Different adaptive NO-dependent Mechanisms in Normal and Hypertensive Conditions
Myocardial infarction (MI) remains the leading cause of death worldwide. We aimed to investigate the effect of NO deficiency on selective biochemical parameters within discreet myocardial zones after experimentally induced MI. To induce MI, the left descending coronary artery was ligated in two grou...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 24; no. 9; p. 1682 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
30.04.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Myocardial infarction (MI) remains the leading cause of death worldwide. We aimed to investigate the effect of NO deficiency on selective biochemical parameters within discreet myocardial zones after experimentally induced MI. To induce MI, the left descending coronary artery was ligated in two groups of 16-week-old WKY rats. In one group, NO production was inhibited by L-NAME (20 mg/kg/day) administration four weeks prior to ligation. Sham operations were performed on both groups as a control. Seven days after MI, we evaluated levels of nitric oxide synthase (NOS) activity, eNOS, iNOS, NFҡB/p65 and Nrf2 in ischemic, injured and non-ischemic zones of the heart. Levels of circulating TNF-α and IL-6 were evaluated in the plasma. MI led to increased NOS activity in all investigated zones of myocardium as well as circulating levels of TNF-α and IL-6. L-NAME treatment decreased NOS activity in the heart of sham operated animals. eNOS expression was increased in the injured zone and this could be a compensatory mechanism that improves the perfusion of the myocardium and cardiac dysfunction. Conversely, iNOS expression increased in the infarcted zone and may contribute to the inflammatory process and irreversible necrotic changes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules24091682 |