Investigation of the HD-sEMG probability density function shapes with varying muscle force using data fusion and shape descriptors

This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence o...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 89; pp. 44 - 58
Main Authors Al Harrach, Mariam, Boudaoud, Sofiane, Carriou, Vincent, Laforet, Jeremy, Letocart, Adrien J., Grosset, Jean-François, Marin, Frédéric
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2017
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with force variation. This is motivated by the fact that PDF shape information are relevant in physiological assessment of the muscle architecture and function, such as contraction level classification, in complement to classical amplitude parameters. Accordingly, both experimental and simulation studies are presented in this work. For data fusion, the watershed image processing technique was used. This technique allowed us to find the dominant PDF shape variation profiles from the 64 signals. The experimental protocol consisted of three isometric isotonic contractions of 30, 50 and 70% of the Maximum Voluntary Contraction (MVC). This protocol was performed by six subjects and recorded using an 8 × 8 HD-sEMG grid. For the simulation study, the muscle modeling was done using a fast computing cylindrical HD-sEMG generation model. This model was personalized by morphological parameters obtained by sonography. Moreover, a set of the model parameter configurations were compared as a focused sensitivity analysis of the PDF shape variation. Further, monopolar, bipolar and Laplacian electrode configurations were investigated in both experimental and simulation studies. Results indicated that sEMG PDF shape variations according to force increase are mainly dependent on the Motor Unit (MU) spatial recruitment strategy, the MU type distribution within the muscle, and the used electrode arrangement. Consequently, these statistics can give us an insight into non measurable parameters and specifications of the studied muscle primarily the MU type distribution.
AbstractList This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with force variation. This is motivated by the fact that PDF shape information are relevant in physiological assessment of the muscle architecture and function, such as contraction level classification, in complement to classical amplitude parameters. Accordingly, both experimental and simulation studies are presented in this work. For data fusion, the watershed image processing technique was used. This technique allowed us to find the dominant PDF shape variation profiles from the 64 signals. The experimental protocol consisted of three isometric isotonic contractions of 30, 50 and 70% of the Maximum Voluntary Contraction (MVC). This protocol was performed by six subjects and recorded using an 8 × 8 HD-sEMG grid. For the simulation study, the muscle modeling was done using a fast computing cylindrical HD-sEMG generation model. This model was personalized by morphological parameters obtained by sonography. Moreover, a set of the model parameter configurations were compared as a focused sensitivity analysis of the PDF shape variation. Further, monopolar, bipolar and Laplacian electrode configurations were investigated in both experimental and simulation studies. Results indicated that sEMG PDF shape variations according to force increase are mainly dependent on the Motor Unit (MU) spatial recruitment strategy, the MU type distribution within the muscle, and the used electrode arrangement. Consequently, these statistics can give us an insight into non measurable parameters and specifications of the studied muscle primarily the MU type distribution.This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with force variation. This is motivated by the fact that PDF shape information are relevant in physiological assessment of the muscle architecture and function, such as contraction level classification, in complement to classical amplitude parameters. Accordingly, both experimental and simulation studies are presented in this work. For data fusion, the watershed image processing technique was used. This technique allowed us to find the dominant PDF shape variation profiles from the 64 signals. The experimental protocol consisted of three isometric isotonic contractions of 30, 50 and 70% of the Maximum Voluntary Contraction (MVC). This protocol was performed by six subjects and recorded using an 8 × 8 HD-sEMG grid. For the simulation study, the muscle modeling was done using a fast computing cylindrical HD-sEMG generation model. This model was personalized by morphological parameters obtained by sonography. Moreover, a set of the model parameter configurations were compared as a focused sensitivity analysis of the PDF shape variation. Further, monopolar, bipolar and Laplacian electrode configurations were investigated in both experimental and simulation studies. Results indicated that sEMG PDF shape variations according to force increase are mainly dependent on the Motor Unit (MU) spatial recruitment strategy, the MU type distribution within the muscle, and the used electrode arrangement. Consequently, these statistics can give us an insight into non measurable parameters and specifications of the studied muscle primarily the MU type distribution.
This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with force variation. This is motivated by the fact that PDF shape information are relevant in physiological assessment of the muscle architecture and function, such as contraction level classification, in complement to classical amplitude parameters. Accordingly, both experimental and simulation studies are presented in this work. For data fusion, the watershed image processing technique was used. This technique allowed us to find the dominant PDF shape variation profiles from the 64 signals. The experimental protocol consisted of three isometric isotonic contractions of 30, 50 and 70% of the Maximum Voluntary Contraction (MVC). This protocol was performed by six subjects and recorded using an 8 × 8 HD-sEMG grid. For the simulation study, the muscle modeling was done using a fast computing cylindrical HD-sEMG generation model. This model was personalized by morphological parameters obtained by sonography. Moreover, a set of the model parameter configurations were compared as a focused sensitivity analysis of the PDF shape variation. Further, monopolar, bipolar and Laplacian electrode configurations were investigated in both experimental and simulation studies. Results indicated that sEMG PDF shape variations according to force increase are mainly dependent on the Motor Unit (MU) spatial recruitment strategy, the MU type distribution within the muscle, and the used electrode arrangement. Consequently, these statistics can give us an insight into non measurable parameters and specifications of the studied muscle primarily the MU type distribution.
Author Carriou, Vincent
Boudaoud, Sofiane
Laforet, Jeremy
Grosset, Jean-François
Letocart, Adrien J.
Al Harrach, Mariam
Marin, Frédéric
Author_xml – sequence: 1
  givenname: Mariam
  surname: Al Harrach
  fullname: Al Harrach, Mariam
  email: mariam.al-harrach@utc.fr
  organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
– sequence: 2
  givenname: Sofiane
  surname: Boudaoud
  fullname: Boudaoud, Sofiane
  organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
– sequence: 3
  givenname: Vincent
  surname: Carriou
  fullname: Carriou, Vincent
  organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
– sequence: 4
  givenname: Jeremy
  surname: Laforet
  fullname: Laforet, Jeremy
  organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
– sequence: 5
  givenname: Adrien J.
  surname: Letocart
  fullname: Letocart, Adrien J.
  organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
– sequence: 6
  givenname: Jean-François
  surname: Grosset
  fullname: Grosset, Jean-François
  organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
– sequence: 7
  givenname: Frédéric
  surname: Marin
  fullname: Marin, Frédéric
  organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28783537$$D View this record in MEDLINE/PubMed
https://utc.hal.science/hal-02406864$$DView record in HAL
BookMark eNqNkUtv1DAUhS1URKcDfwFZYgOLDH7msUGUtnQqDWIDa8txnI6HxA62M2i2_PI6TQvSrEa6sqWr75xr33MBzqyzGgCI0QojnH_crZTrh9q4XjcrgnCxQqkIfQEWuCyqDHHKzsACIYwyVhJ-Di5C2CGEGKLoFTgnZVFSTosF-Htn9zpEcy-jcRa6FsathuvrLNx8u4WDd7WsTWfiATbahuluR6se2bCVgw7wj4lbuJf-YOw97MegOg1b55WGY5hajYwyicIkkbaZZcktKG-G6Hx4DV62sgv6zdO9BD-_3vy4Wmeb77d3V5ebTLGKxqySVVUUjGOupeSkzhvKWkzzvOatrFWbk7qitUIN5UQxiipFG9wQUlOMNeeSLsGH2XcrOzF406c3CyeNWF9uxNRDhKG8zNkeJ_b9zKYN_B7TgkRvgtJdJ612YxC4IgVFRZ7WuATvjtCdG71NP0kUZzRneTqX4O0TNdYptH_zn5NIwKcZUN6F4HUrlImPoUQvTScwElP0Yif-Ry-m6AVKRWgyKI8MnmecIP0yS3Va_95oL4Iy2irdGK9VFI0zp5h8PjJRnbFGye6XPpxm8QB1nOWS
CitedBy_id crossref_primary_10_1109_TNSRE_2024_3452308
crossref_primary_10_1016_j_irbm_2024_100851
crossref_primary_10_1016_j_bspc_2022_104446
crossref_primary_10_2139_ssrn_4074648
crossref_primary_10_1109_JSEN_2021_3068521
crossref_primary_10_1186_s12984_024_01497_5
crossref_primary_10_1109_TNSRE_2023_3241354
crossref_primary_10_1109_TIM_2024_3480235
crossref_primary_10_1186_s12938_024_01285_1
Cites_doi 10.1016/S1050-6411(00)00051-1
10.1080/10255842.2015.1070578
10.1007/s11517-014-1170-x
10.1109/TBME.2007.894829
10.1016/j.compbiomed.2016.04.019
10.2478/v10048-010-0001-y
10.1016/0734-189X(88)90022-9
10.1016/j.medengphy.2010.04.009
10.1109/TBME.2003.820998
10.1016/j.bspc.2015.07.001
10.1152/jn.00961.2010
10.1109/TIM.2016.2534378
10.1016/j.compbiomed.2017.02.003
10.1016/j.clinph.2008.10.160
10.1016/S0208-5216(12)70039-6
10.1055/s-2007-1021237
10.1186/1743-0003-9-85
10.1016/S1050-6411(00)00027-4
10.1002/mus.10386
10.1016/S1050-6411(96)00024-7
10.1007/s00421-003-0819-1
10.1109/10.764949
10.1016/j.brainresbull.2012.09.012
10.1111/j.1468-0394.2008.00483.x
10.1155/2007/32570
10.1016/j.jelekin.2004.06.008
10.1016/j.clinph.2009.10.040
10.1016/j.jelekin.2009.08.005
10.1016/j.jbiomech.2010.03.049
10.1016/j.jelekin.2008.09.002
10.1152/japplphysiol.00698.2002
10.1016/j.clinph.2008.07.225
10.1177/0883073807304204
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited Oct 1, 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited Oct 1, 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
DOI 10.1016/j.compbiomed.2017.07.023
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
ProQuest Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Research Library Prep
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 58
ExternalDocumentID oai_HAL_hal_02406864v1
28783537
10_1016_j_compbiomed_2017_07_023
S0010482517302470
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
M0N
RIG
.55
.GJ
29F
53G
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AGQPQ
AGRNS
AIGII
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
R2-
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
ID FETCH-LOGICAL-c493t-9a99774515eaa52b6d34f1366b5fabcf62b93bc0d352c4309c3d1d22b311e55a3
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Tue Jul 22 06:30:48 EDT 2025
Tue Aug 05 10:31:59 EDT 2025
Wed Aug 13 08:41:11 EDT 2025
Thu Apr 03 07:08:18 EDT 2025
Tue Jul 01 03:28:28 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Fri Feb 23 02:24:55 EST 2024
Tue Aug 26 16:33:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords High density surface electromyogram
Functional statistics
Physiological assessment
Probability density function
High order statistics
Shape distances
Modeling
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-9a99774515eaa52b6d34f1366b5fabcf62b93bc0d352c4309c3d1d22b311e55a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0440-4849
0000-0003-2554-5835
0000-0003-0948-8375
PMID 28783537
PQID 1954364654
PQPubID 1226355
PageCount 15
ParticipantIDs hal_primary_oai_HAL_hal_02406864v1
proquest_miscellaneous_1927307678
proquest_journals_1954364654
pubmed_primary_28783537
crossref_citationtrail_10_1016_j_compbiomed_2017_07_023
crossref_primary_10_1016_j_compbiomed_2017_07_023
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_07_023
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_07_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
2017-10-00
2017-Oct-01
20171001
2017-10
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
– name: Elsevier
References Al Harrach, Boudaoud, Gamet, Grosset, Marin (bib15) 2014
Ayachi, Boudaoud, Grosset, Marque (bib18) 2011
Hussain, Reaz, Mohd-Yasin, Ibrahimy (bib7) 2009; 26
Nordander, Willner, Hansson, Larsson, Unge, Granquist, Skerfving (bib44) 2003; 89
Farina, Colombo, Merletti, Baare Olsen (bib1) 2001; 11
Farina, Mesin, Martina, Merletti (bib30) 2004; 51
Afsharipour, Ullah, Merletti (bib40) 2015; 22
Vieira, Merletti, Mesin (bib27) 2010; 43
Rabie, Jossiphov, Nevo (bib45) 2007; 22
Chua, Chandran, Acharya, Lim (bib13) 2010; 32
Nazarpour, Al-Timemy, Bugmann, Jackson (bib3) 2013; 90
Klein, Marsh, Petrella, Rice (bib31) 2003; 28
Boudaoud, Rix, Meste, Heneghan, O'Brien (bib42) 2007; 2007
Carriou, Al Harrach, Laforet, Boudaoud (bib47) 2016
Bowman, Azzalini (bib43) 1997
Al Harrach, Ayachi, Boudaoud, Laforet, Marin (bib14) 2013
Al Harrach, Afsharipour, Boudaoud, Carriou, Marin, Merletti (bib36) 2016
Bilodeau, Cincera, Arsenault, Gravel (bib10) 1997; 7
Marchetti, Felici, Bernardi, Minasi, Di Filippo (bib46) 1992; 13
Nazarpour, Sharafat, Firoozabadi (bib6) 2007; 54
Thongpanja, Phinyomark, Quaine, Laurillau, Limsakul, Phukpattaranont (bib34) 2016; 65
Boudaoud, Allouch, Al Harrach, Marin (bib22) 2015; 18
Rix, Boudaoud, Meste (bib41) 2002
Zalewska, Hausmanowa-Petrusewicz (bib49) 2008; 119
Holobar, Farina, Gazzoni, Merletti, Zazula (bib24) 2009; 120
De Luca, Contessa (bib32) 2012; 107
Otsu (bib38) 1975; 11
Boudaoud, Rix, Al Harrach, Marin (bib19) 2014
Huang, Chen (bib2) 1999; vol. 3
Lowery, Stoykov, Kuiken (bib35) 2003; 94
Farina, Holobar, Merletti, Enoka (bib25) 2010; 121
Clancy, Hogan (bib9) 1999; 46
Naik, Kumar, Arjunan (bib17) 2011
Sahoo, Soltani, Wong (bib39) 1988; 41
Al Harrach, Carriou, Boudaoud, Laforet, Marin (bib29) 2017; 83
Hermens, Freriks, Disselhorst-Klug, Rau (bib33) 2000; 10
Merletti, Holobar, Farina (bib37) 2008; 18
Naik, Kumar (bib16) 2011
Carriou, Boudaoud, Laforet, Ayachi (bib26) 2016; 74
Staudenmann, Kingma, Stegeman, van Dieen (bib4) 2005; 15
Naik, Kumar, Arjunan (bib12) 2010; 10
Al Harrach, Boudaoud, Hassan, Ayachi, Gamet, Grosset, Marin (bib28) 2016
Van Dijk Johannes (bib5) 2012; 32
Ayachi, Boudaoud, Marque (bib8) 2014; 52
Rojas-Martinez, Mananas, Alonso (bib21) 2012; 9
Zhou, Lowery, Dewald, Kuiken (bib23) 2006
Nazarpour, Sharafat, Firoozabadi (bib11) 2006
Merletti, Parker (bib20) 2004
Staudenmann, Roeleveld, Stegeman, Van Dieën (bib48) 2010; 20
Rojas-Martinez (10.1016/j.compbiomed.2017.07.023_bib21) 2012; 9
Zhou (10.1016/j.compbiomed.2017.07.023_bib23) 2006
Naik (10.1016/j.compbiomed.2017.07.023_bib17) 2011
Afsharipour (10.1016/j.compbiomed.2017.07.023_bib40) 2015; 22
Ayachi (10.1016/j.compbiomed.2017.07.023_bib18) 2011
Carriou (10.1016/j.compbiomed.2017.07.023_bib26) 2016; 74
Merletti (10.1016/j.compbiomed.2017.07.023_bib20) 2004
Bilodeau (10.1016/j.compbiomed.2017.07.023_bib10) 1997; 7
Vieira (10.1016/j.compbiomed.2017.07.023_bib27) 2010; 43
Sahoo (10.1016/j.compbiomed.2017.07.023_bib39) 1988; 41
Hermens (10.1016/j.compbiomed.2017.07.023_bib33) 2000; 10
Van Dijk Johannes (10.1016/j.compbiomed.2017.07.023_bib5) 2012; 32
Merletti (10.1016/j.compbiomed.2017.07.023_bib37) 2008; 18
Al Harrach (10.1016/j.compbiomed.2017.07.023_bib14) 2013
Zalewska (10.1016/j.compbiomed.2017.07.023_bib49) 2008; 119
Al Harrach (10.1016/j.compbiomed.2017.07.023_bib28) 2016
Clancy (10.1016/j.compbiomed.2017.07.023_bib9) 1999; 46
Nazarpour (10.1016/j.compbiomed.2017.07.023_bib11) 2006
Rix (10.1016/j.compbiomed.2017.07.023_bib41) 2002
Staudenmann (10.1016/j.compbiomed.2017.07.023_bib48) 2010; 20
Naik (10.1016/j.compbiomed.2017.07.023_bib16) 2011
Huang (10.1016/j.compbiomed.2017.07.023_bib2) 1999; vol. 3
Thongpanja (10.1016/j.compbiomed.2017.07.023_bib34) 2016; 65
Lowery (10.1016/j.compbiomed.2017.07.023_bib35) 2003; 94
Farina (10.1016/j.compbiomed.2017.07.023_bib30) 2004; 51
Al Harrach (10.1016/j.compbiomed.2017.07.023_bib36) 2016
Farina (10.1016/j.compbiomed.2017.07.023_bib1) 2001; 11
Bowman (10.1016/j.compbiomed.2017.07.023_bib43) 1997
Boudaoud (10.1016/j.compbiomed.2017.07.023_bib22) 2015; 18
Otsu (10.1016/j.compbiomed.2017.07.023_bib38) 1975; 11
Farina (10.1016/j.compbiomed.2017.07.023_bib25) 2010; 121
Nazarpour (10.1016/j.compbiomed.2017.07.023_bib6) 2007; 54
Klein (10.1016/j.compbiomed.2017.07.023_bib31) 2003; 28
Rabie (10.1016/j.compbiomed.2017.07.023_bib45) 2007; 22
Al Harrach (10.1016/j.compbiomed.2017.07.023_bib15) 2014
Marchetti (10.1016/j.compbiomed.2017.07.023_bib46) 1992; 13
Holobar (10.1016/j.compbiomed.2017.07.023_bib24) 2009; 120
Staudenmann (10.1016/j.compbiomed.2017.07.023_bib4) 2005; 15
Nazarpour (10.1016/j.compbiomed.2017.07.023_bib3) 2013; 90
Naik (10.1016/j.compbiomed.2017.07.023_bib12) 2010; 10
Hussain (10.1016/j.compbiomed.2017.07.023_bib7) 2009; 26
Ayachi (10.1016/j.compbiomed.2017.07.023_bib8) 2014; 52
Boudaoud (10.1016/j.compbiomed.2017.07.023_bib19) 2014
Nordander (10.1016/j.compbiomed.2017.07.023_bib44) 2003; 89
Boudaoud (10.1016/j.compbiomed.2017.07.023_bib42) 2007; 2007
Al Harrach (10.1016/j.compbiomed.2017.07.023_bib29) 2017; 83
Chua (10.1016/j.compbiomed.2017.07.023_bib13) 2010; 32
Carriou (10.1016/j.compbiomed.2017.07.023_bib47) 2016
De Luca (10.1016/j.compbiomed.2017.07.023_bib32) 2012; 107
References_xml – start-page: 119
  year: 2016
  end-page: 123
  ident: bib47
  article-title: Sensitivity analysis of HD-sEMG amplitude descriptors relative to grid parameter variation
  publication-title: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016
– volume: 7
  start-page: 87
  year: 1997
  end-page: 96
  ident: bib10
  article-title: Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions
  publication-title: J. Electromyogr. Kinesiol.
– volume: 18
  start-page: 879
  year: 2008
  end-page: 890
  ident: bib37
  article-title: Analysis of motor units with high-density surface electromyography
  publication-title: J. Electromyogr. Kinesiol.
– volume: 13
  start-page: 65
  year: 1992
  end-page: 68
  ident: bib46
  article-title: Can evoked phonomyography be used to recognize fast and slow muscle in man?
  publication-title: Int. J. Sports Med.
– year: 1997
  ident: bib43
  article-title: Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-plus Illustrations: the Kernel Approach with S-plus Illustrations
– start-page: 2213
  year: 2014
  end-page: 2216
  ident: bib19
  article-title: Robust functional statistics applied to probability density function shape screening of semg data
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– start-page: 3869
  year: 2011
  end-page: 3872
  ident: bib16
  article-title: Evaluation of higher order statistics parameters for multi channel semg using different force levels
  publication-title: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE
– volume: 2007
  start-page: 032570
  year: 2007
  ident: bib42
  article-title: Corrected integral shape averaging applied to obstructive sleep apnea detection from the electrocardiogram
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 65
  start-page: 1547
  year: 2016
  end-page: 1557
  ident: bib34
  article-title: Probability density functions of stationary surface emg signals in noisy environments
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 43
  start-page: 2149
  year: 2010
  end-page: 2158
  ident: bib27
  article-title: Automatic segmentation of surface emg images: improving the estimation of neuromuscular activity
  publication-title: J. Biomech.
– start-page: 187
  year: 2011
  end-page: 190
  ident: bib18
  article-title: Study of the muscular force/HOS parameters relationship from the surface electromyogram
  publication-title: 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011)
– volume: 119
  start-page: 2501
  year: 2008
  end-page: 2506
  ident: bib49
  article-title: Approximation of motor unit structure from the analysis of motor unit potential
  publication-title: Clin. Neurophysiol.
– volume: 28
  start-page: 62
  year: 2003
  end-page: 68
  ident: bib31
  article-title: Muscle fiber number in the biceps brachii muscle of young and old men
  publication-title: Muscle Nerve
– volume: 11
  start-page: 23
  year: 1975
  end-page: 27
  ident: bib38
  article-title: A threshold selection method from gray-level histograms
  publication-title: Automatica
– volume: 22
  start-page: 170
  year: 2015
  end-page: 179
  ident: bib40
  article-title: Amplitude indicators and spatial aliasing in high density surface electromyography recordings
  publication-title: Biomed. Signal Process. Control
– volume: 20
  start-page: 375
  year: 2010
  end-page: 387
  ident: bib48
  article-title: Methodological aspects of semg recordings for force estimation–a tutorial and review
  publication-title: J. Electromyogr. Kinesiol.
– volume: 32
  start-page: 3
  year: 2012
  end-page: 27
  ident: bib5
  article-title: High-density surface emg: techniques and applications at a motor unit level
  publication-title: Biocybern. Biomed. Eng.
– start-page: 4208
  year: 2006
  end-page: 4211
  ident: bib11
  article-title: Surface emg signal classification using a selective mix of higher order statistics
  publication-title: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the IEEE
– volume: 41
  start-page: 233
  year: 1988
  end-page: 260
  ident: bib39
  article-title: A survey of thresholding techniques
  publication-title: Comput. Vis. Graph. Image Process.
– volume: 121
  start-page: 1616
  year: 2010
  end-page: 1623
  ident: bib25
  article-title: Decoding the neural drive to muscles from the surface electromyogram
  publication-title: Clin. Neurophysiol.
– volume: 90
  start-page: 88
  year: 2013
  end-page: 91
  ident: bib3
  article-title: A note on the probability distribution function of the surface electromyogram signal
  publication-title: Brain Res. Bull.
– start-page: 1
  year: 2016
  end-page: 14
  ident: bib28
  article-title: Denoising of HD-sEMG signals using canonical correlation analysis
  publication-title: Med. Biol. Eng. Comput.
– start-page: 364
  year: 2002
  end-page: 365
  ident: bib41
  article-title: Clustering signal shapes: application to p-waves in ECG
  publication-title: 2nd European Medical and Biological Engineering Conference, EMBEC’02
– volume: 89
  start-page: 514
  year: 2003
  end-page: 519
  ident: bib44
  article-title: Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and bmi, on the emg amplitude
  publication-title: Eur. J. Appl. Physiol.
– volume: 11
  start-page: 175
  year: 2001
  end-page: 187
  ident: bib1
  article-title: Evaluation of intra-muscular EMG signal decomposition algorithms
  publication-title: J. Electromyogr. Kinesiol.
– volume: 10
  start-page: 1
  year: 2010
  end-page: 6
  ident: bib12
  article-title: Pattern classification of myo-electrical signal during different maximum voluntary contractions: a study using bss techniques
  publication-title: Meas. Sci. Rev.
– start-page: 2209
  year: 2014
  end-page: 2212
  ident: bib15
  article-title: Evaluation of HD-sEMG probability density function deformations in ramp exercise
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– start-page: 4064
  year: 2006
  end-page: 4067
  ident: bib23
  article-title: Towards improved myoelectric prosthesis control: high density surface emg recording after targeted muscle reinnervation
  publication-title: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE
– volume: 120
  start-page: 551
  year: 2009
  end-page: 562
  ident: bib24
  article-title: Estimating motor unit discharge patterns from high-density surface electromyogram
  publication-title: Clin. Neurophysiol.
– volume: 74
  start-page: 54
  year: 2016
  end-page: 68
  ident: bib26
  article-title: Fast generation model of high density surface emg signals in a cylindrical conductor volume
  publication-title: Comput. Biol. Med.
– start-page: 2378
  year: 2016
  end-page: 2381
  ident: bib36
  article-title: Extraction of the brachialis muscle activity using hd-semg technique and canonical correlation analysis
  publication-title: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the IEEE
– volume: 46
  start-page: 730
  year: 1999
  end-page: 739
  ident: bib9
  article-title: Probability density of the surface electromyogram and its relation to amplitude detectors
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 9
  start-page: 85
  year: 2012
  ident: bib21
  article-title: High-density surface EMG maps from upper-arm and forearm muscles
  publication-title: J. NeuroEng. Rehabil.
– volume: 15
  start-page: 1
  year: 2005
  end-page: 11
  ident: bib4
  article-title: Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study
  publication-title: J. Electromyogr. Kinesiol.
– volume: 18
  start-page: 1890
  year: 2015
  end-page: 1891
  ident: bib22
  article-title: On the benefits of using HD-sEMG technique for estimating muscle force
  publication-title: Comput. Method. Biomech. Biomed. Eng.
– volume: 32
  start-page: 679
  year: 2010
  end-page: 689
  ident: bib13
  article-title: Application of higher order statistics/spectra in biomedical signals a review
  publication-title: Med. Eng. Phys.
– volume: 54
  start-page: 1762
  year: 2007
  end-page: 1769
  ident: bib6
  article-title: Application of higher order statistics to surface electromyogram signal classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 51
  start-page: 415
  year: 2004
  end-page: 426
  ident: bib30
  article-title: A surface emg generation model with multilayer cylindrical description of the volume conductor
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 94
  start-page: 1324
  year: 2003
  end-page: 1334
  ident: bib35
  article-title: A simulation study to examine the use of cross-correlation as an estimate of surface emg cross talk
  publication-title: J. Appl. Physiol.
– volume: 22
  start-page: 803
  year: 2007
  end-page: 808
  ident: bib45
  article-title: Electromyography (emg) accuracy compared to muscle biopsy in childhood
  publication-title: J. Child Neurol.
– volume: vol. 3
  start-page: 2392
  year: 1999
  end-page: 2397
  ident: bib2
  article-title: Development of a myoelectric discrimination system for a multi-degree prosthetic hand
  publication-title: Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on
– year: 2004
  ident: bib20
  article-title: Electromyography: Physiology, Engineering, and Non-invasive Applications
– volume: 26
  start-page: 35
  year: 2009
  end-page: 48
  ident: bib7
  article-title: Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction
  publication-title: Expert Syst.
– volume: 52
  start-page: 673
  year: 2014
  end-page: 684
  ident: bib8
  article-title: Evaluation of muscle force classification using shape analysis of the sEMG probability density function: a simulation study
  publication-title: Med. Biol. Eng. Comput.
– volume: 107
  start-page: 178
  year: 2012
  end-page: 195
  ident: bib32
  article-title: Hierarchical control of motor units in voluntary contractions
  publication-title: J. Neurophysiol.
– start-page: 97
  year: 2013
  end-page: 100
  ident: bib14
  article-title: Sensitivity evaluation of HOS parameters by data fusion from HD-sEMG grid
  publication-title: 2nd International Conference on Advances in Biomedical Engineering (ICABME)
– start-page: 1
  year: 2011
  end-page: 4
  ident: bib17
  article-title: Kurtosis and negentropy investigation of myo electric signals during different mvcs
  publication-title: Biosignals and Biorobotics Conference (BRC), 2011 ISSNIP
– volume: 10
  start-page: 361
  year: 2000
  end-page: 374
  ident: bib33
  article-title: Development of recommendations for semg sensors and sensor placement procedures
  publication-title: J. Electromyogr. Kinesiol.
– volume: 83
  start-page: 34
  year: 2017
  end-page: 47
  ident: bib29
  article-title: Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: a simulation study
  publication-title: Comput. Biol. Med.
– volume: 11
  start-page: 175
  year: 2001
  ident: 10.1016/j.compbiomed.2017.07.023_bib1
  article-title: Evaluation of intra-muscular EMG signal decomposition algorithms
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/S1050-6411(00)00051-1
– volume: 18
  start-page: 1890
  year: 2015
  ident: 10.1016/j.compbiomed.2017.07.023_bib22
  article-title: On the benefits of using HD-sEMG technique for estimating muscle force
  publication-title: Comput. Method. Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2015.1070578
– volume: 52
  start-page: 673
  year: 2014
  ident: 10.1016/j.compbiomed.2017.07.023_bib8
  article-title: Evaluation of muscle force classification using shape analysis of the sEMG probability density function: a simulation study
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1170-x
– start-page: 4208
  year: 2006
  ident: 10.1016/j.compbiomed.2017.07.023_bib11
  article-title: Surface emg signal classification using a selective mix of higher order statistics
– volume: 54
  start-page: 1762
  year: 2007
  ident: 10.1016/j.compbiomed.2017.07.023_bib6
  article-title: Application of higher order statistics to surface electromyogram signal classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.894829
– volume: 74
  start-page: 54
  year: 2016
  ident: 10.1016/j.compbiomed.2017.07.023_bib26
  article-title: Fast generation model of high density surface emg signals in a cylindrical conductor volume
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.04.019
– start-page: 364
  year: 2002
  ident: 10.1016/j.compbiomed.2017.07.023_bib41
  article-title: Clustering signal shapes: application to p-waves in ECG
– year: 1997
  ident: 10.1016/j.compbiomed.2017.07.023_bib43
– volume: 10
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2017.07.023_bib12
  article-title: Pattern classification of myo-electrical signal during different maximum voluntary contractions: a study using bss techniques
  publication-title: Meas. Sci. Rev.
  doi: 10.2478/v10048-010-0001-y
– volume: 41
  start-page: 233
  year: 1988
  ident: 10.1016/j.compbiomed.2017.07.023_bib39
  article-title: A survey of thresholding techniques
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(88)90022-9
– volume: 32
  start-page: 679
  year: 2010
  ident: 10.1016/j.compbiomed.2017.07.023_bib13
  article-title: Application of higher order statistics/spectra in biomedical signals a review
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.04.009
– start-page: 3869
  year: 2011
  ident: 10.1016/j.compbiomed.2017.07.023_bib16
  article-title: Evaluation of higher order statistics parameters for multi channel semg using different force levels
– volume: 51
  start-page: 415
  year: 2004
  ident: 10.1016/j.compbiomed.2017.07.023_bib30
  article-title: A surface emg generation model with multilayer cylindrical description of the volume conductor
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.820998
– volume: 22
  start-page: 170
  year: 2015
  ident: 10.1016/j.compbiomed.2017.07.023_bib40
  article-title: Amplitude indicators and spatial aliasing in high density surface electromyography recordings
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.07.001
– volume: 107
  start-page: 178
  year: 2012
  ident: 10.1016/j.compbiomed.2017.07.023_bib32
  article-title: Hierarchical control of motor units in voluntary contractions
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00961.2010
– start-page: 2378
  year: 2016
  ident: 10.1016/j.compbiomed.2017.07.023_bib36
  article-title: Extraction of the brachialis muscle activity using hd-semg technique and canonical correlation analysis
– start-page: 119
  year: 2016
  ident: 10.1016/j.compbiomed.2017.07.023_bib47
  article-title: Sensitivity analysis of HD-sEMG amplitude descriptors relative to grid parameter variation
– volume: 65
  start-page: 1547
  issue: 7
  year: 2016
  ident: 10.1016/j.compbiomed.2017.07.023_bib34
  article-title: Probability density functions of stationary surface emg signals in noisy environments
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2534378
– volume: 83
  start-page: 34
  year: 2017
  ident: 10.1016/j.compbiomed.2017.07.023_bib29
  article-title: Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: a simulation study
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.02.003
– volume: 120
  start-page: 551
  year: 2009
  ident: 10.1016/j.compbiomed.2017.07.023_bib24
  article-title: Estimating motor unit discharge patterns from high-density surface electromyogram
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.10.160
– start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2017.07.023_bib28
  article-title: Denoising of HD-sEMG signals using canonical correlation analysis
  publication-title: Med. Biol. Eng. Comput.
– start-page: 2209
  year: 2014
  ident: 10.1016/j.compbiomed.2017.07.023_bib15
  article-title: Evaluation of HD-sEMG probability density function deformations in ramp exercise
– volume: 32
  start-page: 3
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2017.07.023_bib5
  article-title: High-density surface emg: techniques and applications at a motor unit level
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/S0208-5216(12)70039-6
– volume: 13
  start-page: 65
  issue: 01
  year: 1992
  ident: 10.1016/j.compbiomed.2017.07.023_bib46
  article-title: Can evoked phonomyography be used to recognize fast and slow muscle in man?
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-2007-1021237
– start-page: 97
  year: 2013
  ident: 10.1016/j.compbiomed.2017.07.023_bib14
  article-title: Sensitivity evaluation of HOS parameters by data fusion from HD-sEMG grid
– volume: 9
  start-page: 85
  year: 2012
  ident: 10.1016/j.compbiomed.2017.07.023_bib21
  article-title: High-density surface EMG maps from upper-arm and forearm muscles
  publication-title: J. NeuroEng. Rehabil.
  doi: 10.1186/1743-0003-9-85
– volume: 10
  start-page: 361
  year: 2000
  ident: 10.1016/j.compbiomed.2017.07.023_bib33
  article-title: Development of recommendations for semg sensors and sensor placement procedures
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/S1050-6411(00)00027-4
– volume: 28
  start-page: 62
  year: 2003
  ident: 10.1016/j.compbiomed.2017.07.023_bib31
  article-title: Muscle fiber number in the biceps brachii muscle of young and old men
  publication-title: Muscle Nerve
  doi: 10.1002/mus.10386
– volume: 7
  start-page: 87
  year: 1997
  ident: 10.1016/j.compbiomed.2017.07.023_bib10
  article-title: Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/S1050-6411(96)00024-7
– volume: 11
  start-page: 23
  year: 1975
  ident: 10.1016/j.compbiomed.2017.07.023_bib38
  article-title: A threshold selection method from gray-level histograms
  publication-title: Automatica
– volume: 89
  start-page: 514
  year: 2003
  ident: 10.1016/j.compbiomed.2017.07.023_bib44
  article-title: Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and bmi, on the emg amplitude
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-003-0819-1
– volume: vol. 3
  start-page: 2392
  year: 1999
  ident: 10.1016/j.compbiomed.2017.07.023_bib2
  article-title: Development of a myoelectric discrimination system for a multi-degree prosthetic hand
– year: 2004
  ident: 10.1016/j.compbiomed.2017.07.023_bib20
– volume: 46
  start-page: 730
  issue: 6
  year: 1999
  ident: 10.1016/j.compbiomed.2017.07.023_bib9
  article-title: Probability density of the surface electromyogram and its relation to amplitude detectors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.764949
– volume: 90
  start-page: 88
  year: 2013
  ident: 10.1016/j.compbiomed.2017.07.023_bib3
  article-title: A note on the probability distribution function of the surface electromyogram signal
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2012.09.012
– volume: 26
  start-page: 35
  year: 2009
  ident: 10.1016/j.compbiomed.2017.07.023_bib7
  article-title: Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction
  publication-title: Expert Syst.
  doi: 10.1111/j.1468-0394.2008.00483.x
– start-page: 2213
  year: 2014
  ident: 10.1016/j.compbiomed.2017.07.023_bib19
  article-title: Robust functional statistics applied to probability density function shape screening of semg data
– start-page: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2017.07.023_bib17
  article-title: Kurtosis and negentropy investigation of myo electric signals during different mvcs
– volume: 2007
  start-page: 032570
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2017.07.023_bib42
  article-title: Corrected integral shape averaging applied to obstructive sleep apnea detection from the electrocardiogram
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2007/32570
– volume: 15
  start-page: 1
  year: 2005
  ident: 10.1016/j.compbiomed.2017.07.023_bib4
  article-title: Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2004.06.008
– volume: 121
  start-page: 1616
  year: 2010
  ident: 10.1016/j.compbiomed.2017.07.023_bib25
  article-title: Decoding the neural drive to muscles from the surface electromyogram
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.10.040
– volume: 20
  start-page: 375
  issue: 3
  year: 2010
  ident: 10.1016/j.compbiomed.2017.07.023_bib48
  article-title: Methodological aspects of semg recordings for force estimation–a tutorial and review
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2009.08.005
– volume: 43
  start-page: 2149
  issue: 11
  year: 2010
  ident: 10.1016/j.compbiomed.2017.07.023_bib27
  article-title: Automatic segmentation of surface emg images: improving the estimation of neuromuscular activity
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.03.049
– start-page: 4064
  year: 2006
  ident: 10.1016/j.compbiomed.2017.07.023_bib23
  article-title: Towards improved myoelectric prosthesis control: high density surface emg recording after targeted muscle reinnervation
– volume: 18
  start-page: 879
  year: 2008
  ident: 10.1016/j.compbiomed.2017.07.023_bib37
  article-title: Analysis of motor units with high-density surface electromyography
  publication-title: J. Electromyogr. Kinesiol.
  doi: 10.1016/j.jelekin.2008.09.002
– volume: 94
  start-page: 1324
  issue: 4
  year: 2003
  ident: 10.1016/j.compbiomed.2017.07.023_bib35
  article-title: A simulation study to examine the use of cross-correlation as an estimate of surface emg cross talk
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00698.2002
– volume: 119
  start-page: 2501
  year: 2008
  ident: 10.1016/j.compbiomed.2017.07.023_bib49
  article-title: Approximation of motor unit structure from the analysis of motor unit potential
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.07.225
– start-page: 187
  year: 2011
  ident: 10.1016/j.compbiomed.2017.07.023_bib18
  article-title: Study of the muscular force/HOS parameters relationship from the surface electromyogram
– volume: 22
  start-page: 803
  issue: 7
  year: 2007
  ident: 10.1016/j.compbiomed.2017.07.023_bib45
  article-title: Electromyography (emg) accuracy compared to muscle biopsy in childhood
  publication-title: J. Child Neurol.
  doi: 10.1177/0883073807304204
SSID ssj0004030
Score 2.2247434
Snippet This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to...
SourceID hal
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Accuracy
Bioengineering
Classification
Computer Simulation
Configurations
Data integration
Electrodes
Electromyography
Functional statistics
High density surface electromyogram
High order statistics
Humans
Image processing
Life Sciences
Mathematical models
Modeling
Models, Biological
Multisensor fusion
Muscle contraction
Muscle Strength - physiology
Muscle, Skeletal - physiology
Physiological assessment
Physiology
Probability density function
Probability density functions
Sensitivity analysis
Shape distances
Signal Processing, Computer-Assisted
Statistical analysis
Trends
Variation
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa9swFBZrB2OX0bX74a0rWunVzLZkKWaHUvorjGWnFnITkiytjM3O4qSw6_7yvWfJzi4tgUBIomebPOnpk_S97xFyUhXWestdKiH4p7yABYoprYaPUnMuK8sE5g7PvonpLf8yL-dxw62LtMohJvaBum4t7pF_QmUyJlD963TxO8WqUXi6Gkto7JCnKF2GlC45l5u8yIyFFBSINRyWQpHJE_hdSNkOKe5I8JK9hGfBHpqedu6QJ_kQCO0no6s98iKiSHoW3P6SPHHNPnk2i-fkB-Tvf_IZbUNbTwHn0elF2l3OrikWkQny3H9ojQR2eMf5rW_b3emF6yjuz9J7vcQsKPpr3cFtKOBb6ygy5b9TZJaCEe61Ud3UwQyuFqJQu-xekdury5vzaRqrLaSWV2yVVrpCLAj4xmldFkbUjPucCWFKr431ojAVMzarAbJZzjJwY53XRWFYnruy1Ow12W3axr0l1HiPp3-18xPGM-915XwuM19Ce8tNlhA5_MnKRilyrIjxUw2csx9q4x6F7lEZvAqWkHy0XAQ5ji1sqsGPakg3hQCpYM7YwvbzaBshSYAaW1ofQ7cZHxSVvKdnXxV-h9JyYiL4fZ6Qw6FXqRg_OrXp7Qn5OP4MIx-Pc3Tj2jW2AeiZwaCaJORN6I3jrWAdDNCayXePX_w9eY6PG8iJh2R3tVy7DwCyVuaoH0n_ADiGJ20
  priority: 102
  providerName: ProQuest
Title Investigation of the HD-sEMG probability density function shapes with varying muscle force using data fusion and shape descriptors
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517302470
https://dx.doi.org/10.1016/j.compbiomed.2017.07.023
https://www.ncbi.nlm.nih.gov/pubmed/28783537
https://www.proquest.com/docview/1954364654
https://www.proquest.com/docview/1927307678
https://utc.hal.science/hal-02406864
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkRAXRHkG2sogrqFJ7MQbcdqW3YbHrhCi0t4s27HbIkhWm91KXDjwyzsTJykcKq2EFCVK4omteDz-bH8zJuRNnhjjDLehAOMf8gQGKDo1Cm6F4lzkhmXoOzybZ8UZ_7hIFzvkpPeFQVplZ_u9TW-tdffkqPubR8vLS_TxhaEEel6CkiZc4Lgdvo5a_vb3Dc2DR8y7oYC9wdQdm8dzvJC27d3ckeQl2jCeCbuti7pzgVzJ24Bo2yFNH5IHHZKkY1_YPbJjq0fk3qxbK39M_vwVQqOuaO0oYD1avA-byeyU4kYyPkT3L1oiiR2u2Me1aZsLtbQNxTlaeqVW6AlFf24ayIYCxjWWIlv-nCK7FIRwvo2qqvRi8DVviepV84ScTSffToqw23EhNDxn6zBXOeJBwDhWqTTRWcm4i1mW6dQpbVyW6JxpE5UA2wxnEVRlGZdJolkc2zRV7CnZrerKPidUO4crgKV1I8Yj51RuXSwil0J6w3UUENH_ZGm6cOS4K8YP2fPOvsub6pFYPTKCI2EBiQfJpQ_JsYVM3tej7F1OwUhK6De2kH03yP6jmltKvwa1GQqK0byL8WeJzzC8XDbK-FUckP1eq2RnQxqJsfhYhvHuAvJqeA2tH5d0VGXrDaYB-BlBwxoF5JnXxiErGAsDvGbixX-V_yW5j3eev7hPdterjT0AHLbWh21Dg7NYCDiPpqeH5O74w6diDtfjyfzL12sBdDeh
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa2IcFeEL8JDDAIHiMS20kaIYQmti5j7Z42aW_GdmwmNJLStEN75Q_ib-QuTlJehvoyqVLV1udYvfPdZ_u7MyFvc2aMM8KGGTj_UDBYoOjEKPiYKSGy3PAUc4enx2lxKr6cJWcb5E-fC4O0yt4nto66rA3ukb_HymQ8xepfn2Y_Q7w1Ck9X-ys0vFkc2atfsGRrPh7ugX7fMTbeP_lchN2tAqEROV-EucoR80Act0olTKclFy7maaoTp7RxKdM51yYqAZoYwSMYbhmXjGkexzZJFId-N8ktwXmOM2o0PljlYUbcp7yAbxOw9OqYQ55PhhRxn1KPhLKsLRnK-HXhcPMceZnXgd42-I3vkbsdaqW73szukw1bPSC3p925_EPy-59yHXVFa0cBV9JiL2z2pwcUL63x5cCvaImEeXjHeNq2bc7VzDYU94PppZpj1hX9sWzgMRTwtLEUmfnfKDJZQQj39qiqSi8GvXmvV8-bR-T0RvTwmGxVdWWfEqqdw9PG0roRF5FzKrcuziKXQHsjdBSQrP-TpelKn-MNHBey57h9lyv1SFSPjODFeEDiQXLmy3-sIZP3epR9eis4ZAkxag3ZD4NsB4E8tFlT-g2YzTBQrBxe7E4kfoel7NJRKi7jgOz0ViU7f9XI1ewKyOvhZ_A0eHykKlsvsQ1A3Qgm8SggT7w1Do-CdTdAeZ49-3_nr8id4mQ6kZPD46PnZBuH7omRO2RrMV_aFwDwFvplO6so-XrT0_gvteJj8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa2IU28IH4TGGAQPEZLbCduhBCa6ErH1okHJvXN2I7NhCApTTu0V_4s_jru4qTlZagvkypVbX2OVd-dP9vf3RHyqmDWeitcLMH5x4LBBsVkVsNHqYWQheU5xg5PTvPxmfg4zaZb5E8fC4O0yt4nto66rC2eke9jZjKeY_avfd_RIj4NR-9mP2OsIIU3rX05jaAix-7yF2zfmrdHQ5jr14yNDj-_H8ddhYHYioIv4kIXiH9gTXdaZ8zkJRc-5XluMq-N9TkzBTc2KQGmWMETGHqZlowZnqYuyzSHfrfJDcmzFG1MTuU6JjPhIfwF_JyAbVjHIgrcMqSLh_B6JJfJNn0o41ctjdvnyNG8CgC3C-HoNrnVIVh6EFTuDtly1V2yO-nu6O-R3_-k7qgrWnsKGJOOh3FzOPlAsYBNSA1-SUskz8M7rq1t2-Zcz1xD8WyYXug5RmDRH8sGHkMBW1tHkaX_lSKrFYTwnI_qqgxi0FvwgPW8uU_OrmUeHpCdqq7cI0KN93jzWDo_4CLxXhfOpzLxGbS3wiQRkf2frGyXBh2rcXxXPd_tm1pPj8LpUQm8GI9IupKchVQgG8gU_TyqPtQVnLOC9WoD2Tcr2Q4OBZizofRLUJvVQDGL-PjgROF3mNYuH-TiIo3IXq9VqvNdjVpbWkRerH4Gr4NXSbpy9RLbAOxNwKAHEXkYtHH1KNiDA6zn8vH_O39OdsGA1cnR6fETchNHHjiSe2RnMV-6p4D1FuZZa1SUfLluK_4LHd9oHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+HD-sEMG+probability+density+function+shapes+with+varying+muscle+force+using+data+fusion+and+shape+descriptors&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Al+Harrach%2C+Mariam&rft.au=Boudaoud%2C+Sofiane&rft.au=Carriou%2C+Vincent&rft.au=Laforet%2C+Jeremy&rft.date=2017-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=89&rft.spage=44&rft.epage=58&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.07.023&rft.externalDocID=S0010482517302470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon