Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs
Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-t...
Saved in:
Published in | BMC genomics Vol. 18; no. 1; pp. 272 - 19 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
31.03.2017
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2164 1471-2164 |
DOI | 10.1186/s12864-017-3663-0 |
Cover
Loading…
Abstract | Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains.
Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains.
The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi. |
---|---|
AbstractList | Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains.BACKGROUNDCephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains.Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains.RESULTSUsing the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains.The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi.CONCLUSIONSThe major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi. Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi. Abstract Background Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. Results Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. Conclusions The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi. Background Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers of these antibiotics are Acremonium chrysogenum and Penicillium chrysogenum, two taxonomically unrelated fungi. Both were subjects of long-term strain development programs to reach economically relevant antibiotic titers. It is so far unknown, whether equivalent changes in gene expression lead to elevated antibiotic titers in production strains. Results Using the sequence of PcbC, a key enzyme of β-lactam antibiotic biosynthesis, from eighteen different pro- and eukaryotic microorganisms, we have constructed a phylogenetic tree to demonstrate the distant relationship of both fungal producers. To address the question whether both fungi have undergone similar genetic adaptions, we have performed a comparative gene expression analysis of wild-type and production strains. We found that strain improvement is associated with the remodeling of the transcriptional landscape in both fungi. In P. chrysogenum, 748 genes showed differential expression, while 1572 genes from A. chrysogenum are differentially expressed in the industrial strain. Common in both fungi is the upregulation of genes belonging to primary and secondary metabolism, notably those involved in precursor supply for β-lactam production. Other genes not essential for β-lactam production are downregulated with a preference for those responsible for transport processes or biosynthesis of other secondary metabolites. Transcriptional regulation was shown to be an important parameter during strain improvement in different organisms. We therefore investigated deletion strains of the major transcriptional regulator velvet from both production strains. We identified 567 P. chrysogenum and 412 A. chrysogenum Velvet target genes. In both deletion strains, approximately 50% of all secondary metabolite cluster genes are differentially regulated, including β-lactam biosynthesis genes. Most importantly, 35-57% of Velvet target genes are among those that showed differential expression in both improved industrial strains. Conclusions The major finding of our comparative transcriptome analysis is that strain improvement programs in two unrelated fungal β-lactam antibiotic producers alter the expression of target genes of Velvet, a global regulator of secondary metabolism. From these results, we conclude that regulatory alterations are crucial contributing factors for improved β-lactam antibiotic titers during strain improvement in both fungi. |
ArticleNumber | 272 |
Author | Kück, Ulrich Terfehr, Dominik Dahlmann, Tim A. |
Author_xml | – sequence: 1 givenname: Dominik surname: Terfehr fullname: Terfehr, Dominik – sequence: 2 givenname: Tim A. surname: Dahlmann fullname: Dahlmann, Tim A. – sequence: 3 givenname: Ulrich surname: Kück fullname: Kück, Ulrich |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28359302$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhiNURC_wAGyQJTZsAvElicMCqaq4VKoEi8LWmmOPUx8l9sF2Dupr8SBseCF8OKVqu2Bla-afT789_3F14IPHqnpOm9eUyu5Nokx2om5oX_Ou43XzqDqioqc1o504uHM_rI5TWjdFKFn7pDpkkrcDb9hR9fsygk86uk0OMxLwMF0nl0iwJF8hyT8CWXzECTIaYhc_wkR-_awn0BlmsonBLBpjIqc64hy8W2air-J1CiP6cgdvyBf0TrtpetB7S77htMVcRxyXPb_UMRGISGZYh0gyxBFzImaJzo9EB79Fn10oJknKEZwnbi4etjiX-s7NGGFOT6vHFqaEz27Ok-rrh_eXZ5_qi88fz89OL2otBp7rwXIjB2N5a2BlKWrgDbRCDP1gDQpL27ZvDGWCd9I2DdpWCtmC5N0g244xflKd77kmwFptopshXqsATv0thDgqiNnpCRUMQvYri4xDI8wgwTDTSYnDilJjqS6sd3vWZlnNaHR5T4TpHvR-x7srNYatankvupYXwKsbQAzfF0xZzS5pnCbwGJakqJSc9j0rqz-pXj6QrsMSy6cmxbiQTA4dHYrqxV1Ht1b-ZacI6F6gY0gpor2V0Ebt8qn2-VQldmqXT9WUmf7BjHYZdivdrXP6z-QfdJ7x0g |
CitedBy_id | crossref_primary_10_3390_ijms26010181 crossref_primary_10_3390_fermentation9121027 crossref_primary_10_1371_journal_pone_0238452 crossref_primary_10_1007_s00294_017_0790_8 crossref_primary_10_1186_s13068_019_1400_4 crossref_primary_10_3389_fmicb_2022_1063897 crossref_primary_10_1007_s00253_022_12272_8 crossref_primary_10_3389_fmicb_2021_705681 crossref_primary_10_3390_molecules26216636 crossref_primary_10_1007_s00294_020_01143_2 crossref_primary_10_3390_ijms241311184 crossref_primary_10_3390_ijms21113936 crossref_primary_10_3390_fermentation4020047 crossref_primary_10_4014_jmb_2402_02007 crossref_primary_10_1016_j_fgb_2019_103279 crossref_primary_10_3390_jof8050530 crossref_primary_10_3390_microorganisms10030573 crossref_primary_10_1007_s00253_022_12335_w crossref_primary_10_1007_s00253_018_9115_1 crossref_primary_10_1007_s00253_022_12181_w crossref_primary_10_3390_genes11060712 |
Cites_doi | 10.1007/s00239-002-2330-4 10.5598/imafungus.2011.02.01.12 10.1093/nar/gkv437 10.1186/1471-2164-15-144 10.3389/fmicb.2014.00718 10.1002/biot.201100065 10.1016/j.chembiol.2014.01.013 10.1002/med.20154 10.1007/s002530051015 10.1128/EC.00272-12 10.1128/mSphere.00149-16 10.1007/BF00318654 10.1111/j.1749-6632.1946.tb31753.x 10.1126/science.1155888 10.1093/nar/gkh894 10.1371/journal.pone.0125989 10.1016/j.fgb.2014.04.008 10.1007/978-1-4939-1191-2_3 10.1093/bioinformatics/btv661 10.1371/journal.pcbi.1003118 10.1093/molbev/mss269 10.1371/journal.ppat.1003950 10.1128/AEM.01408-16 10.1002/jobm.201400588 10.1093/molbev/msw054 10.1201/9780203970553.ch20 10.1080/02648725.2010.10648143 10.1128/EC.3.1.121-134.2004 10.1007/s00253-011-3767-4 10.1186/gb-2013-14-4-r36 10.1101/gr.081612.108 10.1038/175548a0 10.1021/ja01205a518 10.1007/s00294-006-0073-2 10.1093/jac/dkt075 10.1089/omi.2011.0153 10.1007/s00253-010-2627-y 10.1016/j.jbiotec.2013.10.036 10.1007/BF00279899 10.1111/j.1439-0507.2004.00964.x 10.1007/s00203-007-0224-y 10.1128/genomeA.00948-14 10.1007/s00253-002-0995-7 10.1128/AEM.69.2.1308-1314.2003 10.1074/jbc.M103944200 10.1186/s13059-014-0550-8 10.1093/nar/gki458 10.1128/EC.00430-07 10.1128/AEM.00129-07 10.1007/s002530100769 10.1093/genetics/52.1.217 10.1111/j.1574-6968.2012.02575.x 10.4014/jmb.1503.03042 10.1038/sj.jim.2900411 10.1111/mmi.12082 10.1016/S0140-6736(01)08728-1 10.1093/bioinformatics/btu627 10.1128/JB.52.1.129-140.1946 10.1007/s00294-015-0497-7 10.1111/j.1365-2958.2005.04626.x 10.1042/bj0620651 10.1371/journal.pcbi.1002980 10.1006/bbrc.2000.2253 10.1142/3195 10.1007/BF00326285 10.1186/s12864-015-2154-4 10.1155/2012/105109 10.1128/AEM.00350-16 10.1016/j.biotechadv.2012.12.001 10.1371/journal.pone.0038654 10.1111/mmi.12184 10.1128/genomeA.00577-14 10.1111/j.1365-294X.2011.05244.x 10.1128/AEM.60.6.1705-1710.1994 10.1371/journal.pbio.1001750 10.3389/fmicb.2015.00001 10.1371/journal.pone.0104542 10.1016/j.fgb.2014.02.008 10.1038/nbt0186-61 10.1128/JB.181.4.1181-1188.1999 10.1186/1471-2105-12-491 10.1074/mcp.M900327-MCP200 10.1038/nbt.1498 10.1042/BJ20081180 10.1111/j.1365-2958.1991.tb01885.x 10.1128/jb.168.2.947-952.1986 10.1111/j.1574-6976.2011.00285.x 10.1007/s002530000422 10.1016/j.phytochem.2009.09.011 10.1128/AEM.68.5.2246-2250.2002 10.1007/b99257 10.1128/EC.00077-10 10.1271/bbb.68.146 10.1007/s00726-012-1308-9 10.1007/s00253-009-2168-4 |
ContentType | Journal Article |
Copyright | 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s). 2017 |
Copyright_xml | – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7SS 7TK 7U7 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM DOA |
DOI | 10.1186/s12864-017-3663-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Toxicology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection Toxicology Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1471-2164 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_a9487bfe23a04d98ad2d688e9b11df1c PMC5374653 28359302 10_1186_s12864_017_3663_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 2XV 53G 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP W2D WOQ WOW XSB -A0 3V. ACRMQ ADINQ AIXEN C24 CGR CUY CVF ECM EIF NPM 7QP 7QR 7SS 7TK 7U7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-9f3d89df35dabf1eca30a544979fde4f15570d124368f00ef58485a8369856223 |
IEDL.DBID | M48 |
ISSN | 1471-2164 |
IngestDate | Wed Aug 27 01:14:02 EDT 2025 Thu Aug 21 14:06:10 EDT 2025 Fri Jul 11 07:09:10 EDT 2025 Fri Jul 25 10:17:10 EDT 2025 Thu Jan 02 22:22:41 EST 2025 Thu Apr 24 23:13:05 EDT 2025 Tue Jul 01 02:22:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | RNA-seq Penicillin Strain improvement Velvet Acremonium chrysogenum Gene expression Amino acid metabolism Secondary metabolism Cephalosporin Penicillium chrysogenum |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-9f3d89df35dabf1eca30a544979fde4f15570d124368f00ef58485a8369856223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2348289619?pq-origsite=%requestingapplication% |
PMID | 28359302 |
PQID | 2348289619 |
PQPubID | 44682 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a9487bfe23a04d98ad2d688e9b11df1c pubmedcentral_primary_oai_pubmedcentral_nih_gov_5374653 proquest_miscellaneous_1883177228 proquest_journals_2348289619 pubmed_primary_28359302 crossref_primary_10_1186_s12864_017_3663_0 crossref_citationtrail_10_1186_s12864_017_3663_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-31 |
PublicationDateYYYYMMDD | 2017-03-31 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC genomics |
PublicationTitleAlternate | BMC Genomics |
PublicationYear | 2017 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | A Fleming (3663_CR12) 1929; 10 K Kopke (3663_CR29) 2013; 12 S Wolfers (3663_CR46) 2015; 55 GG Newton (3663_CR102) 1956; 62 AA Brakhage (3663_CR37) 2009; 70 D Kim (3663_CR88) 2013; 14 CF Kim (3663_CR40) 2003; 69 G Turner (3663_CR5) 1992; 171 S Bloemendal (3663_CR28) 2014; 169 SS Weber (3663_CR87) 2012; 7 Y-Q Shen (3663_CR44) 1986; 4 MS López-Berges (3663_CR85) 2013; 87 E Chain (3663_CR13) 1940; 2 WW Sande van de (3663_CR38) 2012; 7 J Lein (3663_CR17) 1986 L Li (3663_CR67) 2001; 276 R Agren (3663_CR59) 2013; 9 R Core Team (3663_CR93) 2015 AA Brakhage (3663_CR3) 2004; 88 S Bloemendal (3663_CR2) 2014 M Berg van den (3663_CR4) 2010; 27 FB Gailey (3663_CR99) 1946; 52 3663_CR82 Q Peng (3663_CR9) 2014; 15 3663_CR89 G Revilla (3663_CR69) 1986; 168 TA Dahlmann (3663_CR21) 2015; 10 O Godinez (3663_CR74) 2015; 25 Ö Bayram (3663_CR80) 2012; 36 B Gregory RWB (3663_CR95) 2009 B Hoff (3663_CR30) 2010; 9 GS Hoog de (3663_CR39) 2004; 47 MA Berg van den (3663_CR15) 2008; 26 O Sarikaya-Bayram (3663_CR34) 2015; 6 T Weber (3663_CR97) 2015; 43 JJ Coque (3663_CR36) 1991; 5 3663_CR24 E Käfer (3663_CR79) 1965; 52 MI Love (3663_CR42) 2014; 15 S Kumar (3663_CR98) 2016; 33 MG Fraczek (3663_CR64) 2013; 68 MS Jami (3663_CR72) 2010; 9 P Bowyer (3663_CR65) 2012; 332 J Houbraken (3663_CR6) 2011; 2 J Nielsen (3663_CR16) 1997 Ö Bayram (3663_CR33) 2008; 320 3663_CR20 S Priebe (3663_CR47) 2015; 31 D Roelofs (3663_CR41) 2013; 30 KB Raper (3663_CR14) 1946; 48 J Marui (3663_CR62) 2010; 87 TA Dahlmann (3663_CR76) 2015; 61 M Lawrence (3663_CR94) 2013; 9 B Hoff (3663_CR27) 2005; 56 Y Liu (3663_CR11) 2014; 9 J Dreyer (3663_CR32) 2007; 73 G Ozcengiz (3663_CR1) 2013; 31 MJ Hijarrubia (3663_CR50) 2002; 59 EK Schmitt (3663_CR26) 2004; 3 X Hou (3663_CR53) 2012; 43 M Walz (3663_CR75) 1991; 19 C Derntl (3663_CR61) 2016 C Esmahan (3663_CR51) 1994; 60 A Ruepp (3663_CR48) 2004; 32 M Karachaliou (3663_CR71) 2013; 88 V Ter-Hovhannisyan (3663_CR90) 2008; 18 MP Backus (3663_CR19) 1946; 68 KJ Hoff (3663_CR91) 2015 F Teijeira (3663_CR45) 2009; 418 J Velasco (3663_CR55) 2001; 57 AL Demain (3663_CR18) 2009; 29 ME Silva Ferreira da (3663_CR63) 2006; 50 F Fierro (3663_CR77) 1993; 241 DK Holm (3663_CR57) 2014; 21 K Jekosch (3663_CR70) 2000; 54 DA Henk (3663_CR7) 2011; 20 R Radzio (3663_CR103) 1997; 48 D Schindler (3663_CR96) 2014; 68 RW Newbert (3663_CR78) 1997; 19 DV Renno (3663_CR43) 1992; 21 Y Terabayashi (3663_CR66) 2012; 93 T Toyomasu (3663_CR58) 2004; 68 C Barreiro (3663_CR73) 2012; 2012 C Holt (3663_CR92) 2011; 12 GG Newton (3663_CR22) 1955; 175 OV Salo (3663_CR10) 2015; 16 3663_CR54 J Fan (3663_CR68) 2002; 55 J Casqueiro (3663_CR49) 1999; 181 E Radmacher (3663_CR52) 2002; 68 C Tollnick (3663_CR25) 2004; 86 MG Amare (3663_CR83) 2014; 66 O Salo (3663_CR60) 2016 P Spröte (3663_CR35) 2007; 188 RP Elander (3663_CR23) 1976 B Hoff (3663_CR101) 2010; 85 B Hoff (3663_CR100) 2008; 7 YL Ahmed (3663_CR81) 2013; 11 LP Chow (3663_CR56) 2000; 269 K Tamano (3663_CR86) 2014; 5 T Veiga (3663_CR84) 2012; 16 U Kück (3663_CR31) 2014; 10 J McNeill (3663_CR8) 2006 21951491 - Mol Ecol. 2011 Oct;20(20):4288-301 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 19291695 - Med Res Rev. 2009 Nov;29(6):821-42 15882416 - Mol Microbiol. 2005 Jun;56(5):1220-33 22057844 - Biotechnol J. 2012 Feb;7(2):225-36 25948579 - Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43 1302173 - Ciba Found Symp. 1992;171:113-24; discussion 124-8 3096965 - J Bacteriol. 1986 Nov;168(2):947-52 25294921 - Bioinformatics. 2015 Feb 1;31(3):445-6 8031073 - Appl Environ Microbiol. 1994 Jun;60(6):1705-10 17375284 - Arch Microbiol. 2007 Jul;188(1):69-79 21658084 - FEMS Microbiol Rev. 2012 Jan;36(1):1-24 23580559 - J Antimicrob Chemother. 2013 Jul;68(7):1486-96 25118715 - PLoS One. 2014 Aug 13;9(8):e104542 11759684 - Appl Microbiol Biotechnol. 2001 Oct;57(3):350-6 16622700 - Curr Genet. 2006 Jul;50(1):32-44 12111157 - Appl Microbiol Biotechnol. 2002 Jul;59(2-3):270-7 20154335 - Mol Cell Proteomics. 2010 Jun;9(6):1182-98 9281849 - J Ind Microbiol Biotechnol. 1997 Jul;19(1):18-27 14871943 - Eukaryot Cell. 2004 Feb;3(1):121-34 25653648 - Front Microbiol. 2015 Jan 20;6:1 20464390 - Appl Microbiol Biotechnol. 2010 Aug;87(5):1829-40 19863978 - Phytochemistry. 2009 Oct-Nov;70(15-16):1801-11 25291769 - Genome Announc. 2014 Sep 18;2(5):null 18757608 - Genome Res. 2008 Dec;18(12):1979-90 24613992 - Fungal Genet Biol. 2014 May;66:11-8 24792494 - Fungal Genet Biol. 2014 Jul;68:48-59 1735125 - Curr Genet. 1992 Jan;21(1):49-54 15486203 - Nucleic Acids Res. 2004 Oct 14;32(18):5539-45 1676616 - Curr Genet. 1991 Feb;19(2):73-6 25955857 - PLoS One. 2015 May 08;10(5):e0125989 23106229 - Mol Microbiol. 2013 Jan;87(1):49-65 22439693 - OMICS. 2012 Jun;16(6):320-33 27107123 - Appl Environ Microbiol. 2016 Jun 13;82(13):3971-8 9274048 - Appl Microbiol Biotechnol. 1997 Jul;48(1):58-65 17400783 - Appl Environ Microbiol. 2007 May;73(10):3412-22 11092632 - Appl Microbiol Biotechnol. 2000 Oct;54(4):556-63 23490137 - Mol Microbiol. 2013 Apr;88(2):301-17 22701687 - PLoS One. 2012;7(6):e38654 24391470 - PLoS Biol. 2013 Dec;11(12):e1001750 11390404 - J Biol Chem. 2001 Aug 3;276(31):29515-9 14370161 - Nature. 1955 Mar 26;175(4456):548 25993917 - Curr Genet. 2015 Nov;61(4):679-83 5857597 - Genetics. 1965 Jul;52(1):217-32 21008340 - J Am Chem Soc. 1946 Jan;68:152 27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4 15719552 - Adv Biochem Eng Biotechnol. 2004;88:45-90 22192575 - BMC Bioinformatics. 2011 Dec 22;12:491 24216341 - J Biotechnol. 2014 Jan;169:51-62 1956290 - Mol Microbiol. 1991 May;5(5):1125-33 26139611 - J Microbiol Biotechnol. 2015 Nov;25(11):1787-95 25059858 - Genome Announc. 2014 Jul 24;2(4):null 22552525 - Amino Acids. 2012 Dec;43(6):2301-11 27570838 - mSphere. 2016 Jul 13;1(4):null 23950696 - PLoS Comput Biol. 2013;9(8):e1003118 19690852 - Appl Microbiol Biotechnol. 2010 Jan;85(4):1081-94 25516281 - Genome Biol. 2014;15(12):550 12187386 - J Mol Evol. 2002 Sep;55(3):336-46 21415891 - Biotechnol Genet Eng Rev. 2010;27:1-32 22509997 - FEMS Microbiol Lett. 2012 Jul;332(1):10-9 26559507 - Bioinformatics. 2016 Mar 1;32(5):767-9 23228980 - Biotechnol Adv. 2013 Mar-Apr;31(2):287-311 25566228 - Front Microbiol. 2014 Dec 18;5:718 26572918 - BMC Genomics. 2015 Nov 14;16:937 12571064 - Appl Environ Microbiol. 2003 Feb;69(2):1308-14 15980513 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7 24626260 - PLoS Pathog. 2014 Mar 13;10(3):e1003950 10694469 - Biochem Biophys Res Commun. 2000 Mar 5;269(1):14-20 27520818 - Appl Environ Microbiol. 2016 Sep 30;82(20):6247-6257 22170104 - Appl Microbiol Biotechnol. 2012 Jan;93(1):305-17 24555742 - BMC Genomics. 2014 Feb 21;15:144 18820685 - Nat Biotechnol. 2008 Oct;26(10):1161-8 15088762 - Adv Biochem Eng Biotechnol. 2004;86:1-45 25557366 - J Basic Microbiol. 2015 Apr;55(4):480-9 15078428 - Mycoses. 2004 Apr;47(3-4):121-30 18556559 - Science. 2008 Jun 13;320(5882):1504-6 23264641 - Eukaryot Cell. 2013 Feb;12(2):299-310 16561141 - J Bacteriol. 1946 Jul;52(1):129-40 18840096 - Biochem J. 2009 Feb 15;418(1):113-24 22679592 - IMA Fungus. 2011 Jun;2(1):87-95 8264531 - Mol Gen Genet. 1993 Dec;241(5-6):573-8 11976094 - Appl Environ Microbiol. 2002 May;68(5):2246-50 14745177 - Biosci Biotechnol Biochem. 2004 Jan;68(1):146-52 13315229 - Biochem J. 1956 Apr;62(4):651-8 23204388 - Mol Biol Evol. 2013 Mar;30(3):541-8 23555215 - PLoS Comput Biol. 2013;9(3):e1002980 22318718 - J Biomed Biotechnol. 2012;2012:105109 24684908 - Chem Biol. 2014 Apr 24;21(4):519-29 9973344 - J Bacteriol. 1999 Feb;181(4):1181-8 20543063 - Eukaryot Cell. 2010 Aug;9(8):1236-50 18223118 - Eukaryot Cell. 2008 Mar;7(3):465-70 |
References_xml | – volume: 55 start-page: 336 issue: 3 year: 2002 ident: 3663_CR68 publication-title: J Mol Evol doi: 10.1007/s00239-002-2330-4 – volume: 2 start-page: 87 issue: 1 year: 2011 ident: 3663_CR6 publication-title: IMA Fungus doi: 10.5598/imafungus.2011.02.01.12 – volume: 43 start-page: W237 issue: W1 year: 2015 ident: 3663_CR97 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv437 – volume: 15 start-page: 144 year: 2014 ident: 3663_CR9 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-144 – volume: 5 start-page: 718 year: 2014 ident: 3663_CR86 publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00718 – volume: 7 start-page: 225 issue: 2 year: 2012 ident: 3663_CR87 publication-title: Biotechnol J doi: 10.1002/biot.201100065 – volume: 21 start-page: 519 issue: 4 year: 2014 ident: 3663_CR57 publication-title: Chem Biol doi: 10.1016/j.chembiol.2014.01.013 – volume: 29 start-page: 821 issue: 6 year: 2009 ident: 3663_CR18 publication-title: Med Res Rev doi: 10.1002/med.20154 – volume: 48 start-page: 58 issue: 1 year: 1997 ident: 3663_CR103 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s002530051015 – volume: 12 start-page: 299 issue: 2 year: 2013 ident: 3663_CR29 publication-title: Eukaryot Cell doi: 10.1128/EC.00272-12 – ident: 3663_CR82 doi: 10.1128/mSphere.00149-16 – volume: 21 start-page: 49 issue: 1 year: 1992 ident: 3663_CR43 publication-title: Curr Genet doi: 10.1007/BF00318654 – volume: 48 start-page: 41 year: 1946 ident: 3663_CR14 publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1946.tb31753.x – volume: 320 start-page: 1504 issue: 5882 year: 2008 ident: 3663_CR33 publication-title: Science doi: 10.1126/science.1155888 – volume-title: R: A language and environment for statistical computing year: 2015 ident: 3663_CR93 – start-page: 146 volume-title: International code of botanical nomenclature (Vienna code): adopted by the seventeenth international botanical congress Vienna year: 2006 ident: 3663_CR8 – volume: 32 start-page: 5539 issue: 18 year: 2004 ident: 3663_CR48 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh894 – volume: 10 start-page: e0125989 issue: 5 year: 2015 ident: 3663_CR21 publication-title: PLoS One doi: 10.1371/journal.pone.0125989 – volume: 86 start-page: 1 year: 2004 ident: 3663_CR25 publication-title: Adv Biochem Eng Biotechnol – volume: 68 start-page: 48 year: 2014 ident: 3663_CR96 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2014.04.008 – start-page: 43 volume-title: Biosynthesis and molecular genetics of fungal secondary metabolites year: 2014 ident: 3663_CR2 doi: 10.1007/978-1-4939-1191-2_3 – year: 2015 ident: 3663_CR91 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv661 – volume: 9 start-page: e1003118 issue: 8 year: 2013 ident: 3663_CR94 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003118 – volume: 30 start-page: 541 issue: 3 year: 2013 ident: 3663_CR41 publication-title: Mol Biol Evol doi: 10.1093/molbev/mss269 – volume: 10 start-page: e1003950 issue: 3 year: 2014 ident: 3663_CR31 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003950 – year: 2016 ident: 3663_CR61 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01408-16 – start-page: 517 volume-title: Microbiology: 1976 year: 1976 ident: 3663_CR23 – volume: 55 start-page: 480 issue: 4 year: 2015 ident: 3663_CR46 publication-title: J Basic Microbiol doi: 10.1002/jobm.201400588 – volume: 33 start-page: 1870 issue: 7 year: 2016 ident: 3663_CR98 publication-title: Mol Biol Evol doi: 10.1093/molbev/msw054 – volume: 171 start-page: 113 year: 1992 ident: 3663_CR5 publication-title: Ciba Found Symp – ident: 3663_CR24 doi: 10.1201/9780203970553.ch20 – volume: 27 start-page: 1 year: 2010 ident: 3663_CR4 publication-title: Biotechnol Genet Eng Rev doi: 10.1080/02648725.2010.10648143 – volume: 3 start-page: 121 issue: 1 year: 2004 ident: 3663_CR26 publication-title: Eukaryot Cell doi: 10.1128/EC.3.1.121-134.2004 – volume: 93 start-page: 305 issue: 1 year: 2012 ident: 3663_CR66 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-011-3767-4 – volume: 14 start-page: R36 issue: 4 year: 2013 ident: 3663_CR88 publication-title: Genome Biol doi: 10.1186/gb-2013-14-4-r36 – volume: 18 start-page: 1979 issue: 12 year: 2008 ident: 3663_CR90 publication-title: Genome Res doi: 10.1101/gr.081612.108 – volume: 175 start-page: 548 issue: 4456 year: 1955 ident: 3663_CR22 publication-title: Nature doi: 10.1038/175548a0 – volume: 68 start-page: 152 year: 1946 ident: 3663_CR19 publication-title: J Am Chem Soc doi: 10.1021/ja01205a518 – volume: 50 start-page: 32 issue: 1 year: 2006 ident: 3663_CR63 publication-title: Curr Genet doi: 10.1007/s00294-006-0073-2 – volume: 68 start-page: 1486 issue: 7 year: 2013 ident: 3663_CR64 publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkt075 – volume: 16 start-page: 320 issue: 6 year: 2012 ident: 3663_CR84 publication-title: OMICS doi: 10.1089/omi.2011.0153 – volume: 87 start-page: 1829 issue: 5 year: 2010 ident: 3663_CR62 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-010-2627-y – volume: 169 start-page: 51 year: 2014 ident: 3663_CR28 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2013.10.036 – volume: 241 start-page: 573 issue: 5–6 year: 1993 ident: 3663_CR77 publication-title: Mol Gen Genet doi: 10.1007/BF00279899 – volume: 47 start-page: 121 issue: 3–4 year: 2004 ident: 3663_CR39 publication-title: Mycoses doi: 10.1111/j.1439-0507.2004.00964.x – volume: 188 start-page: 69 issue: 1 year: 2007 ident: 3663_CR35 publication-title: Arch Microbiol doi: 10.1007/s00203-007-0224-y – ident: 3663_CR54 doi: 10.1128/genomeA.00948-14 – volume: 59 start-page: 270 issue: 2–3 year: 2002 ident: 3663_CR50 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-002-0995-7 – volume: 69 start-page: 1308 issue: 2 year: 2003 ident: 3663_CR40 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.2.1308-1314.2003 – volume: 276 start-page: 29515 issue: 31 year: 2001 ident: 3663_CR67 publication-title: J Biol Chem doi: 10.1074/jbc.M103944200 – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 3663_CR42 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – ident: 3663_CR89 doi: 10.1093/nar/gki458 – volume-title: gplots: Various R programming tools for plotting data. R package version year: 2009 ident: 3663_CR95 – volume: 7 start-page: 465 issue: 3 year: 2008 ident: 3663_CR100 publication-title: Eukaryot Cell doi: 10.1128/EC.00430-07 – volume: 73 start-page: 3412 issue: 10 year: 2007 ident: 3663_CR32 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00129-07 – volume: 57 start-page: 350 issue: 3 year: 2001 ident: 3663_CR55 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s002530100769 – volume: 52 start-page: 217 issue: 1 year: 1965 ident: 3663_CR79 publication-title: Genetics doi: 10.1093/genetics/52.1.217 – volume: 332 start-page: 10 issue: 1 year: 2012 ident: 3663_CR65 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2012.02575.x – volume: 25 start-page: 1787 issue: 11 year: 2015 ident: 3663_CR74 publication-title: J Microbiol Biotechnol doi: 10.4014/jmb.1503.03042 – volume: 19 start-page: 18 issue: 1 year: 1997 ident: 3663_CR78 publication-title: J Ind Microbiol Biotechnol doi: 10.1038/sj.jim.2900411 – volume: 87 start-page: 49 issue: 1 year: 2013 ident: 3663_CR85 publication-title: Mol Microbiol doi: 10.1111/mmi.12082 – volume: 2 start-page: 226 year: 1940 ident: 3663_CR13 publication-title: Lancet doi: 10.1016/S0140-6736(01)08728-1 – volume: 31 start-page: 445 issue: 3 year: 2015 ident: 3663_CR47 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu627 – volume: 52 start-page: 129 issue: 1 year: 1946 ident: 3663_CR99 publication-title: J Bacteriol doi: 10.1128/JB.52.1.129-140.1946 – volume: 61 start-page: 679 issue: 4 year: 2015 ident: 3663_CR76 publication-title: Curr Genet doi: 10.1007/s00294-015-0497-7 – volume: 56 start-page: 1220 issue: 5 year: 2005 ident: 3663_CR27 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04626.x – volume: 62 start-page: 651 issue: 4 year: 1956 ident: 3663_CR102 publication-title: Biochem J doi: 10.1042/bj0620651 – volume: 9 start-page: e1002980 issue: 3 year: 2013 ident: 3663_CR59 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002980 – volume: 269 start-page: 14 issue: 1 year: 2000 ident: 3663_CR56 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2000.2253 – volume-title: Physiological Engeneering Aspects of Penicillium chrysogenum year: 1997 ident: 3663_CR16 doi: 10.1142/3195 – volume: 19 start-page: 73 issue: 2 year: 1991 ident: 3663_CR75 publication-title: Curr Genet doi: 10.1007/BF00326285 – volume: 16 start-page: 937 issue: 1 year: 2015 ident: 3663_CR10 publication-title: BMC Genomics doi: 10.1186/s12864-015-2154-4 – volume: 2012 start-page: 105109 year: 2012 ident: 3663_CR73 publication-title: J Biomed Biotechnol doi: 10.1155/2012/105109 – year: 2016 ident: 3663_CR60 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00350-16 – volume: 31 start-page: 287 issue: 2 year: 2013 ident: 3663_CR1 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2012.12.001 – volume: 7 start-page: e38654 issue: 6 year: 2012 ident: 3663_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0038654 – volume: 88 start-page: 301 issue: 2 year: 2013 ident: 3663_CR71 publication-title: Mol Microbiol doi: 10.1111/mmi.12184 – ident: 3663_CR20 doi: 10.1128/genomeA.00577-14 – volume: 20 start-page: 4288 issue: 20 year: 2011 ident: 3663_CR7 publication-title: Mol Ecol doi: 10.1111/j.1365-294X.2011.05244.x – volume: 60 start-page: 1705 issue: 6 year: 1994 ident: 3663_CR51 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.60.6.1705-1710.1994 – volume: 11 start-page: e1001750 issue: 12 year: 2013 ident: 3663_CR81 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001750 – volume: 10 start-page: 226 issue: 3 year: 1929 ident: 3663_CR12 publication-title: Br J Exp Pathol – volume: 6 start-page: 1 year: 2015 ident: 3663_CR34 publication-title: Front Microbiol doi: 10.3389/fmicb.2015.00001 – volume: 9 start-page: e104542 issue: 8 year: 2014 ident: 3663_CR11 publication-title: PLoS One doi: 10.1371/journal.pone.0104542 – volume: 66 start-page: 11 year: 2014 ident: 3663_CR83 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2014.02.008 – volume: 4 start-page: 61 issue: 1 year: 1986 ident: 3663_CR44 publication-title: Nat Biotech doi: 10.1038/nbt0186-61 – start-page: 105 volume-title: Overproduction of microbial metabolites year: 1986 ident: 3663_CR17 – volume: 181 start-page: 1181 issue: 4 year: 1999 ident: 3663_CR49 publication-title: J Bacteriol doi: 10.1128/JB.181.4.1181-1188.1999 – volume: 12 start-page: 491 year: 2011 ident: 3663_CR92 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-491 – volume: 9 start-page: 1182 issue: 6 year: 2010 ident: 3663_CR72 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M900327-MCP200 – volume: 26 start-page: 1161 issue: 10 year: 2008 ident: 3663_CR15 publication-title: Nat Biotechnol doi: 10.1038/nbt.1498 – volume: 418 start-page: 113 issue: 1 year: 2009 ident: 3663_CR45 publication-title: Biochem J doi: 10.1042/BJ20081180 – volume: 5 start-page: 1125 issue: 5 year: 1991 ident: 3663_CR36 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1991.tb01885.x – volume: 168 start-page: 947 issue: 2 year: 1986 ident: 3663_CR69 publication-title: J Bacteriol doi: 10.1128/jb.168.2.947-952.1986 – volume: 36 start-page: 1 issue: 1 year: 2012 ident: 3663_CR80 publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2011.00285.x – volume: 54 start-page: 556 issue: 4 year: 2000 ident: 3663_CR70 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s002530000422 – volume: 70 start-page: 1801 issue: 15–16 year: 2009 ident: 3663_CR37 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2009.09.011 – volume: 68 start-page: 2246 issue: 5 year: 2002 ident: 3663_CR52 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.68.5.2246-2250.2002 – volume: 88 start-page: 45 year: 2004 ident: 3663_CR3 publication-title: Adv Biochem Engin/Biotechnol doi: 10.1007/b99257 – volume: 9 start-page: 1236 issue: 8 year: 2010 ident: 3663_CR30 publication-title: Eukaryot Cell doi: 10.1128/EC.00077-10 – volume: 68 start-page: 146 issue: 1 year: 2004 ident: 3663_CR58 publication-title: Biosci Biotechnol Biochem doi: 10.1271/bbb.68.146 – volume: 43 start-page: 2301 issue: 6 year: 2012 ident: 3663_CR53 publication-title: Amino Acids doi: 10.1007/s00726-012-1308-9 – volume: 85 start-page: 1081 issue: 4 year: 2010 ident: 3663_CR101 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-009-2168-4 – reference: 25993917 - Curr Genet. 2015 Nov;61(4):679-83 – reference: 11092632 - Appl Microbiol Biotechnol. 2000 Oct;54(4):556-63 – reference: 8264531 - Mol Gen Genet. 1993 Dec;241(5-6):573-8 – reference: 13315229 - Biochem J. 1956 Apr;62(4):651-8 – reference: 22679592 - IMA Fungus. 2011 Jun;2(1):87-95 – reference: 19863978 - Phytochemistry. 2009 Oct-Nov;70(15-16):1801-11 – reference: 24684908 - Chem Biol. 2014 Apr 24;21(4):519-29 – reference: 3096965 - J Bacteriol. 1986 Nov;168(2):947-52 – reference: 1735125 - Curr Genet. 1992 Jan;21(1):49-54 – reference: 15486203 - Nucleic Acids Res. 2004 Oct 14;32(18):5539-45 – reference: 21415891 - Biotechnol Genet Eng Rev. 2010;27:1-32 – reference: 26139611 - J Microbiol Biotechnol. 2015 Nov;25(11):1787-95 – reference: 25948579 - Nucleic Acids Res. 2015 Jul 1;43(W1):W237-43 – reference: 24216341 - J Biotechnol. 2014 Jan;169:51-62 – reference: 25653648 - Front Microbiol. 2015 Jan 20;6:1 – reference: 22552525 - Amino Acids. 2012 Dec;43(6):2301-11 – reference: 15882416 - Mol Microbiol. 2005 Jun;56(5):1220-33 – reference: 21658084 - FEMS Microbiol Rev. 2012 Jan;36(1):1-24 – reference: 14745177 - Biosci Biotechnol Biochem. 2004 Jan;68(1):146-52 – reference: 20154335 - Mol Cell Proteomics. 2010 Jun;9(6):1182-98 – reference: 1302173 - Ciba Found Symp. 1992;171:113-24; discussion 124-8 – reference: 21951491 - Mol Ecol. 2011 Oct;20(20):4288-301 – reference: 23490137 - Mol Microbiol. 2013 Apr;88(2):301-17 – reference: 19690852 - Appl Microbiol Biotechnol. 2010 Jan;85(4):1081-94 – reference: 5857597 - Genetics. 1965 Jul;52(1):217-32 – reference: 22192575 - BMC Bioinformatics. 2011 Dec 22;12:491 – reference: 14370161 - Nature. 1955 Mar 26;175(4456):548 – reference: 22439693 - OMICS. 2012 Jun;16(6):320-33 – reference: 20543063 - Eukaryot Cell. 2010 Aug;9(8):1236-50 – reference: 11759684 - Appl Microbiol Biotechnol. 2001 Oct;57(3):350-6 – reference: 11976094 - Appl Environ Microbiol. 2002 May;68(5):2246-50 – reference: 24626260 - PLoS Pathog. 2014 Mar 13;10(3):e1003950 – reference: 25059858 - Genome Announc. 2014 Jul 24;2(4):null – reference: 22057844 - Biotechnol J. 2012 Feb;7(2):225-36 – reference: 22170104 - Appl Microbiol Biotechnol. 2012 Jan;93(1):305-17 – reference: 17400783 - Appl Environ Microbiol. 2007 May;73(10):3412-22 – reference: 22509997 - FEMS Microbiol Lett. 2012 Jul;332(1):10-9 – reference: 11390404 - J Biol Chem. 2001 Aug 3;276(31):29515-9 – reference: 25291769 - Genome Announc. 2014 Sep 18;2(5):null – reference: 24555742 - BMC Genomics. 2014 Feb 21;15:144 – reference: 15088762 - Adv Biochem Eng Biotechnol. 2004;86:1-45 – reference: 17375284 - Arch Microbiol. 2007 Jul;188(1):69-79 – reference: 22701687 - PLoS One. 2012;7(6):e38654 – reference: 15980513 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7 – reference: 24391470 - PLoS Biol. 2013 Dec;11(12):e1001750 – reference: 27004904 - Mol Biol Evol. 2016 Jul;33(7):1870-4 – reference: 12187386 - J Mol Evol. 2002 Sep;55(3):336-46 – reference: 27520818 - Appl Environ Microbiol. 2016 Sep 30;82(20):6247-6257 – reference: 16561141 - J Bacteriol. 1946 Jul;52(1):129-40 – reference: 16622700 - Curr Genet. 2006 Jul;50(1):32-44 – reference: 18757608 - Genome Res. 2008 Dec;18(12):1979-90 – reference: 8031073 - Appl Environ Microbiol. 1994 Jun;60(6):1705-10 – reference: 25118715 - PLoS One. 2014 Aug 13;9(8):e104542 – reference: 25294921 - Bioinformatics. 2015 Feb 1;31(3):445-6 – reference: 14871943 - Eukaryot Cell. 2004 Feb;3(1):121-34 – reference: 9274048 - Appl Microbiol Biotechnol. 1997 Jul;48(1):58-65 – reference: 20464390 - Appl Microbiol Biotechnol. 2010 Aug;87(5):1829-40 – reference: 25566228 - Front Microbiol. 2014 Dec 18;5:718 – reference: 23204388 - Mol Biol Evol. 2013 Mar;30(3):541-8 – reference: 25557366 - J Basic Microbiol. 2015 Apr;55(4):480-9 – reference: 15078428 - Mycoses. 2004 Apr;47(3-4):121-30 – reference: 18840096 - Biochem J. 2009 Feb 15;418(1):113-24 – reference: 23264641 - Eukaryot Cell. 2013 Feb;12(2):299-310 – reference: 23228980 - Biotechnol Adv. 2013 Mar-Apr;31(2):287-311 – reference: 12111157 - Appl Microbiol Biotechnol. 2002 Jul;59(2-3):270-7 – reference: 23618408 - Genome Biol. 2013 Apr 25;14(4):R36 – reference: 26572918 - BMC Genomics. 2015 Nov 14;16:937 – reference: 25955857 - PLoS One. 2015 May 08;10(5):e0125989 – reference: 26559507 - Bioinformatics. 2016 Mar 1;32(5):767-9 – reference: 1956290 - Mol Microbiol. 1991 May;5(5):1125-33 – reference: 21008340 - J Am Chem Soc. 1946 Jan;68:152 – reference: 9281849 - J Ind Microbiol Biotechnol. 1997 Jul;19(1):18-27 – reference: 23106229 - Mol Microbiol. 2013 Jan;87(1):49-65 – reference: 18223118 - Eukaryot Cell. 2008 Mar;7(3):465-70 – reference: 19291695 - Med Res Rev. 2009 Nov;29(6):821-42 – reference: 25516281 - Genome Biol. 2014;15(12):550 – reference: 23555215 - PLoS Comput Biol. 2013;9(3):e1002980 – reference: 18556559 - Science. 2008 Jun 13;320(5882):1504-6 – reference: 23580559 - J Antimicrob Chemother. 2013 Jul;68(7):1486-96 – reference: 27107123 - Appl Environ Microbiol. 2016 Jun 13;82(13):3971-8 – reference: 1676616 - Curr Genet. 1991 Feb;19(2):73-6 – reference: 9973344 - J Bacteriol. 1999 Feb;181(4):1181-8 – reference: 24613992 - Fungal Genet Biol. 2014 May;66:11-8 – reference: 18820685 - Nat Biotechnol. 2008 Oct;26(10):1161-8 – reference: 10694469 - Biochem Biophys Res Commun. 2000 Mar 5;269(1):14-20 – reference: 22318718 - J Biomed Biotechnol. 2012;2012:105109 – reference: 12571064 - Appl Environ Microbiol. 2003 Feb;69(2):1308-14 – reference: 24792494 - Fungal Genet Biol. 2014 Jul;68:48-59 – reference: 15719552 - Adv Biochem Eng Biotechnol. 2004;88:45-90 – reference: 27570838 - mSphere. 2016 Jul 13;1(4):null – reference: 23950696 - PLoS Comput Biol. 2013;9(8):e1003118 |
SSID | ssj0017825 |
Score | 2.3387415 |
Snippet | Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main industrial producers... Background Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main... Abstract Background Cephalosporins and penicillins are the most frequently used β-lactam antibiotics for the treatment of human infections worldwide. The main... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 272 |
SubjectTerms | Acremonium - classification Acremonium - genetics Acremonium chrysogenum Amides Antibiotics Bacteria Bacterial infections beta-Lactamases - genetics beta-Lactams - metabolism Biosynthesis Cephalosporin Cephalosporins Deletion Energy Metabolism - genetics Eukaryota - metabolism Fungi Gene expression Gene Expression Profiling Gene Expression Regulation, Fungal Gene Rearrangement Gene regulation Genes Genes, Regulator Genome, Fungal Genomes Genomics Genomics - methods High-Throughput Nucleotide Sequencing Industrial strains Metabolism Metabolites Microorganisms Mutagenesis Mutation Penicillin Penicillium chrysogenum Penicillium chrysogenum - classification Penicillium chrysogenum - genetics Phylogenetics Phylogeny Production capacity Secondary Metabolism - genetics Secondary metabolites Strains (organisms) Transcription Transcriptome Transport processes Velvet Virulence - genetics β-Lactam antibiotics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fi9QwEA9yIPgi_rfnKSP4JJRrkyZNfDvF4xAUHzy5t5A2yd3Kbnu0XeW-lh_kXu4LOUm7y1ZEX4Q-Nd2S7sxkfpOZ_IaQV5TXnJuyTAM3OwYouUsRtdK0KpWXheSyiqmYj5_EyWnx4Yyf7bT6CjVhIz3w-McdGoWQuvKOMpMVVkljqRVSOlXlufV5HVZf9HmbYGrKH6Df41MOM5fisMdVWIRqCzQoERKXMy8Uyfr_hDB_L5Tc8TzH98jdCTLC0TjV--SWax6Q22MTyauH5Ca6m2j87cqBmVhGoPWA4A6GHy2sm3hkxVlAN4YuAa5_pktTD2YFl5HxFTEgHCF-RJ1crFdQX3RXfXsequTxfRY-u2ZRh42Z-dgb-OqW392QdmNDe3z_eVg6wXQOVuZb28FYaN7DeBoSdmvcoY_tKWARtzXiLiVM1WL9I3J6_P7Lu5N0atWQ1oViQ6o8s1JZz7g1lc9dbVhmeFEoFLl1hc8D05dFLMGE9FnmPA-KYCQTSiICo-wx2Wvaxj0lUFYUrxyRv7MYG3nJnUMU4qiwVWWFSUi2EZ2uJx7zMN-ljvGMFHqUtkZp6yBtnSXk9fYnlyOJx98efhv0Yftg4N-ON1Ar9aSV-l9amZCDjTbpaVHoNQ1EQlJhyJqQl9thNOeQozGNa9e9xu9GRFdSKhPyZFS-7UwCNZ5iGU1IOVPL2VTnI83iIlKGc1YGIr39__Ftz8gdGiwpHsw8IHtDt3bPEZkN1YtohL8A9rM9-w priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fi9QwEA96Ivgi_rd6ygg-CeXatGkTX-QUj0NQfPBk30raJHd77LZr21Xua_lBfPELOZNm11uRgz41bUmZycxvJpPfMPaSi0YIXZYxcbNjgJLaGFErj-tSOZlLIWu_FfPxU3F8kn-YiVlIuA2hrHJjE72hNl1DOfIDTiwsUiHef7P6FlPXKNpdDS00rrMbRF1GwVc52wZcKXo_EXYyU1kcDGiLC6q5wGVV0Pblji_ylP3_w5n_lkte8j9Hd9jtABzhcJL0XXbNtvfYzamV5MV99ts7HW8CuqUFHbhGoHOAEA_GHx2sW39wxRpAZ4aOAX79jBe6GfUSVp73FZEgHCKKxF-dr5fQnPUXQ3dKtfL4PQOfbTtvKD2zO_YavtrFdzvG_dTWHr9_SgYUdG9hqc-7HqZy8wGmM5FwudIdBt-kAuY-ueFzlRBqxoYH7OTo_Zd3x3Fo2BA3ucrGWLnMSGVcJoyuXWobnSVa5LlCwRubu5T4vgwiiqyQLkmsE6QOWmaFkojDePaQ7bVdax8zKGuOV4r43xqMkJwU1iIWsbwwdW0KHbFkI7qqCWzmNN9F5aMaWVSTtCuUdkXSrpKIvdq-spqoPK56-C3pw_ZBYuH2N7r-tAqLutIKw73aWZ7pJDdKasNNIaVVdZoalzYR299oUxVMw1D9VeSIvdgO46KmnRrd2m49VPjfiOtKzmXEHk3Kt50JEeSpLOERK3fUcmequyPt_MwTh4usJDq9J1dP6ym7xWmN-IOX-2xv7Nf2GSKvsX7ul9cf8Iw0qQ priority: 102 providerName: ProQuest |
Title | Transcriptome analysis of the two unrelated fungal β-lactam producers Acremonium chrysogenum and Penicillium chrysogenum: Velvet-regulated genes are major targets during conventional strain improvement programs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28359302 https://www.proquest.com/docview/2348289619 https://www.proquest.com/docview/1883177228 https://pubmed.ncbi.nlm.nih.gov/PMC5374653 https://doaj.org/article/a9487bfe23a04d98ad2d688e9b11df1c |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZ2ERIviDuBUR0knpACiRMnNhJCG9o0IW2aEEV9i5zY7oraZCQp0L_FD-GFP8Sxk5QVFaQ-1Ynl1uf4fOfi7xDynLKCMZmmvuVmRwcl1D6iVurnqTA85oznLhVzdp6cjuP3EzbZIUN7q_4PbLa6draf1Liev_z-ZfUWFf6NU3ievGrwjE1sLQWqS2LTkrtkHw1Tajs5nMV_kgpoDFmf2Nz6miUGRkAioj7GMlgpR-a_DYH-XUh5zTKd3Ca3ekgJh50M3CE7urxLbnRNJlf3yC9njtzhUC00yJ6FBCoDCP6g_VbBsnRXWrQCNHNoMuDnD38ui1Yu4MoxwiJGhEPElyizs-UCist61VRTW0WP8ym40OWssIGbzbHX8EnPv-rWr7uG9zj_1B6tIGsNC_m5qqErRG-guy0J12vgoXHtK2Dmwh4uigl9NVlzn4xPjj--O_X7Vg5-EYuo9YWJFBfKREzJ3IS6kFEgWRwLFAmlYxNaJjCFWCNKuAkCbZgVFMmjRHBEaDR6QPbKqtSPCKQ5xU-InoFW6DsZzrRGlKJpovJcJdIjwbB1WdHznNv1zjPn7_Ak6zY-w43P7MZngUderF-56kg-_vfwkZWH9YOWn9t9UdXTrFf3TAp0BHOjaSSDWAkuFVUJ51rkYahMWHjkYJCmbJD5jFqiIS7QpfXIs_UwqrvN4chSV8smw9-NiC-llHvkYSd865UMwuuRdEMsN5a6OVLOLh2lOItSS7T3-J9zPiE3qdUUdxvzgOy19VI_RTjW5iOym07SEdk_Oj6_-DByQY2RU7zfHaw61g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELemTgheEP8JDDgkeEGKljhx4iAhtMGmjm3VhDa0N8-Jna6oTUqSMvVL8cAH4YUvxNlJy4rQ3ib1qU6ra-989zvf-XeEvKIsY0zGsWu42TFB8bWLqJW6aZzkPOSMp7YUcziI-ifhp1N2ukZ-LO7CmLbKhU-0jlqVmTkj36SGhYUniPffT7-5ZmqUqa4uRmi0ZrGv5xeYstXv9j6ifl9Turtz_KHvdlMF3CxMgsZN8kDxROUBUzLNfZ3JwJMsDBOUTukw9w0plcKwF0Q89zydMyOz5EGUcAQLhugAXf46Lntej6xv7wyOPi_rFhhvWVc79Xm0WaP3j0yXB27kyBRMV6KfHRLwP2T7b4PmpYi3e4fc7qAqbLW2dZes6eIeudEOr5zfJ79tmLNOp5xokB27CZQ5IKiE5qKEWWGvymgFGD4xFMGvn-5YZo2cwNQyzSL2hC3ErfjnjmYTyM6reV0OTXc-fp-CI12MMnMgtLr2Fr7o8XfduJUeztrvHxqXDbLSMJFfywraBvca2luYcLm3Hmo7FgNG9jjFno5C16VWPyAn16LMh6RXlIV-TCBOKb58zDi0wpws50xrRD-aRipNVSQd4i1UJ7KOP93IOxY2j-KRaLUtUNvCaFt4Dnmz_Mi0JQ-56uFtYw_LBw3vt32jrIaicyNCJphgprmmgfRClXCpqIo410nq-yr3M4dsLKxJdM6oFn-3jkNeLpfRjZjakCx0OasF_m5EkjGl3CGPWuNbSmIo-ZLAow6JV8xyRdTVlWJ0bqnKWRAbAr8nV4v1gtzsHx8eiIO9wf5Tcoua_WKvfW6QXlPN9DPEfU36vNtsQM6ue3__ATGscdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptome+analysis+of+the+two+unrelated+fungal+%CE%B2-lactam+producers+Acremonium+chrysogenum+and+Penicillium+chrysogenum%3A+Velvet-regulated+genes+are+major+targets+during+conventional+strain+improvement+programs&rft.jtitle=BMC+genomics&rft.au=Terfehr%2C+Dominik&rft.au=Dahlmann%2C+Tim+A&rft.au=K%C3%BCck%2C+Ulrich&rft.date=2017-03-31&rft.eissn=1471-2164&rft.volume=18&rft.issue=1&rft.spage=272&rft_id=info:doi/10.1186%2Fs12864-017-3663-0&rft_id=info%3Apmid%2F28359302&rft.externalDocID=28359302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon |