In Vitro and In Silico Studies of the Molecular Interactions of Epigallocatechin-3-O-gallate (EGCG) with Proteins That Explain the Health Benefits of Green Tea
Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative an...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 23; no. 6; p. 1295 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
28.05.2018
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG’s biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design. |
---|---|
AbstractList | Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG's biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design. Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG's biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design.Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3-O-gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG's biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design. Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3- O -gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG’s biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design. Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major green tea component, epigallocatechin-3- -gallate (EGCG), has been demonstrated to contribute to these effects through its anti-oxidative and pro-oxidative properties. Furthermore, several lines of evidence have indicated that the binding affinity of EGCG to specific proteins may explain its mechanism of action. This review article aims to reveal how EGCG-protein interactions can explain the mechanism by which green tea/EGCG can exhibit health beneficial effects. We conducted a literature search, using mainly the PubMed database. The results showed that several methods such as dot assays, affinity gel chromatography, surface plasmon resonance, computational docking analyses, and X-ray crystallography have been used for this purpose. These studies have provided evidence to show how EGCG can fit or occupy the position in or near functional sites and induce a conformational change, including a quaternary conformational change in some cases. Active site blocking, steric hindrance by binding of EGCG near an active site or induced conformational change appeared to cause inhibition of enzymatic activity and other biological activities of proteins, which are related to EGCG's biological oligomer and formation of their toxic aggregates, leading to the prevention of neurodegenerative diseases and amyloidosis. In conclusion, these studies have provided useful information on the action of green tea/catechins and would lead to future studies that will provide further evidence for rational EGCG therapy and use EGCG as a lead compound for drug design. |
Author | Ito, Sohei Hayakawa, Sumio Nakano, Shogo Saeki, Koichi Isemura, Mamoru Suzuki, Yasuo Oishi, Yumiko |
AuthorAffiliation | 4 Department of Nutrition Management, Faculty of Health Science, Hyogo University, Kakogawa 675-0195, Japan; suz-cbio@hyogo-dai.ac.jp 3 Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; snakano@u-shizuoka-ken.ac.jp (S.N.); itosohei@u-shizuoka-ken.ac.jp (S.I.) 1 Section of Cell Engineering, ID Pharma Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan; ks.saeki@gmail.com 2 Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; hayakawa_sci@icloud.com (S.H.); y-oishi@nms.ac.jp (Y.O.) |
AuthorAffiliation_xml | – name: 1 Section of Cell Engineering, ID Pharma Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan; ks.saeki@gmail.com – name: 3 Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; snakano@u-shizuoka-ken.ac.jp (S.N.); itosohei@u-shizuoka-ken.ac.jp (S.I.) – name: 2 Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8602, Japan; hayakawa_sci@icloud.com (S.H.); y-oishi@nms.ac.jp (Y.O.) – name: 4 Department of Nutrition Management, Faculty of Health Science, Hyogo University, Kakogawa 675-0195, Japan; suz-cbio@hyogo-dai.ac.jp |
Author_xml | – sequence: 1 givenname: Koichi surname: Saeki fullname: Saeki, Koichi – sequence: 2 givenname: Sumio surname: Hayakawa fullname: Hayakawa, Sumio – sequence: 3 givenname: Shogo surname: Nakano fullname: Nakano, Shogo – sequence: 4 givenname: Sohei surname: Ito fullname: Ito, Sohei – sequence: 5 givenname: Yumiko surname: Oishi fullname: Oishi, Yumiko – sequence: 6 givenname: Yasuo orcidid: 0000-0003-1928-1028 surname: Suzuki fullname: Suzuki, Yasuo – sequence: 7 givenname: Mamoru surname: Isemura fullname: Isemura, Mamoru |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29843451$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kttuEzEQhleoiB7gAbhBlrgpFws-rXd9gwRRSCMVFamBW8vrnU0cOXbq9XJ4Gl4VJylVWySu7Jn55vd49J8WRz54KIqXBL9lTOJ3m-DAjA4GyrAgVFZPihPCKS4Z5vLo3v24OB2GNcaUcFI9K46pbDjjFTkpfs89-mZTDEj7DuXg2jprArpOY2dhQKFHaQXo8-ElHTOSIGqTbPD76nRrl9q5YHQCs7K-ZOVVucvkGJ1PZ5PZG_TDphX6EkMCm5sWK53Q9OfWaev34hegXQY-gofepr3qLAJ4tAD9vHjaazfAi9vzrPj6abqYXJSXV7P55MNlabhkqZSE8LqrWQuS15rJFvMGV7ITxDQGur4lXV1RjjmtiSA15n1vGtxL0TRaN9Kws2J-0O2CXqtttBsdf6mgrdonQlwqHZM1DlQrSM-NFrLjnBvC2q6WEjeNET2poNdZ6_1Bazu2G-gM-BS1eyD6sOLtSi3DdyWwlJLRLHB-KxDDzQhDUhs7GMg79RDGQVHMa1qLirCMvn6ErsMYfV6VogQ3lcBCVpl6dX-iu1H--iAD5ACYGIYhQn-HEKx2XlP_eC331I96jE16Z4z8Kev-0_kHyRHbpA |
CitedBy_id | crossref_primary_10_3390_molecules24030528 crossref_primary_10_1088_1758_5090_abc39c crossref_primary_10_1016_j_niox_2022_07_007 crossref_primary_10_1016_j_heliyon_2024_e25603 crossref_primary_10_18311_jnr_2022_30181 crossref_primary_10_3390_cancers12040951 crossref_primary_10_3390_medicines5030087 crossref_primary_10_1016_j_archoralbio_2022_105413 crossref_primary_10_3390_molecules28020525 crossref_primary_10_1021_acsami_4c03217 crossref_primary_10_3390_molecules24162899 crossref_primary_10_1016_j_jdent_2024_104876 crossref_primary_10_3389_fphar_2021_714790 crossref_primary_10_1039_D0FO02054K crossref_primary_10_2174_0929867329666220726153412 crossref_primary_10_2174_1877946813666230403092546 crossref_primary_10_1016_j_biopha_2023_115988 crossref_primary_10_1186_s13058_024_01868_9 crossref_primary_10_3390_molecules26020453 crossref_primary_10_1021_acs_biochem_0c00043 crossref_primary_10_3390_molecules23123221 crossref_primary_10_3136_fstr_27_221 crossref_primary_10_1007_s13346_023_01366_z crossref_primary_10_1016_j_jnutbio_2020_108518 crossref_primary_10_1016_j_foodres_2021_110186 crossref_primary_10_3390_nano14010106 crossref_primary_10_1093_cdn_nzz101 crossref_primary_10_1038_s41598_025_91982_1 crossref_primary_10_3389_fphar_2023_1201085 crossref_primary_10_1002_ptr_8083 crossref_primary_10_3390_pharmaceutics15092355 crossref_primary_10_1007_s00784_020_03530_y crossref_primary_10_3390_nu14102039 crossref_primary_10_1590_1984_3143_ar2022_0025 crossref_primary_10_1111_anu_13397 crossref_primary_10_3390_ijms22020961 crossref_primary_10_3390_nu15184021 crossref_primary_10_1016_j_archoralbio_2019_104527 crossref_primary_10_1007_s11064_021_03403_0 crossref_primary_10_1080_10408398_2021_1984871 crossref_primary_10_3390_nu10121936 crossref_primary_10_1016_j_fshw_2021_12_023 crossref_primary_10_2174_1871520620666200717142315 crossref_primary_10_3390_molecules28135246 crossref_primary_10_31083_j_fbe1404027 crossref_primary_10_5812_mejrh_99183 crossref_primary_10_1016_j_omto_2019_04_007 crossref_primary_10_1371_journal_pone_0271112 crossref_primary_10_1002_mame_202200262 crossref_primary_10_3390_molecules24071445 crossref_primary_10_3390_molecules23082020 crossref_primary_10_1080_17518253_2021_1926549 crossref_primary_10_3390_pharmaceutics15020539 crossref_primary_10_1002_fsn3_3761 crossref_primary_10_3390_molecules25194553 crossref_primary_10_1007_s00404_020_05907_6 crossref_primary_10_3390_molecules26092627 crossref_primary_10_1016_j_molliq_2020_113870 crossref_primary_10_1016_j_fct_2020_111744 |
Cites_doi | 10.18632/oncotarget.12836 10.2174/156652406775574523 10.3892/or.2015.3802 10.3390/ijms10125398 10.1111/j.1742-4658.2012.08498.x 10.1271/bbb.68.1817 10.1111/j.1476-5381.2010.00942.x 10.1002/mnfr.201400478 10.1371/journal.pone.0102460 10.2220/biomedres.34.301 10.1271/bbb.60.1317 10.1158/1055-9965.EPI-06-0892 10.1016/S0304-3835(01)00685-1 10.1371/journal.pone.0037942 10.1016/j.taap.2017.05.016 10.1038/42381 10.1038/sj.onc.1206708 10.1016/j.bmcl.2017.07.016 10.7314/APJCP.2016.17.4.1649 10.1158/0008-5472.CAN-05-1145 10.5493/wjem.v3.i4.100 10.1002/mnfr.201500428 10.5808/GI.2014.12.2.64 10.1111/j.1600-0722.2012.00947.x 10.1371/journal.pone.0084468 10.1021/cn300091a 10.1021/jm400179b 10.1271/bbb.61.1504 10.3390/molecules21121679 10.2174/092986706776361012 10.1073/pnas.1220326110 10.1007/978-3-319-23672-8 10.1016/j.bbrc.2011.02.010 10.1158/1078-0432.CCR-14-1380 10.1002/(SICI)1097-0045(19970401)31:1<61::AID-PROS10>3.0.CO;2-M 10.1021/jf401779z 10.1371/journal.pone.0111143 10.1042/BJ20111837 10.1074/jbc.M414185200 10.1038/srep10938 10.1016/j.phrs.2011.03.018 10.1271/bbb.62.1031 10.1111/j.1348-0421.1992.tb02103.x 10.1248/jhs.52.103 10.1006/bbrc.2001.5293 10.1079/9781786392398.0000 10.1007/s11010-016-2903-y 10.1007/s00894-015-2801-3 10.1021/ci200227u 10.1158/0008-5472.CAN-06-1586 10.1371/journal.pone.0125848 10.1158/1940-6207.CAPR-09-0185 10.1016/j.bbagen.2012.11.011 10.1158/1940-6207.CAPR-11-0301 10.1002/art.39447 10.3177/jnsv.56.331 10.1194/jlr.M011817 10.1002/mc.20299 10.3892/or.2013.2743 10.1038/nsmb.1437 10.1074/jbc.M802200200 10.1371/journal.pone.0166477 10.3390/molecules21101305 10.2183/pjab.88.88 10.1038/oby.2007.176 10.1016/S0027-5107(97)00310-2 10.1007/s12539-016-0157-8 10.1016/j.biopha.2016.09.049 10.1074/jbc.M111.268599 10.1021/bi1004409 10.1016/j.mehy.2014.04.013 10.1016/j.nutres.2014.10.004 10.1158/1940-6207.CAPR-14-0224 10.1002/prot.10504 10.1016/j.appet.2011.11.016 10.1021/jp2118778 10.1021/bi3012274 10.4049/jimmunol.1002876 10.2183/pjab.87.66 10.1007/s12032-015-0678-8 10.1111/febs.12618 10.1038/nsmb743 10.3390/ijms12085200 10.1021/jf9811525 10.1016/j.freeradbiomed.2011.01.024 10.1096/fj.04-1716fje 10.1021/bi047433p |
ContentType | Journal Article |
Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules23061295 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_b61f4ca69d444c13bd799088c6f15efa PMC6099932 29843451 10_3390_molecules23061295 |
Genre | Journal Article Review |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IHR IPNFZ KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RIG RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-91147d73be947a39b048059d61c8cedfb1d75240427161704ffc80f9688aa89c3 |
IEDL.DBID | 7X7 |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:23:51 EDT 2025 Thu Aug 21 14:08:11 EDT 2025 Thu Jul 10 18:35:40 EDT 2025 Sat Aug 23 13:15:25 EDT 2025 Wed Feb 19 02:35:36 EST 2025 Thu Apr 24 23:06:02 EDT 2025 Tue Jul 01 03:11:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | affinity chromatography epidemiology molecular docking EGCG protein green tea catechin cancer health benefits binding interaction |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-91147d73be947a39b048059d61c8cedfb1d75240427161704ffc80f9688aa89c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1928-1028 |
OpenAccessLink | https://www.proquest.com/docview/2108560695?pq-origsite=%requestingapplication% |
PMID | 29843451 |
PQID | 2108560695 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b61f4ca69d444c13bd799088c6f15efa pubmedcentral_primary_oai_pubmedcentral_nih_gov_6099932 proquest_miscellaneous_2047276513 proquest_journals_2108560695 pubmed_primary_29843451 crossref_primary_10_3390_molecules23061295 crossref_citationtrail_10_3390_molecules23061295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180528 |
PublicationDateYYYYMMDD | 2018-05-28 |
PublicationDate_xml | – month: 5 year: 2018 text: 20180528 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2018 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Smith (ref_62) 2004; 54 Nagao (ref_10) 2007; 15 Sarkar (ref_54) 2016; 84 Suzuki (ref_36) 2013; 34 He (ref_27) 2008; 47 Suzuki (ref_35) 2001; 173 Cuccioloni (ref_73) 2011; 52 Kawahara (ref_13) 1999; 47 ref_18 Yang (ref_4) 2016; 60 Ke (ref_76) 2017; 27 Zhang (ref_31) 2016; 7 Leone (ref_55) 2003; 63 Ehrnhoefer (ref_86) 2008; 15 ref_61 Sazuka (ref_21) 1996; 60 Li (ref_90) 2011; 286 Hsu (ref_59) 2015; 5 Palermo (ref_23) 2005; 44 Shim (ref_28) 2008; 283 Suzuki (ref_37) 2006; 52 Scholey (ref_11) 2012; 58 Fechtner (ref_80) 2017; 329 Laskowski (ref_92) 2011; 51 Toda (ref_81) 1992; 36 Ermakova (ref_25) 2006; 66 Jankun (ref_60) 1997; 387 Rodon (ref_41) 2015; 21 Tachibana (ref_45) 2004; 11 Townsend (ref_78) 2004; 18 Menegazzi (ref_77) 2014; 281 Singh (ref_79) 2016; 68 Hastak (ref_14) 2003; 22 Carson (ref_67) 2011; 406 Shim (ref_29) 2010; 3 Tian (ref_16) 2006; 13 ref_72 Islam (ref_74) 2015; 9 Bettuzzi (ref_8) 2006; 66 Tabuchi (ref_39) 2013; 3 Kiss (ref_68) 2013; 280 Ermakova (ref_33) 2005; 280 Tanaka (ref_42) 2011; 50 Tadano (ref_43) 2010; 161 Suzuki (ref_3) 2012; 88 Cao (ref_15) 2014; 34 Hayakawa (ref_34) 2001; 285 ref_75 Hayakawa (ref_1) 2016; 17 Nakazawa (ref_44) 2012; 51 Chebaro (ref_87) 2012; 116 Tsukamoto (ref_48) 2012; 443 Chazarra (ref_66) 2009; 10 Minoda (ref_20) 2010; 56 Arora (ref_19) 1989; 26 Wang (ref_70) 2013; 30 Trnkova (ref_50) 2013; 1830 Wu (ref_71) 2013; 61 Tachibana (ref_49) 2011; 87 Hara (ref_9) 2011; 64 Hyung (ref_89) 2013; 110 Hara (ref_52) 2012; 120 Fujiki (ref_12) 1998; 402 ref_82 Li (ref_57) 2006; 6 Singh (ref_58) 2015; 32 Khalid (ref_85) 2014; 83 Urusova (ref_30) 2011; 4 ref_47 ref_46 Chowdhury (ref_53) 2017; 427 Khan (ref_65) 2015; 33 Miyata (ref_91) 2010; 49 Ismail (ref_83) 2017; 9 Lemkul (ref_88) 2012; 3 Li (ref_26) 2007; 16 Qin (ref_51) 2011; 186 Moyle (ref_69) 2015; 59 ref_2 Bhattacharjee (ref_56) 2015; 21 Zheng (ref_63) 2011; 12 Suzuki (ref_38) 2004; 68 Chen (ref_17) 2013; 56 ref_5 Barrack (ref_40) 1997; 31 Kumar (ref_84) 2014; 12 ref_7 Fang (ref_64) 2003; 63 ref_6 Sazuka (ref_22) 1998; 62 Moses (ref_24) 2015; 8 Sazuka (ref_32) 1997; 61 |
References_xml | – volume: 7 start-page: 79557 year: 2016 ident: ref_31 article-title: Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity publication-title: Oncotarget doi: 10.18632/oncotarget.12836 – volume: 6 start-page: 45 year: 2006 ident: ref_57 article-title: Stress induction of GRP78/BiP and its role in cancer publication-title: Curr. Mol. Med. doi: 10.2174/156652406775574523 – volume: 33 start-page: 1976 year: 2015 ident: ref_65 article-title: (−)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells publication-title: Oncol. Rep. doi: 10.3892/or.2015.3802 – volume: 10 start-page: 5398 year: 2009 ident: ref_66 article-title: Binding of natural and synthetic polyphenols to human dihydrofolate reductase publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms10125398 – volume: 280 start-page: 612 year: 2013 ident: ref_68 article-title: Epigallocatechin-3-gallate and penta-O-galloyl-β-d-glucose inhibit protein phosphatase-1 publication-title: FEBS J. doi: 10.1111/j.1742-4658.2012.08498.x – volume: 68 start-page: 1817 year: 2004 ident: ref_38 article-title: Epigallocatechin-3-O-gallate inhibits fibroblast contraction of floating collagen gel: Interaction between epigallocatechin-3-O-gallate and platelet derived growth factor publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.68.1817 – volume: 161 start-page: 1034 year: 2010 ident: ref_43 article-title: Biological actions of green tea catechins on cardiac troponin C publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2010.00942.x – volume: 59 start-page: 401 year: 2015 ident: ref_69 article-title: Potent inhibition of VEGFR-2 activation by tight binding of green tea epigallocatechin gallate and apple procyanidins to VEGF: Relevance to angiogenesis publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201400478 – ident: ref_18 doi: 10.1371/journal.pone.0102460 – volume: 34 start-page: 301 year: 2013 ident: ref_36 article-title: Binding interaction between (−)-epigallocatechin gallate causes impaired spreading of cancer cells on fibrinogen publication-title: Biomed. Res. doi: 10.2220/biomedres.34.301 – volume: 60 start-page: 1317 year: 1996 ident: ref_21 article-title: Evidence for the interaction between (−)-epigallocatechin gallate and human plasma proteins fibronectin, fibrinogen, and histidine-rich glycoprotein publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.60.1317 – volume: 16 start-page: 598 year: 2007 ident: ref_26 article-title: Direct inhibition of insulin-like growth factor-I receptor kinase activity by (−)-epigallocatechin-3-gallate regulates cell transformation publication-title: Cancer Epidemiol. Biomarkers Prev. doi: 10.1158/1055-9965.EPI-06-0892 – volume: 173 start-page: 15 year: 2001 ident: ref_35 article-title: Inhibitory effect of epigallocatechin gallate on adhesion of murine melanoma cells to laminin publication-title: Cancer Lett. doi: 10.1016/S0304-3835(01)00685-1 – ident: ref_47 doi: 10.1371/journal.pone.0037942 – volume: 329 start-page: 112 year: 2017 ident: ref_80 article-title: Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2017.05.016 – volume: 387 start-page: 561 year: 1997 ident: ref_60 article-title: Why drinking green tea could prevent cancer publication-title: Nature doi: 10.1038/42381 – volume: 22 start-page: 4851 year: 2003 ident: ref_14 article-title: Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells publication-title: Oncogene doi: 10.1038/sj.onc.1206708 – volume: 27 start-page: 3688 year: 2017 ident: ref_76 article-title: Discovery of a potent angiotensin converting enzyme inhibitor via virtual screening publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2017.07.016 – volume: 17 start-page: 1649 year: 2016 ident: ref_1 article-title: Anti-cancer effects of green tea by either anti- or pro- oxidative mechanisms publication-title: Asian Pac. J. Cancer Prev. doi: 10.7314/APJCP.2016.17.4.1649 – volume: 66 start-page: 1234 year: 2006 ident: ref_8 article-title: Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-1145 – volume: 3 start-page: 100 year: 2013 ident: ref_39 article-title: Epigallocatechin-3-gallate suppresses transforming growth factor-β signaling by interacting with the transforming growth factor-β type II receptor publication-title: World J. Exp. Med. doi: 10.5493/wjem.v3.i4.100 – volume: 63 start-page: 8118 year: 2003 ident: ref_55 article-title: Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins publication-title: Cancer Res. – volume: 60 start-page: 160 year: 2016 ident: ref_4 article-title: Mechanisms of body weight reduction and metabolic syndrome alleviation by tea publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201500428 – volume: 12 start-page: 64 year: 2014 ident: ref_84 article-title: Elucidating molecular interactions of natural inhibitors with HPV-16 E6 oncoprotein through docking analysis publication-title: Genomics Inform. doi: 10.5808/GI.2014.12.2.64 – volume: 120 start-page: 132 year: 2012 ident: ref_52 article-title: The green tea polyphenol (−)-epigallocatechin gallate precipitates salivary proteins including alpha-amylase: Biochemical implications for oral health publication-title: Eur. J. Oral. Sci. doi: 10.1111/j.1600-0722.2012.00947.x – ident: ref_75 doi: 10.1371/journal.pone.0084468 – volume: 3 start-page: 845 year: 2012 ident: ref_88 article-title: The role of molecular simulations in the development of inhibitors of amyloid β-peptide aggregation for the treatment of Alzheimer’s disease publication-title: ACS Chem. Neurosci. doi: 10.1021/cn300091a – volume: 56 start-page: 3645 year: 2013 ident: ref_17 article-title: Design and synthesis of dual-action inhibitors targeting histone deacetylases and 3-hydroxy-3-methylglutaryl coenzyme A reductase for cancer treatment publication-title: J. Med. Chem. doi: 10.1021/jm400179b – volume: 61 start-page: 1504 year: 1997 ident: ref_32 article-title: Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.61.1504 – ident: ref_5 doi: 10.3390/molecules21121679 – volume: 13 start-page: 967 year: 2006 ident: ref_16 article-title: Inhibition of fatty acid synthase by polyphenols publication-title: Curr. Med. Chem. doi: 10.2174/092986706776361012 – volume: 110 start-page: 3743 year: 2013 ident: ref_89 article-title: Insights into antiamyloidogenic properties of the green tea extract (−)-epigallocatechin-3-gallate toward metal-associated amyloid-β species publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.1220326110 – ident: ref_7 doi: 10.1007/978-3-319-23672-8 – volume: 406 start-page: 194 year: 2011 ident: ref_67 article-title: Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.02.010 – volume: 21 start-page: 553 year: 2015 ident: ref_41 article-title: First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1380 – volume: 31 start-page: 61 year: 1997 ident: ref_40 article-title: TGF beta in prostate cancer: A growth inhibitor that can enhance tumorigenicity publication-title: Prostate doi: 10.1002/(SICI)1097-0045(19970401)31:1<61::AID-PROS10>3.0.CO;2-M – volume: 61 start-page: 8829 year: 2013 ident: ref_71 article-title: Characterization of binding interactions of (−)-epigallocatechin-3-gallate from green tea and lipase publication-title: J. Agric. Food Chem. doi: 10.1021/jf401779z – ident: ref_72 doi: 10.1371/journal.pone.0111143 – volume: 443 start-page: 525 year: 2012 ident: ref_48 article-title: Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells publication-title: Biochem. J. doi: 10.1042/BJ20111837 – volume: 280 start-page: 16882 year: 2005 ident: ref_33 article-title: The intermediate filament protein vimentin is a new target for epigallocatechin gallate publication-title: J. Biol. Chem. doi: 10.1074/jbc.M414185200 – volume: 5 start-page: 10938 year: 2015 ident: ref_59 article-title: Anchor-based classification and type-C inhibitors for tyrosine kinases publication-title: Sci. Rep. doi: 10.1038/srep10938 – volume: 64 start-page: 100 year: 2011 ident: ref_9 article-title: Tea catechins and their applications as supplements and pharmaceutics publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2011.03.018 – volume: 63 start-page: 7563 year: 2003 ident: ref_64 article-title: Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines publication-title: Cancer Res. – volume: 62 start-page: 1031 year: 1998 ident: ref_22 article-title: Interaction between the carboxyl-terminal heparin-binding domain of fibronectin and (−)-epigallocatechin gallate publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.62.1031 – volume: 26 start-page: 14 year: 1989 ident: ref_19 article-title: Study of interaction between catechin and native and modified bovine serum albumin by physico-chemical methods publication-title: Indian J. Biochem. Biophys. – volume: 36 start-page: 999 year: 1992 ident: ref_81 article-title: The protective activity of tea catechins against experimental infection by Vibrio cholerae O1 publication-title: Microbiol. Immunol. doi: 10.1111/j.1348-0421.1992.tb02103.x – volume: 52 start-page: 103 year: 2006 ident: ref_37 article-title: Involvement of impaired interaction with β1 integrin in epigallocatechin gallate-mediated inhibition of fibrosarcoma HT-1080 cell adhesion to fibronectin publication-title: J. Health Sci. doi: 10.1248/jhs.52.103 – volume: 285 start-page: 1102 year: 2001 ident: ref_34 article-title: Apoptosis induction by epigallocatechin gallate involves its binding to Fas publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.5293 – ident: ref_46 doi: 10.1079/9781786392398.0000 – volume: 427 start-page: 111 year: 2017 ident: ref_53 article-title: Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies publication-title: Mol. Cell Biochem. doi: 10.1007/s11010-016-2903-y – volume: 21 start-page: 272 year: 2015 ident: ref_56 article-title: Molecular docking and molecular dynamics studies reveal structural basis of inhibition and selectivity of inhibitors EGCG and OSU-03012 toward glucose regulated protein-78 (GRP78) overexpressed in glioblastoma publication-title: J. Mol. Model. doi: 10.1007/s00894-015-2801-3 – volume: 51 start-page: 2778 year: 2011 ident: ref_92 article-title: LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery publication-title: J. Chem. Inf. Model. doi: 10.1021/ci200227u – volume: 66 start-page: 9260 year: 2006 ident: ref_25 article-title: (−)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-1586 – ident: ref_61 doi: 10.1371/journal.pone.0125848 – volume: 3 start-page: 670 year: 2010 ident: ref_29 article-title: Epigallocatechin gallate suppresses lung cancer cell growth through Ras-GTPase-activating protein SH3 domain-binding protein 1 publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-09-0185 – volume: 1830 start-page: 2671 year: 2013 ident: ref_50 article-title: Green tea catechins can bind and modify ERp57/PDIA3 activity publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagen.2012.11.011 – volume: 4 start-page: 1366 year: 2011 ident: ref_30 article-title: Epigallocatechin-gallate suppresses tumorigenesis by directly targeting Pin1 publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-11-0301 – volume: 68 start-page: 347 year: 2016 ident: ref_79 article-title: Regulation of transforming growth factor beta-activated kinase activation by epigallocatechin-3-gallate in rheumatoid arthritis synovial fibroblasts: Suppression of K(63)-linked autoubiquitination of tumor necrosis factor receptor-associated factor 6 publication-title: Arthritis Rheumatol. doi: 10.1002/art.39447 – volume: 56 start-page: 331 year: 2010 ident: ref_20 article-title: Influence of the galloyl moiety in tea catechins on binding affinity for human serum albumin publication-title: J. Nutr. Sci. Vitaminol. doi: 10.3177/jnsv.56.331 – volume: 52 start-page: 897 year: 2011 ident: ref_73 article-title: Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase publication-title: J. Lipid Res. doi: 10.1194/jlr.M011817 – volume: 47 start-page: 172 year: 2008 ident: ref_27 article-title: Fyn is a novel target of (−)-epigallocatechin gallate in the inhibition of JB6 Cl41 cell transformation publication-title: Mol. Carcinog. doi: 10.1002/mc.20299 – volume: 30 start-page: 2691 year: 2013 ident: ref_70 article-title: Mechanism of the inhibition of the STAT3 signaling pathway by EGCG publication-title: Oncol. Rep. doi: 10.3892/or.2013.2743 – volume: 15 start-page: 558 year: 2008 ident: ref_86 article-title: EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1437 – volume: 283 start-page: 28370 year: 2008 ident: ref_28 article-title: (−)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802200200 – ident: ref_82 doi: 10.1371/journal.pone.0166477 – ident: ref_2 doi: 10.3390/molecules21101305 – volume: 88 start-page: 88 year: 2012 ident: ref_3 article-title: Health-promoting effects of green tea publication-title: Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. doi: 10.2183/pjab.88.88 – volume: 15 start-page: 1473 year: 2007 ident: ref_10 article-title: A green tea extract high in catechins reduces body fat and cardiovascular risks in humans publication-title: Obesity doi: 10.1038/oby.2007.176 – volume: 402 start-page: 307 year: 1998 ident: ref_12 article-title: Cancer inhibition by green tea publication-title: Mutat. Res. doi: 10.1016/S0027-5107(97)00310-2 – volume: 9 start-page: 499 year: 2017 ident: ref_83 article-title: Molecular docking and molecular dynamics simulation studies to predict flavonoid binding on the surface of DENV2 E protein publication-title: Interdiscip. Sci. doi: 10.1007/s12539-016-0157-8 – volume: 84 start-page: 340 year: 2016 ident: ref_54 article-title: Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.09.049 – volume: 286 start-page: 34164 year: 2011 ident: ref_90 article-title: Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.268599 – volume: 49 start-page: 6104 year: 2010 ident: ref_91 article-title: The crystal structure of the green tea polyphenol (−)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site publication-title: Biochemistry doi: 10.1021/bi1004409 – volume: 83 start-page: 39 year: 2014 ident: ref_85 article-title: Identifying a C-terminal ATP binding sites-based novel Hsp90-Inhibitor in silico: A plausible therapeutic approach in Alzheimer’s disease publication-title: Med. Hypotheses. doi: 10.1016/j.mehy.2014.04.013 – volume: 34 start-page: 1066 year: 2014 ident: ref_15 article-title: Epigallocatechin gallate prevents inflammation by reducing macrophage infiltration and inhibiting tumor necrosis factor-α signaling in the pancreas of rats on a high-fat diet publication-title: Nutr. Res. doi: 10.1016/j.nutres.2014.10.004 – volume: 8 start-page: 249 year: 2015 ident: ref_24 article-title: The heat shock protein 90 inhibitor, (−)-epigallocatechin gallate, has anticancer activity in a novel human prostate cancer progression model publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-14-0224 – volume: 54 start-page: 58 year: 2004 ident: ref_62 article-title: Docking studies and model development of tea polyphenol proteasome inhibitors: Applications to rational drug design publication-title: Proteins doi: 10.1002/prot.10504 – ident: ref_6 doi: 10.1079/9781786392398.0000 – volume: 58 start-page: 767 year: 2012 ident: ref_11 article-title: Acute neurocognitive effects of epigallocatechin gallate (EGCG) publication-title: Appetite doi: 10.1016/j.appet.2011.11.016 – volume: 116 start-page: 8412 year: 2012 ident: ref_87 article-title: Structures of Aβ17–42 trimers in isolation and with five small-molecule drugs using a hierarchical computational procedure publication-title: J. Phys. Chem. B doi: 10.1021/jp2118778 – volume: 51 start-page: 10167 year: 2012 ident: ref_44 article-title: Inhibitory mechanism of pancreatic amyloid fibril formation: Formation of the complex between tea catechins and the fragment of residues 22–27 publication-title: Biochemistry. doi: 10.1021/bi3012274 – volume: 186 start-page: 3693 year: 2011 ident: ref_51 article-title: Epigallocatechin-3-gallate reduces airway inflammation in mice through binding to proinflammatory chemokines and inhibiting inflammatory cell recruitment publication-title: J. Immunol. doi: 10.4049/jimmunol.1002876 – volume: 87 start-page: 66 year: 2011 ident: ref_49 article-title: Green tea polyphenol sensing publication-title: Proc. Jpn. Acad. Ser. B doi: 10.2183/pjab.87.66 – volume: 32 start-page: 233 year: 2015 ident: ref_58 article-title: Screening of multi-targeted natural compounds for receptor tyrosine kinases inhibitors and biological evaluation on cancer cell lines, in silico and in vitro publication-title: Med. Oncol. doi: 10.1007/s12032-015-0678-8 – volume: 281 start-page: 724 year: 2014 ident: ref_77 article-title: Direct interaction of natural and synthetic catechins with signal transducer activator of transcription 1 affects both its phosphorylation and activity publication-title: FEBS J. doi: 10.1111/febs.12618 – volume: 11 start-page: 380 year: 2004 ident: ref_45 article-title: A receptor for green tea polyphenol EGCG publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb743 – volume: 12 start-page: 5200 year: 2011 ident: ref_63 article-title: A comparative reverse docking strategy to identify potential antineoplastic targets of tea functional components and binding mode publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12085200 – volume: 47 start-page: 2350 year: 1999 ident: ref_13 article-title: Effects of tea polyphenols on the invasion and matrix metalloproteinases activities of human fibrosarcoma HT1080 cells publication-title: J. Agric. Food Chem. doi: 10.1021/jf9811525 – volume: 50 start-page: 1324 year: 2011 ident: ref_42 article-title: (−)-Epigallocatechin-3-gallate suppresses growth of AZ521 human gastric cancer cells by targeting the DEAD-box RNA helicase p68 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2011.01.024 – volume: 9 start-page: 4943 year: 2015 ident: ref_74 article-title: Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking publication-title: Drug Des. Devel. Ther. – volume: 18 start-page: 1621 year: 2004 ident: ref_78 article-title: Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis publication-title: FASEB J. doi: 10.1096/fj.04-1716fje – volume: 44 start-page: 5041 year: 2005 ident: ref_23 article-title: Epigallocatechin gallate inhibits aryl hydrocarbon receptor gene transcription through an indirect mechanism involving binding to a 90 kDa heat shock protein publication-title: Biochemistry doi: 10.1021/bi047433p |
SSID | ssj0021415 |
Score | 2.4805787 |
SecondaryResourceType | review_article |
Snippet | Green tea has been shown to have beneficial effects on many diseases such as cancer, obesity, inflammatory diseases, and neurodegenerative disorders. The major... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1295 |
SubjectTerms | affinity chromatography binding interaction cancer catechin Catechin - analogs & derivatives Catechin - chemistry Catechin - pharmacology Computer Simulation Crystallography, X-Ray Drug Design EGCG epidemiology green tea health benefits Humans In Vitro Techniques Models, Molecular molecular docking Molecular Docking Simulation protein Proteins Proteins - chemistry Proteins - metabolism Review Surface Plasmon Resonance Tea Tea - chemistry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvAmUykgcACnqOnb8ONLVtgWpgMQW9RY5fqiRSrZq09_DX2XGTlbdgsqlx8RO4mTGnm_ib2YIeeed05VhdSm94CWskrJsLUx3GcFcG2baNoWLHX2Vh8fiy0l9cq3UF3LCcnrg_OF2oW8UzkrjhRCO8dYrg9wcJyOrQ0zQCGze5EyNrhYDu5T3MDk49bu_cqnZcImAGyxcvWGFUrL-fyHMm0TJa5Zn_xF5OEJG-ikP9TG5F_on5P58qtT2lPz-3NOf3XCxorb3FA5-dGcgYDpyBOkqUoB59GiqhEvTb8Ac0ZBaF-dd2oBHdhRyK0tefivxDBzT94uD-cEHij9s6XfM6tDBRctTO1Dk79muTzfP4Ux0D5bO2A3pronSQ5fBPiPH-4vl_LAcCy-UThg-4AIolFe8DUYoy02Lgee18ZI57YKPLfOqBiggKoXu0UzE6PQsGqm1tdo4_pxs9as-vCRUVFGaqHyUTojKRmtslMxjHQbw1bgoyGwSROPGrORYHOOsAe8EZdf8JbuCfFxfcp5TctzWeQ-lu-6I2bTTCdCxZtSx5n86VpDtSTeacYpfNhXGbYD7h894u24GyeOOi-3D6gr6YC5OJWvGC_Iiq9J6JJXRgouaFURtKNnGUDdb-u40JQCXCOt59eou3u01eQAYUCMhotLbZGu4uApvAGcN7U6aUn8AdM8opg priority: 102 providerName: Directory of Open Access Journals |
Title | In Vitro and In Silico Studies of the Molecular Interactions of Epigallocatechin-3-O-gallate (EGCG) with Proteins That Explain the Health Benefits of Green Tea |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29843451 https://www.proquest.com/docview/2108560695 https://www.proquest.com/docview/2047276513 https://pubmed.ncbi.nlm.nih.gov/PMC6099932 https://doaj.org/article/b61f4ca69d444c13bd799088c6f15efa |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge4AXxDcZozISD4AUrY4dO35CtGo7kDYm6FDfIseOWaSRdG329_CvcuekHQW0l0iOP2Tpzvfln-8IeeOszRLN0lg6wWOQkjIuDBx36UFda6aLIjwXOzmVx-fi8yJd9AG3dQ-r3MjEIKhdYzFGfpQgTB6sbZ1-WF7FWDUKb1f7Ehp3yT6mLkOuVosbh4uBdupuMjm49kc_u4Kz5RrNbtBz6Y4uCin7_2dn_g2X_EP_TB-SB73hSD92lH5E7pT1Y3JvvKnX9oT8-lTT71W7aqipHYXGt-oSyEx7pCBtPAVjj55s6uHSEAzs3jWE3smyCtfwiJFChGXM4y8x_oE2fTuZjWfvKIZt6Rnmdqhg0vzCtBRRfKaqw-LdoyY6AgHqqzasGoA9dF6ap-R8OpmPj-O-_EJsheYtikGhnOJFqYUyXBf4_DzVTjKb2dL5gjmVgkEgEoVO0lB4b7Oh1zLLjMm05c_IXt3U5QtCReKl9sp5aYVIjDfaeMkcVmMAj42LiAw3hMhtn5scS2Rc5uCjIO3yf2gXkffbKcsuMcdtg0dI3e1AzKkdfjSrH3l_RHPgSi-skdoJISzjhVMaUWBWepaW3kTkcMMbeX_Q1_kNW0bk9bYbKI_3LqYum2sYgxk5lUwZj8jzjpW2O0l0JrhIWUTUDpPtbHW3p64uQhpwicY9Tw5u39ZLch9svAwBD0l2SPba1XX5CuyothiEwwLfbDobkP3R5PTs6yDEJH4D32kjEQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4k1KASOBBEhRN7HjxAeE6LIv2i1IbFFvwbHjNlJJlt1UiF_DP-A3MuMkCwuotx4TP2Rp3vY3M4Q8NVonoQwiXxjOfNCSws8UiLuwYK5lILPMpYtND8X4iL87jo43yM8uFwZhlZ1OdIraVBrvyHdDhMmDty2j1_OvPnaNwtfVroVGwxb7-fdvELItX03eAn2fheFwMOuP_bargK-5ZDVKN49NzLJc8lgxmWFWdSSNCHSic2OzwMQR2Dkexuj797i1OulZKZJEqURqBvteIVc5A0uOmenD0SrAC8AaNi-nMNjb_dI0uM2X6OaDXY3WbJ9rEfA_v_ZveOYf9m54g1xvHVX6puGsm2QjL2-RrX7XH-42-TEp6aeiXlRUlYbCx8fiDNiKtshEWlkKziWddv13qbt8bPIo3OhgXrhnf8RkIaLTZ_57H__AN30-GPVHLyheE9MPWEuigEWzU1VTRA2qonSbN0lUdA8Uti1qt6sDEtFZru6Qo0shzF2yWVZlfp9QHlohbWys0JyHyiqprAgMdn-ACJFxj_Q6QqS6rYWOLTnOUoiJkHbpP7TzyMvVknlTCOSiyXtI3dVErOHtflSLk7RVCSlIgeVaCWk45zpgmYklos60sEGUW-WRnY430laxLNPfYuCRJ6thoDy-86gyr85hDlYAjUUUMI_ca1hpdZJQJpzxKPBIvMZka0ddHymLU1d2XGAwwcLti4_1mGyNZ9OD9GByuP-AXAP_MkGwRZjskM16cZ4_BB-uzh45waHk82VL6i8-F1r4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJ8FeEPcFBhgJJECK2sSOEz8gRLt2K2Olgm7aW3DsmEUaSWkzIX4N_4Nfxzm5FApob3tMfJGlc7e_cw4hT43WkS-9wBWGMxe0pHATBeIuLJhr6ckkqdLFDidi_4i_PQlONsjPNhcGYZWtTqwUtSk03pF3fYTJg7ctg65tYBHT3dHr-VcXO0jhS2vbTqNmkYP0-zcI35avxrtA62e-PxrOBvtu02HA1VyyEiWdhyZkSSp5qJhMMMM6kEZ4OtKpsYlnwgBsHvdDjAN63Fod9awUUaRUJDWDfa-QzRCjog7Z7A8n0w-rcM8D21i_ozIme90vdbvbdIlOP1jZYM0SVg0D_ufl_g3W_MP6jW6Q643bSt_UfHaTbKT5LXJt0HaLu01-jHN6nJWLgqrcUPj4mJ0Bk9EGp0gLS8HVpIdtN15aXUXWWRXV6HCeVSAARGghvtNl7nsX_8A3fT7cG-y9oHhpTKdYWSKDRbNTVVLEEKosrzavU6poH9S3zcpq1wpWRGepukOOLoU0d0knL_J0m1DuWyFtaKzQnPvKKqms8Az2goB4kXGH9FpCxLqpjI4NOs5iiJCQdvE_tHPIy9WSeV0W5KLJfaTuaiJW9K5-FIvPcaMgYpAJy7US0nDOtccSE0rEoGlhvSC1yiE7LW_EjZpZxr-FwiFPVsNAeXz1UXlanMMcrAcaisBjDrlXs9LqJL6MOOOB55BwjcnWjro-kmenVRFygaEF8-9ffKzH5CpIafxuPDl4QLbA2YwQeeFHO6RTLs7Th-DQlcmjRnIo-XTZwvoLDQdgig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vitro+and+In+Silico+Studies+of+the+Molecular+Interactions+of+Epigallocatechin-3-O-gallate+%28EGCG%29+with+Proteins+That+Explain+the+Health+Benefits+of+Green+Tea&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Saeki%2C+Koichi&rft.au=Hayakawa%2C+Sumio&rft.au=Nakano%2C+Shogo&rft.au=Ito%2C+Sohei&rft.date=2018-05-28&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=23&rft.issue=6&rft.spage=1295&rft_id=info:doi/10.3390%2Fmolecules23061295&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |