Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs

Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-t...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 18; no. 1; pp. 272 - 19
Main Authors Terfehr, Dominik, Dahlmann, Tim A., Kück, Ulrich
Format Journal Article
LanguageEnglish
Published England BioMed Central 31.03.2017
BMC
Subjects
Online AccessGet full text
ISSN1471-2164
1471-2164
DOI10.1186/s12864-017-3663-0

Cover

Loading…
Abstract Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.
AbstractList Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains.BACKGROUNDCephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains.Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains.RESULTSUsing the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains.The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.CONCLUSIONSThe major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.
Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.
Abstract Background Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. Results Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. Conclusions The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.
Background Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. Results Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. Conclusions The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.
ArticleNumber 272
Author Kück, Ulrich
Terfehr, Dominik
Dahlmann, Tim A.
Author_xml – sequence: 1
  givenname: Dominik
  surname: Terfehr
  fullname: Terfehr, Dominik
– sequence: 2
  givenname: Tim A.
  surname: Dahlmann
  fullname: Dahlmann, Tim A.
– sequence: 3
  givenname: Ulrich
  surname: Kück
  fullname: Kück, Ulrich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28359302$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNURC_wAGyQJTZsAvElicMCqaq4VKoEi8LWmmOPUx8l9sF2Dupr8SBseCF8OKVqu2Bla-afT789_3F14IPHqnpOm9eUyu5Nokx2om5oX_Ou43XzqDqioqc1o504uHM_rI5TWjdFKFn7pDpkkrcDb9hR9fsygk86uk0OMxLwMF0nl0iwJF8hyT8CWXzECTIaYhc_wkR-_awn0BlmsonBLBpjIqc64hy8W2air-J1CiP6cgdvyBf0TrtpetB7S77htMVcRxyXPb_UMRGISGZYh0gyxBFzImaJzo9EB79Fn10oJknKEZwnbi4etjiX-s7NGGFOT6vHFqaEz27Ok-rrh_eXZ5_qi88fz89OL2otBp7rwXIjB2N5a2BlKWrgDbRCDP1gDQpL27ZvDGWCd9I2DdpWCtmC5N0g244xflKd77kmwFptopshXqsATv0thDgqiNnpCRUMQvYri4xDI8wgwTDTSYnDilJjqS6sd3vWZlnNaHR5T4TpHvR-x7srNYatankvupYXwKsbQAzfF0xZzS5pnCbwGJakqJSc9j0rqz-pXj6QrsMSy6cmxbiQTA4dHYrqxV1Ht1b-ZacI6F6gY0gpor2V0Ebt8qn2-VQldmqXT9WUmf7BjHYZdivdrXP6z-QfdJ7x0g
CitedBy_id crossref_primary_10_3390_ijms26010181
crossref_primary_10_3390_fermentation9121027
crossref_primary_10_1371_journal_pone_0238452
crossref_primary_10_1007_s00294_017_0790_8
crossref_primary_10_1186_s13068_019_1400_4
crossref_primary_10_3389_fmicb_2022_1063897
crossref_primary_10_1007_s00253_022_12272_8
crossref_primary_10_3389_fmicb_2021_705681
crossref_primary_10_3390_molecules26216636
crossref_primary_10_1007_s00294_020_01143_2
crossref_primary_10_3390_ijms241311184
crossref_primary_10_3390_ijms21113936
crossref_primary_10_3390_fermentation4020047
crossref_primary_10_4014_jmb_2402_02007
crossref_primary_10_1016_j_fgb_2019_103279
crossref_primary_10_3390_jof8050530
crossref_primary_10_3390_microorganisms10030573
crossref_primary_10_1007_s00253_022_12335_w
crossref_primary_10_1007_s00253_018_9115_1
crossref_primary_10_1007_s00253_022_12181_w
crossref_primary_10_3390_genes11060712
Cites_doi 10.1007/s00239-002-2330-4
10.5598/imafungus.2011.02.01.12
10.1093/nar/gkv437
10.1186/1471-2164-15-144
10.3389/fmicb.2014.00718
10.1002/biot.201100065
10.1016/j.chembiol.2014.01.013
10.1002/med.20154
10.1007/s002530051015
10.1128/EC.00272-12
10.1128/mSphere.00149-16
10.1007/BF00318654
10.1111/j.1749-6632.1946.tb31753.x
10.1126/science.1155888
10.1093/nar/gkh894
10.1371/journal.pone.0125989
10.1016/j.fgb.2014.04.008
10.1007/978-1-4939-1191-2_3
10.1093/bioinformatics/btv661
10.1371/journal.pcbi.1003118
10.1093/molbev/mss269
10.1371/journal.ppat.1003950
10.1128/AEM.01408-16
10.1002/jobm.201400588
10.1093/molbev/msw054
10.1201/9780203970553.ch20
10.1080/02648725.2010.10648143
10.1128/EC.3.1.121-134.2004
10.1007/s00253-011-3767-4
10.1186/gb-2013-14-4-r36
10.1101/gr.081612.108
10.1038/175548a0
10.1021/ja01205a518
10.1007/s00294-006-0073-2
10.1093/jac/dkt075
10.1089/omi.2011.0153
10.1007/s00253-010-2627-y
10.1016/j.jbiotec.2013.10.036
10.1007/BF00279899
10.1111/j.1439-0507.2004.00964.x
10.1007/s00203-007-0224-y
10.1128/genomeA.00948-14
10.1007/s00253-002-0995-7
10.1128/AEM.69.2.1308-1314.2003
10.1074/jbc.M103944200
10.1186/s13059-014-0550-8
10.1093/nar/gki458
10.1128/EC.00430-07
10.1128/AEM.00129-07
10.1007/s002530100769
10.1093/genetics/52.1.217
10.1111/j.1574-6968.2012.02575.x
10.4014/jmb.1503.03042
10.1038/sj.jim.2900411
10.1111/mmi.12082
10.1016/S0140-6736(01)08728-1
10.1093/bioinformatics/btu627
10.1128/JB.52.1.129-140.1946
10.1007/s00294-015-0497-7
10.1111/j.1365-2958.2005.04626.x
10.1042/bj0620651
10.1371/journal.pcbi.1002980
10.1006/bbrc.2000.2253
10.1142/3195
10.1007/BF00326285
10.1186/s12864-015-2154-4
10.1155/2012/105109
10.1128/AEM.00350-16
10.1016/j.biotechadv.2012.12.001
10.1371/journal.pone.0038654
10.1111/mmi.12184
10.1128/genomeA.00577-14
10.1111/j.1365-294X.2011.05244.x
10.1128/AEM.60.6.1705-1710.1994
10.1371/journal.pbio.1001750
10.3389/fmicb.2015.00001
10.1371/journal.pone.0104542
10.1016/j.fgb.2014.02.008
10.1038/nbt0186-61
10.1128/JB.181.4.1181-1188.1999
10.1186/1471-2105-12-491
10.1074/mcp.M900327-MCP200
10.1038/nbt.1498
10.1042/BJ20081180
10.1111/j.1365-2958.1991.tb01885.x
10.1128/jb.168.2.947-952.1986
10.1111/j.1574-6976.2011.00285.x
10.1007/s002530000422
10.1016/j.phytochem.2009.09.011
10.1128/AEM.68.5.2246-2250.2002
10.1007/b99257
10.1128/EC.00077-10
10.1271/bbb.68.146
10.1007/s00726-012-1308-9
10.1007/s00253-009-2168-4
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2017
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
5PM
DOA
DOI 10.1186/s12864-017-3663-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 19
ExternalDocumentID oai_doaj_org_article_a9487bfe23a04d98ad2d688e9b11df1c
PMC5374653
28359302
10_1186_s12864_017_3663_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
-A0
3V.
ACRMQ
ADINQ
AIXEN
C24
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-9f3d89df35dabf1eca30a544979fde4f15570d124368f00ef58485a8369856223
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:14:02 EDT 2025
Thu Aug 21 14:06:10 EDT 2025
Fri Jul 11 07:09:10 EDT 2025
Fri Jul 25 10:17:10 EDT 2025
Thu Jan 02 22:22:41 EST 2025
Thu Apr 24 23:13:05 EDT 2025
Tue Jul 01 02:22:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RNA-seq
Penicillin
Strain improvement
Velvet
Acremonium chrysogenum
Gene expression
Amino acid metabolism
Secondary metabolism
Cephalosporin
Penicillium chrysogenum
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-9f3d89df35dabf1eca30a544979fde4f15570d124368f00ef58485a8369856223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2348289619?pq-origsite=%requestingapplication%
PMID 28359302
PQID 2348289619
PQPubID 44682
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_a9487bfe23a04d98ad2d688e9b11df1c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5374653
proquest_miscellaneous_1883177228
proquest_journals_2348289619
pubmed_primary_28359302
crossref_primary_10_1186_s12864_017_3663_0
crossref_citationtrail_10_1186_s12864_017_3663_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-31
PublicationDateYYYYMMDD 2017-03-31
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-31
  day: 31
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2017
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References A Fleming (3663_CR12) 1929; 10
K Kopke (3663_CR29) 2013; 12
S Wolfers (3663_CR46) 2015; 55
GG Newton (3663_CR102) 1956; 62
AA Brakhage (3663_CR37) 2009; 70
D Kim (3663_CR88) 2013; 14
CF Kim (3663_CR40) 2003; 69
G Turner (3663_CR5) 1992; 171
S Bloemendal (3663_CR28) 2014; 169
SS Weber (3663_CR87) 2012; 7
Y-Q Shen (3663_CR44) 1986; 4
MS López-Berges (3663_CR85) 2013; 87
E Chain (3663_CR13) 1940; 2
WW Sande van de (3663_CR38) 2012; 7
J Lein (3663_CR17) 1986
L Li (3663_CR67) 2001; 276
R Agren (3663_CR59) 2013; 9
R Core Team (3663_CR93) 2015
AA Brakhage (3663_CR3) 2004; 88
S Bloemendal (3663_CR2) 2014
M Berg van den (3663_CR4) 2010; 27
FB Gailey (3663_CR99) 1946; 52
3663_CR82
Q Peng (3663_CR9) 2014; 15
3663_CR89
G Revilla (3663_CR69) 1986; 168
TA Dahlmann (3663_CR21) 2015; 10
O Godinez (3663_CR74) 2015; 25
Ö Bayram (3663_CR80) 2012; 36
B Gregory RWB (3663_CR95) 2009
B Hoff (3663_CR30) 2010; 9
GS Hoog de (3663_CR39) 2004; 47
MA Berg van den (3663_CR15) 2008; 26
O Sarikaya-Bayram (3663_CR34) 2015; 6
T Weber (3663_CR97) 2015; 43
JJ Coque (3663_CR36) 1991; 5
3663_CR24
E Käfer (3663_CR79) 1965; 52
MI Love (3663_CR42) 2014; 15
S Kumar (3663_CR98) 2016; 33
MG Fraczek (3663_CR64) 2013; 68
MS Jami (3663_CR72) 2010; 9
P Bowyer (3663_CR65) 2012; 332
J Houbraken (3663_CR6) 2011; 2
J Nielsen (3663_CR16) 1997
Ö Bayram (3663_CR33) 2008; 320
3663_CR20
S Priebe (3663_CR47) 2015; 31
D Roelofs (3663_CR41) 2013; 30
KB Raper (3663_CR14) 1946; 48
J Marui (3663_CR62) 2010; 87
TA Dahlmann (3663_CR76) 2015; 61
M Lawrence (3663_CR94) 2013; 9
B Hoff (3663_CR27) 2005; 56
Y Liu (3663_CR11) 2014; 9
J Dreyer (3663_CR32) 2007; 73
G Ozcengiz (3663_CR1) 2013; 31
MJ Hijarrubia (3663_CR50) 2002; 59
EK Schmitt (3663_CR26) 2004; 3
X Hou (3663_CR53) 2012; 43
M Walz (3663_CR75) 1991; 19
C Derntl (3663_CR61) 2016
C Esmahan (3663_CR51) 1994; 60
A Ruepp (3663_CR48) 2004; 32
M Karachaliou (3663_CR71) 2013; 88
V Ter-Hovhannisyan (3663_CR90) 2008; 18
MP Backus (3663_CR19) 1946; 68
KJ Hoff (3663_CR91) 2015
F Teijeira (3663_CR45) 2009; 418
J Velasco (3663_CR55) 2001; 57
AL Demain (3663_CR18) 2009; 29
ME Silva Ferreira da (3663_CR63) 2006; 50
F Fierro (3663_CR77) 1993; 241
DK Holm (3663_CR57) 2014; 21
K Jekosch (3663_CR70) 2000; 54
DA Henk (3663_CR7) 2011; 20
R Radzio (3663_CR103) 1997; 48
D Schindler (3663_CR96) 2014; 68
RW Newbert (3663_CR78) 1997; 19
DV Renno (3663_CR43) 1992; 21
Y Terabayashi (3663_CR66) 2012; 93
T Toyomasu (3663_CR58) 2004; 68
C Barreiro (3663_CR73) 2012; 2012
C Holt (3663_CR92) 2011; 12
GG Newton (3663_CR22) 1955; 175
OV Salo (3663_CR10) 2015; 16
3663_CR54
J Fan (3663_CR68) 2002; 55
J Casqueiro (3663_CR49) 1999; 181
E Radmacher (3663_CR52) 2002; 68
C Tollnick (3663_CR25) 2004; 86
MG Amare (3663_CR83) 2014; 66
O Salo (3663_CR60) 2016
P Spröte (3663_CR35) 2007; 188
RP Elander (3663_CR23) 1976
B Hoff (3663_CR101) 2010; 85
B Hoff (3663_CR100) 2008; 7
YL Ahmed (3663_CR81) 2013; 11
LP Chow (3663_CR56) 2000; 269
K Tamano (3663_CR86) 2014; 5
T Veiga (3663_CR84) 2012; 16
U Kück (3663_CR31) 2014; 10
J McNeill (3663_CR8) 2006
21951491 - Mol Ecol. 2011 Oct;20(20):4288-301
23618408 - Genome Biol. 2013 Apr 25;14(4):R36
19291695 - Med Res Rev. 2009 Nov;29(6):821-42
15882416 - Mol Microbiol. 2005 Jun;56(5):1220-33
22057844 - Biotechnol J. 2012 Feb;7(2):225-36
25948579 - Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43
1302173 - Ciba Found Symp. 1992;171:113-24; discussion 124-8
3096965 - J Bacteriol. 1986 Nov;168(2):947-52
25294921 - Bioinformatics. 2015 Feb 1;31(3):445-6
8031073 - Appl Environ Microbiol. 1994 Jun;60(6):1705-10
17375284 - Arch Microbiol. 2007 Jul;188(1):69-79
21658084 - FEMS Microbiol Rev. 2012 Jan;36(1):1-24
23580559 - J Antimicrob Chemother. 2013 Jul;68(7):1486-96
25118715 - PLoS One. 2014 Aug 13;9(8):e104542
11759684 - Appl Microbiol Biotechnol. 2001 Oct;57(3):350-6
16622700 - Curr Genet. 2006 Jul;50(1):32-44
12111157 - Appl Microbiol Biotechnol. 2002 Jul;59(2-3):270-7
20154335 - Mol Cell Proteomics. 2010 Jun;9(6):1182-98
9281849 - J Ind Microbiol Biotechnol. 1997 Jul;19(1):18-27
14871943 - Eukaryot Cell. 2004 Feb;3(1):121-34
25653648 - Front Microbiol. 2015 Jan 20;6:1
20464390 - Appl Microbiol Biotechnol. 2010 Aug;87(5):1829-40
19863978 - Phytochemistry. 2009 Oct-Nov;70(15-16):1801-11
25291769 - Genome Announc. 2014 Sep 18;2(5):null
18757608 - Genome Res. 2008 Dec;18(12):1979-90
24613992 - Fungal Genet Biol. 2014 May;66:11-8
24792494 - Fungal Genet Biol. 2014 Jul;68:48-59
1735125 - Curr Genet. 1992 Jan;21(1):49-54
15486203 - Nucleic Acids Res. 2004 Oct 14;32(18):5539-45
1676616 - Curr Genet. 1991 Feb;19(2):73-6
25955857 - PLoS One. 2015 May 08;10(5):e0125989
23106229 - Mol Microbiol. 2013 Jan;87(1):49-65
22439693 - OMICS. 2012 Jun;16(6):320-33
27107123 - Appl Environ Microbiol. 2016 Jun 13;82(13):3971-8
9274048 - Appl Microbiol Biotechnol. 1997 Jul;48(1):58-65
17400783 - Appl Environ Microbiol. 2007 May;73(10):3412-22
11092632 - Appl Microbiol Biotechnol. 2000 Oct;54(4):556-63
23490137 - Mol Microbiol. 2013 Apr;88(2):301-17
22701687 - PLoS One. 2012;7(6):e38654
24391470 - PLoS Biol. 2013 Dec;11(12):e1001750
11390404 - J Biol Chem. 2001 Aug 3;276(31):29515-9
14370161 - Nature. 1955 Mar 26;175(4456):548
25993917 - Curr Genet. 2015 Nov;61(4):679-83
5857597 - Genetics. 1965 Jul;52(1):217-32
21008340 - J Am Chem Soc. 1946 Jan;68:152
27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4
15719552 - Adv Biochem Eng Biotechnol. 2004;88:45-90
22192575 - BMC Bioinformatics. 2011 Dec 22;12:491
24216341 - J Biotechnol. 2014 Jan;169:51-62
1956290 - Mol Microbiol. 1991 May;5(5):1125-33
26139611 - J Microbiol Biotechnol. 2015 Nov;25(11):1787-95
25059858 - Genome Announc. 2014 Jul 24;2(4):null
22552525 - Amino Acids. 2012 Dec;43(6):2301-11
27570838 - mSphere. 2016 Jul 13;1(4):null
23950696 - PLoS Comput Biol. 2013;9(8):e1003118
19690852 - Appl Microbiol Biotechnol. 2010 Jan;85(4):1081-94
25516281 - Genome Biol. 2014;15(12):550
12187386 - J Mol Evol. 2002 Sep;55(3):336-46
21415891 - Biotechnol Genet Eng Rev. 2010;27:1-32
22509997 - FEMS Microbiol Lett. 2012 Jul;332(1):10-9
26559507 - Bioinformatics. 2016 Mar 1;32(5):767-9
23228980 - Biotechnol Adv. 2013 Mar-Apr;31(2):287-311
25566228 - Front Microbiol. 2014 Dec 18;5:718
26572918 - BMC Genomics. 2015 Nov 14;16:937
12571064 - Appl Environ Microbiol. 2003 Feb;69(2):1308-14
15980513 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7
24626260 - PLoS Pathog. 2014 Mar 13;10(3):e1003950
10694469 - Biochem Biophys Res Commun. 2000 Mar 5;269(1):14-20
27520818 - Appl Environ Microbiol. 2016 Sep 30;82(20):6247-6257
22170104 - Appl Microbiol Biotechnol. 2012 Jan;93(1):305-17
24555742 - BMC Genomics. 2014 Feb 21;15:144
18820685 - Nat Biotechnol. 2008 Oct;26(10):1161-8
15088762 - Adv Biochem Eng Biotechnol. 2004;86:1-45
25557366 - J Basic Microbiol. 2015 Apr;55(4):480-9
15078428 - Mycoses. 2004 Apr;47(3-4):121-30
18556559 - Science. 2008 Jun 13;320(5882):1504-6
23264641 - Eukaryot Cell. 2013 Feb;12(2):299-310
16561141 - J Bacteriol. 1946 Jul;52(1):129-40
18840096 - Biochem J. 2009 Feb 15;418(1):113-24
22679592 - IMA Fungus. 2011 Jun;2(1):87-95
8264531 - Mol Gen Genet. 1993 Dec;241(5-6):573-8
11976094 - Appl Environ Microbiol. 2002 May;68(5):2246-50
14745177 - Biosci Biotechnol Biochem. 2004 Jan;68(1):146-52
13315229 - Biochem J. 1956 Apr;62(4):651-8
23204388 - Mol Biol Evol. 2013 Mar;30(3):541-8
23555215 - PLoS Comput Biol. 2013;9(3):e1002980
22318718 - J Biomed Biotechnol. 2012;2012:105109
24684908 - Chem Biol. 2014 Apr 24;21(4):519-29
9973344 - J Bacteriol. 1999 Feb;181(4):1181-8
20543063 - Eukaryot Cell. 2010 Aug;9(8):1236-50
18223118 - Eukaryot Cell. 2008 Mar;7(3):465-70
References_xml – volume: 55
  start-page: 336
  issue: 3
  year: 2002
  ident: 3663_CR68
  publication-title: J Mol Evol
  doi: 10.1007/s00239-002-2330-4
– volume: 2
  start-page: 87
  issue: 1
  year: 2011
  ident: 3663_CR6
  publication-title: IMA Fungus
  doi: 10.5598/imafungus.2011.02.01.12
– volume: 43
  start-page: W237
  issue: W1
  year: 2015
  ident: 3663_CR97
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv437
– volume: 15
  start-page: 144
  year: 2014
  ident: 3663_CR9
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-144
– volume: 5
  start-page: 718
  year: 2014
  ident: 3663_CR86
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00718
– volume: 7
  start-page: 225
  issue: 2
  year: 2012
  ident: 3663_CR87
  publication-title: Biotechnol J
  doi: 10.1002/biot.201100065
– volume: 21
  start-page: 519
  issue: 4
  year: 2014
  ident: 3663_CR57
  publication-title: Chem Biol
  doi: 10.1016/j.chembiol.2014.01.013
– volume: 29
  start-page: 821
  issue: 6
  year: 2009
  ident: 3663_CR18
  publication-title: Med Res Rev
  doi: 10.1002/med.20154
– volume: 48
  start-page: 58
  issue: 1
  year: 1997
  ident: 3663_CR103
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530051015
– volume: 12
  start-page: 299
  issue: 2
  year: 2013
  ident: 3663_CR29
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00272-12
– ident: 3663_CR82
  doi: 10.1128/mSphere.00149-16
– volume: 21
  start-page: 49
  issue: 1
  year: 1992
  ident: 3663_CR43
  publication-title: Curr Genet
  doi: 10.1007/BF00318654
– volume: 48
  start-page: 41
  year: 1946
  ident: 3663_CR14
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1946.tb31753.x
– volume: 320
  start-page: 1504
  issue: 5882
  year: 2008
  ident: 3663_CR33
  publication-title: Science
  doi: 10.1126/science.1155888
– volume-title: R: A language and environment for statistical computing
  year: 2015
  ident: 3663_CR93
– start-page: 146
  volume-title: International code of botanical nomenclature (Vienna code): adopted by the seventeenth international botanical congress Vienna
  year: 2006
  ident: 3663_CR8
– volume: 32
  start-page: 5539
  issue: 18
  year: 2004
  ident: 3663_CR48
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh894
– volume: 10
  start-page: e0125989
  issue: 5
  year: 2015
  ident: 3663_CR21
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125989
– volume: 86
  start-page: 1
  year: 2004
  ident: 3663_CR25
  publication-title: Adv Biochem Eng Biotechnol
– volume: 68
  start-page: 48
  year: 2014
  ident: 3663_CR96
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2014.04.008
– start-page: 43
  volume-title: Biosynthesis and molecular genetics of fungal secondary metabolites
  year: 2014
  ident: 3663_CR2
  doi: 10.1007/978-1-4939-1191-2_3
– year: 2015
  ident: 3663_CR91
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv661
– volume: 9
  start-page: e1003118
  issue: 8
  year: 2013
  ident: 3663_CR94
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003118
– volume: 30
  start-page: 541
  issue: 3
  year: 2013
  ident: 3663_CR41
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss269
– volume: 10
  start-page: e1003950
  issue: 3
  year: 2014
  ident: 3663_CR31
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003950
– year: 2016
  ident: 3663_CR61
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01408-16
– start-page: 517
  volume-title: Microbiology: 1976
  year: 1976
  ident: 3663_CR23
– volume: 55
  start-page: 480
  issue: 4
  year: 2015
  ident: 3663_CR46
  publication-title: J Basic Microbiol
  doi: 10.1002/jobm.201400588
– volume: 33
  start-page: 1870
  issue: 7
  year: 2016
  ident: 3663_CR98
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw054
– volume: 171
  start-page: 113
  year: 1992
  ident: 3663_CR5
  publication-title: Ciba Found Symp
– ident: 3663_CR24
  doi: 10.1201/9780203970553.ch20
– volume: 27
  start-page: 1
  year: 2010
  ident: 3663_CR4
  publication-title: Biotechnol Genet Eng Rev
  doi: 10.1080/02648725.2010.10648143
– volume: 3
  start-page: 121
  issue: 1
  year: 2004
  ident: 3663_CR26
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.3.1.121-134.2004
– volume: 93
  start-page: 305
  issue: 1
  year: 2012
  ident: 3663_CR66
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-011-3767-4
– volume: 14
  start-page: R36
  issue: 4
  year: 2013
  ident: 3663_CR88
  publication-title: Genome Biol
  doi: 10.1186/gb-2013-14-4-r36
– volume: 18
  start-page: 1979
  issue: 12
  year: 2008
  ident: 3663_CR90
  publication-title: Genome Res
  doi: 10.1101/gr.081612.108
– volume: 175
  start-page: 548
  issue: 4456
  year: 1955
  ident: 3663_CR22
  publication-title: Nature
  doi: 10.1038/175548a0
– volume: 68
  start-page: 152
  year: 1946
  ident: 3663_CR19
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01205a518
– volume: 50
  start-page: 32
  issue: 1
  year: 2006
  ident: 3663_CR63
  publication-title: Curr Genet
  doi: 10.1007/s00294-006-0073-2
– volume: 68
  start-page: 1486
  issue: 7
  year: 2013
  ident: 3663_CR64
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkt075
– volume: 16
  start-page: 320
  issue: 6
  year: 2012
  ident: 3663_CR84
  publication-title: OMICS
  doi: 10.1089/omi.2011.0153
– volume: 87
  start-page: 1829
  issue: 5
  year: 2010
  ident: 3663_CR62
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-010-2627-y
– volume: 169
  start-page: 51
  year: 2014
  ident: 3663_CR28
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2013.10.036
– volume: 241
  start-page: 573
  issue: 5–6
  year: 1993
  ident: 3663_CR77
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00279899
– volume: 47
  start-page: 121
  issue: 3–4
  year: 2004
  ident: 3663_CR39
  publication-title: Mycoses
  doi: 10.1111/j.1439-0507.2004.00964.x
– volume: 188
  start-page: 69
  issue: 1
  year: 2007
  ident: 3663_CR35
  publication-title: Arch Microbiol
  doi: 10.1007/s00203-007-0224-y
– ident: 3663_CR54
  doi: 10.1128/genomeA.00948-14
– volume: 59
  start-page: 270
  issue: 2–3
  year: 2002
  ident: 3663_CR50
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-002-0995-7
– volume: 69
  start-page: 1308
  issue: 2
  year: 2003
  ident: 3663_CR40
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.2.1308-1314.2003
– volume: 276
  start-page: 29515
  issue: 31
  year: 2001
  ident: 3663_CR67
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M103944200
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  ident: 3663_CR42
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– ident: 3663_CR89
  doi: 10.1093/nar/gki458
– volume-title: gplots: Various R programming tools for plotting data. R package version
  year: 2009
  ident: 3663_CR95
– volume: 7
  start-page: 465
  issue: 3
  year: 2008
  ident: 3663_CR100
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00430-07
– volume: 73
  start-page: 3412
  issue: 10
  year: 2007
  ident: 3663_CR32
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00129-07
– volume: 57
  start-page: 350
  issue: 3
  year: 2001
  ident: 3663_CR55
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530100769
– volume: 52
  start-page: 217
  issue: 1
  year: 1965
  ident: 3663_CR79
  publication-title: Genetics
  doi: 10.1093/genetics/52.1.217
– volume: 332
  start-page: 10
  issue: 1
  year: 2012
  ident: 3663_CR65
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2012.02575.x
– volume: 25
  start-page: 1787
  issue: 11
  year: 2015
  ident: 3663_CR74
  publication-title: J Microbiol Biotechnol
  doi: 10.4014/jmb.1503.03042
– volume: 19
  start-page: 18
  issue: 1
  year: 1997
  ident: 3663_CR78
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1038/sj.jim.2900411
– volume: 87
  start-page: 49
  issue: 1
  year: 2013
  ident: 3663_CR85
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.12082
– volume: 2
  start-page: 226
  year: 1940
  ident: 3663_CR13
  publication-title: Lancet
  doi: 10.1016/S0140-6736(01)08728-1
– volume: 31
  start-page: 445
  issue: 3
  year: 2015
  ident: 3663_CR47
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu627
– volume: 52
  start-page: 129
  issue: 1
  year: 1946
  ident: 3663_CR99
  publication-title: J Bacteriol
  doi: 10.1128/JB.52.1.129-140.1946
– volume: 61
  start-page: 679
  issue: 4
  year: 2015
  ident: 3663_CR76
  publication-title: Curr Genet
  doi: 10.1007/s00294-015-0497-7
– volume: 56
  start-page: 1220
  issue: 5
  year: 2005
  ident: 3663_CR27
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04626.x
– volume: 62
  start-page: 651
  issue: 4
  year: 1956
  ident: 3663_CR102
  publication-title: Biochem J
  doi: 10.1042/bj0620651
– volume: 9
  start-page: e1002980
  issue: 3
  year: 2013
  ident: 3663_CR59
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002980
– volume: 269
  start-page: 14
  issue: 1
  year: 2000
  ident: 3663_CR56
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.2000.2253
– volume-title: Physiological Engeneering Aspects of Penicillium chrysogenum
  year: 1997
  ident: 3663_CR16
  doi: 10.1142/3195
– volume: 19
  start-page: 73
  issue: 2
  year: 1991
  ident: 3663_CR75
  publication-title: Curr Genet
  doi: 10.1007/BF00326285
– volume: 16
  start-page: 937
  issue: 1
  year: 2015
  ident: 3663_CR10
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2154-4
– volume: 2012
  start-page: 105109
  year: 2012
  ident: 3663_CR73
  publication-title: J Biomed Biotechnol
  doi: 10.1155/2012/105109
– year: 2016
  ident: 3663_CR60
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00350-16
– volume: 31
  start-page: 287
  issue: 2
  year: 2013
  ident: 3663_CR1
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2012.12.001
– volume: 7
  start-page: e38654
  issue: 6
  year: 2012
  ident: 3663_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0038654
– volume: 88
  start-page: 301
  issue: 2
  year: 2013
  ident: 3663_CR71
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.12184
– ident: 3663_CR20
  doi: 10.1128/genomeA.00577-14
– volume: 20
  start-page: 4288
  issue: 20
  year: 2011
  ident: 3663_CR7
  publication-title: Mol Ecol
  doi: 10.1111/j.1365-294X.2011.05244.x
– volume: 60
  start-page: 1705
  issue: 6
  year: 1994
  ident: 3663_CR51
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.60.6.1705-1710.1994
– volume: 11
  start-page: e1001750
  issue: 12
  year: 2013
  ident: 3663_CR81
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001750
– volume: 10
  start-page: 226
  issue: 3
  year: 1929
  ident: 3663_CR12
  publication-title: Br J Exp Pathol
– volume: 6
  start-page: 1
  year: 2015
  ident: 3663_CR34
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2015.00001
– volume: 9
  start-page: e104542
  issue: 8
  year: 2014
  ident: 3663_CR11
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104542
– volume: 66
  start-page: 11
  year: 2014
  ident: 3663_CR83
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2014.02.008
– volume: 4
  start-page: 61
  issue: 1
  year: 1986
  ident: 3663_CR44
  publication-title: Nat Biotech
  doi: 10.1038/nbt0186-61
– start-page: 105
  volume-title: Overproduction of microbial metabolites
  year: 1986
  ident: 3663_CR17
– volume: 181
  start-page: 1181
  issue: 4
  year: 1999
  ident: 3663_CR49
  publication-title: J Bacteriol
  doi: 10.1128/JB.181.4.1181-1188.1999
– volume: 12
  start-page: 491
  year: 2011
  ident: 3663_CR92
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-491
– volume: 9
  start-page: 1182
  issue: 6
  year: 2010
  ident: 3663_CR72
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M900327-MCP200
– volume: 26
  start-page: 1161
  issue: 10
  year: 2008
  ident: 3663_CR15
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1498
– volume: 418
  start-page: 113
  issue: 1
  year: 2009
  ident: 3663_CR45
  publication-title: Biochem J
  doi: 10.1042/BJ20081180
– volume: 5
  start-page: 1125
  issue: 5
  year: 1991
  ident: 3663_CR36
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1991.tb01885.x
– volume: 168
  start-page: 947
  issue: 2
  year: 1986
  ident: 3663_CR69
  publication-title: J Bacteriol
  doi: 10.1128/jb.168.2.947-952.1986
– volume: 36
  start-page: 1
  issue: 1
  year: 2012
  ident: 3663_CR80
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2011.00285.x
– volume: 54
  start-page: 556
  issue: 4
  year: 2000
  ident: 3663_CR70
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s002530000422
– volume: 70
  start-page: 1801
  issue: 15–16
  year: 2009
  ident: 3663_CR37
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2009.09.011
– volume: 68
  start-page: 2246
  issue: 5
  year: 2002
  ident: 3663_CR52
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.5.2246-2250.2002
– volume: 88
  start-page: 45
  year: 2004
  ident: 3663_CR3
  publication-title: Adv Biochem Engin/Biotechnol
  doi: 10.1007/b99257
– volume: 9
  start-page: 1236
  issue: 8
  year: 2010
  ident: 3663_CR30
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00077-10
– volume: 68
  start-page: 146
  issue: 1
  year: 2004
  ident: 3663_CR58
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1271/bbb.68.146
– volume: 43
  start-page: 2301
  issue: 6
  year: 2012
  ident: 3663_CR53
  publication-title: Amino Acids
  doi: 10.1007/s00726-012-1308-9
– volume: 85
  start-page: 1081
  issue: 4
  year: 2010
  ident: 3663_CR101
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-009-2168-4
– reference: 25993917 - Curr Genet. 2015 Nov;61(4):679-83
– reference: 11092632 - Appl Microbiol Biotechnol. 2000 Oct;54(4):556-63
– reference: 8264531 - Mol Gen Genet. 1993 Dec;241(5-6):573-8
– reference: 13315229 - Biochem J. 1956 Apr;62(4):651-8
– reference: 22679592 - IMA Fungus. 2011 Jun;2(1):87-95
– reference: 19863978 - Phytochemistry. 2009 Oct-Nov;70(15-16):1801-11
– reference: 24684908 - Chem Biol. 2014 Apr 24;21(4):519-29
– reference: 3096965 - J Bacteriol. 1986 Nov;168(2):947-52
– reference: 1735125 - Curr Genet. 1992 Jan;21(1):49-54
– reference: 15486203 - Nucleic Acids Res. 2004 Oct 14;32(18):5539-45
– reference: 21415891 - Biotechnol Genet Eng Rev. 2010;27:1-32
– reference: 26139611 - J Microbiol Biotechnol. 2015 Nov;25(11):1787-95
– reference: 25948579 - Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43
– reference: 24216341 - J Biotechnol. 2014 Jan;169:51-62
– reference: 25653648 - Front Microbiol. 2015 Jan 20;6:1
– reference: 22552525 - Amino Acids. 2012 Dec;43(6):2301-11
– reference: 15882416 - Mol Microbiol. 2005 Jun;56(5):1220-33
– reference: 21658084 - FEMS Microbiol Rev. 2012 Jan;36(1):1-24
– reference: 14745177 - Biosci Biotechnol Biochem. 2004 Jan;68(1):146-52
– reference: 20154335 - Mol Cell Proteomics. 2010 Jun;9(6):1182-98
– reference: 1302173 - Ciba Found Symp. 1992;171:113-24; discussion 124-8
– reference: 21951491 - Mol Ecol. 2011 Oct;20(20):4288-301
– reference: 23490137 - Mol Microbiol. 2013 Apr;88(2):301-17
– reference: 19690852 - Appl Microbiol Biotechnol. 2010 Jan;85(4):1081-94
– reference: 5857597 - Genetics. 1965 Jul;52(1):217-32
– reference: 22192575 - BMC Bioinformatics. 2011 Dec 22;12:491
– reference: 14370161 - Nature. 1955 Mar 26;175(4456):548
– reference: 22439693 - OMICS. 2012 Jun;16(6):320-33
– reference: 20543063 - Eukaryot Cell. 2010 Aug;9(8):1236-50
– reference: 11759684 - Appl Microbiol Biotechnol. 2001 Oct;57(3):350-6
– reference: 11976094 - Appl Environ Microbiol. 2002 May;68(5):2246-50
– reference: 24626260 - PLoS Pathog. 2014 Mar 13;10(3):e1003950
– reference: 25059858 - Genome Announc. 2014 Jul 24;2(4):null
– reference: 22057844 - Biotechnol J. 2012 Feb;7(2):225-36
– reference: 22170104 - Appl Microbiol Biotechnol. 2012 Jan;93(1):305-17
– reference: 17400783 - Appl Environ Microbiol. 2007 May;73(10):3412-22
– reference: 22509997 - FEMS Microbiol Lett. 2012 Jul;332(1):10-9
– reference: 11390404 - J Biol Chem. 2001 Aug 3;276(31):29515-9
– reference: 25291769 - Genome Announc. 2014 Sep 18;2(5):null
– reference: 24555742 - BMC Genomics. 2014 Feb 21;15:144
– reference: 15088762 - Adv Biochem Eng Biotechnol. 2004;86:1-45
– reference: 17375284 - Arch Microbiol. 2007 Jul;188(1):69-79
– reference: 22701687 - PLoS One. 2012;7(6):e38654
– reference: 15980513 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7
– reference: 24391470 - PLoS Biol. 2013 Dec;11(12):e1001750
– reference: 27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4
– reference: 12187386 - J Mol Evol. 2002 Sep;55(3):336-46
– reference: 27520818 - Appl Environ Microbiol. 2016 Sep 30;82(20):6247-6257
– reference: 16561141 - J Bacteriol. 1946 Jul;52(1):129-40
– reference: 16622700 - Curr Genet. 2006 Jul;50(1):32-44
– reference: 18757608 - Genome Res. 2008 Dec;18(12):1979-90
– reference: 8031073 - Appl Environ Microbiol. 1994 Jun;60(6):1705-10
– reference: 25118715 - PLoS One. 2014 Aug 13;9(8):e104542
– reference: 25294921 - Bioinformatics. 2015 Feb 1;31(3):445-6
– reference: 14871943 - Eukaryot Cell. 2004 Feb;3(1):121-34
– reference: 9274048 - Appl Microbiol Biotechnol. 1997 Jul;48(1):58-65
– reference: 20464390 - Appl Microbiol Biotechnol. 2010 Aug;87(5):1829-40
– reference: 25566228 - Front Microbiol. 2014 Dec 18;5:718
– reference: 23204388 - Mol Biol Evol. 2013 Mar;30(3):541-8
– reference: 25557366 - J Basic Microbiol. 2015 Apr;55(4):480-9
– reference: 15078428 - Mycoses. 2004 Apr;47(3-4):121-30
– reference: 18840096 - Biochem J. 2009 Feb 15;418(1):113-24
– reference: 23264641 - Eukaryot Cell. 2013 Feb;12(2):299-310
– reference: 23228980 - Biotechnol Adv. 2013 Mar-Apr;31(2):287-311
– reference: 12111157 - Appl Microbiol Biotechnol. 2002 Jul;59(2-3):270-7
– reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36
– reference: 26572918 - BMC Genomics. 2015 Nov 14;16:937
– reference: 25955857 - PLoS One. 2015 May 08;10(5):e0125989
– reference: 26559507 - Bioinformatics. 2016 Mar 1;32(5):767-9
– reference: 1956290 - Mol Microbiol. 1991 May;5(5):1125-33
– reference: 21008340 - J Am Chem Soc. 1946 Jan;68:152
– reference: 9281849 - J Ind Microbiol Biotechnol. 1997 Jul;19(1):18-27
– reference: 23106229 - Mol Microbiol. 2013 Jan;87(1):49-65
– reference: 18223118 - Eukaryot Cell. 2008 Mar;7(3):465-70
– reference: 19291695 - Med Res Rev. 2009 Nov;29(6):821-42
– reference: 25516281 - Genome Biol. 2014;15(12):550
– reference: 23555215 - PLoS Comput Biol. 2013;9(3):e1002980
– reference: 18556559 - Science. 2008 Jun 13;320(5882):1504-6
– reference: 23580559 - J Antimicrob Chemother. 2013 Jul;68(7):1486-96
– reference: 27107123 - Appl Environ Microbiol. 2016 Jun 13;82(13):3971-8
– reference: 1676616 - Curr Genet. 1991 Feb;19(2):73-6
– reference: 9973344 - J Bacteriol. 1999 Feb;181(4):1181-8
– reference: 24613992 - Fungal Genet Biol. 2014 May;66:11-8
– reference: 18820685 - Nat Biotechnol. 2008 Oct;26(10):1161-8
– reference: 10694469 - Biochem Biophys Res Commun. 2000 Mar 5;269(1):14-20
– reference: 22318718 - J Biomed Biotechnol. 2012;2012:105109
– reference: 12571064 - Appl Environ Microbiol. 2003 Feb;69(2):1308-14
– reference: 24792494 - Fungal Genet Biol. 2014 Jul;68:48-59
– reference: 15719552 - Adv Biochem Eng Biotechnol. 2004;88:45-90
– reference: 27570838 - mSphere. 2016 Jul 13;1(4):null
– reference: 23950696 - PLoS Comput Biol. 2013;9(8):e1003118
SSID ssj0017825
Score 2.3387415
Snippet Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers...
Background Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main...
Abstract Background Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 272
SubjectTerms Acremonium - classification
Acremonium - genetics
Acremonium chrysogenum
Amides
Antibiotics
Bacteria
Bacterial infections
beta-Lactamases - genetics
beta-Lactams - metabolism
Biosynthesis
Cephalosporin
Cephalosporins
Deletion
Energy Metabolism - genetics
Eukaryota - metabolism
Fungi
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Fungal
Gene Rearrangement
Gene regulation
Genes
Genes, Regulator
Genome, Fungal
Genomes
Genomics
Genomics - methods
High-Throughput Nucleotide Sequencing
Industrial strains
Metabolism
Metabolites
Microorganisms
Mutagenesis
Mutation
Penicillin
Penicillium chrysogenum
Penicillium chrysogenum - classification
Penicillium chrysogenum - genetics
Phylogenetics
Phylogeny
Production capacity
Secondary Metabolism - genetics
Secondary metabolites
Strains (organisms)
Transcription
Transcriptome
Transport processes
Velvet
Virulence - genetics
β-Lactam antibiotics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA9yIPgi_rfnKSP4JJRrkyZNfDvF4xAUHzy5t5A2yd3Kbnu0XeW-lh_kXu4LOUm7y1ZEX4Q-Nd2S7sxkfpOZ_IaQV5TXnJuyTAM3OwYouUsRtdK0KpWXheSyiqmYj5_EyWnx4Yyf7bT6CjVhIz3w-McdGoWQuvKOMpMVVkljqRVSOlXlufV5HVZf9HmbYGrKH6Df41MOM5fisMdVWIRqCzQoERKXMy8Uyfr_hDB_L5Tc8TzH98jdCTLC0TjV--SWax6Q22MTyauH5Ca6m2j87cqBmVhGoPWA4A6GHy2sm3hkxVlAN4YuAa5_pktTD2YFl5HxFTEgHCF-RJ1crFdQX3RXfXsequTxfRY-u2ZRh42Z-dgb-OqW392QdmNDe3z_eVg6wXQOVuZb28FYaN7DeBoSdmvcoY_tKWARtzXiLiVM1WL9I3J6_P7Lu5N0atWQ1oViQ6o8s1JZz7g1lc9dbVhmeFEoFLl1hc8D05dFLMGE9FnmPA-KYCQTSiICo-wx2Wvaxj0lUFYUrxyRv7MYG3nJnUMU4qiwVWWFSUi2EZ2uJx7zMN-ljvGMFHqUtkZp6yBtnSXk9fYnlyOJx98efhv0Yftg4N-ON1Ar9aSV-l9amZCDjTbpaVHoNQ1EQlJhyJqQl9thNOeQozGNa9e9xu9GRFdSKhPyZFS-7UwCNZ5iGU1IOVPL2VTnI83iIlKGc1YGIr39__Ftz8gdGiwpHsw8IHtDt3bPEZkN1YtohL8A9rM9-w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fi9QwEA96Ivgi_rd6ygg-CeXatGkTX-QUj0NQfPBk30raJHd77LZr21Xua_lBfPELOZNm11uRgz41bUmZycxvJpPfMPaSi0YIXZYxcbNjgJLaGFErj-tSOZlLIWu_FfPxU3F8kn-YiVlIuA2hrHJjE72hNl1DOfIDTiwsUiHef7P6FlPXKNpdDS00rrMbRF1GwVc52wZcKXo_EXYyU1kcDGiLC6q5wGVV0Pblji_ylP3_w5n_lkte8j9Hd9jtABzhcJL0XXbNtvfYzamV5MV99ts7HW8CuqUFHbhGoHOAEA_GHx2sW39wxRpAZ4aOAX79jBe6GfUSVp73FZEgHCKKxF-dr5fQnPUXQ3dKtfL4PQOfbTtvKD2zO_YavtrFdzvG_dTWHr9_SgYUdG9hqc-7HqZy8wGmM5FwudIdBt-kAuY-ueFzlRBqxoYH7OTo_Zd3x3Fo2BA3ucrGWLnMSGVcJoyuXWobnSVa5LlCwRubu5T4vgwiiqyQLkmsE6QOWmaFkojDePaQ7bVdax8zKGuOV4r43xqMkJwU1iIWsbwwdW0KHbFkI7qqCWzmNN9F5aMaWVSTtCuUdkXSrpKIvdq-spqoPK56-C3pw_ZBYuH2N7r-tAqLutIKw73aWZ7pJDdKasNNIaVVdZoalzYR299oUxVMw1D9VeSIvdgO46KmnRrd2m49VPjfiOtKzmXEHk3Kt50JEeSpLOERK3fUcmequyPt_MwTh4usJDq9J1dP6ym7xWmN-IOX-2xv7Nf2GSKvsX7ul9cf8Iw0qQ
  priority: 102
  providerName: ProQuest
Title Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs
URI https://www.ncbi.nlm.nih.gov/pubmed/28359302
https://www.proquest.com/docview/2348289619
https://www.proquest.com/docview/1883177228
https://pubmed.ncbi.nlm.nih.gov/PMC5374653
https://doaj.org/article/a9487bfe23a04d98ad2d688e9b11df1c
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2ERIviDuBUR0knpACiRMnNhJCG9o0IW2aEEV9i5zY7oraZCQp0L_FD-GFP8Sxk5QVFaQ-1Ynl1uf4fOfi7xDynLKCMZmmvuVmRwcl1D6iVurnqTA85oznLhVzdp6cjuP3EzbZIUN7q_4PbLa6draf1Liev_z-ZfUWFf6NU3ievGrwjE1sLQWqS2LTkrtkHw1Tajs5nMV_kgpoDFmf2Nz6miUGRkAioj7GMlgpR-a_DYH-XUh5zTKd3Ca3ekgJh50M3CE7urxLbnRNJlf3yC9njtzhUC00yJ6FBCoDCP6g_VbBsnRXWrQCNHNoMuDnD38ui1Yu4MoxwiJGhEPElyizs-UCist61VRTW0WP8ym40OWssIGbzbHX8EnPv-rWr7uG9zj_1B6tIGsNC_m5qqErRG-guy0J12vgoXHtK2Dmwh4uigl9NVlzn4xPjj--O_X7Vg5-EYuo9YWJFBfKREzJ3IS6kFEgWRwLFAmlYxNaJjCFWCNKuAkCbZgVFMmjRHBEaDR6QPbKqtSPCKQ5xU-InoFW6DsZzrRGlKJpovJcJdIjwbB1WdHznNv1zjPn7_Ak6zY-w43P7MZngUderF-56kg-_vfwkZWH9YOWn9t9UdXTrFf3TAp0BHOjaSSDWAkuFVUJ51rkYahMWHjkYJCmbJD5jFqiIS7QpfXIs_UwqrvN4chSV8smw9-NiC-llHvkYSd865UMwuuRdEMsN5a6OVLOLh2lOItSS7T3-J9zPiE3qdUUdxvzgOy19VI_RTjW5iOym07SEdk_Oj6_-DByQY2RU7zfHaw61g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTgheEP8JDDgkeEGKljhx4iAhtMGmjm3VhDa0N8-Jna6oTUqSMvVL8cAH4YUvxNlJy4rQ3ib1qU6ra-989zvf-XeEvKIsY0zGsWu42TFB8bWLqJW6aZzkPOSMp7YUcziI-ifhp1N2ukZ-LO7CmLbKhU-0jlqVmTkj36SGhYUniPffT7-5ZmqUqa4uRmi0ZrGv5xeYstXv9j6ifl9Turtz_KHvdlMF3CxMgsZN8kDxROUBUzLNfZ3JwJMsDBOUTukw9w0plcKwF0Q89zydMyOz5EGUcAQLhugAXf46Lntej6xv7wyOPi_rFhhvWVc79Xm0WaP3j0yXB27kyBRMV6KfHRLwP2T7b4PmpYi3e4fc7qAqbLW2dZes6eIeudEOr5zfJ79tmLNOp5xokB27CZQ5IKiE5qKEWWGvymgFGD4xFMGvn-5YZo2cwNQyzSL2hC3ErfjnjmYTyM6reV0OTXc-fp-CI12MMnMgtLr2Fr7o8XfduJUeztrvHxqXDbLSMJFfywraBvca2luYcLm3Hmo7FgNG9jjFno5C16VWPyAn16LMh6RXlIV-TCBOKb58zDi0wpws50xrRD-aRipNVSQd4i1UJ7KOP93IOxY2j-KRaLUtUNvCaFt4Dnmz_Mi0JQ-56uFtYw_LBw3vt32jrIaicyNCJphgprmmgfRClXCpqIo410nq-yr3M4dsLKxJdM6oFn-3jkNeLpfRjZjakCx0OasF_m5EkjGl3CGPWuNbSmIo-ZLAow6JV8xyRdTVlWJ0bqnKWRAbAr8nV4v1gtzsHx8eiIO9wf5Tcoua_WKvfW6QXlPN9DPEfU36vNtsQM6ue3__ATGscdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+of+the+two+unrelated+fungal+%CE%B2-lactam+producers+Acremonium+chrysogenum+and+Penicillium+chrysogenum%3A+Velvet-regulated+genes+are+major+targets+during+conventional+strain+improvement+programs&rft.jtitle=BMC+genomics&rft.au=Terfehr%2C+Dominik&rft.au=Dahlmann%2C+Tim+A&rft.au=K%C3%BCck%2C+Ulrich&rft.date=2017-03-31&rft.eissn=1471-2164&rft.volume=18&rft.issue=1&rft.spage=272&rft_id=info:doi/10.1186%2Fs12864-017-3663-0&rft_id=info%3Apmid%2F28359302&rft.externalDocID=28359302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon