In Vitro and In Silico Studies of the Molecular Interactions of Epigallocatechin-3-O-gallate (EGCG) with Proteins That Explain the Health Benefits of Green Tea

Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative an...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 23; no. 6; p. 1295
Main Authors Saeki, Koichi, Hayakawa, Sumio, Nakano, Shogo, Ito, Sohei, Oishi, Yumiko, Suzuki, Yasuo, Isemura, Mamoru
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.05.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG’s biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design.
AbstractList Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG's biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design.
Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG's biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design.Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG's biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design.
Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3- O -gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG’s biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design.
Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3- -gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG's biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design.
Author Ito, Sohei
Hayakawa, Sumio
Nakano, Shogo
Saeki, Koichi
Isemura, Mamoru
Suzuki, Yasuo
Oishi, Yumiko
AuthorAffiliation 4 Department of Nutrition Management, Faculty of Health Science, Hyogo University, Kakogawa 675-0195, Japan; suz-cbio@hyogo-dai.ac.jp
3 Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; snakano@u-shizuoka-ken.ac.jp (S.N.); itosohei@u-shizuoka-ken.ac.jp (S.I.)
1 Section of Cell Engineering, ID Pharma Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan; ks.saeki@gmail.com
2 Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; hayakawa_sci@icloud.com (S.H.); y-oishi@nms.ac.jp (Y.O.)
AuthorAffiliation_xml – name: 1 Section of Cell Engineering, ID Pharma Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan; ks.saeki@gmail.com
– name: 3 Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; snakano@u-shizuoka-ken.ac.jp (S.N.); itosohei@u-shizuoka-ken.ac.jp (S.I.)
– name: 2 Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; hayakawa_sci@icloud.com (S.H.); y-oishi@nms.ac.jp (Y.O.)
– name: 4 Department of Nutrition Management, Faculty of Health Science, Hyogo University, Kakogawa 675-0195, Japan; suz-cbio@hyogo-dai.ac.jp
Author_xml – sequence: 1
  givenname: Koichi
  surname: Saeki
  fullname: Saeki, Koichi
– sequence: 2
  givenname: Sumio
  surname: Hayakawa
  fullname: Hayakawa, Sumio
– sequence: 3
  givenname: Shogo
  surname: Nakano
  fullname: Nakano, Shogo
– sequence: 4
  givenname: Sohei
  surname: Ito
  fullname: Ito, Sohei
– sequence: 5
  givenname: Yumiko
  surname: Oishi
  fullname: Oishi, Yumiko
– sequence: 6
  givenname: Yasuo
  orcidid: 0000-0003-1928-1028
  surname: Suzuki
  fullname: Suzuki, Yasuo
– sequence: 7
  givenname: Mamoru
  surname: Isemura
  fullname: Isemura, Mamoru
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29843451$$D View this record in MEDLINE/PubMed
BookMark eNp9kttuEzEQhleoiB7gAbhBlrgpFws-rXd9gwRRSCMVFamBW8vrnU0cOXbq9XJ4Gl4VJylVWySu7Jn55vd49J8WRz54KIqXBL9lTOJ3m-DAjA4GyrAgVFZPihPCKS4Z5vLo3v24OB2GNcaUcFI9K46pbDjjFTkpfs89-mZTDEj7DuXg2jprArpOY2dhQKFHaQXo8-ElHTOSIGqTbPD76nRrl9q5YHQCs7K-ZOVVucvkGJ1PZ5PZG_TDphX6EkMCm5sWK53Q9OfWaev34hegXQY-gofepr3qLAJ4tAD9vHjaazfAi9vzrPj6abqYXJSXV7P55MNlabhkqZSE8LqrWQuS15rJFvMGV7ITxDQGur4lXV1RjjmtiSA15n1vGtxL0TRaN9Kws2J-0O2CXqtttBsdf6mgrdonQlwqHZM1DlQrSM-NFrLjnBvC2q6WEjeNET2poNdZ6_1Bazu2G-gM-BS1eyD6sOLtSi3DdyWwlJLRLHB-KxDDzQhDUhs7GMg79RDGQVHMa1qLirCMvn6ErsMYfV6VogQ3lcBCVpl6dX-iu1H--iAD5ACYGIYhQn-HEKx2XlP_eC331I96jE16Z4z8Kev-0_kHyRHbpA
CitedBy_id crossref_primary_10_3390_molecules24030528
crossref_primary_10_1088_1758_5090_abc39c
crossref_primary_10_1016_j_niox_2022_07_007
crossref_primary_10_1016_j_heliyon_2024_e25603
crossref_primary_10_18311_jnr_2022_30181
crossref_primary_10_3390_cancers12040951
crossref_primary_10_3390_medicines5030087
crossref_primary_10_1016_j_archoralbio_2022_105413
crossref_primary_10_3390_molecules28020525
crossref_primary_10_1021_acsami_4c03217
crossref_primary_10_3390_molecules24162899
crossref_primary_10_1016_j_jdent_2024_104876
crossref_primary_10_3389_fphar_2021_714790
crossref_primary_10_1039_D0FO02054K
crossref_primary_10_2174_0929867329666220726153412
crossref_primary_10_2174_1877946813666230403092546
crossref_primary_10_1016_j_biopha_2023_115988
crossref_primary_10_1186_s13058_024_01868_9
crossref_primary_10_3390_molecules26020453
crossref_primary_10_1021_acs_biochem_0c00043
crossref_primary_10_3390_molecules23123221
crossref_primary_10_3136_fstr_27_221
crossref_primary_10_1007_s13346_023_01366_z
crossref_primary_10_1016_j_jnutbio_2020_108518
crossref_primary_10_1016_j_foodres_2021_110186
crossref_primary_10_3390_nano14010106
crossref_primary_10_1093_cdn_nzz101
crossref_primary_10_1038_s41598_025_91982_1
crossref_primary_10_3389_fphar_2023_1201085
crossref_primary_10_1002_ptr_8083
crossref_primary_10_3390_pharmaceutics15092355
crossref_primary_10_1007_s00784_020_03530_y
crossref_primary_10_3390_nu14102039
crossref_primary_10_1590_1984_3143_ar2022_0025
crossref_primary_10_1111_anu_13397
crossref_primary_10_3390_ijms22020961
crossref_primary_10_3390_nu15184021
crossref_primary_10_1016_j_archoralbio_2019_104527
crossref_primary_10_1007_s11064_021_03403_0
crossref_primary_10_1080_10408398_2021_1984871
crossref_primary_10_3390_nu10121936
crossref_primary_10_1016_j_fshw_2021_12_023
crossref_primary_10_2174_1871520620666200717142315
crossref_primary_10_3390_molecules28135246
crossref_primary_10_31083_j_fbe1404027
crossref_primary_10_5812_mejrh_99183
crossref_primary_10_1016_j_omto_2019_04_007
crossref_primary_10_1371_journal_pone_0271112
crossref_primary_10_1002_mame_202200262
crossref_primary_10_3390_molecules24071445
crossref_primary_10_3390_molecules23082020
crossref_primary_10_1080_17518253_2021_1926549
crossref_primary_10_3390_pharmaceutics15020539
crossref_primary_10_1002_fsn3_3761
crossref_primary_10_3390_molecules25194553
crossref_primary_10_1007_s00404_020_05907_6
crossref_primary_10_3390_molecules26092627
crossref_primary_10_1016_j_molliq_2020_113870
crossref_primary_10_1016_j_fct_2020_111744
Cites_doi 10.18632/oncotarget.12836
10.2174/156652406775574523
10.3892/or.2015.3802
10.3390/ijms10125398
10.1111/j.1742-4658.2012.08498.x
10.1271/bbb.68.1817
10.1111/j.1476-5381.2010.00942.x
10.1002/mnfr.201400478
10.1371/journal.pone.0102460
10.2220/biomedres.34.301
10.1271/bbb.60.1317
10.1158/1055-9965.EPI-06-0892
10.1016/S0304-3835(01)00685-1
10.1371/journal.pone.0037942
10.1016/j.taap.2017.05.016
10.1038/42381
10.1038/sj.onc.1206708
10.1016/j.bmcl.2017.07.016
10.7314/APJCP.2016.17.4.1649
10.1158/0008-5472.CAN-05-1145
10.5493/wjem.v3.i4.100
10.1002/mnfr.201500428
10.5808/GI.2014.12.2.64
10.1111/j.1600-0722.2012.00947.x
10.1371/journal.pone.0084468
10.1021/cn300091a
10.1021/jm400179b
10.1271/bbb.61.1504
10.3390/molecules21121679
10.2174/092986706776361012
10.1073/pnas.1220326110
10.1007/978-3-319-23672-8
10.1016/j.bbrc.2011.02.010
10.1158/1078-0432.CCR-14-1380
10.1002/(SICI)1097-0045(19970401)31:1<61::AID-PROS10>3.0.CO;2-M
10.1021/jf401779z
10.1371/journal.pone.0111143
10.1042/BJ20111837
10.1074/jbc.M414185200
10.1038/srep10938
10.1016/j.phrs.2011.03.018
10.1271/bbb.62.1031
10.1111/j.1348-0421.1992.tb02103.x
10.1248/jhs.52.103
10.1006/bbrc.2001.5293
10.1079/9781786392398.0000
10.1007/s11010-016-2903-y
10.1007/s00894-015-2801-3
10.1021/ci200227u
10.1158/0008-5472.CAN-06-1586
10.1371/journal.pone.0125848
10.1158/1940-6207.CAPR-09-0185
10.1016/j.bbagen.2012.11.011
10.1158/1940-6207.CAPR-11-0301
10.1002/art.39447
10.3177/jnsv.56.331
10.1194/jlr.M011817
10.1002/mc.20299
10.3892/or.2013.2743
10.1038/nsmb.1437
10.1074/jbc.M802200200
10.1371/journal.pone.0166477
10.3390/molecules21101305
10.2183/pjab.88.88
10.1038/oby.2007.176
10.1016/S0027-5107(97)00310-2
10.1007/s12539-016-0157-8
10.1016/j.biopha.2016.09.049
10.1074/jbc.M111.268599
10.1021/bi1004409
10.1016/j.mehy.2014.04.013
10.1016/j.nutres.2014.10.004
10.1158/1940-6207.CAPR-14-0224
10.1002/prot.10504
10.1016/j.appet.2011.11.016
10.1021/jp2118778
10.1021/bi3012274
10.4049/jimmunol.1002876
10.2183/pjab.87.66
10.1007/s12032-015-0678-8
10.1111/febs.12618
10.1038/nsmb743
10.3390/ijms12085200
10.1021/jf9811525
10.1016/j.freeradbiomed.2011.01.024
10.1096/fj.04-1716fje
10.1021/bi047433p
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules23061295
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_b61f4ca69d444c13bd799088c6f15efa
PMC6099932
29843451
10_3390_molecules23061295
Genre Journal Article
Review
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IHR
IPNFZ
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-91147d73be947a39b048059d61c8cedfb1d75240427161704ffc80f9688aa89c3
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:23:51 EDT 2025
Thu Aug 21 14:08:11 EDT 2025
Thu Jul 10 18:35:40 EDT 2025
Sat Aug 23 13:15:25 EDT 2025
Wed Feb 19 02:35:36 EST 2025
Thu Apr 24 23:06:02 EDT 2025
Tue Jul 01 03:11:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords affinity chromatography
epidemiology
molecular docking
EGCG
protein
green tea
catechin
cancer
health benefits
binding interaction
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-91147d73be947a39b048059d61c8cedfb1d75240427161704ffc80f9688aa89c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1928-1028
OpenAccessLink https://www.proquest.com/docview/2108560695?pq-origsite=%requestingapplication%
PMID 29843451
PQID 2108560695
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_b61f4ca69d444c13bd799088c6f15efa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6099932
proquest_miscellaneous_2047276513
proquest_journals_2108560695
pubmed_primary_29843451
crossref_primary_10_3390_molecules23061295
crossref_citationtrail_10_3390_molecules23061295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180528
PublicationDateYYYYMMDD 2018-05-28
PublicationDate_xml – month: 5
  year: 2018
  text: 20180528
  day: 28
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Smith (ref_62) 2004; 54
Nagao (ref_10) 2007; 15
Sarkar (ref_54) 2016; 84
Suzuki (ref_36) 2013; 34
He (ref_27) 2008; 47
Suzuki (ref_35) 2001; 173
Cuccioloni (ref_73) 2011; 52
Kawahara (ref_13) 1999; 47
ref_18
Yang (ref_4) 2016; 60
Ke (ref_76) 2017; 27
Zhang (ref_31) 2016; 7
Leone (ref_55) 2003; 63
Ehrnhoefer (ref_86) 2008; 15
ref_61
Sazuka (ref_21) 1996; 60
Li (ref_90) 2011; 286
Hsu (ref_59) 2015; 5
Palermo (ref_23) 2005; 44
Shim (ref_28) 2008; 283
Suzuki (ref_37) 2006; 52
Scholey (ref_11) 2012; 58
Fechtner (ref_80) 2017; 329
Laskowski (ref_92) 2011; 51
Toda (ref_81) 1992; 36
Ermakova (ref_25) 2006; 66
Jankun (ref_60) 1997; 387
Rodon (ref_41) 2015; 21
Tachibana (ref_45) 2004; 11
Townsend (ref_78) 2004; 18
Menegazzi (ref_77) 2014; 281
Singh (ref_79) 2016; 68
Hastak (ref_14) 2003; 22
Carson (ref_67) 2011; 406
Shim (ref_29) 2010; 3
Tian (ref_16) 2006; 13
ref_72
Islam (ref_74) 2015; 9
Bettuzzi (ref_8) 2006; 66
Tabuchi (ref_39) 2013; 3
Kiss (ref_68) 2013; 280
Ermakova (ref_33) 2005; 280
Tanaka (ref_42) 2011; 50
Tadano (ref_43) 2010; 161
Suzuki (ref_3) 2012; 88
Cao (ref_15) 2014; 34
Hayakawa (ref_34) 2001; 285
ref_75
Hayakawa (ref_1) 2016; 17
Nakazawa (ref_44) 2012; 51
Chebaro (ref_87) 2012; 116
Tsukamoto (ref_48) 2012; 443
Chazarra (ref_66) 2009; 10
Minoda (ref_20) 2010; 56
Arora (ref_19) 1989; 26
Wang (ref_70) 2013; 30
Trnkova (ref_50) 2013; 1830
Wu (ref_71) 2013; 61
Tachibana (ref_49) 2011; 87
Hara (ref_9) 2011; 64
Hyung (ref_89) 2013; 110
Hara (ref_52) 2012; 120
Fujiki (ref_12) 1998; 402
ref_82
Li (ref_57) 2006; 6
Singh (ref_58) 2015; 32
Khalid (ref_85) 2014; 83
Urusova (ref_30) 2011; 4
ref_47
ref_46
Chowdhury (ref_53) 2017; 427
Khan (ref_65) 2015; 33
Miyata (ref_91) 2010; 49
Ismail (ref_83) 2017; 9
Lemkul (ref_88) 2012; 3
Li (ref_26) 2007; 16
Qin (ref_51) 2011; 186
Moyle (ref_69) 2015; 59
ref_2
Bhattacharjee (ref_56) 2015; 21
Zheng (ref_63) 2011; 12
Suzuki (ref_38) 2004; 68
Chen (ref_17) 2013; 56
ref_5
Barrack (ref_40) 1997; 31
Kumar (ref_84) 2014; 12
ref_7
Fang (ref_64) 2003; 63
ref_6
Sazuka (ref_22) 1998; 62
Moses (ref_24) 2015; 8
Sazuka (ref_32) 1997; 61
References_xml – volume: 7
  start-page: 79557
  year: 2016
  ident: ref_31
  article-title: Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12836
– volume: 6
  start-page: 45
  year: 2006
  ident: ref_57
  article-title: Stress induction of GRP78/BiP and its role in cancer
  publication-title: Curr. Mol. Med.
  doi: 10.2174/156652406775574523
– volume: 33
  start-page: 1976
  year: 2015
  ident: ref_65
  article-title: (−)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2015.3802
– volume: 10
  start-page: 5398
  year: 2009
  ident: ref_66
  article-title: Binding of natural and synthetic polyphenols to human dihydrofolate reductase
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms10125398
– volume: 280
  start-page: 612
  year: 2013
  ident: ref_68
  article-title: Epigallocatechin-3-gallate and penta-O-galloyl-β-d-glucose inhibit protein phosphatase-1
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2012.08498.x
– volume: 68
  start-page: 1817
  year: 2004
  ident: ref_38
  article-title: Epigallocatechin-3-O-gallate inhibits fibroblast contraction of floating collagen gel: Interaction between epigallocatechin-3-O-gallate and platelet derived growth factor
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.68.1817
– volume: 161
  start-page: 1034
  year: 2010
  ident: ref_43
  article-title: Biological actions of green tea catechins on cardiac troponin C
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2010.00942.x
– volume: 59
  start-page: 401
  year: 2015
  ident: ref_69
  article-title: Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: Relevance to angiogenesis
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201400478
– ident: ref_18
  doi: 10.1371/journal.pone.0102460
– volume: 34
  start-page: 301
  year: 2013
  ident: ref_36
  article-title: Binding interaction between (−)-epigallocatechin gallate causes impaired spreading of cancer cells on fibrinogen
  publication-title: Biomed. Res.
  doi: 10.2220/biomedres.34.301
– volume: 60
  start-page: 1317
  year: 1996
  ident: ref_21
  article-title: Evidence for the interaction between (−)-epigallocatechin gallate and human plasma proteins fibronectin, fibrinogen, and histidine-rich glycoprotein
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.60.1317
– volume: 16
  start-page: 598
  year: 2007
  ident: ref_26
  article-title: Direct inhibition of insulin-like growth factor-I receptor kinase activity by (−)-epigallocatechin-3-gallate regulates cell transformation
  publication-title: Cancer Epidemiol. Biomarkers Prev.
  doi: 10.1158/1055-9965.EPI-06-0892
– volume: 173
  start-page: 15
  year: 2001
  ident: ref_35
  article-title: Inhibitory effect of epigallocatechin gallate on adhesion of murine melanoma cells to laminin
  publication-title: Cancer Lett.
  doi: 10.1016/S0304-3835(01)00685-1
– ident: ref_47
  doi: 10.1371/journal.pone.0037942
– volume: 329
  start-page: 112
  year: 2017
  ident: ref_80
  article-title: Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2017.05.016
– volume: 387
  start-page: 561
  year: 1997
  ident: ref_60
  article-title: Why drinking green tea could prevent cancer
  publication-title: Nature
  doi: 10.1038/42381
– volume: 22
  start-page: 4851
  year: 2003
  ident: ref_14
  article-title: Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1206708
– volume: 27
  start-page: 3688
  year: 2017
  ident: ref_76
  article-title: Discovery of a potent angiotensin converting enzyme inhibitor via virtual screening
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2017.07.016
– volume: 17
  start-page: 1649
  year: 2016
  ident: ref_1
  article-title: Anti-cancer effects of green tea by either anti- or pro- oxidative mechanisms
  publication-title: Asian Pac. J. Cancer Prev.
  doi: 10.7314/APJCP.2016.17.4.1649
– volume: 66
  start-page: 1234
  year: 2006
  ident: ref_8
  article-title: Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-1145
– volume: 3
  start-page: 100
  year: 2013
  ident: ref_39
  article-title: Epigallocatechin-3-gallate suppresses transforming growth factor-β signaling by interacting with the transforming growth factor-β type II receptor
  publication-title: World J. Exp. Med.
  doi: 10.5493/wjem.v3.i4.100
– volume: 63
  start-page: 8118
  year: 2003
  ident: ref_55
  article-title: Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins
  publication-title: Cancer Res.
– volume: 60
  start-page: 160
  year: 2016
  ident: ref_4
  article-title: Mechanisms of body weight reduction and metabolic syndrome alleviation by tea
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.201500428
– volume: 12
  start-page: 64
  year: 2014
  ident: ref_84
  article-title: Elucidating molecular interactions of natural inhibitors with HPV-16 E6 oncoprotein through docking analysis
  publication-title: Genomics Inform.
  doi: 10.5808/GI.2014.12.2.64
– volume: 120
  start-page: 132
  year: 2012
  ident: ref_52
  article-title: The green tea polyphenol (−)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: Biochemical implications for oral health
  publication-title: Eur. J. Oral. Sci.
  doi: 10.1111/j.1600-0722.2012.00947.x
– ident: ref_75
  doi: 10.1371/journal.pone.0084468
– volume: 3
  start-page: 845
  year: 2012
  ident: ref_88
  article-title: The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer’s disease
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/cn300091a
– volume: 56
  start-page: 3645
  year: 2013
  ident: ref_17
  article-title: Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment
  publication-title: J. Med. Chem.
  doi: 10.1021/jm400179b
– volume: 61
  start-page: 1504
  year: 1997
  ident: ref_32
  article-title: Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.61.1504
– ident: ref_5
  doi: 10.3390/molecules21121679
– volume: 13
  start-page: 967
  year: 2006
  ident: ref_16
  article-title: Inhibition of fatty acid synthase by polyphenols
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986706776361012
– volume: 110
  start-page: 3743
  year: 2013
  ident: ref_89
  article-title: Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.1220326110
– ident: ref_7
  doi: 10.1007/978-3-319-23672-8
– volume: 406
  start-page: 194
  year: 2011
  ident: ref_67
  article-title: Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2011.02.010
– volume: 21
  start-page: 553
  year: 2015
  ident: ref_41
  article-title: First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-1380
– volume: 31
  start-page: 61
  year: 1997
  ident: ref_40
  article-title: TGF beta in prostate cancer: A growth inhibitor that can enhance tumorigenicity
  publication-title: Prostate
  doi: 10.1002/(SICI)1097-0045(19970401)31:1<61::AID-PROS10>3.0.CO;2-M
– volume: 61
  start-page: 8829
  year: 2013
  ident: ref_71
  article-title: Characterization of binding interactions of (−)-epigallocatechin-3-gallate from green tea and lipase
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf401779z
– ident: ref_72
  doi: 10.1371/journal.pone.0111143
– volume: 443
  start-page: 525
  year: 2012
  ident: ref_48
  article-title: Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells
  publication-title: Biochem. J.
  doi: 10.1042/BJ20111837
– volume: 280
  start-page: 16882
  year: 2005
  ident: ref_33
  article-title: The intermediate filament protein vimentin is a new target for epigallocatechin gallate
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M414185200
– volume: 5
  start-page: 10938
  year: 2015
  ident: ref_59
  article-title: Anchor-based classification and type-C inhibitors for tyrosine kinases
  publication-title: Sci. Rep.
  doi: 10.1038/srep10938
– volume: 64
  start-page: 100
  year: 2011
  ident: ref_9
  article-title: Tea catechins and their applications as supplements and pharmaceutics
  publication-title: Pharmacol. Res.
  doi: 10.1016/j.phrs.2011.03.018
– volume: 63
  start-page: 7563
  year: 2003
  ident: ref_64
  article-title: Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines
  publication-title: Cancer Res.
– volume: 62
  start-page: 1031
  year: 1998
  ident: ref_22
  article-title: Interaction between the carboxyl-terminal heparin-binding domain of fibronectin and (−)-epigallocatechin gallate
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.62.1031
– volume: 26
  start-page: 14
  year: 1989
  ident: ref_19
  article-title: Study of interaction between catechin and native and modified bovine serum albumin by physico-chemical methods
  publication-title: Indian J. Biochem. Biophys.
– volume: 36
  start-page: 999
  year: 1992
  ident: ref_81
  article-title: The protective activity of tea catechins against experimental infection by Vibrio cholerae O1
  publication-title: Microbiol. Immunol.
  doi: 10.1111/j.1348-0421.1992.tb02103.x
– volume: 52
  start-page: 103
  year: 2006
  ident: ref_37
  article-title: Involvement of impaired interaction with β1 integrin in epigallocatechin gallate-mediated inhibition of fibrosarcoma HT-1080 cell adhesion to fibronectin
  publication-title: J. Health Sci.
  doi: 10.1248/jhs.52.103
– volume: 285
  start-page: 1102
  year: 2001
  ident: ref_34
  article-title: Apoptosis induction by epigallocatechin gallate involves its binding to Fas
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2001.5293
– ident: ref_46
  doi: 10.1079/9781786392398.0000
– volume: 427
  start-page: 111
  year: 2017
  ident: ref_53
  article-title: Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies
  publication-title: Mol. Cell Biochem.
  doi: 10.1007/s11010-016-2903-y
– volume: 21
  start-page: 272
  year: 2015
  ident: ref_56
  article-title: Molecular docking and molecular dynamics studies reveal structural basis of inhibition and selectivity of inhibitors EGCG and OSU-03012 toward glucose regulated protein-78 (GRP78) overexpressed in glioblastoma
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-015-2801-3
– volume: 51
  start-page: 2778
  year: 2011
  ident: ref_92
  article-title: LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200227u
– volume: 66
  start-page: 9260
  year: 2006
  ident: ref_25
  article-title: (−)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-1586
– ident: ref_61
  doi: 10.1371/journal.pone.0125848
– volume: 3
  start-page: 670
  year: 2010
  ident: ref_29
  article-title: Epigallocatechin gallate suppresses lung cancer cell growth through Ras-GTPase-activating protein SH3 domain-binding protein 1
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-09-0185
– volume: 1830
  start-page: 2671
  year: 2013
  ident: ref_50
  article-title: Green tea catechins can bind and modify ERp57/PDIA3 activity
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagen.2012.11.011
– volume: 4
  start-page: 1366
  year: 2011
  ident: ref_30
  article-title: Epigallocatechin-gallate suppresses tumorigenesis by directly targeting Pin1
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-11-0301
– volume: 68
  start-page: 347
  year: 2016
  ident: ref_79
  article-title: Regulation of transforming growth factor beta-activated kinase activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts: Suppression of K(63)-linked autoubiquitination of tumor necrosis factor receptor-associated factor 6
  publication-title: Arthritis Rheumatol.
  doi: 10.1002/art.39447
– volume: 56
  start-page: 331
  year: 2010
  ident: ref_20
  article-title: Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin
  publication-title: J. Nutr. Sci. Vitaminol.
  doi: 10.3177/jnsv.56.331
– volume: 52
  start-page: 897
  year: 2011
  ident: ref_73
  article-title: Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M011817
– volume: 47
  start-page: 172
  year: 2008
  ident: ref_27
  article-title: Fyn is a novel target of (−)-epigallocatechin gallate in the inhibition of JB6 Cl41 cell transformation
  publication-title: Mol. Carcinog.
  doi: 10.1002/mc.20299
– volume: 30
  start-page: 2691
  year: 2013
  ident: ref_70
  article-title: Mechanism of the inhibition of the STAT3 signaling pathway by EGCG
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2013.2743
– volume: 15
  start-page: 558
  year: 2008
  ident: ref_86
  article-title: EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1437
– volume: 283
  start-page: 28370
  year: 2008
  ident: ref_28
  article-title: (−)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802200200
– ident: ref_82
  doi: 10.1371/journal.pone.0166477
– ident: ref_2
  doi: 10.3390/molecules21101305
– volume: 88
  start-page: 88
  year: 2012
  ident: ref_3
  article-title: Health-promoting effects of green tea
  publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.
  doi: 10.2183/pjab.88.88
– volume: 15
  start-page: 1473
  year: 2007
  ident: ref_10
  article-title: A green tea extract high in catechins reduces body fat and cardiovascular risks in humans
  publication-title: Obesity
  doi: 10.1038/oby.2007.176
– volume: 402
  start-page: 307
  year: 1998
  ident: ref_12
  article-title: Cancer inhibition by green tea
  publication-title: Mutat. Res.
  doi: 10.1016/S0027-5107(97)00310-2
– volume: 9
  start-page: 499
  year: 2017
  ident: ref_83
  article-title: Molecular docking and molecular dynamics simulation studies to predict flavonoid binding on the surface of DENV2 E protein
  publication-title: Interdiscip. Sci.
  doi: 10.1007/s12539-016-0157-8
– volume: 84
  start-page: 340
  year: 2016
  ident: ref_54
  article-title: Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.09.049
– volume: 286
  start-page: 34164
  year: 2011
  ident: ref_90
  article-title: Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.268599
– volume: 49
  start-page: 6104
  year: 2010
  ident: ref_91
  article-title: The crystal structure of the green tea polyphenol (−)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site
  publication-title: Biochemistry
  doi: 10.1021/bi1004409
– volume: 83
  start-page: 39
  year: 2014
  ident: ref_85
  article-title: Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: A plausible therapeutic approach in Alzheimer’s disease
  publication-title: Med. Hypotheses.
  doi: 10.1016/j.mehy.2014.04.013
– volume: 34
  start-page: 1066
  year: 2014
  ident: ref_15
  article-title: Epigallocatechin gallate prevents inflammation by reducing macrophage infiltration and inhibiting tumor necrosis factor-α signaling in the pancreas of rats on a high-fat diet
  publication-title: Nutr. Res.
  doi: 10.1016/j.nutres.2014.10.004
– volume: 8
  start-page: 249
  year: 2015
  ident: ref_24
  article-title: The heat shock protein 90 inhibitor, (−)-epigallocatechin gallate, has anticancer activity in a novel human prostate cancer progression model
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-14-0224
– volume: 54
  start-page: 58
  year: 2004
  ident: ref_62
  article-title: Docking studies and model development of tea polyphenol proteasome inhibitors: Applications to rational drug design
  publication-title: Proteins
  doi: 10.1002/prot.10504
– ident: ref_6
  doi: 10.1079/9781786392398.0000
– volume: 58
  start-page: 767
  year: 2012
  ident: ref_11
  article-title: Acute neurocognitive effects of epigallocatechin gallate (EGCG)
  publication-title: Appetite
  doi: 10.1016/j.appet.2011.11.016
– volume: 116
  start-page: 8412
  year: 2012
  ident: ref_87
  article-title: Structures of Aβ17–42 trimers in isolation and with five small-molecule drugs using a hierarchical computational procedure
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp2118778
– volume: 51
  start-page: 10167
  year: 2012
  ident: ref_44
  article-title: Inhibitory mechanism of pancreatic amyloid fibril formation: Formation of the complex between tea catechins and the fragment of residues 22–27
  publication-title: Biochemistry.
  doi: 10.1021/bi3012274
– volume: 186
  start-page: 3693
  year: 2011
  ident: ref_51
  article-title: Epigallocatechin-3-gallate reduces airway inflammation in mice through binding to proinflammatory chemokines and inhibiting inflammatory cell recruitment
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002876
– volume: 87
  start-page: 66
  year: 2011
  ident: ref_49
  article-title: Green tea polyphenol sensing
  publication-title: Proc. Jpn. Acad. Ser. B
  doi: 10.2183/pjab.87.66
– volume: 32
  start-page: 233
  year: 2015
  ident: ref_58
  article-title: Screening of multi-targeted natural compounds for receptor tyrosine kinases inhibitors and biological evaluation on cancer cell lines, in silico and in vitro
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-015-0678-8
– volume: 281
  start-page: 724
  year: 2014
  ident: ref_77
  article-title: Direct interaction of natural and synthetic catechins with signal transducer activator of transcription 1 affects both its phosphorylation and activity
  publication-title: FEBS J.
  doi: 10.1111/febs.12618
– volume: 11
  start-page: 380
  year: 2004
  ident: ref_45
  article-title: A receptor for green tea polyphenol EGCG
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb743
– volume: 12
  start-page: 5200
  year: 2011
  ident: ref_63
  article-title: A comparative reverse docking strategy to identify potential antineoplastic targets of tea functional components and binding mode
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12085200
– volume: 47
  start-page: 2350
  year: 1999
  ident: ref_13
  article-title: Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9811525
– volume: 50
  start-page: 1324
  year: 2011
  ident: ref_42
  article-title: (−)-Epigallocatechin-3-gallate suppresses growth of AZ521 human gastric cancer cells by targeting the DEAD-box RNA helicase p68
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.01.024
– volume: 9
  start-page: 4943
  year: 2015
  ident: ref_74
  article-title: Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking
  publication-title: Drug Des. Devel. Ther.
– volume: 18
  start-page: 1621
  year: 2004
  ident: ref_78
  article-title: Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis
  publication-title: FASEB J.
  doi: 10.1096/fj.04-1716fje
– volume: 44
  start-page: 5041
  year: 2005
  ident: ref_23
  article-title: Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein
  publication-title: Biochemistry
  doi: 10.1021/bi047433p
SSID ssj0021415
Score 2.4805787
SecondaryResourceType review_article
Snippet Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1295
SubjectTerms affinity chromatography
binding interaction
cancer
catechin
Catechin - analogs & derivatives
Catechin - chemistry
Catechin - pharmacology
Computer Simulation
Crystallography, X-Ray
Drug Design
EGCG
epidemiology
green tea
health benefits
Humans
In Vitro Techniques
Models, Molecular
molecular docking
Molecular Docking Simulation
protein
Proteins
Proteins - chemistry
Proteins - metabolism
Review
Surface Plasmon Resonance
Tea
Tea - chemistry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvAmUykgcACnqOnb8ONLVtgWpgMQW9RY5fqiRSrZq09_DX2XGTlbdgsqlx8RO4mTGnm_ib2YIeeed05VhdSm94CWskrJsLUx3GcFcG2baNoWLHX2Vh8fiy0l9cq3UF3LCcnrg_OF2oW8UzkrjhRCO8dYrg9wcJyOrQ0zQCGze5EyNrhYDu5T3MDk49bu_cqnZcImAGyxcvWGFUrL-fyHMm0TJa5Zn_xF5OEJG-ikP9TG5F_on5P58qtT2lPz-3NOf3XCxorb3FA5-dGcgYDpyBOkqUoB59GiqhEvTb8Ac0ZBaF-dd2oBHdhRyK0tefivxDBzT94uD-cEHij9s6XfM6tDBRctTO1Dk79muTzfP4Ux0D5bO2A3pronSQ5fBPiPH-4vl_LAcCy-UThg-4AIolFe8DUYoy02Lgee18ZI57YKPLfOqBiggKoXu0UzE6PQsGqm1tdo4_pxs9as-vCRUVFGaqHyUTojKRmtslMxjHQbw1bgoyGwSROPGrORYHOOsAe8EZdf8JbuCfFxfcp5TctzWeQ-lu-6I2bTTCdCxZtSx5n86VpDtSTeacYpfNhXGbYD7h894u24GyeOOi-3D6gr6YC5OJWvGC_Iiq9J6JJXRgouaFURtKNnGUDdb-u40JQCXCOt59eou3u01eQAYUCMhotLbZGu4uApvAGcN7U6aUn8AdM8opg
  priority: 102
  providerName: Directory of Open Access Journals
Title In Vitro and In Silico Studies of the Molecular Interactions of Epigallocatechin-3-O-gallate (EGCG) with Proteins That Explain the Health Benefits of Green Tea
URI https://www.ncbi.nlm.nih.gov/pubmed/29843451
https://www.proquest.com/docview/2108560695
https://www.proquest.com/docview/2047276513
https://pubmed.ncbi.nlm.nih.gov/PMC6099932
https://doaj.org/article/b61f4ca69d444c13bd799088c6f15efa
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4AXxDcZozISD4AUrY4dO35CtGo7kDYm6FDfIseOWaSRdG329_CvcuekHQW0l0iOP2Tpzvfln-8IeeOszRLN0lg6wWOQkjIuDBx36UFda6aLIjwXOzmVx-fi8yJd9AG3dQ-r3MjEIKhdYzFGfpQgTB6sbZ1-WF7FWDUKb1f7Ehp3yT6mLkOuVosbh4uBdupuMjm49kc_u4Kz5RrNbtBz6Y4uCin7_2dn_g2X_EP_TB-SB73hSD92lH5E7pT1Y3JvvKnX9oT8-lTT71W7aqipHYXGt-oSyEx7pCBtPAVjj55s6uHSEAzs3jWE3smyCtfwiJFChGXM4y8x_oE2fTuZjWfvKIZt6Rnmdqhg0vzCtBRRfKaqw-LdoyY6AgHqqzasGoA9dF6ap-R8OpmPj-O-_EJsheYtikGhnOJFqYUyXBf4_DzVTjKb2dL5gjmVgkEgEoVO0lB4b7Oh1zLLjMm05c_IXt3U5QtCReKl9sp5aYVIjDfaeMkcVmMAj42LiAw3hMhtn5scS2Rc5uCjIO3yf2gXkffbKcsuMcdtg0dI3e1AzKkdfjSrH3l_RHPgSi-skdoJISzjhVMaUWBWepaW3kTkcMMbeX_Q1_kNW0bk9bYbKI_3LqYum2sYgxk5lUwZj8jzjpW2O0l0JrhIWUTUDpPtbHW3p64uQhpwicY9Tw5u39ZLch9svAwBD0l2SPba1XX5CuyothiEwwLfbDobkP3R5PTs6yDEJH4D32kjEQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4k1KASOBBEhRN7HjxAeE6LIv2i1IbFFvwbHjNlJJlt1UiF_DP-A3MuMkCwuotx4TP2Rp3vY3M4Q8NVonoQwiXxjOfNCSws8UiLuwYK5lILPMpYtND8X4iL87jo43yM8uFwZhlZ1OdIraVBrvyHdDhMmDty2j1_OvPnaNwtfVroVGwxb7-fdvELItX03eAn2fheFwMOuP_bargK-5ZDVKN49NzLJc8lgxmWFWdSSNCHSic2OzwMQR2Dkexuj797i1OulZKZJEqURqBvteIVc5A0uOmenD0SrAC8AaNi-nMNjb_dI0uM2X6OaDXY3WbJ9rEfA_v_ZveOYf9m54g1xvHVX6puGsm2QjL2-RrX7XH-42-TEp6aeiXlRUlYbCx8fiDNiKtshEWlkKziWddv13qbt8bPIo3OhgXrhnf8RkIaLTZ_57H__AN30-GPVHLyheE9MPWEuigEWzU1VTRA2qonSbN0lUdA8Uti1qt6sDEtFZru6Qo0shzF2yWVZlfp9QHlohbWys0JyHyiqprAgMdn-ACJFxj_Q6QqS6rYWOLTnOUoiJkHbpP7TzyMvVknlTCOSiyXtI3dVErOHtflSLk7RVCSlIgeVaCWk45zpgmYklos60sEGUW-WRnY430laxLNPfYuCRJ6thoDy-86gyr85hDlYAjUUUMI_ca1hpdZJQJpzxKPBIvMZka0ddHymLU1d2XGAwwcLti4_1mGyNZ9OD9GByuP-AXAP_MkGwRZjskM16cZ4_BB-uzh45waHk82VL6i8-F1r4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJ8FeEPcFBhgJJECK2sSOEz8gRLt2K2Olgm7aW3DsmEUaSWkzIX4N_4Nfxzm5FApob3tMfJGlc7e_cw4hT43WkS-9wBWGMxe0pHATBeIuLJhr6ckkqdLFDidi_4i_PQlONsjPNhcGYZWtTqwUtSk03pF3fYTJg7ctg65tYBHT3dHr-VcXO0jhS2vbTqNmkYP0-zcI35avxrtA62e-PxrOBvtu02HA1VyyEiWdhyZkSSp5qJhMMMM6kEZ4OtKpsYlnwgBsHvdDjAN63Fod9awUUaRUJDWDfa-QzRCjog7Z7A8n0w-rcM8D21i_ozIme90vdbvbdIlOP1jZYM0SVg0D_ufl_g3W_MP6jW6Q643bSt_UfHaTbKT5LXJt0HaLu01-jHN6nJWLgqrcUPj4mJ0Bk9EGp0gLS8HVpIdtN15aXUXWWRXV6HCeVSAARGghvtNl7nsX_8A3fT7cG-y9oHhpTKdYWSKDRbNTVVLEEKosrzavU6poH9S3zcpq1wpWRGepukOOLoU0d0knL_J0m1DuWyFtaKzQnPvKKqms8Az2goB4kXGH9FpCxLqpjI4NOs5iiJCQdvE_tHPIy9WSeV0W5KLJfaTuaiJW9K5-FIvPcaMgYpAJy7US0nDOtccSE0rEoGlhvSC1yiE7LW_EjZpZxr-FwiFPVsNAeXz1UXlanMMcrAcaisBjDrlXs9LqJL6MOOOB55BwjcnWjro-kmenVRFygaEF8-9ffKzH5CpIafxuPDl4QLbA2YwQeeFHO6RTLs7Th-DQlcmjRnIo-XTZwvoLDQdgig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vitro+and+In+Silico+Studies+of+the+Molecular+Interactions+of+Epigallocatechin-3-O-gallate+%28EGCG%29+with+Proteins+That+Explain+the+Health+Benefits+of+Green+Tea&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Saeki%2C+Koichi&rft.au=Hayakawa%2C+Sumio&rft.au=Nakano%2C+Shogo&rft.au=Ito%2C+Sohei&rft.date=2018-05-28&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=23&rft.issue=6&rft.spage=1295&rft_id=info:doi/10.3390%2Fmolecules23061295&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon