume: 2013 start-page: 1 year: 2013 ident: ref_135 article-title: Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases publication-title: Mediat. Inflamm. doi: 10.1155/2013/549627 – volume: 48 start-page: 2227 year: 2010 ident: ref_83 article-title: Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2010.05.053 – volume: 18 start-page: 18 year: 2015 ident: ref_47 article-title: Chemoprotection of MNNG-initiated gastric cancer in rats using Iranian propolis publication-title: Arch. Iran. Med. – volume: 23 start-page: 1797 year: 2007 ident: ref_111 article-title: Antibacterial activity and phytochemical evidence for the plant origin of Turkish propolis from different regions publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-007-9430-7 – volume: 55 start-page: 7722 year: 2007 ident: ref_53 article-title: Antioxidant prenylated flavonoids from propolis collected in Okinawa, Japan publication-title: J. Agric. Food Chem. doi: 10.1021/jf071187h – volume: 141 start-page: 105025 year: 2022 ident: ref_161 article-title: Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.105025 – ident: ref_139 doi: 10.3390/ph12030102 – volume: 24 start-page: 1094 year: 2017 ident: ref_106 article-title: Chemical compositions and characteristics of organic compounds in propolis from Yemen publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2016.12.012 – ident: ref_172 – volume: 68 start-page: 429 year: 2013 ident: ref_80 article-title: More insight into the chemical composition of Greek propolis; Differences and similarities with Turkish propolis publication-title: Z. Nat. C – volume: 95 start-page: 781 year: 2008 ident: ref_54 article-title: Plant origin of Okinawan propolis: Honeybee behavior observation and phytochemical analysis publication-title: Naturwissenschaften doi: 10.1007/s00114-008-0383-y – volume: 17 start-page: 183 year: 2004 ident: ref_118 article-title: Glucose Metabolism and Regulation: Beyond Insulin and Glucagon publication-title: Diabetes Spectr. doi: 10.2337/diaspect.17.3.183 – volume: 129 start-page: 296 year: 2020 ident: ref_22 article-title: Phenolic composition and biological activities of geographically different type of propolis and black cottonwood resins against oral streptococci, vaginal microbiota and phytopathogenic Fusarium species publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14633 – volume: 55 start-page: 460 year: 2015 ident: ref_170 article-title: DataWarrior: An open-source program for chemistry aware data visualization and analysis publication-title: J. Chem. Inf. Model. doi: 10.1021/ci500588j – volume: 27 start-page: 46 year: 2016 ident: ref_60 article-title: Phytochemical composition and activity against hyperglycaemia of Malaysian propolis in diabetic rats publication-title: Biomed. Res. – volume: 143–144 start-page: 333 year: 2003 ident: ref_127 article-title: Regulation of aldose reductase and the polyol pathway activity by nitric oxide publication-title: Chem. Biol. Interact. doi: 10.1016/S0009-2797(02)00214-4 – volume: 10 start-page: 160 year: 2014 ident: ref_72 article-title: Isolation of diterpenes and flavonoids from a new type of propolis from Saudi Arabia publication-title: Phytochem. Lett. doi: 10.1016/j.phytol.2014.08.022 – volume: 11 start-page: 284 year: 2012 ident: ref_125 article-title: Essential role of protein tyrosine phosphatase 1B in obesity-induced inflammation and peripheral insulin resistance during aging publication-title: Aging Cell doi: 10.1111/j.1474-9726.2011.00786.x – volume: 44 start-page: e13267 year: 2020 ident: ref_13 article-title: In vivo and in vitro anti-diabetic activity of ethanolic propolis extract publication-title: J. Food Biochem. – volume: 88 start-page: 96 year: 2013 ident: ref_96 article-title: Chemical constituents of Thai propolis publication-title: Fitoterapia doi: 10.1016/j.fitote.2013.04.008 – volume: 6 start-page: e4756 year: 2018 ident: ref_137 article-title: A strategy to find novel candidate anti-Alzheimer’s disease drugs by constructing interaction networks between drug targets and natural compounds in medical plants publication-title: PeerJ doi: 10.7717/peerj.4756 – volume: 26 start-page: 100969 year: 2021 ident: ref_115 article-title: In silico investigation of potential inhibitors to main protease and spike protein of SARS-CoV-2 in propolis publication-title: Biochem. Biophys. Rep. – ident: ref_152 doi: 10.1016/B978-012369520-8.50018-8 – volume: 890 start-page: 173664 year: 2021 ident: ref_165 article-title: Screening Malaria-box compounds to identify potential inhibitors against SARS-CoV-2 Mpro, using molecular docking and dynamics simulation studies publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2020.173664 – volume: 55 start-page: 926 year: 2007 ident: ref_68 article-title: Chemical constituents of Nepalese propolis (II) publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.55.926 – volume: 11 start-page: 191 year: 2020 ident: ref_48 article-title: Applying GC-MS analysis to identify chemical composition of Iranian propolis prepared with different solvent and evaluation of its biological activity publication-title: Casp. J. Intern. Med. – volume: 61 start-page: 3891 year: 2021 ident: ref_167 article-title: AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.1c00203 – volume: 10 start-page: 649 year: 2013 ident: ref_43 article-title: Essential Oil of Indian Propolis: Chemical Composition and Repellency against the Honeybee Apis florea publication-title: Chem. Biodivers. doi: 10.1002/cbdv.201200165 – volume: 32 start-page: 2075 year: 2009 ident: ref_62 article-title: Cytotoxic constituents of propolis from Myanmar and their structure–activity relationship publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.32.2075 – volume: 31 start-page: 455 year: 2009 ident: ref_166 article-title: AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – volume: 95 start-page: 298 year: 2017 ident: ref_58 article-title: Chemical characterization and cytotoxic activity evaluation of Lebanese propolis publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.08.067 – volume: 12 start-page: 221 year: 2005 ident: ref_108 article-title: Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition publication-title: Phytomedicine doi: 10.1016/j.phymed.2003.09.007 – volume: 10 start-page: 1107 year: 2010 ident: ref_116 article-title: Effects of propolis from different areas on mast cell degranulation and identification of the effective components in propolis publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2010.06.013 – volume: 16 start-page: 3444 year: 2011 ident: ref_34 article-title: Antioxidant compounds from propolis collected in Anhui, China publication-title: Molecules doi: 10.3390/molecules16043444 – volume: 84 start-page: 329 year: 2004 ident: ref_102 article-title: Antioxidant activity of propolis of various geographic origins publication-title: Food Chem. doi: 10.1016/S0308-8146(03)00216-4 – volume: 372 start-page: 835 year: 2008 ident: ref_153 article-title: Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ2 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2008.05.146 – ident: ref_8 doi: 10.3390/nu11112705 – ident: ref_156 doi: 10.3390/molecules25235503 – volume: 15 start-page: 483 year: 2017 ident: ref_41 article-title: Marker-based standardization and investigation of nutraceutical potential of Indian propolis publication-title: J. Integr. Med. doi: 10.1016/S2095-4964(17)60360-1 – volume: 23 start-page: 3 year: 1997 ident: ref_147 article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(96)00423-1 – ident: ref_164 doi: 10.1371/journal.pone.0103866 – volume: 9 start-page: 19635 year: 2019 ident: ref_70 article-title: Tumor-suppressing potential of stingless bee propolis in in vitro and in vivo models of differentiated-type gastric adenocarcinoma publication-title: Sci. Rep. doi: 10.1038/s41598-019-55465-4 – volume: 108 start-page: 95 year: 2011 ident: ref_82 article-title: GC-MS analysis and antileishmanial activities of two Turkish propolis types publication-title: Parasitol. Res. doi: 10.1007/s00436-010-2039-z – volume: 26 start-page: 761 year: 2018 ident: ref_95 article-title: Antibacterial activity of propolins from Taiwanese green propolis publication-title: J. Food Drug Anal. doi: 10.1016/j.jfda.2017.10.002 – ident: ref_146 doi: 10.3390/ijms20235913 – volume: 87 start-page: 1418 year: 2016 ident: ref_17 article-title: Propolis Improves Periodontal Status and Glycemic Control in Patients With Type 2 Diabetes Mellitus and Chronic Periodontitis: A Randomized Clinical Trial publication-title: J. Periodontol. doi: 10.1902/jop.2016.150694 – volume: 102 start-page: 104110 year: 2020 ident: ref_159 article-title: Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2020.104110 – volume: 7 start-page: 41453 year: 2017 ident: ref_74 article-title: Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia publication-title: Sci. Rep. doi: 10.1038/srep41453 – volume: 9 start-page: 7289 year: 2019 ident: ref_12 article-title: The Effect of Iranian Propolis on Glucose Metabolism, Lipid Profile, Insulin Resistance, Renal Function and Inflammatory Biomarkers in Patients with Type 2 Diabetes Mellitus: A Randomized Double-Blind Clinical Trial publication-title: Sci. Rep. doi: 10.1038/s41598-019-43838-8 – volume: 122 start-page: 528 year: 2019 ident: ref_107 article-title: Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis publication-title: Food Res. Int. doi: 10.1016/j.foodres.2019.05.028 – volume: 130 start-page: 451 year: 2018 ident: ref_6 article-title: Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2018.01.015 – volume: 42 start-page: 623 year: 2008 ident: ref_162 article-title: V Radius of gyration as an indicator of protein structure compactness publication-title: Mol. Biol. doi: 10.1134/S0026893308040195 – volume: 4 start-page: 597 year: 2004 ident: ref_122 article-title: 11β-hydroxysteroid dehydrogenases: Changing glucocorticoid action publication-title: Curr. Opin. Pharmacol. doi: 10.1016/j.coph.2004.09.001 – volume: 122 start-page: 52 year: 2017 ident: ref_40 article-title: HPLC, NMR based chemical profiling and biological characterisation of Indian propolis publication-title: Fitoterapia doi: 10.1016/j.fitote.2017.08.011 – volume: 25 start-page: 1253 year: 2016 ident: ref_129 article-title: A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes publication-title: Comp. Clin. Path. doi: 10.1007/s00580-014-1967-x – volume: 16 start-page: e1900094 year: 2019 ident: ref_39 article-title: Insight on Propolis from Mediterranean Countries: Chemical Composition, Biological Activities and Application Fields publication-title: Chem. Biodivers. doi: 10.1002/cbdv.201900094 – volume: 72 start-page: 1283 year: 2009 ident: ref_61 article-title: Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line publication-title: J. Nat. Prod. doi: 10.1021/np9002433 – volume: 24 start-page: 3503 year: 2014 ident: ref_90 article-title: Phenylpropanoid acid esters from Korean propolis and their antioxidant activities publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2014.05.065 – volume: 186 start-page: 140 year: 2017 ident: ref_85 article-title: Biomonitoring, status and source risk assessment of polycyclic aromatic hydrocarbons (PAHs) using honeybees, pine tree leaves, and propolis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.127 – volume: 3 start-page: 352 year: 2012 ident: ref_151 article-title: The potential bioproduction of the pharmaceutical agent sakuranetin, a flavonoid phytoalexin in rice publication-title: Bioengineered doi: 10.4161/bioe.21546 – volume: 19 start-page: 58 year: 2006 ident: ref_76 article-title: Chemical composition of Egyptian and UAE propolis publication-title: Pak. J. Pharm. Sci. – volume: 85 start-page: 503 year: 2017 ident: ref_49 article-title: Brown propolis attenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.11.057 – volume: 49 start-page: 2415 year: 2011 ident: ref_52 article-title: Chemical characterization of iraqi propolis samples and assessing their antioxidant potentials publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2011.06.060 – volume: 45 start-page: 2615 year: 2002 ident: ref_148 article-title: Molecular properties that influence the oral bioavailability of drug candidates publication-title: J. Med. Chem. doi: 10.1021/jm020017n – volume: 43 start-page: e12958 year: 2019 ident: ref_21 article-title: Ameliorative effects of ethanolic constituents of Bangladeshi propolis against tetracycline-induced hepatic and renal toxicity in rats publication-title: J. Food Biochem. doi: 10.1111/jfbc.12958 – volume: 2016 start-page: 1 year: 2016 ident: ref_27 article-title: Bioactive Components of Chinese Propolis Water Extract on Antitumor Activity and Quality Control publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2016/9641965 – ident: ref_100 doi: 10.1186/1472-6882-12-27 – volume: 132 start-page: 78 year: 2019 ident: ref_5 article-title: Herbal medicine in the treatment of patients with type 2 diabetes mellitus publication-title: Chin. Med. J. (Engl.) doi: 10.1097/CM9.0000000000000006 – volume: 72 start-page: 799 year: 2009 ident: ref_36 article-title: Cytotoxic constituents of Chinese propolis publication-title: J. Nat. Prod. doi: 10.1021/np900118z – volume: 129 start-page: 110435 year: 2020 ident: ref_67 article-title: Antimicrobial activity of Apis mellifera L. and Trigona sp. propolis from Nepal and its phytochemical analysis publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.110435 – volume: 40 start-page: 550 year: 2016 ident: ref_65 article-title: Inhibitory effects of flavonoids extracted from Nepalese propolis on the LPS signaling pathway publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2016.10.008 – volume: 14 start-page: 2955 year: 2005 ident: ref_163 article-title: A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics publication-title: Protein Sci. doi: 10.1110/ps.051681605 – volume: 19 start-page: 495 year: 2008 ident: ref_171 article-title: An evaluation of the implementation of the Cramer classification scheme in the Toxtree software publication-title: SAR QSAR Environ. Res. doi: 10.1080/10629360802083871 – volume: 90 start-page: 1268 year: 2010 ident: ref_35 article-title: Common aroma-active components of propolis from 23 regions of China publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.3969 – ident: ref_160 doi: 10.1371/journal.pone.0119264 – ident: ref_73 doi: 10.1371/journal.pone.0128311 – volume: 16 start-page: e1900492 year: 2019 ident: ref_81 article-title: A New Type of Anatolian Propolis: Evaluation of Its Chemical Composition, Activity Profile and Botanical Origin publication-title: Chem. Biodivers. doi: 10.1002/cbdv.201900492 – volume: 56 start-page: 1112 year: 2001 ident: ref_87 article-title: Antibacterial activity and chemical composition of Turkish propolis publication-title: Z. Naturforsch. C doi: 10.1515/znc-2001-11-1231 – volume: 31 start-page: 1719 year: 2017 ident: ref_141 article-title: A comprehensive review of the FDA-approved labels of diabetes drugs: Indications, safety, and emerging cardiovascular safety data publication-title: J. Diabetes Complicat. doi: 10.1016/j.jdiacomp.2017.08.005 – volume: 10 start-page: 29 year: 2018 ident: ref_149 article-title: ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database publication-title: J. Cheminform. doi: 10.1186/s13321-018-0283-x – volume: 19 start-page: 19610 year: 2014 ident: ref_9 article-title: Recent advances in the chemical composition of propolis publication-title: Molecules doi: 10.3390/molecules191219610 – volume: 362 start-page: 57 year: 2005 ident: ref_92 article-title: Caffeic acid phenyl ester in propolis is a strong inhibitor of matrix metalloproteinase-9 and invasion inhibitor: Isolation and identification publication-title: Clin. Chim. Acta doi: 10.1016/j.cccn.2005.05.009 – volume: 76 start-page: 2135 year: 2012 ident: ref_93 article-title: Identification of the plant origin of propolis from jeju Island, Korea, by observation of honeybee behavior and phytochemical analysis publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.120580 – volume: 71 start-page: 801 year: 2017 ident: ref_3 article-title: Type 2 diabetes in Asia: Where do we go from here? publication-title: Eur. J. Clin. Nutr. doi: 10.1038/ejcn.2017.94 – volume: 9044 start-page: 655 year: 2015 ident: ref_18 article-title: DIA-DB: A web-accessible database for the prediction of diabetes drugs publication-title: Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) – volume: 11 start-page: 327 year: 2014 ident: ref_97 article-title: Antibacterial activity of a cardanol from Thai Apis mellifera propolis publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.7373 – volume: 30 start-page: 893 year: 2019 ident: ref_57 article-title: Apoptotic Potential and Chemical Composition of Jordanian Propolis Extract against Different Cancer Cell Lines publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1905.05027 – volume: 68 start-page: 858 year: 2005 ident: ref_63 article-title: Neoflavonoids and related constituents from nepalese propolis and their nitric oxide production inhibitory activity publication-title: J. Nat. Prod. doi: 10.1021/np050009k – volume: 2015 start-page: 1 year: 2015 ident: ref_117 article-title: Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts publication-title: Evid. Based Complement. Altern. Med. – volume: 25 start-page: 1312 year: 2011 ident: ref_56 article-title: Chemical constituents of Jordanian propolis publication-title: Nat. Prod. Res. doi: 10.1080/14786419.2010.509060 – volume: 80 start-page: 2345 year: 2017 ident: ref_105 article-title: Chemical Constituents of Propolis from Vietnamese Trigona minor and Their Antiausterity Activity against the PANC-1 Human Pancreatic Cancer Cell Line publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.7b00375 – volume: 2012 start-page: 1 year: 2012 ident: ref_15 article-title: Effects of encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats publication-title: Evid.-Based Complement. Altern. Med. – volume: 37 start-page: 1724 year: 2019 ident: ref_128 article-title: Exploring the interactional details between aldose reductase (AKR1B1) and 3-Mercapto-5H-1,2,4-triazino [5,6-b]indole-5-acetic acid through molecular dynamics simulations publication-title: J. Biomol. Struct. Dyn. doi: 10.1080/07391102.2018.1465851 – volume: 436 start-page: 356 year: 2005 ident: ref_158 article-title: Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes publication-title: Nature doi: 10.1038/nature03711 – volume: 82 start-page: 205 year: 2019 ident: ref_45 article-title: Propolis Components from Stingless Bees Collected on South Sulawesi, Indonesia, and Their Xanthine Oxidase Inhibitory Activity publication-title: J. Nat. Prod. doi: 10.1021/acs.jnatprod.8b00541 – volume: 56 start-page: 666 year: 2001 ident: ref_112 article-title: Determination of chemical composition of Turkish propolis publication-title: Z. Naturforsch. C doi: 10.1515/znc-2001-7-828 – volume: 103 start-page: 1097 year: 2007 ident: ref_50 article-title: Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis publication-title: Food Chem. doi: 10.1016/j.foodchem.2006.10.006 – volume: 55 start-page: 790 year: 2000 ident: ref_113 article-title: Propolis from the Mediterranean region: Chemical composition and antimicrobial activity publication-title: Z. Naturforsch. C doi: 10.1515/znc-2000-9-1019 – volume: 93 start-page: 222 year: 2013 ident: ref_91 article-title: Component analysis of propolis collected on Jeju Island, Korea publication-title: Phytochemistry doi: 10.1016/j.phytochem.2012.02.018 – volume: 99 start-page: 69 year: 2005 ident: ref_109 article-title: Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2005.01.046 – volume: 103 start-page: 8577 year: 1995 ident: ref_177 article-title: A smooth particle mesh Ewald method publication-title: J. Chem. Phys. doi: 10.1063/1.470117 – volume: 4 start-page: 8 year: 2010 ident: ref_46 article-title: Antibacterial mono-and sesquiterpene esters of benzoic acids from Iranian propolis publication-title: Chem. Cent. J. doi: 10.1186/1752-153X-4-8 – volume: 79 start-page: C1315 year: 2014 ident: ref_29 article-title: Development of high-performance liquid chromatographic for quality and authenticity control of Chinese propolis publication-title: J. Food Sci. – volume: 3 start-page: 33 year: 2011 ident: ref_169 article-title: Open Babel: An open chemical toolbox publication-title: J. Cheminform. doi: 10.1186/1758-2946-3-33 – volume: 141 start-page: 363 year: 2012 ident: ref_42 article-title: Antimicrobial activity of stingless bee (Trigona sp.) propolis used in the folk medicine of Western Maharashtra, India publication-title: J. Ethnopharmacol. doi: 10.1016/j.jep.2012.02.047 – volume: 8 start-page: 6 year: 2017 ident: ref_4 article-title: Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management publication-title: Front. Endocrinol. doi: 10.3389/fendo.2017.00006 – volume: 122 start-page: 3889 year: 2018 ident: ref_132 article-title: Mechanistic Pathway on Human α-Glucosidase Maltase-Glucoamylase Unveiled by QM/MM Calculations publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b01321 – volume: 2 start-page: 2515 year: 2017 ident: ref_24 article-title: Laccase-Mediated Enhancement of the Antioxidant Activity of Propolis and Poplar Bud Exudates publication-title: ACS Omega doi: 10.1021/acsomega.7b00294 – volume: 86 start-page: 153098 year: 2021 ident: ref_104 article-title: Propolis of stingless bees: A phytochemist’s guide through the jungle of tropical biodiversity publication-title: Phytomedicine doi: 10.1016/j.phymed.2019.153098 – ident: ref_119 doi: 10.3390/ijms17060920 – volume: 13 start-page: 10539 year: 2013 ident: ref_31 article-title: Application of visible and near infrared spectroscopy for rapid analysis of chrysin and galangin in chinese propolis publication-title: Sensors doi: 10.3390/s130810539 – volume: 29 start-page: 333 year: 2019 ident: ref_101 article-title: Development and validation of a high-performance thin layer chromatography method for the simultaneous quantitation of α- and γ-mangostins in Thai stingless bee propolis publication-title: Rev. Bras. Farmacogn. doi: 10.1016/j.bjp.2018.12.004 – volume: 87 start-page: 23 year: 2018 ident: ref_84 article-title: Authentication of Turkish propolis through HPTLC fingerprints combined with multivariate analysis and palynological data and their comparative antioxidant activity publication-title: LWT Food Sci. Technol. doi: 10.1016/j.lwt.2017.08.060 – volume: 61 start-page: 1122 year: 2012 ident: ref_130 article-title: The role of liver fructose-1,6-bisphosphatase in regulating appetite and adiposity publication-title: Diabetes doi: 10.2337/db11-1511 – volume: 2017 start-page: 1 year: 2017 ident: ref_14 article-title: The antidiabetic activity of Nigella sativa and propolis on streptozotocin-induced diabetes and diabetic nephropathy in male rats publication-title: Evid.-Based Complement. Altern. Med. – volume: 2012 start-page: 1 year: 2012 ident: ref_134 article-title: Islet β -Cell Mass Preservation and Regeneration in Diabetes Mellitus: Four Factors with Potential Therapeutic Interest publication-title: J. Transplant. – volume: 21 start-page: 186 year: 2010 ident: ref_94 article-title: A validated spectrophotometric method for quantification of prenylated flavanones in pacific propolis from Taiwan publication-title: Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. – volume: 2013 start-page: 2 year: 2013 ident: ref_30 article-title: Molecular mechanisms underlying the in vitro anti-inflammatory effects of a flavonoid-rich ethanol extract from chinese propolis (poplar type) publication-title: Evid. Based Complement. Altern. Med. doi: 10.1186/1472-6882-13-2 – volume: 32 start-page: 2359 year: 2011 ident: ref_175 article-title: SwissParam: A fast force field generation tool for small organic molecules publication-title: J. Comput. Chem. doi: 10.1002/jcc.21816 – volume: 11 start-page: 2368 year: 2020 ident: ref_44 article-title: A comparative study between Chinese propolis and Brazilian green propolis: Metabolite profile and bioactivity publication-title: Food Funct. doi: 10.1039/C9FO02051A – volume: 62 start-page: 785 year: 1998 ident: ref_133 article-title: Mutations in the liver glycogen phosphorylase gene (PYGL) underlying glycogenosis type VI (Hers disease) publication-title: Am. J. Hum. Genet. doi: 10.1086/301790 – volume: 1347 start-page: 17 year: 2014 ident: ref_75 article-title: Preparative mass-spectrometry profiling of bioactive metabolites in Saudi-Arabian propolis fractionated by high-speed countercurrent chromatography and off-line atmospheric pressure chemical ionization mass-spectrometry injection publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.04.068 – volume: 13 start-page: 2498 year: 2003 ident: ref_168 article-title: Cytoscape: A software environment for integrated models of biomolecular interaction networks publication-title: Genome Res. doi: 10.1101/gr.1239303 – volume: 2018 start-page: 1 year: 2018 ident: ref_88 article-title: Potential antinociceptive effects of Chinese propolis and identification on its active compounds publication-title: J. Immunol. Res. – ident: ref_28 doi: 10.1186/s12906-015-0759-4 – ident: ref_33 doi: 10.3390/foods9040491 – volume: 16 start-page: e1900189 year: 2019 ident: ref_79 article-title: Antiproliferative Activity of Chemically Characterized Propolis from Turkey and Its Mechanisms of Action publication-title: Chem. Biodivers. doi: 10.1002/cbdv.201900189 – volume: 57 start-page: 905 year: 2002 ident: ref_86 article-title: GC-MS analysis of propolis samples from two different regions of Turkey publication-title: Z. Naturforsch. Sect. C J. Biosci. doi: 10.1515/znc-2002-9-1025 – volume: 62 start-page: 2106 year: 2013 ident: ref_120 article-title: Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans publication-title: Diabetes doi: 10.2337/db12-1249 – volume: 414 start-page: 799 year: 2001 ident: ref_124 article-title: Insulin signalling and the regulation of glucose and lipid metabolism publication-title: Nature doi: 10.1038/414799a – ident: ref_103 doi: 10.1371/journal.pone.0216074 – volume: 316 start-page: 154 year: 2010 ident: ref_123 article-title: Obesity and corticosteroids: 11β-Hydroxysteroid type 1 as a cause and therapeutic target in metabolic disease publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2009.09.024 – volume: 27 start-page: 100 year: 2014 ident: ref_142 article-title: Novel agents for the treatment of type 2 diabetes publication-title: Diabetes Spectr. doi: 10.2337/diaspect.27.2.100 – ident: ref_98 doi: 10.1371/journal.pone.0126886 – volume: 33 start-page: 1616 year: 2019 ident: ref_16 article-title: The efficacy of propolis on markers of glycemic control in adults with type 2 diabetes mellitus: A systematic review and meta-analysis publication-title: Phyther. Res. doi: 10.1002/ptr.6356 – volume: 354 start-page: 2552 year: 2006 ident: ref_126 article-title: Retinol-Binding Protein 4 and Insulin Resistance in Lean, Obese, and Diabetic Subjects publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa054862 – volume: 34 start-page: 76 year: 2017 ident: ref_23 article-title: Phytomedicine Mechanisms underlying the wound healing potential of propolis based on its in vitro antioxidant activity publication-title: Phytomedicine doi: 10.1016/j.phymed.2017.06.001 – volume: 17 start-page: e1900489 year: 2020 ident: ref_55 article-title: Chemical Composition and Antioxidant Activity of Essential Oil of Chinese Propolis publication-title: Chem. Biodivers. doi: 10.1002/cbdv.201900489 – volume: 60 start-page: 1577 year: 2017 ident: ref_145 article-title: The mechanisms of action of metformin publication-title: Diabetologia doi: 10.1007/s00125-017-4342-z – volume: 2 start-page: 100280 year: 2022 ident: ref_7 article-title: Herbal medications and natural products for patients with covid-19 and diabetes mellitus: Potentials and challenges publication-title: Phytomed. Plus doi: 10.1016/j.phyplu.2022.100280 – volume: 2014 start-page: 1 year: 2014 ident: ref_136 article-title: Potential retinoid X receptor agonists for treating Alzheimer’s disease from traditional Chinese medicine publication-title: Evid. Based Complement. Altern. Med. doi: 10.1155/2014/278493 – volume: 60 start-page: 12403 year: 2012 ident: ref_32 article-title: Identification and quantification of phytochemical composition and anti-inflammatory and radical scavenging properties of methanolic extracts of Chinese propolis publication-title: J. Agric. Food Chem. doi: 10.1021/jf3042775 – volume: 359 start-page: 824 year: 2002 ident: ref_138 article-title: Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and β-cell function in type 2 diabetes: A parallel-group study publication-title: Lancet doi: 10.1016/S0140-6736(02)07952-7 – volume: 7 start-page: 158 year: 2013 ident: ref_69 article-title: Omani propolis: Chemical profiling, antibacterial activity and new propolis plant sources publication-title: Chem. Cent. J. doi: 10.1186/1752-153X-7-158 – volume: 228 start-page: R97 year: 2016 ident: ref_144 article-title: Current understanding of metformin effect on the control of hyperglycemia in diabetes publication-title: J. Endocrinol. doi: 10.1530/JOE-15-0447 – ident: ref_20 doi: 10.3390/molecules24102002 – ident: ref_110 doi: 10.1186/s12906-018-2215-8 – ident: ref_66 doi: 10.3390/molecules24071369 – volume: 15 start-page: 124 year: 2017 ident: ref_11 article-title: Effects of bee propolis supplementation on glycemic control, lipid profile and insulin resistance indices in patients with type 2 diabetes: A randomized, double-blind clinical trial publication-title: J. Integr. Med. doi: 10.1016/S2095-4964(17)60315-7 – volume: 8 start-page: 51 year: 2016 ident: ref_150 article-title: ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling publication-title: J. Cheminform. doi: 10.1186/s13321-016-0117-7 – volume: 25 start-page: 177 year: 2015 ident: ref_71 article-title: Propolins and glyasperin a from stingless bee nests publication-title: Rev. Bras. Farmacogn. doi: 10.1016/j.bjp.2015.03.006 – volume: 1853 start-page: 3248 year: 2015 ident: ref_121 article-title: Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2015.09.022 – volume: 13 start-page: 140 year: 2007 ident: ref_114 article-title: In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens publication-title: Anaerobe doi: 10.1016/j.anaerobe.2007.02.001 – volume: 4 start-page: 1934578X0900400615 year: 2009 ident: ref_37 article-title: Simultaneous quantification of eight major bioactive phenolic compounds in Chinese propolis by high-performance liquid chromatography publication-title: Nat. Prod. Commun. – volume: 1 start-page: 15019 year: 2015 ident: ref_1 article-title: Type 2 diabetes mellitus publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/nrdp.2015.19 – volume: 1 start-page: 19 year: 2015 ident: ref_173 article-title: ScienceDirect GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX – volume: 18 start-page: 1463 year: 1997 ident: ref_176 article-title: LINCS: A linear constraint solver for molecular simulations publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H – volume: 54 start-page: 2220 year: 2016 ident: ref_26 article-title: Antioxidant activities and molecular mechanisms of the ethanol extracts of Baccharis propolis and Eucalyptus propolis in RAW64.7 cells publication-title: Pharm. Biol. doi: 10.3109/13880209.2016.1151444 – ident: ref_155 doi: 10.1155/2018/7971842 – ident: ref_99 doi: 10.1155/2017/7074147 – volume: 10 start-page: 148 year: 2019 ident: ref_131 article-title: The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of Langerhans publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00148 – volume: 17 start-page: 310 year: 2009 ident: ref_157 article-title: A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes publication-title: Obesity doi: 10.1038/oby.2008.505 – volume: 7 start-page: 137 year: 2017 ident: ref_10 article-title: Bee Products-Chemical and Biological Properties publication-title: JB Metzler – volume: 12 start-page: 445 year: 2018 ident: ref_77 article-title: Anatolian propolis prevents oxalate kidney stones: Dramatic reduction of crystal deposition in ethylene-glycol-induced rat model publication-title: Rec. Nat. Prod. doi: 10.25135/rnp.48.17.11.075 – volume: 60 start-page: 4124 year: 2020 ident: ref_19 article-title: DIA-DB: A database and web server for the prediction of diabetes drugs publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00107 – volume: 9 start-page: 28 year: 2019 ident: ref_154 article-title: Yang Jet al. Naringenin Improves Insulin Sensitivity in Gestational Diabetes Mellitus Mice through AMPK publication-title: Nutr. Diabetes doi: 10.1038/s41387-019-0095-8 – volume: 30 start-page: 1545 year: 2009 ident: ref_174 article-title: CHARMM: The biomolecular simulation program publication-title: J. Comput. Chem. doi: 10.1002/jcc.21287 – volume: 1012 start-page: 42 year: 2016 ident: ref_25 article-title: Preparative separation of polyphenols from water-soluble fraction of Chinese propolis using macroporous absorptive resin coupled with preparative high performance liquid chromatography publication-title: J. Chromatogr. B |
SSID | ssj0021415 |
Score | 2.4141514 |
Snippet | Propolis contains a wide range of pharmacological activities because of their various bioactive compounds. The beneficial effect of propolis is interesting for... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3972 |
SubjectTerms | Aldehyde Reductase Asian People Binding sites Dehydrogenases DIA-DB Diabetes Diabetes Mellitus, Type 2 - drug therapy Disease Drugs Fatty acids Flavonoids Glucagon Glucose Herbal medicine Homeostasis Humans in silico Insulin Resistance Kinases Lipids Medicine Metabolism molecular dynamic Molecular Dynamics Simulation propolis Propolis - chemistry Proteins Retinol-Binding Proteins, Plasma type-2 diabetes mellitus virtual screening |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgSLAXBONjgYEOiSe0aInj1MkT6lamgVQ0aRv0LbIdByLRZCTpQ_9a_hXuEqejgPZUqb6kVv3zffjO92PsLTdGFGio_cRG2hdKGj8titjneVCguU1DW_RVvp8nZ1fi0yJeuAO31pVVjjqxV9R5beiM_IhPkgmaN9Sl769_-sQaRdlVR6Fxl92j1mWEarm4CbhCtE5DJjPC0P5oORDO2pZTZJZKvmWL-pb9__Mz_y6X_MP-nD5iD53jCNNhpR-zO7baYw9ORr62PXZ_7tLkT9ivgavBnfMB1QquoS5gSjcm4bwnRihbICliVWpBtXBed1Q4RD-BHz7Fp8DBFcy0MKfGnd2qhSndxWpBr6GvNgBq1NG0Fr6UDV1FgQtDlTw0Qke8gP4lzD5O_dkxfLUaSDXZ5hAuVUUgqeGiXJYYXGMsAGN_lENQVQ7zkbcXZutKLUtDoo5r7Cm7Ov1weXLmOyYH34g06mj5bZoqpfMJT5SW6FPg7lSBEcZYbpI4N4JbHC4E6gMd5hik5ugZWWEKdGiK6BnbqerK7jPIpRaUPFLcopSJtc21CRFpSsTSmtBjwbimmXFtzolt40eG4Q7BIPsHBh57t3nkeujxcZvwMQFlI0jtufsv6uZb5nZ7ZmQQamptF9hQSJsrxG4scXrkX0Yq8djBCLPM6Yw2u0G4x95shhFElMJRla1XvQyGQ_iW2GPPB1RuZkIJbfxn8Wm5hdetqW6PVOX3vqN4iu-NZfTi9mm9ZLucLn8EE5-HB2yna1b2FbpknX7d77vf1f8-HA priority: 102 providerName: ProQuest |
Title | Computational Study of Asian Propolis Compounds as Potential Anti-Type 2 Diabetes Mellitus Agents by Using Inverse Virtual Screening with the DIA-DB Web Server, Tanimoto Similarity Analysis, and Molecular Dynamic Simulation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35807241 https://www.proquest.com/docview/2686075471 https://www.proquest.com/docview/2687725605 https://pubmed.ncbi.nlm.nih.gov/PMC9268573 https://doaj.org/article/c701b52730e147eda860577ec56003a8 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOcAF8cZQokHihGrVXq-z9jFpGgpSq4i2kJu1L6uWiI1i55Bfy19hxo-oAQQXLomUHa82nm89M96Z-Rh7x40RORpqP3GR9oWSxk_zPPa5DXI0t2no8jbL92J8di0-LePlLaovygnr2gN3N-7YyCDU1CUscKGQzqoEHXApnSFTHam2zBdt3hBM9aFWiHapO8OMMKg_XnVUs67mFJOlku9ZobZZ_588zF8TJW9Znvkj9rB3GWHSLfUxu-PKJ-z-ycDU9pT96KgZ-td6QKmBW6hymFCBJCxaHoSiBpIiEqUaVA2LqqE8IZoXv3wKR4FDnx9Twzn16Ww2NUyo9KoGvYU2uQCoL8e6dvClWFPlCVwaStyhEXqjC-hOwuzjxJ9N4avTQE8itz6CK1USJiq4LFYFxtLo-sPQDuUIVGnhfKDphdm2VKvCkGhPLfaMXc9Pr07O_J64wTcijRrStktTpbQd80RpiS4EbkYVGGGM4yaJrRHc4XAucPvr0GJMatERcsLkqMs8es4Oyqp0LxlYqQWdFSnuUMrE2lltQgSWEjGCIPRYMCgyM31XcyLX-JZhdEO6z37Tvcfe7y753rX0-JvwlNCxE6Ru3O0PiNGsx2j2L4x67HDAVtY_IuqMj1FKxugceOztbhiRQyc2qnTVppXB6AdniT32ooPibiV0fo13Fq-WeyDdW-r-SFnctA3EU5w3ltGr__HfXrMHnCpCgrHPw0N20Kw37g36aY0esbtyKfEzmX8YsXvT04vF51G7TX8CeZxFpA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlEuCMorUGCQ4IJq1V6vXweE0oaQ0Kaq1BR6M7vrNVgidokdofwp_hJ_hRk_AgHUW0-RsmNnlf12Zmfn8TH2gmstUjTUVmhcZQkZaCtKU8_iiZ2iuY0ck9ZZvsf-6Ey8P_fON9iPrhaG0io7nVgr6qTQdEe-x_3QR_OGuvTNxTeLWKMoutpRaDSwODTL7-iyla_HA1zfl5wP304PRlbLKmBpEbkVTcVEkZQq8XkoVYD2DZEibS20NlyHXqIFNzicCsSmchJ0mBK00kboFI1r6uJ7r7HrwkVLTpXpw3crB89Ba9hETnHQ3ps1BLem5OQJRgFfs301RcD_zrV_p2f-Ye-Gt9mt9qAK_QZZd9iGybfZ1kHHD7fNbkzasPxd9rPhhmjvFYFyE5dQpNCnCk04qYkYshJIilicSpAlnBQVJSrRT-CHRf4wcGgTdEqYUKPQalFCn2q_SlBLqLMbgBqDzEsDH7I5lb7AqabMIRqhK2XA8ywMxn1rsA8fjQJShWa-C1OZEygLOM1mGTrz6HtA149lF2SewKTjCYbBMpezTJNoy212j51dyRrfZ5t5kZuHDJJACQpWSW5QSnvKJEo7iGwpvMBop8fsbk1j3bZVJ3aPrzG6VwSD-B8Y9Nir1SMXTU-Ry4T3CSgrQWoHXn9RzD_HrXaJdWA7ilrp2cYRgUkk7hUvwOnRedaVYY_tdDCLWx1Vxr93VI89Xw0jiChkJHNTLGoZdL_wLV6PPWhQuZoJBdDxn8WngzW8rk11fSTPvtQdzCN8rxe4jy6f1jO2NZpOjuKj8fHhY3aTU-GJ7Vvc2WGb1XxhnuBxsFJP6z0I7NNVb_pfZ1h8og |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJw1eEIx_hQGHBC9oURPHSZoHhNp11cpoVbGN7S3YjgORaDKaVqhfjS_DV-EufwoFtLc9RaovjlX_fOfzne_H2EuutUjQUFtd4ypLyEBbYZJ4Fo_tBM1t6JikzPKd-Edn4t2Fd7HFfjR3YSitstGJpaKOc01n5B3ud300b6hLO0mdFjEdDN9efrOIQYoirQ2dRgWRY7P6ju5b8WY0wLl-xfnw8PTgyKoZBiwtQndBwzJhKKWKfd6VKkBbh6iRthZaG667XqwFN9icCMSpcmJ0nmK02EboBA1t4mK_N9h2QF5Ri233DyfTD2t3z0HbWMVRXTe0O7OK7tYUnPzCMOAblrAkDPjfLvfvZM0_rN_wDrtdb1uhV-HsLtsy2S67edCwxe2ynXEdpL_HflZMEfUpI1Cm4gryBHp0XxOmJS1DWgBJEadTAbKAab6gtCX6BD4s8o6BQ52uU8CYyoYulgX06CZYAWoFZa4DUJmQeWHgYzqnizBwoimPiFrogBlwdwuDUc8a9OHcKCDFaOb7cCozgmgOJ-ksRdcePRFoqrPsg8xiGDeswTBYZXKWahKtmc7us7NrmeUHrJXlmXnEIA6UoNCV5AaltKdMrLSDOJfCC4x22sxu5jTSdZF14vr4GqGzRTCI_oFBm71ev3JZVRi5SrhPQFkLUnHw8od8_jmqdU2kA9tRVFjPNo4ITCxx5XgBDo92t67sttleA7Oo1lhF9Ht9tdmLdTOCiAJIMjP5spRBZwx78drsYYXK9UgonI7_LL4dbOB1Y6ibLVn6paxnHmK_XuA-vnpYz9kOLvjo_Why_ITd4nQLxfYt7uyx1mK-NE9xb7hQz-pFCOzTda_7X-zbgjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+Study+of+Asian+Propolis+Compounds+as+Potential+Anti-Type+2+Diabetes+Mellitus+Agents+by+Using+Inverse+Virtual+Screening+with+the+DIA-DB+Web+Server%2C+Tanimoto+Similarity+Analysis%2C+and+Molecular+Dynamic+Simulation&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Syaifie%2C+Putri+Hawa&rft.au=Harisna%2C+Azza+Hanif&rft.au=Nasution%2C+Mochammad+Arfin+Fardiansyah&rft.au=Arda%2C+Adzani+Gaisani&rft.date=2022-06-21&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=27&rft.issue=13&rft.spage=3972&rft_id=info:doi/10.3390%2Fmolecules27133972&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_molecules27133972 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |