Investigation of the HD-sEMG probability density function shapes with varying muscle force using data fusion and shape descriptors
This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence o...
Saved in:
Published in | Computers in biology and medicine Vol. 89; pp. 44 - 58 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.10.2017
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with force variation. This is motivated by the fact that PDF shape information are relevant in physiological assessment of the muscle architecture and function, such as contraction level classification, in complement to classical amplitude parameters. Accordingly, both experimental and simulation studies are presented in this work. For data fusion, the watershed image processing technique was used. This technique allowed us to find the dominant PDF shape variation profiles from the 64 signals. The experimental protocol consisted of three isometric isotonic contractions of 30, 50 and 70% of the Maximum Voluntary Contraction (MVC). This protocol was performed by six subjects and recorded using an 8 × 8 HD-sEMG grid. For the simulation study, the muscle modeling was done using a fast computing cylindrical HD-sEMG generation model. This model was personalized by morphological parameters obtained by sonography. Moreover, a set of the model parameter configurations were compared as a focused sensitivity analysis of the PDF shape variation. Further, monopolar, bipolar and Laplacian electrode configurations were investigated in both experimental and simulation studies. Results indicated that sEMG PDF shape variations according to force increase are mainly dependent on the Motor Unit (MU) spatial recruitment strategy, the MU type distribution within the muscle, and the used electrode arrangement. Consequently, these statistics can give us an insight into non measurable parameters and specifications of the studied muscle primarily the MU type distribution. |
---|---|
AbstractList | This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with force variation. This is motivated by the fact that PDF shape information are relevant in physiological assessment of the muscle architecture and function, such as contraction level classification, in complement to classical amplitude parameters. Accordingly, both experimental and simulation studies are presented in this work. For data fusion, the watershed image processing technique was used. This technique allowed us to find the dominant PDF shape variation profiles from the 64 signals. The experimental protocol consisted of three isometric isotonic contractions of 30, 50 and 70% of the Maximum Voluntary Contraction (MVC). This protocol was performed by six subjects and recorded using an 8 × 8 HD-sEMG grid. For the simulation study, the muscle modeling was done using a fast computing cylindrical HD-sEMG generation model. This model was personalized by morphological parameters obtained by sonography. Moreover, a set of the model parameter configurations were compared as a focused sensitivity analysis of the PDF shape variation. Further, monopolar, bipolar and Laplacian electrode configurations were investigated in both experimental and simulation studies. Results indicated that sEMG PDF shape variations according to force increase are mainly dependent on the Motor Unit (MU) spatial recruitment strategy, the MU type distribution within the muscle, and the used electrode arrangement. Consequently, these statistics can give us an insight into non measurable parameters and specifications of the studied muscle primarily the MU type distribution.This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with force variation. This is motivated by the fact that PDF shape information are relevant in physiological assessment of the muscle architecture and function, such as contraction level classification, in complement to classical amplitude parameters. Accordingly, both experimental and simulation studies are presented in this work. For data fusion, the watershed image processing technique was used. This technique allowed us to find the dominant PDF shape variation profiles from the 64 signals. The experimental protocol consisted of three isometric isotonic contractions of 30, 50 and 70% of the Maximum Voluntary Contraction (MVC). This protocol was performed by six subjects and recorded using an 8 × 8 HD-sEMG grid. For the simulation study, the muscle modeling was done using a fast computing cylindrical HD-sEMG generation model. This model was personalized by morphological parameters obtained by sonography. Moreover, a set of the model parameter configurations were compared as a focused sensitivity analysis of the PDF shape variation. Further, monopolar, bipolar and Laplacian electrode configurations were investigated in both experimental and simulation studies. Results indicated that sEMG PDF shape variations according to force increase are mainly dependent on the Motor Unit (MU) spatial recruitment strategy, the MU type distribution within the muscle, and the used electrode arrangement. Consequently, these statistics can give us an insight into non measurable parameters and specifications of the studied muscle primarily the MU type distribution. This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to contraction level. On that account, using PDF shape descriptors: High Order Statistics (HOS) and Shape Distances (SD), we try to address the absence of a consensus for the sEMG non-Gaussianity evolution with force variation. This is motivated by the fact that PDF shape information are relevant in physiological assessment of the muscle architecture and function, such as contraction level classification, in complement to classical amplitude parameters. Accordingly, both experimental and simulation studies are presented in this work. For data fusion, the watershed image processing technique was used. This technique allowed us to find the dominant PDF shape variation profiles from the 64 signals. The experimental protocol consisted of three isometric isotonic contractions of 30, 50 and 70% of the Maximum Voluntary Contraction (MVC). This protocol was performed by six subjects and recorded using an 8 × 8 HD-sEMG grid. For the simulation study, the muscle modeling was done using a fast computing cylindrical HD-sEMG generation model. This model was personalized by morphological parameters obtained by sonography. Moreover, a set of the model parameter configurations were compared as a focused sensitivity analysis of the PDF shape variation. Further, monopolar, bipolar and Laplacian electrode configurations were investigated in both experimental and simulation studies. Results indicated that sEMG PDF shape variations according to force increase are mainly dependent on the Motor Unit (MU) spatial recruitment strategy, the MU type distribution within the muscle, and the used electrode arrangement. Consequently, these statistics can give us an insight into non measurable parameters and specifications of the studied muscle primarily the MU type distribution. |
Author | Carriou, Vincent Boudaoud, Sofiane Laforet, Jeremy Grosset, Jean-François Letocart, Adrien J. Al Harrach, Mariam Marin, Frédéric |
Author_xml | – sequence: 1 givenname: Mariam surname: Al Harrach fullname: Al Harrach, Mariam email: mariam.al-harrach@utc.fr organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France – sequence: 2 givenname: Sofiane surname: Boudaoud fullname: Boudaoud, Sofiane organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France – sequence: 3 givenname: Vincent surname: Carriou fullname: Carriou, Vincent organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France – sequence: 4 givenname: Jeremy surname: Laforet fullname: Laforet, Jeremy organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France – sequence: 5 givenname: Adrien J. surname: Letocart fullname: Letocart, Adrien J. organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France – sequence: 6 givenname: Jean-François surname: Grosset fullname: Grosset, Jean-François organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France – sequence: 7 givenname: Frédéric surname: Marin fullname: Marin, Frédéric organization: Sorbonne Universities, Universite de Technologie de Compiegne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60203 Compiegne cedex, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28783537$$D View this record in MEDLINE/PubMed https://utc.hal.science/hal-02406864$$DView record in HAL |
BookMark | eNqNkUtv1DAUhS1URKcDfwFZYgOLDH7msUGUtnQqDWIDa8txnI6HxA62M2i2_PI6TQvSrEa6sqWr75xr33MBzqyzGgCI0QojnH_crZTrh9q4XjcrgnCxQqkIfQEWuCyqDHHKzsACIYwyVhJ-Di5C2CGEGKLoFTgnZVFSTosF-Htn9zpEcy-jcRa6FsathuvrLNx8u4WDd7WsTWfiATbahuluR6se2bCVgw7wj4lbuJf-YOw97MegOg1b55WGY5hajYwyicIkkbaZZcktKG-G6Hx4DV62sgv6zdO9BD-_3vy4Wmeb77d3V5ebTLGKxqySVVUUjGOupeSkzhvKWkzzvOatrFWbk7qitUIN5UQxiipFG9wQUlOMNeeSLsGH2XcrOzF406c3CyeNWF9uxNRDhKG8zNkeJ_b9zKYN_B7TgkRvgtJdJ612YxC4IgVFRZ7WuATvjtCdG71NP0kUZzRneTqX4O0TNdYptH_zn5NIwKcZUN6F4HUrlImPoUQvTScwElP0Yif-Ry-m6AVKRWgyKI8MnmecIP0yS3Va_95oL4Iy2irdGK9VFI0zp5h8PjJRnbFGye6XPpxm8QB1nOWS |
CitedBy_id | crossref_primary_10_1109_TNSRE_2024_3452308 crossref_primary_10_1016_j_irbm_2024_100851 crossref_primary_10_1016_j_bspc_2022_104446 crossref_primary_10_2139_ssrn_4074648 crossref_primary_10_1109_JSEN_2021_3068521 crossref_primary_10_1186_s12984_024_01497_5 crossref_primary_10_1109_TNSRE_2023_3241354 crossref_primary_10_1109_TIM_2024_3480235 crossref_primary_10_1186_s12938_024_01285_1 |
Cites_doi | 10.1016/S1050-6411(00)00051-1 10.1080/10255842.2015.1070578 10.1007/s11517-014-1170-x 10.1109/TBME.2007.894829 10.1016/j.compbiomed.2016.04.019 10.2478/v10048-010-0001-y 10.1016/0734-189X(88)90022-9 10.1016/j.medengphy.2010.04.009 10.1109/TBME.2003.820998 10.1016/j.bspc.2015.07.001 10.1152/jn.00961.2010 10.1109/TIM.2016.2534378 10.1016/j.compbiomed.2017.02.003 10.1016/j.clinph.2008.10.160 10.1016/S0208-5216(12)70039-6 10.1055/s-2007-1021237 10.1186/1743-0003-9-85 10.1016/S1050-6411(00)00027-4 10.1002/mus.10386 10.1016/S1050-6411(96)00024-7 10.1007/s00421-003-0819-1 10.1109/10.764949 10.1016/j.brainresbull.2012.09.012 10.1111/j.1468-0394.2008.00483.x 10.1155/2007/32570 10.1016/j.jelekin.2004.06.008 10.1016/j.clinph.2009.10.040 10.1016/j.jelekin.2009.08.005 10.1016/j.jbiomech.2010.03.049 10.1016/j.jelekin.2008.09.002 10.1152/japplphysiol.00698.2002 10.1016/j.clinph.2008.07.225 10.1177/0883073807304204 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited Oct 1, 2017 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited Oct 1, 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC |
DOI | 10.1016/j.compbiomed.2017.07.023 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) ProQuest Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 58 |
ExternalDocumentID | oai_HAL_hal_02406864v1 28783537 10_1016_j_compbiomed_2017_07_023 S0010482517302470 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- 3V. AACTN AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR M0N RIG .55 .GJ 29F 53G AAQXK AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AGQPQ AGRNS AIGII ALIPV APXCP ASPBG AVWKF AZFZN CITATION EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ R2- SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 1XC |
ID | FETCH-LOGICAL-c493t-9a99774515eaa52b6d34f1366b5fabcf62b93bc0d352c4309c3d1d22b311e55a3 |
IEDL.DBID | .~1 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Tue Jul 22 06:30:48 EDT 2025 Tue Aug 05 10:31:59 EDT 2025 Wed Aug 13 08:41:11 EDT 2025 Thu Apr 03 07:08:18 EDT 2025 Tue Jul 01 03:28:28 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Fri Feb 23 02:24:55 EST 2024 Tue Aug 26 16:33:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High density surface electromyogram Functional statistics Physiological assessment Probability density function High order statistics Shape distances Modeling |
Language | English |
License | Copyright © 2017 Elsevier Ltd. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-9a99774515eaa52b6d34f1366b5fabcf62b93bc0d352c4309c3d1d22b311e55a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0440-4849 0000-0003-2554-5835 0000-0003-0948-8375 |
PMID | 28783537 |
PQID | 1954364654 |
PQPubID | 1226355 |
PageCount | 15 |
ParticipantIDs | hal_primary_oai_HAL_hal_02406864v1 proquest_miscellaneous_1927307678 proquest_journals_1954364654 pubmed_primary_28783537 crossref_citationtrail_10_1016_j_compbiomed_2017_07_023 crossref_primary_10_1016_j_compbiomed_2017_07_023 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2017_07_023 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2017_07_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-01 2017-10-00 2017-Oct-01 20171001 2017-10 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited – name: Elsevier |
References | Al Harrach, Boudaoud, Gamet, Grosset, Marin (bib15) 2014 Ayachi, Boudaoud, Grosset, Marque (bib18) 2011 Hussain, Reaz, Mohd-Yasin, Ibrahimy (bib7) 2009; 26 Nordander, Willner, Hansson, Larsson, Unge, Granquist, Skerfving (bib44) 2003; 89 Farina, Colombo, Merletti, Baare Olsen (bib1) 2001; 11 Farina, Mesin, Martina, Merletti (bib30) 2004; 51 Afsharipour, Ullah, Merletti (bib40) 2015; 22 Vieira, Merletti, Mesin (bib27) 2010; 43 Rabie, Jossiphov, Nevo (bib45) 2007; 22 Chua, Chandran, Acharya, Lim (bib13) 2010; 32 Nazarpour, Al-Timemy, Bugmann, Jackson (bib3) 2013; 90 Klein, Marsh, Petrella, Rice (bib31) 2003; 28 Boudaoud, Rix, Meste, Heneghan, O'Brien (bib42) 2007; 2007 Carriou, Al Harrach, Laforet, Boudaoud (bib47) 2016 Bowman, Azzalini (bib43) 1997 Al Harrach, Ayachi, Boudaoud, Laforet, Marin (bib14) 2013 Al Harrach, Afsharipour, Boudaoud, Carriou, Marin, Merletti (bib36) 2016 Bilodeau, Cincera, Arsenault, Gravel (bib10) 1997; 7 Marchetti, Felici, Bernardi, Minasi, Di Filippo (bib46) 1992; 13 Nazarpour, Sharafat, Firoozabadi (bib6) 2007; 54 Thongpanja, Phinyomark, Quaine, Laurillau, Limsakul, Phukpattaranont (bib34) 2016; 65 Boudaoud, Allouch, Al Harrach, Marin (bib22) 2015; 18 Rix, Boudaoud, Meste (bib41) 2002 Zalewska, Hausmanowa-Petrusewicz (bib49) 2008; 119 Holobar, Farina, Gazzoni, Merletti, Zazula (bib24) 2009; 120 De Luca, Contessa (bib32) 2012; 107 Otsu (bib38) 1975; 11 Boudaoud, Rix, Al Harrach, Marin (bib19) 2014 Huang, Chen (bib2) 1999; vol. 3 Lowery, Stoykov, Kuiken (bib35) 2003; 94 Farina, Holobar, Merletti, Enoka (bib25) 2010; 121 Clancy, Hogan (bib9) 1999; 46 Naik, Kumar, Arjunan (bib17) 2011 Sahoo, Soltani, Wong (bib39) 1988; 41 Al Harrach, Carriou, Boudaoud, Laforet, Marin (bib29) 2017; 83 Hermens, Freriks, Disselhorst-Klug, Rau (bib33) 2000; 10 Merletti, Holobar, Farina (bib37) 2008; 18 Naik, Kumar (bib16) 2011 Carriou, Boudaoud, Laforet, Ayachi (bib26) 2016; 74 Staudenmann, Kingma, Stegeman, van Dieen (bib4) 2005; 15 Naik, Kumar, Arjunan (bib12) 2010; 10 Al Harrach, Boudaoud, Hassan, Ayachi, Gamet, Grosset, Marin (bib28) 2016 Van Dijk Johannes (bib5) 2012; 32 Ayachi, Boudaoud, Marque (bib8) 2014; 52 Rojas-Martinez, Mananas, Alonso (bib21) 2012; 9 Zhou, Lowery, Dewald, Kuiken (bib23) 2006 Nazarpour, Sharafat, Firoozabadi (bib11) 2006 Merletti, Parker (bib20) 2004 Staudenmann, Roeleveld, Stegeman, Van Dieën (bib48) 2010; 20 Rojas-Martinez (10.1016/j.compbiomed.2017.07.023_bib21) 2012; 9 Zhou (10.1016/j.compbiomed.2017.07.023_bib23) 2006 Naik (10.1016/j.compbiomed.2017.07.023_bib17) 2011 Afsharipour (10.1016/j.compbiomed.2017.07.023_bib40) 2015; 22 Ayachi (10.1016/j.compbiomed.2017.07.023_bib18) 2011 Carriou (10.1016/j.compbiomed.2017.07.023_bib26) 2016; 74 Merletti (10.1016/j.compbiomed.2017.07.023_bib20) 2004 Bilodeau (10.1016/j.compbiomed.2017.07.023_bib10) 1997; 7 Vieira (10.1016/j.compbiomed.2017.07.023_bib27) 2010; 43 Sahoo (10.1016/j.compbiomed.2017.07.023_bib39) 1988; 41 Hermens (10.1016/j.compbiomed.2017.07.023_bib33) 2000; 10 Van Dijk Johannes (10.1016/j.compbiomed.2017.07.023_bib5) 2012; 32 Merletti (10.1016/j.compbiomed.2017.07.023_bib37) 2008; 18 Al Harrach (10.1016/j.compbiomed.2017.07.023_bib14) 2013 Zalewska (10.1016/j.compbiomed.2017.07.023_bib49) 2008; 119 Al Harrach (10.1016/j.compbiomed.2017.07.023_bib28) 2016 Clancy (10.1016/j.compbiomed.2017.07.023_bib9) 1999; 46 Nazarpour (10.1016/j.compbiomed.2017.07.023_bib11) 2006 Rix (10.1016/j.compbiomed.2017.07.023_bib41) 2002 Staudenmann (10.1016/j.compbiomed.2017.07.023_bib48) 2010; 20 Naik (10.1016/j.compbiomed.2017.07.023_bib16) 2011 Huang (10.1016/j.compbiomed.2017.07.023_bib2) 1999; vol. 3 Thongpanja (10.1016/j.compbiomed.2017.07.023_bib34) 2016; 65 Lowery (10.1016/j.compbiomed.2017.07.023_bib35) 2003; 94 Farina (10.1016/j.compbiomed.2017.07.023_bib30) 2004; 51 Al Harrach (10.1016/j.compbiomed.2017.07.023_bib36) 2016 Farina (10.1016/j.compbiomed.2017.07.023_bib1) 2001; 11 Bowman (10.1016/j.compbiomed.2017.07.023_bib43) 1997 Boudaoud (10.1016/j.compbiomed.2017.07.023_bib22) 2015; 18 Otsu (10.1016/j.compbiomed.2017.07.023_bib38) 1975; 11 Farina (10.1016/j.compbiomed.2017.07.023_bib25) 2010; 121 Nazarpour (10.1016/j.compbiomed.2017.07.023_bib6) 2007; 54 Klein (10.1016/j.compbiomed.2017.07.023_bib31) 2003; 28 Rabie (10.1016/j.compbiomed.2017.07.023_bib45) 2007; 22 Al Harrach (10.1016/j.compbiomed.2017.07.023_bib15) 2014 Marchetti (10.1016/j.compbiomed.2017.07.023_bib46) 1992; 13 Holobar (10.1016/j.compbiomed.2017.07.023_bib24) 2009; 120 Staudenmann (10.1016/j.compbiomed.2017.07.023_bib4) 2005; 15 Nazarpour (10.1016/j.compbiomed.2017.07.023_bib3) 2013; 90 Naik (10.1016/j.compbiomed.2017.07.023_bib12) 2010; 10 Hussain (10.1016/j.compbiomed.2017.07.023_bib7) 2009; 26 Ayachi (10.1016/j.compbiomed.2017.07.023_bib8) 2014; 52 Boudaoud (10.1016/j.compbiomed.2017.07.023_bib19) 2014 Nordander (10.1016/j.compbiomed.2017.07.023_bib44) 2003; 89 Boudaoud (10.1016/j.compbiomed.2017.07.023_bib42) 2007; 2007 Al Harrach (10.1016/j.compbiomed.2017.07.023_bib29) 2017; 83 Chua (10.1016/j.compbiomed.2017.07.023_bib13) 2010; 32 Carriou (10.1016/j.compbiomed.2017.07.023_bib47) 2016 De Luca (10.1016/j.compbiomed.2017.07.023_bib32) 2012; 107 |
References_xml | – start-page: 119 year: 2016 end-page: 123 ident: bib47 article-title: Sensitivity analysis of HD-sEMG amplitude descriptors relative to grid parameter variation publication-title: XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016 – volume: 7 start-page: 87 year: 1997 end-page: 96 ident: bib10 article-title: Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions publication-title: J. Electromyogr. Kinesiol. – volume: 18 start-page: 879 year: 2008 end-page: 890 ident: bib37 article-title: Analysis of motor units with high-density surface electromyography publication-title: J. Electromyogr. Kinesiol. – volume: 13 start-page: 65 year: 1992 end-page: 68 ident: bib46 article-title: Can evoked phonomyography be used to recognize fast and slow muscle in man? publication-title: Int. J. Sports Med. – year: 1997 ident: bib43 article-title: Applied Smoothing Techniques for Data Analysis: the Kernel Approach with S-plus Illustrations: the Kernel Approach with S-plus Illustrations – start-page: 2213 year: 2014 end-page: 2216 ident: bib19 article-title: Robust functional statistics applied to probability density function shape screening of semg data publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society – start-page: 3869 year: 2011 end-page: 3872 ident: bib16 article-title: Evaluation of higher order statistics parameters for multi channel semg using different force levels publication-title: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE – volume: 2007 start-page: 032570 year: 2007 ident: bib42 article-title: Corrected integral shape averaging applied to obstructive sleep apnea detection from the electrocardiogram publication-title: EURASIP J. Adv. Signal Process. – volume: 65 start-page: 1547 year: 2016 end-page: 1557 ident: bib34 article-title: Probability density functions of stationary surface emg signals in noisy environments publication-title: IEEE Trans. Instrum. Meas. – volume: 43 start-page: 2149 year: 2010 end-page: 2158 ident: bib27 article-title: Automatic segmentation of surface emg images: improving the estimation of neuromuscular activity publication-title: J. Biomech. – start-page: 187 year: 2011 end-page: 190 ident: bib18 article-title: Study of the muscular force/HOS parameters relationship from the surface electromyogram publication-title: 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011) – volume: 119 start-page: 2501 year: 2008 end-page: 2506 ident: bib49 article-title: Approximation of motor unit structure from the analysis of motor unit potential publication-title: Clin. Neurophysiol. – volume: 28 start-page: 62 year: 2003 end-page: 68 ident: bib31 article-title: Muscle fiber number in the biceps brachii muscle of young and old men publication-title: Muscle Nerve – volume: 11 start-page: 23 year: 1975 end-page: 27 ident: bib38 article-title: A threshold selection method from gray-level histograms publication-title: Automatica – volume: 22 start-page: 170 year: 2015 end-page: 179 ident: bib40 article-title: Amplitude indicators and spatial aliasing in high density surface electromyography recordings publication-title: Biomed. Signal Process. Control – volume: 20 start-page: 375 year: 2010 end-page: 387 ident: bib48 article-title: Methodological aspects of semg recordings for force estimation–a tutorial and review publication-title: J. Electromyogr. Kinesiol. – volume: 32 start-page: 3 year: 2012 end-page: 27 ident: bib5 article-title: High-density surface emg: techniques and applications at a motor unit level publication-title: Biocybern. Biomed. Eng. – start-page: 4208 year: 2006 end-page: 4211 ident: bib11 article-title: Surface emg signal classification using a selective mix of higher order statistics publication-title: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the IEEE – volume: 41 start-page: 233 year: 1988 end-page: 260 ident: bib39 article-title: A survey of thresholding techniques publication-title: Comput. Vis. Graph. Image Process. – volume: 121 start-page: 1616 year: 2010 end-page: 1623 ident: bib25 article-title: Decoding the neural drive to muscles from the surface electromyogram publication-title: Clin. Neurophysiol. – volume: 90 start-page: 88 year: 2013 end-page: 91 ident: bib3 article-title: A note on the probability distribution function of the surface electromyogram signal publication-title: Brain Res. Bull. – start-page: 1 year: 2016 end-page: 14 ident: bib28 article-title: Denoising of HD-sEMG signals using canonical correlation analysis publication-title: Med. Biol. Eng. Comput. – start-page: 364 year: 2002 end-page: 365 ident: bib41 article-title: Clustering signal shapes: application to p-waves in ECG publication-title: 2nd European Medical and Biological Engineering Conference, EMBEC’02 – volume: 89 start-page: 514 year: 2003 end-page: 519 ident: bib44 article-title: Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and bmi, on the emg amplitude publication-title: Eur. J. Appl. Physiol. – volume: 11 start-page: 175 year: 2001 end-page: 187 ident: bib1 article-title: Evaluation of intra-muscular EMG signal decomposition algorithms publication-title: J. Electromyogr. Kinesiol. – volume: 10 start-page: 1 year: 2010 end-page: 6 ident: bib12 article-title: Pattern classification of myo-electrical signal during different maximum voluntary contractions: a study using bss techniques publication-title: Meas. Sci. Rev. – start-page: 2209 year: 2014 end-page: 2212 ident: bib15 article-title: Evaluation of HD-sEMG probability density function deformations in ramp exercise publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society – start-page: 4064 year: 2006 end-page: 4067 ident: bib23 article-title: Towards improved myoelectric prosthesis control: high density surface emg recording after targeted muscle reinnervation publication-title: Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, IEEE – volume: 120 start-page: 551 year: 2009 end-page: 562 ident: bib24 article-title: Estimating motor unit discharge patterns from high-density surface electromyogram publication-title: Clin. Neurophysiol. – volume: 74 start-page: 54 year: 2016 end-page: 68 ident: bib26 article-title: Fast generation model of high density surface emg signals in a cylindrical conductor volume publication-title: Comput. Biol. Med. – start-page: 2378 year: 2016 end-page: 2381 ident: bib36 article-title: Extraction of the brachialis muscle activity using hd-semg technique and canonical correlation analysis publication-title: Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the IEEE – volume: 46 start-page: 730 year: 1999 end-page: 739 ident: bib9 article-title: Probability density of the surface electromyogram and its relation to amplitude detectors publication-title: IEEE Trans. Biomed. Eng. – volume: 9 start-page: 85 year: 2012 ident: bib21 article-title: High-density surface EMG maps from upper-arm and forearm muscles publication-title: J. NeuroEng. Rehabil. – volume: 15 start-page: 1 year: 2005 end-page: 11 ident: bib4 article-title: Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study publication-title: J. Electromyogr. Kinesiol. – volume: 18 start-page: 1890 year: 2015 end-page: 1891 ident: bib22 article-title: On the benefits of using HD-sEMG technique for estimating muscle force publication-title: Comput. Method. Biomech. Biomed. Eng. – volume: 32 start-page: 679 year: 2010 end-page: 689 ident: bib13 article-title: Application of higher order statistics/spectra in biomedical signals a review publication-title: Med. Eng. Phys. – volume: 54 start-page: 1762 year: 2007 end-page: 1769 ident: bib6 article-title: Application of higher order statistics to surface electromyogram signal classification publication-title: IEEE Trans. Biomed. Eng. – volume: 51 start-page: 415 year: 2004 end-page: 426 ident: bib30 article-title: A surface emg generation model with multilayer cylindrical description of the volume conductor publication-title: IEEE Trans. Biomed. Eng. – volume: 94 start-page: 1324 year: 2003 end-page: 1334 ident: bib35 article-title: A simulation study to examine the use of cross-correlation as an estimate of surface emg cross talk publication-title: J. Appl. Physiol. – volume: 22 start-page: 803 year: 2007 end-page: 808 ident: bib45 article-title: Electromyography (emg) accuracy compared to muscle biopsy in childhood publication-title: J. Child Neurol. – volume: vol. 3 start-page: 2392 year: 1999 end-page: 2397 ident: bib2 article-title: Development of a myoelectric discrimination system for a multi-degree prosthetic hand publication-title: Robotics and Automation, 1999. Proceedings. 1999 IEEE International Conference on – year: 2004 ident: bib20 article-title: Electromyography: Physiology, Engineering, and Non-invasive Applications – volume: 26 start-page: 35 year: 2009 end-page: 48 ident: bib7 article-title: Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction publication-title: Expert Syst. – volume: 52 start-page: 673 year: 2014 end-page: 684 ident: bib8 article-title: Evaluation of muscle force classification using shape analysis of the sEMG probability density function: a simulation study publication-title: Med. Biol. Eng. Comput. – volume: 107 start-page: 178 year: 2012 end-page: 195 ident: bib32 article-title: Hierarchical control of motor units in voluntary contractions publication-title: J. Neurophysiol. – start-page: 97 year: 2013 end-page: 100 ident: bib14 article-title: Sensitivity evaluation of HOS parameters by data fusion from HD-sEMG grid publication-title: 2nd International Conference on Advances in Biomedical Engineering (ICABME) – start-page: 1 year: 2011 end-page: 4 ident: bib17 article-title: Kurtosis and negentropy investigation of myo electric signals during different mvcs publication-title: Biosignals and Biorobotics Conference (BRC), 2011 ISSNIP – volume: 10 start-page: 361 year: 2000 end-page: 374 ident: bib33 article-title: Development of recommendations for semg sensors and sensor placement procedures publication-title: J. Electromyogr. Kinesiol. – volume: 83 start-page: 34 year: 2017 end-page: 47 ident: bib29 article-title: Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: a simulation study publication-title: Comput. Biol. Med. – volume: 11 start-page: 175 year: 2001 ident: 10.1016/j.compbiomed.2017.07.023_bib1 article-title: Evaluation of intra-muscular EMG signal decomposition algorithms publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(00)00051-1 – volume: 18 start-page: 1890 year: 2015 ident: 10.1016/j.compbiomed.2017.07.023_bib22 article-title: On the benefits of using HD-sEMG technique for estimating muscle force publication-title: Comput. Method. Biomech. Biomed. Eng. doi: 10.1080/10255842.2015.1070578 – volume: 52 start-page: 673 year: 2014 ident: 10.1016/j.compbiomed.2017.07.023_bib8 article-title: Evaluation of muscle force classification using shape analysis of the sEMG probability density function: a simulation study publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1170-x – start-page: 4208 year: 2006 ident: 10.1016/j.compbiomed.2017.07.023_bib11 article-title: Surface emg signal classification using a selective mix of higher order statistics – volume: 54 start-page: 1762 year: 2007 ident: 10.1016/j.compbiomed.2017.07.023_bib6 article-title: Application of higher order statistics to surface electromyogram signal classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.894829 – volume: 74 start-page: 54 year: 2016 ident: 10.1016/j.compbiomed.2017.07.023_bib26 article-title: Fast generation model of high density surface emg signals in a cylindrical conductor volume publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.04.019 – start-page: 364 year: 2002 ident: 10.1016/j.compbiomed.2017.07.023_bib41 article-title: Clustering signal shapes: application to p-waves in ECG – year: 1997 ident: 10.1016/j.compbiomed.2017.07.023_bib43 – volume: 10 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2017.07.023_bib12 article-title: Pattern classification of myo-electrical signal during different maximum voluntary contractions: a study using bss techniques publication-title: Meas. Sci. Rev. doi: 10.2478/v10048-010-0001-y – volume: 41 start-page: 233 year: 1988 ident: 10.1016/j.compbiomed.2017.07.023_bib39 article-title: A survey of thresholding techniques publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/0734-189X(88)90022-9 – volume: 32 start-page: 679 year: 2010 ident: 10.1016/j.compbiomed.2017.07.023_bib13 article-title: Application of higher order statistics/spectra in biomedical signals a review publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.04.009 – start-page: 3869 year: 2011 ident: 10.1016/j.compbiomed.2017.07.023_bib16 article-title: Evaluation of higher order statistics parameters for multi channel semg using different force levels – volume: 51 start-page: 415 year: 2004 ident: 10.1016/j.compbiomed.2017.07.023_bib30 article-title: A surface emg generation model with multilayer cylindrical description of the volume conductor publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.820998 – volume: 22 start-page: 170 year: 2015 ident: 10.1016/j.compbiomed.2017.07.023_bib40 article-title: Amplitude indicators and spatial aliasing in high density surface electromyography recordings publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.07.001 – volume: 107 start-page: 178 year: 2012 ident: 10.1016/j.compbiomed.2017.07.023_bib32 article-title: Hierarchical control of motor units in voluntary contractions publication-title: J. Neurophysiol. doi: 10.1152/jn.00961.2010 – start-page: 2378 year: 2016 ident: 10.1016/j.compbiomed.2017.07.023_bib36 article-title: Extraction of the brachialis muscle activity using hd-semg technique and canonical correlation analysis – start-page: 119 year: 2016 ident: 10.1016/j.compbiomed.2017.07.023_bib47 article-title: Sensitivity analysis of HD-sEMG amplitude descriptors relative to grid parameter variation – volume: 65 start-page: 1547 issue: 7 year: 2016 ident: 10.1016/j.compbiomed.2017.07.023_bib34 article-title: Probability density functions of stationary surface emg signals in noisy environments publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2016.2534378 – volume: 83 start-page: 34 year: 2017 ident: 10.1016/j.compbiomed.2017.07.023_bib29 article-title: Analysis of the sEMG/force relationship using HD-sEMG technique and data fusion: a simulation study publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.02.003 – volume: 120 start-page: 551 year: 2009 ident: 10.1016/j.compbiomed.2017.07.023_bib24 article-title: Estimating motor unit discharge patterns from high-density surface electromyogram publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.10.160 – start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2017.07.023_bib28 article-title: Denoising of HD-sEMG signals using canonical correlation analysis publication-title: Med. Biol. Eng. Comput. – start-page: 2209 year: 2014 ident: 10.1016/j.compbiomed.2017.07.023_bib15 article-title: Evaluation of HD-sEMG probability density function deformations in ramp exercise – volume: 32 start-page: 3 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2017.07.023_bib5 article-title: High-density surface emg: techniques and applications at a motor unit level publication-title: Biocybern. Biomed. Eng. doi: 10.1016/S0208-5216(12)70039-6 – volume: 13 start-page: 65 issue: 01 year: 1992 ident: 10.1016/j.compbiomed.2017.07.023_bib46 article-title: Can evoked phonomyography be used to recognize fast and slow muscle in man? publication-title: Int. J. Sports Med. doi: 10.1055/s-2007-1021237 – start-page: 97 year: 2013 ident: 10.1016/j.compbiomed.2017.07.023_bib14 article-title: Sensitivity evaluation of HOS parameters by data fusion from HD-sEMG grid – volume: 9 start-page: 85 year: 2012 ident: 10.1016/j.compbiomed.2017.07.023_bib21 article-title: High-density surface EMG maps from upper-arm and forearm muscles publication-title: J. NeuroEng. Rehabil. doi: 10.1186/1743-0003-9-85 – volume: 10 start-page: 361 year: 2000 ident: 10.1016/j.compbiomed.2017.07.023_bib33 article-title: Development of recommendations for semg sensors and sensor placement procedures publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(00)00027-4 – volume: 28 start-page: 62 year: 2003 ident: 10.1016/j.compbiomed.2017.07.023_bib31 article-title: Muscle fiber number in the biceps brachii muscle of young and old men publication-title: Muscle Nerve doi: 10.1002/mus.10386 – volume: 7 start-page: 87 year: 1997 ident: 10.1016/j.compbiomed.2017.07.023_bib10 article-title: Normality and stationarity of EMG signals of elbow flexor muscles during ramp and step isometric contractions publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/S1050-6411(96)00024-7 – volume: 11 start-page: 23 year: 1975 ident: 10.1016/j.compbiomed.2017.07.023_bib38 article-title: A threshold selection method from gray-level histograms publication-title: Automatica – volume: 89 start-page: 514 year: 2003 ident: 10.1016/j.compbiomed.2017.07.023_bib44 article-title: Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and bmi, on the emg amplitude publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-003-0819-1 – volume: vol. 3 start-page: 2392 year: 1999 ident: 10.1016/j.compbiomed.2017.07.023_bib2 article-title: Development of a myoelectric discrimination system for a multi-degree prosthetic hand – year: 2004 ident: 10.1016/j.compbiomed.2017.07.023_bib20 – volume: 46 start-page: 730 issue: 6 year: 1999 ident: 10.1016/j.compbiomed.2017.07.023_bib9 article-title: Probability density of the surface electromyogram and its relation to amplitude detectors publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.764949 – volume: 90 start-page: 88 year: 2013 ident: 10.1016/j.compbiomed.2017.07.023_bib3 article-title: A note on the probability distribution function of the surface electromyogram signal publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2012.09.012 – volume: 26 start-page: 35 year: 2009 ident: 10.1016/j.compbiomed.2017.07.023_bib7 article-title: Electromyography signal analysis using wavelet transform and higher order statistics to determine muscle contraction publication-title: Expert Syst. doi: 10.1111/j.1468-0394.2008.00483.x – start-page: 2213 year: 2014 ident: 10.1016/j.compbiomed.2017.07.023_bib19 article-title: Robust functional statistics applied to probability density function shape screening of semg data – start-page: 1 year: 2011 ident: 10.1016/j.compbiomed.2017.07.023_bib17 article-title: Kurtosis and negentropy investigation of myo electric signals during different mvcs – volume: 2007 start-page: 032570 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2017.07.023_bib42 article-title: Corrected integral shape averaging applied to obstructive sleep apnea detection from the electrocardiogram publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2007/32570 – volume: 15 start-page: 1 year: 2005 ident: 10.1016/j.compbiomed.2017.07.023_bib4 article-title: Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high density EMG study publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2004.06.008 – volume: 121 start-page: 1616 year: 2010 ident: 10.1016/j.compbiomed.2017.07.023_bib25 article-title: Decoding the neural drive to muscles from the surface electromyogram publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.10.040 – volume: 20 start-page: 375 issue: 3 year: 2010 ident: 10.1016/j.compbiomed.2017.07.023_bib48 article-title: Methodological aspects of semg recordings for force estimation–a tutorial and review publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2009.08.005 – volume: 43 start-page: 2149 issue: 11 year: 2010 ident: 10.1016/j.compbiomed.2017.07.023_bib27 article-title: Automatic segmentation of surface emg images: improving the estimation of neuromuscular activity publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.03.049 – start-page: 4064 year: 2006 ident: 10.1016/j.compbiomed.2017.07.023_bib23 article-title: Towards improved myoelectric prosthesis control: high density surface emg recording after targeted muscle reinnervation – volume: 18 start-page: 879 year: 2008 ident: 10.1016/j.compbiomed.2017.07.023_bib37 article-title: Analysis of motor units with high-density surface electromyography publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2008.09.002 – volume: 94 start-page: 1324 issue: 4 year: 2003 ident: 10.1016/j.compbiomed.2017.07.023_bib35 article-title: A simulation study to examine the use of cross-correlation as an estimate of surface emg cross talk publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00698.2002 – volume: 119 start-page: 2501 year: 2008 ident: 10.1016/j.compbiomed.2017.07.023_bib49 article-title: Approximation of motor unit structure from the analysis of motor unit potential publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.07.225 – start-page: 187 year: 2011 ident: 10.1016/j.compbiomed.2017.07.023_bib18 article-title: Study of the muscular force/HOS parameters relationship from the surface electromyogram – volume: 22 start-page: 803 issue: 7 year: 2007 ident: 10.1016/j.compbiomed.2017.07.023_bib45 article-title: Electromyography (emg) accuracy compared to muscle biopsy in childhood publication-title: J. Child Neurol. doi: 10.1177/0883073807304204 |
SSID | ssj0004030 |
Score | 2.2247434 |
Snippet | This work presents an evaluation of the High Density surface Electromyogram (HD-sEMG) Probability Density Function (PDF) shape variation according to... |
SourceID | hal proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | Accuracy Bioengineering Classification Computer Simulation Configurations Data integration Electrodes Electromyography Functional statistics High density surface electromyogram High order statistics Humans Image processing Life Sciences Mathematical models Modeling Models, Biological Multisensor fusion Muscle contraction Muscle Strength - physiology Muscle, Skeletal - physiology Physiological assessment Physiology Probability density function Probability density functions Sensitivity analysis Shape distances Signal Processing, Computer-Assisted Statistical analysis Trends Variation |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pa9swFBZrB2OX0bX74a0rWunVzLZkKWaHUvorjGWnFnITkiytjM3O4qSw6_7yvWfJzi4tgUBIomebPOnpk_S97xFyUhXWestdKiH4p7yABYoprYaPUnMuK8sE5g7PvonpLf8yL-dxw62LtMohJvaBum4t7pF_QmUyJlD963TxO8WqUXi6Gkto7JCnKF2GlC45l5u8yIyFFBSINRyWQpHJE_hdSNkOKe5I8JK9hGfBHpqedu6QJ_kQCO0no6s98iKiSHoW3P6SPHHNPnk2i-fkB-Tvf_IZbUNbTwHn0elF2l3OrikWkQny3H9ojQR2eMf5rW_b3emF6yjuz9J7vcQsKPpr3cFtKOBb6ygy5b9TZJaCEe61Ud3UwQyuFqJQu-xekdury5vzaRqrLaSWV2yVVrpCLAj4xmldFkbUjPucCWFKr431ojAVMzarAbJZzjJwY53XRWFYnruy1Ow12W3axr0l1HiPp3-18xPGM-915XwuM19Ce8tNlhA5_MnKRilyrIjxUw2csx9q4x6F7lEZvAqWkHy0XAQ5ji1sqsGPakg3hQCpYM7YwvbzaBshSYAaW1ofQ7cZHxSVvKdnXxV-h9JyYiL4fZ6Qw6FXqRg_OrXp7Qn5OP4MIx-Pc3Tj2jW2AeiZwaCaJORN6I3jrWAdDNCayXePX_w9eY6PG8iJh2R3tVy7DwCyVuaoH0n_ADiGJ20 priority: 102 providerName: ProQuest |
Title | Investigation of the HD-sEMG probability density function shapes with varying muscle force using data fusion and shape descriptors |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482517302470 https://dx.doi.org/10.1016/j.compbiomed.2017.07.023 https://www.ncbi.nlm.nih.gov/pubmed/28783537 https://www.proquest.com/docview/1954364654 https://www.proquest.com/docview/1927307678 https://utc.hal.science/hal-02406864 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKkRAXRHkG2sogrqFJ7MQbcdqW3YbHrhCi0t4s27HbIkhWm91KXDjwyzsTJykcKq2EFCVK4omteDz-bH8zJuRNnhjjDLehAOMf8gQGKDo1Cm6F4lzkhmXoOzybZ8UZ_7hIFzvkpPeFQVplZ_u9TW-tdffkqPubR8vLS_TxhaEEel6CkiZc4Lgdvo5a_vb3Dc2DR8y7oYC9wdQdm8dzvJC27d3ckeQl2jCeCbuti7pzgVzJ24Bo2yFNH5IHHZKkY1_YPbJjq0fk3qxbK39M_vwVQqOuaO0oYD1avA-byeyU4kYyPkT3L1oiiR2u2Me1aZsLtbQNxTlaeqVW6AlFf24ayIYCxjWWIlv-nCK7FIRwvo2qqvRi8DVviepV84ScTSffToqw23EhNDxn6zBXOeJBwDhWqTTRWcm4i1mW6dQpbVyW6JxpE5UA2wxnEVRlGZdJolkc2zRV7CnZrerKPidUO4crgKV1I8Yj51RuXSwil0J6w3UUENH_ZGm6cOS4K8YP2fPOvsub6pFYPTKCI2EBiQfJpQ_JsYVM3tej7F1OwUhK6De2kH03yP6jmltKvwa1GQqK0byL8WeJzzC8XDbK-FUckP1eq2RnQxqJsfhYhvHuAvJqeA2tH5d0VGXrDaYB-BlBwxoF5JnXxiErGAsDvGbixX-V_yW5j3eev7hPdterjT0AHLbWh21Dg7NYCDiPpqeH5O74w6diDtfjyfzL12sBdDeh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa2IcFeEL8JDDAIHiMS20kaIYQmti5j7Z42aW_GdmwmNJLStEN75Q_ib-QuTlJehvoyqVLV1udYvfPdZ_u7MyFvc2aMM8KGGTj_UDBYoOjEKPiYKSGy3PAUc4enx2lxKr6cJWcb5E-fC4O0yt4nto66rA3ukb_HymQ8xepfn2Y_Q7w1Ck9X-ys0vFkc2atfsGRrPh7ugX7fMTbeP_lchN2tAqEROV-EucoR80Act0olTKclFy7maaoTp7RxKdM51yYqAZoYwSMYbhmXjGkexzZJFId-N8ktwXmOM2o0PljlYUbcp7yAbxOw9OqYQ55PhhRxn1KPhLKsLRnK-HXhcPMceZnXgd42-I3vkbsdaqW73szukw1bPSC3p925_EPy-59yHXVFa0cBV9JiL2z2pwcUL63x5cCvaImEeXjHeNq2bc7VzDYU94PppZpj1hX9sWzgMRTwtLEUmfnfKDJZQQj39qiqSi8GvXmvV8-bR-T0RvTwmGxVdWWfEqqdw9PG0roRF5FzKrcuziKXQHsjdBSQrP-TpelKn-MNHBey57h9lyv1SFSPjODFeEDiQXLmy3-sIZP3epR9eis4ZAkxag3ZD4NsB4E8tFlT-g2YzTBQrBxe7E4kfoel7NJRKi7jgOz0ViU7f9XI1ewKyOvhZ_A0eHykKlsvsQ1A3Qgm8SggT7w1Do-CdTdAeZ49-3_nr8id4mQ6kZPD46PnZBuH7omRO2RrMV_aFwDwFvplO6so-XrT0_gvteJj8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELa2IU28IH4TGGAQPEZLbCduhBCa6ErH1okHJvXN2I7NhCApTTu0V_4s_jru4qTlZagvkypVbX2OVd-dP9vf3RHyqmDWeitcLMH5x4LBBsVkVsNHqYWQheU5xg5PTvPxmfg4zaZb5E8fC4O0yt4nto66rC2eke9jZjKeY_avfd_RIj4NR-9mP2OsIIU3rX05jaAix-7yF2zfmrdHQ5jr14yNDj-_H8ddhYHYioIv4kIXiH9gTXdaZ8zkJRc-5XluMq-N9TkzBTc2KQGmWMETGHqZlowZnqYuyzSHfrfJDcmzFG1MTuU6JjPhIfwF_JyAbVjHIgrcMqSLh_B6JJfJNn0o41ctjdvnyNG8CgC3C-HoNrnVIVh6EFTuDtly1V2yO-nu6O-R3_-k7qgrWnsKGJOOh3FzOPlAsYBNSA1-SUskz8M7rq1t2-Zcz1xD8WyYXug5RmDRH8sGHkMBW1tHkaX_lSKrFYTwnI_qqgxi0FvwgPW8uU_OrmUeHpCdqq7cI0KN93jzWDo_4CLxXhfOpzLxGbS3wiQRkf2frGyXBh2rcXxXPd_tm1pPj8LpUQm8GI9IupKchVQgG8gU_TyqPtQVnLOC9WoD2Tcr2Q4OBZizofRLUJvVQDGL-PjgROF3mNYuH-TiIo3IXq9VqvNdjVpbWkRerH4Gr4NXSbpy9RLbAOxNwKAHEXkYtHH1KNiDA6zn8vH_O39OdsGA1cnR6fETchNHHjiSe2RnMV-6p4D1FuZZa1SUfLluK_4LHd9oHg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+the+HD-sEMG+probability+density+function+shapes+with+varying+muscle+force+using+data+fusion+and+shape+descriptors&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Al+Harrach%2C+Mariam&rft.au=Boudaoud%2C+Sofiane&rft.au=Carriou%2C+Vincent&rft.au=Laforet%2C+Jeremy&rft.date=2017-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=89&rft.spage=44&rft.epage=58&rft_id=info:doi/10.1016%2Fj.compbiomed.2017.07.023&rft.externalDocID=S0010482517302470 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |