ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data

Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understandin...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 15; p. 654315
Main Authors Almuqhim, Fahad, Saeed, Fahad
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 08.04.2021
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet .
AbstractList Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet .
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called \emph{ASD-SAENet} for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1035 subjects. Our extensive experimentation demonstrate that \emph{ASD-SAENet} exhibits comparable accuracy (70.8\%), and superior specificity (79.1\% ) for the whole data set as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code will be available on GitHub portal of our lab at \url{https://github.com/pcdslab/ASD-SAENet}.
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet.Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet.
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet.
Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions. The shortcomings of current clinical approaches which are based exclusively on behavioral observation of symptomology, and poor understanding of the neurological mechanisms underlying ASD necessitates the identification of new biomarkers that can aid in study of brain development, and functioning, and can lead to accurate and early detection of ASD. In this paper, we developed a deep-learning model called ASD-SAENet for classifying patients with ASD from typical control subjects using fMRI data. We designed and implemented a sparse autoencoder (SAE) which results in optimized extraction of features that can be used for classification. These features are then fed into a deep neural network (DNN) which results in superior classification of fMRI brain scans more prone to ASD. Our proposed model is trained to optimize the classifier while improving extracted features based on both reconstructed data error and the classifier error. We evaluated our proposed deep-learning model using publicly available Autism Brain Imaging Data Exchange (ABIDE) dataset collected from 17 different research centers, and include more than 1,035 subjects. Our extensive experimentation demonstrate that ASD-SAENet exhibits comparable accuracy (70.8%), and superior specificity (79.1%) for the whole dataset as compared to other methods. Further, our experiments demonstrate superior results as compared to other state-of-the-art methods on 12 out of the 17 imaging centers exhibiting superior generalizability across different data acquisition sites and protocols. The implemented code is available on GitHub portal of our lab at: https://github.com/pcdslab/ASD-SAENet.
Author Saeed, Fahad
Almuqhim, Fahad
AuthorAffiliation Knight Foundation School of Computing and Information Sciences, Florida International University , Miami, FL , United States
AuthorAffiliation_xml – name: Knight Foundation School of Computing and Information Sciences, Florida International University , Miami, FL , United States
Author_xml – sequence: 1
  givenname: Fahad
  surname: Almuqhim
  fullname: Almuqhim, Fahad
– sequence: 2
  givenname: Fahad
  surname: Saeed
  fullname: Saeed, Fahad
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33897398$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhi1URNuFH8AFWeJSJLI4X07cA9KqW2CltkgsPVuOM15cknixHRASP57JbovaSpxsz7zv47FnjsnB4AYg5GXK5nlei3dm0K6fZyxL57ws8rR8Qo5SzrOkTOv64N7-kByHcMMYz3jJnpHDyV3loj4ifxbrZbJenF9BPKULut4qH4AuxugA4S34t1QNLV0CbJMrGL3qKEp_Of-dXmK6o8Z5zEbQ0Q6byWhDjxg8-7GnSxucRwo9wXve0OswiczllxVdqqiek6dGdQFe3K4zcv3h_OvZp-Ti88fV2eIi0YXIY1KDyjJhSsWMaksuGl63teGm1KYqTJPnGTOsSRuma4NvZLxIy1ajpAXWFKzKZ2S157ZO3citt73yv6VTVu4Czm-k8tHqDmQGoslqMIURFWJ4IzRrMVRwVVWl4Mh6v2dtx6aHVsMQ8VMeQB9mBvtNbtxPWWNlJWcIOLkFePdjhBBlb4OGrlMDuDHIDBtW5YXAp8_I60fSGzf6Ab8KVUxgDzmfVK_uV_SvlLsmo6DaC7R3IXgwUtuoonVTgbaTKdtp5W6c5DROcj9O6EwfOe_g__f8BYG2zPg
CitedBy_id crossref_primary_10_1016_j_cmpb_2021_106615
crossref_primary_10_1016_j_media_2023_102932
crossref_primary_10_1088_1741_2552_ac8b39
crossref_primary_10_1109_TNSRE_2023_3314516
crossref_primary_10_1016_j_compbiomed_2022_106354
crossref_primary_10_1109_ACCESS_2023_3325701
crossref_primary_10_1007_s13369_024_09939_x
crossref_primary_10_1016_j_compbiomed_2024_109083
crossref_primary_10_1016_j_engappai_2023_107185
crossref_primary_10_1186_s12868_024_00870_3
crossref_primary_10_1007_s12652_024_04945_1
crossref_primary_10_3390_bioengineering10101209
crossref_primary_10_1007_s10278_024_01002_3
crossref_primary_10_1007_s41060_023_00408_6
crossref_primary_10_1016_j_compbiomed_2021_104949
crossref_primary_10_3390_bs14030202
crossref_primary_10_3389_fnins_2021_729937
crossref_primary_10_3389_fnins_2025_1497881
crossref_primary_10_1016_j_eswa_2022_119389
crossref_primary_10_1016_j_patter_2022_100602
crossref_primary_10_1007_s11571_024_10176_z
crossref_primary_10_1016_j_asoc_2023_110363
crossref_primary_10_3389_fnagi_2022_925468
crossref_primary_10_1016_j_bspc_2024_106934
crossref_primary_10_1016_j_engappai_2024_109475
crossref_primary_10_3390_ijms24032367
crossref_primary_10_2174_0126662558284886240130154414
crossref_primary_10_1007_s00216_021_03744_3
crossref_primary_10_1038_s41598_024_64299_8
crossref_primary_10_3390_brainsci13111578
crossref_primary_10_3233_JCM_237025
crossref_primary_10_1002_mp_16410
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1109_TETCI_2024_3386612
crossref_primary_10_1016_j_compbiomed_2023_107667
crossref_primary_10_3389_fnmol_2022_999605
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1007_s13369_024_09362_2
crossref_primary_10_1038_s42003_024_06096_7
crossref_primary_10_1186_s40708_025_00252_3
crossref_primary_10_1109_JBHI_2023_3286421
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1186_s12880_024_01360_y
crossref_primary_10_3389_fncom_2024_1388083
crossref_primary_10_1140_epjs_s11734_022_00717_0
crossref_primary_10_1109_ACCESS_2024_3441248
crossref_primary_10_1016_j_compbiomed_2024_108415
crossref_primary_10_1109_TNNLS_2022_3225179
crossref_primary_10_1016_j_bspc_2025_107678
crossref_primary_10_1016_j_compbiomed_2023_106749
crossref_primary_10_1109_TNNLS_2023_3243000
crossref_primary_10_1007_s12021_023_09639_1
crossref_primary_10_1016_j_bspc_2022_103887
crossref_primary_10_1007_s12539_024_00625_y
crossref_primary_10_1109_TMI_2022_3203899
crossref_primary_10_1016_j_compbiomed_2022_106320
crossref_primary_10_1016_j_jneumeth_2021_109456
crossref_primary_10_1038_s41380_024_02759_3
crossref_primary_10_3389_fnsys_2022_904770
crossref_primary_10_1016_j_inffus_2024_102619
crossref_primary_10_31083_j_jin2307135
crossref_primary_10_3390_diagnostics11112032
Cites_doi 10.1016/j.neuroimage.2016.10.045
10.1145/3307339.3343482
10.5555/1756006.1953039
10.1109/ACCESS.2019.2936639
10.3389/fninf.2019.00070
10.1016/j.nicl.2014.12.013
10.1155/2020/1357853
10.1002/hbm.21333
10.1007/978-3-030-00889-5_16
10.1109/TCYB.2014.2379621
10.1007/s12098-015-1894-0
10.1016/j.jneumeth.2020.108799
10.1038/s41586-020-2314-9
10.1145/1390156.1390294
10.1007/s11042-018-5625-1
10.1038/s41598-019-40427-7
10.3389/fncom.2019.00009
10.1109/ACCESS.2019.2940198
10.1007/978-3-319-67389-9_42
10.1016/S0140-6736(18)31129-2
10.1515/revneuro-2020-0043
10.1145/3203217.3203239
10.1109/ISBI.2018.8363534
10.1016/j.neuroimage.2011.10.018
10.31887/DCNS.2012.14.3/gdichter
10.1093/cercor/bhl006
10.1038/mp.2013.78
10.1016/j.nicl.2017.08.017
10.1007/s10803-014-2235-2
10.1002/mp.14692
10.3389/fnins.2018.01018
10.3389/fnins.2018.00491
10.1038/s41398-019-0679-z
10.15585/mmwr.ss6706a1
10.3389/fnins.2019.01325
10.3389/fnins.2017.00460
10.1016/j.rasd.2016.07.003
10.1016/j.cortex.2014.08.011
ContentType Journal Article
Copyright Copyright © 2021 Almuqhim and Saeed.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Almuqhim and Saeed. 2021 Almuqhim and Saeed
Copyright_xml – notice: Copyright © 2021 Almuqhim and Saeed.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Almuqhim and Saeed. 2021 Almuqhim and Saeed
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fncom.2021.654315
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_2e9b28ef4f974156b9c0d9b246a77596
PMC8060560
33897398
10_3389_fncom_2021_654315
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM134384
– fundername: National Science Foundation
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-8ea229f5a0fad569b68d8f6f5cf74fb3320f0b1b0c8f00606415dcd8fde0b4073
IEDL.DBID DOA
ISSN 1662-5188
IngestDate Wed Aug 27 01:28:44 EDT 2025
Thu Aug 21 17:26:16 EDT 2025
Fri Jul 11 07:17:22 EDT 2025
Fri Jul 25 12:03:43 EDT 2025
Thu Apr 03 07:06:53 EDT 2025
Thu Apr 24 22:56:58 EDT 2025
Tue Jul 01 02:18:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords fMRI
ASD
autoencoder
deep-learning
sparse autoencoder
diagnosis
ABIDE
classification
Language English
License Copyright © 2021 Almuqhim and Saeed.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-8ea229f5a0fad569b68d8f6f5cf74fb3320f0b1b0c8f00606415dcd8fde0b4073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Jussi Alho, Massachusetts General Hospital and Harvard Medical School, United States; Nataliia Kozhemiako, Brigham and Women's Hospital and Harvard Medical School, United States
Edited by: Fahimeh Mamashli, Massachusetts General Hospital and Harvard Medical School, United States
OpenAccessLink https://doaj.org/article/2e9b28ef4f974156b9c0d9b246a77596
PMID 33897398
PQID 2509897669
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_2e9b28ef4f974156b9c0d9b246a77596
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8060560
proquest_miscellaneous_2518734949
proquest_journals_2509897669
pubmed_primary_33897398
crossref_citationtrail_10_3389_fncom_2021_654315
crossref_primary_10_3389_fncom_2021_654315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-08
PublicationDateYYYYMMDD 2021-04-08
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-08
  day: 08
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Boat (B5) 2015
Baio (B3) 2018; 67
Dichter (B13) 2012; 14
Khosla (B29) 2018
Eslami (B17) 2019; 13
Kazeminejad (B28) 2019; 12
Nogay (B42) 2020
El Gazzar (B15)
Xiao (B52) 2018; 77
Sherkatghanad (B47) 2019; 13
Deshpande (B11) 2015; 45
Eslami (B18) 2018
Eslami (B19) 2019
Sarraf (B46) 2016
El-Gazzar (B16)
Abraham (B1) 2017; 147
Di Martino (B12) 2014; 19
Stevens (B48) 2016; 31
Lord (B33) 2018; 392
Kingma (B30) 2014
Mostafa (B37)
Fredo (B20) 2018; 12
Haweel (B24) 2020
(B38) 2009
Guo (B23) 2017; 11
Heinsfeld (B25) 2018; 17
Moore (B35) 2001
Just (B27) 2007; 17
Lau (B31) 2019; 9
Vincent (B50) 2010; 11
(B2) 2013
Brown (B8) 2018
Botvinik-Nezer (B6) 2020; 582
Li (B32) 2018; 12
Craddock (B9) 2013
Goodfellow (B22)
Plitt (B44) 2015; 7
Wang (B51) 2019; 7
Bradshaw (B7) 2015; 45
Mostafa (B36); 7
Vincent (B49) 2008
Bilgen (B4) 2020
Yao (B53) 2019
Niu (B41) 2020; 2020
Power (B45) 2012; 59
Parikh (B43) 2019; 13
Craddock (B10) 2012; 33
Goodfellow (B21)
Iidaka (B26) 2015; 63
Nickel (B40) 2017; 84
Dvornek (B14) 2017
Ng (B39) 2011; 72
Mizuno (B34) 2019; 9
References_xml – volume: 147
  start-page: 736
  year: 2017
  ident: B1
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– start-page: 646
  volume-title: Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics
  year: 2019
  ident: B19
  article-title: Auto-ASD-network: a technique based on deep learning and support vector machines for diagnosing autism spectrum disorder using fMRI data,
  doi: 10.1145/3307339.3343482
– year: 2014
  ident: B30
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– volume-title: Attention Deficit Hyperactivity Disorder: Diagnosis and Management of ADHD in Children, Young People and Adults
  year: 2009
  ident: B38
– volume: 11
  start-page: 3371
  year: 2010
  ident: B50
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res
  doi: 10.5555/1756006.1953039
– volume: 7
  start-page: 118030
  year: 2019
  ident: B51
  article-title: Identification of autism based on SVM-RFE and stacked sparse auto-encoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936639
– volume: 13
  start-page: 70
  year: 2019
  ident: B17
  article-title: ASD-diagnet: a hybrid learning approach for detection of autism spectrum disorder using fMRI data
  publication-title: Front. Neuroinform
  doi: 10.3389/fninf.2019.00070
– volume: 7
  start-page: 359
  year: 2015
  ident: B44
  article-title: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2014.12.013
– volume: 2020
  start-page: 1357853
  year: 2020
  ident: B41
  article-title: Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data
  publication-title: Complexity
  doi: 10.1155/2020/1357853
– volume: 33
  start-page: 1914
  year: 2012
  ident: B10
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. Brain mapp
  doi: 10.1002/hbm.21333
– start-page: 137
  volume-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
  year: 2018
  ident: B29
  article-title: 3D convolutional neural networks for classification of functional connectomes,
  doi: 10.1007/978-3-030-00889-5_16
– volume: 45
  start-page: 2668
  year: 2015
  ident: B11
  article-title: Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
  publication-title: IEEE Trans. Cybern
  doi: 10.1109/TCYB.2014.2379621
– volume: 84
  start-page: 53
  year: 2017
  ident: B40
  article-title: Early identification of young children with autism spectrum disorder
  publication-title: Indian J. Pediatr
  doi: 10.1007/s12098-015-1894-0
– year: 2020
  ident: B4
  article-title: Machine learning methods for brain network classification: application to autism diagnosis using cortical morphological networks
  publication-title: arXiv preprint arXiv:2004.13321
  doi: 10.1016/j.jneumeth.2020.108799
– volume: 582
  start-page: 84
  year: 2020
  ident: B6
  article-title: Variability in the analysis of a single neuroimaging dataset by many teams
  publication-title: Nature
  doi: 10.1038/s41586-020-2314-9
– start-page: 1096
  volume-title: Proceedings of the 25th International Conference on Machine Learning
  year: 2008
  ident: B49
  article-title: Extracting and composing robust features with denoising autoencoders,
  doi: 10.1145/1390156.1390294
– start-page: 95
  volume-title: OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging
  ident: B16
  article-title: A hybrid 3dcnn and 3dc-lstm based model for 4d spatio-temporal fMRI data: an abide autism classification study,
– volume: 77
  start-page: 22809
  year: 2018
  ident: B52
  article-title: Sae-based classification of school-aged children with autism spectrum disorders using functional magnetic resonance imaging
  publication-title: Multim. Tools Appl
  doi: 10.1007/s11042-018-5625-1
– volume: 9
  start-page: 1
  year: 2019
  ident: B31
  article-title: Resting-state abnormalities in autism spectrum disorders: a meta-analysis
  publication-title: Sci. Rep
  doi: 10.1038/s41598-019-40427-7
– volume: 12
  start-page: 6
  year: 2018
  ident: B20
  article-title: Diagnostic classification of autism using resting-state fMRI data and conditional random forest
  publication-title: Age
– start-page: 444
  volume-title: Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
  year: 2019
  ident: B53
  article-title: Brain functional connectivity augmentation method for mental disease classification with generative adversarial network,
– volume: 13
  start-page: 9
  year: 2019
  ident: B43
  article-title: Enhancing diagnosis of autism with optimized machine learning models and personal characteristic data
  publication-title: Front. Comput. Neurosci
  doi: 10.3389/fncom.2019.00009
– volume: 7
  start-page: 128474
  ident: B36
  article-title: Diagnosis of autism spectrum disorder based on eigenvalues of brain networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940198
– start-page: 362
  volume-title: International Workshop on Machine Learning in Medical Imaging
  year: 2017
  ident: B14
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks,
  doi: 10.1007/978-3-319-67389-9_42
– volume: 392
  start-page: 508
  year: 2018
  ident: B33
  article-title: Autism spectrum disorder
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31129-2
– volume-title: Rev. Neurosci
  year: 2020
  ident: B42
  article-title: Machine learning (ML) for the diagnosis of autism spectrum disorder (ASD) using brain imaging
  doi: 10.1515/revneuro-2020-0043
– start-page: 19
  volume-title: Proceedings of the 15th ACM International Conference on Computing Frontiers
  year: 2018
  ident: B18
  article-title: Similarity based classification of ADHD using singular value decomposition,
  doi: 10.1145/3203217.3203239
– start-page: 110
  volume-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
  year: 2018
  ident: B8
  article-title: Connectome priors in deep neural networks to predict autism,
  doi: 10.1109/ISBI.2018.8363534
– volume: 59
  start-page: 2142
  year: 2012
  ident: B45
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 14
  start-page: 319
  year: 2012
  ident: B13
  article-title: Functional magnetic resonance imaging of autism spectrum disorders
  publication-title: Dialog. Clin. Neurosci
  doi: 10.31887/DCNS.2012.14.3/gdichter
– start-page: 1
  volume-title: 2019 International Joint Conference on Neural Networks (IJCNN)
  ident: B15
  article-title: Simple 1-D convolutional networks for resting-state fMRI based classification in autism,
– volume: 17
  start-page: 951
  year: 2007
  ident: B27
  article-title: Functional and anatomical cortical underconnectivity in autism: evidence from an fMRI study of an executive function task and corpus callosum morphometry
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhl006
– volume-title: arXiv preprint arXiv:1603.08631
  year: 2016
  ident: B46
  article-title: Classification of Alzheimer's disease using fMRI data and deep learning convolutional neural networks
– volume: 19
  start-page: 659
  year: 2014
  ident: B12
  article-title: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– start-page: 39
  volume-title: International Conference on Computational Advances in Bio and Medical Sciences
  ident: B37
  article-title: Autoencoder based methods for diagnosis of autism spectrum disorder,
– volume-title: Neuroinformatics
  year: 2013
  ident: B9
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
– volume: 17
  start-page: 16
  year: 2018
  ident: B25
  article-title: Identification of autism spectrum disorder using deep learning and the abide dataset
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2017.08.017
– volume-title: Cross-Validation for Detecting and Preventing Overfitting
  year: 2001
  ident: B35
– volume-title: Mental Disorders and Disabilities Among Low-Income Children
  year: 2015
  ident: B5
  article-title: Clinical characteristics of intellectual disabilities,
– volume: 72
  start-page: 1
  year: 2011
  ident: B39
  publication-title: Sparse Autoencoder
– volume: 45
  start-page: 778
  year: 2015
  ident: B7
  article-title: Feasibility and effectiveness of very early intervention for infants at-risk for autism spectrum disorder: a systematic review
  publication-title: J. Autism Dev. Disord
  doi: 10.1007/s10803-014-2235-2
– year: 2020
  ident: B24
  article-title: A robust DWT-CNN based cad system for early diagnosis of autism using task-based fMRI
  publication-title: Med. Phys
  doi: 10.1002/mp.14692
– volume-title: Diagnostic and Statistical Manual of Mental Disorders (DSM-5
  year: 2013
  ident: B2
– volume: 12
  start-page: 1018
  year: 2019
  ident: B28
  article-title: Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2018.01018
– volume: 12
  start-page: 491
  year: 2018
  ident: B32
  article-title: A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2018.00491
– start-page: 180
  volume-title: Deep Learning
  ident: B21
  article-title: 6.2. 2.3 softmax units for multinoulli output distributions,
– volume: 9
  start-page: 1
  year: 2019
  ident: B34
  article-title: Structural brain abnormalities in children and adolescents with comorbid autism spectrum disorder and attention-deficit/hyperactivity disorder
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-019-0679-z
– volume-title: Deep Learning, Vol. 1
  ident: B22
– volume: 67
  start-page: 1
  year: 2018
  ident: B3
  article-title: Prevalence of autism spectrum disorder among children aged 8 years–autism and developmental disabilities monitoring network, 11 sites, United States, 2014
  publication-title: MMWR Surveill. Summar
  doi: 10.15585/mmwr.ss6706a1
– volume: 13
  start-page: 1325
  year: 2019
  ident: B47
  article-title: Automated detection of autism spectrum disorder using a convolutional neural network
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2019.01325
– volume: 11
  start-page: 460
  year: 2017
  ident: B23
  article-title: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2017.00460
– volume: 31
  start-page: 11
  year: 2016
  ident: B48
  article-title: The comorbidity of ADHD in children diagnosed with autism spectrum disorder
  publication-title: Res. Autism Spectr. Disord
  doi: 10.1016/j.rasd.2016.07.003
– volume: 63
  start-page: 55
  year: 2015
  ident: B26
  article-title: Resting state functional magnetic resonance imaging and neural network classified autism and control
  publication-title: Cortex
  doi: 10.1016/j.cortex.2014.08.011
SSID ssj0062650
Score 2.4860826
Snippet Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder which is characterized by impaired communication, and limited social interactions....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 654315
SubjectTerms ABIDE
ASD
Autism
autoencoder
Biomarkers
Brain mapping
Classification
Data acquisition
Datasets
Deep learning
fMRI
Functional magnetic resonance imaging
Medical imaging
Neural networks
Neurodevelopmental disorders
Neuroimaging
Neuroscience
Social interactions
sparse autoencoder
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBlPIIFGQkhAAR6o3zsLmglN2qILFCXSr1FtmODZW6ybKbPVTixzPjOEsXoV79SBzP2DNjf_mGkJcuHVnjENWYJjZOwQLEGgE2WmqdMl2rxHi0xTQ_OUu_nGfn4cBtFWCVw57oN-q6NXhGfgimWgqwnbn8uPgVY9YovF0NKTRuk13YggUEX7tHk-m302EvBm89C3eZEIrJQ9cgRATi_dF7_KcSc-Fes0aetP9_nua_gMlrFuj4HrkbXEda9rLeI7dsc5_slw2EzfMr-op6MKc_Jd8nv8vZOJ6Vk6ntPtCSzhYQv1parrsWiStru3xHVVPTsbULz88Bz532gHCK2dEuKfiyUIs3DGDbsOPFak4xWX23XM_pwNlJX8N73lCPO6Du6-lnOladekDOjiffP53EIdFCbFLJu1hYlSTSZYo5VWe51LmohctdZlyROs15whzTI82McEjgkoPVrw00qS0DiRb8Idlp2sY-JtTpLDEQdCboGxjHJcuE0gLCIs55xllE2DDhlQks5JgM47KCaARlVHkZVSijqpdRRN5uuix6Co6bGh-hFDcNkT3bF7TLH1VYjFVipU6EdamT6FDlWhpWQ1Gaq6LIZB6Rg0EHqrCkV9VfBYzIi001LEa8YVGNbdfYZgQfioQ_EXnUq8xmJDjegksRkWJLmbaGul3TXPz0hN8C5hw80yc3D-spuYMT4WFF4oDsgD7YZ-Axdfp5WBZ_AMiYFcU
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_H-eKLqOdHz1MiiKjYM9ukbSKIVPeOU7h9cF24t5KkiR7sdte9LnjgH-9M-oEri0--NkmbZGaY3zST3xDyzIuRsx6zGkXiYgEeIDaYYGOUMYKZSic2ZFtMsrOZ-HyRXuyRvrxVt4FXO0M7rCc1W8-Pf_64fg8G_w4jTvC3b3yNiR8QxY-O8aYkXjm_AY4pRzs9F8OhAkD3tDvY3D1syzUFBv9dsPPv7Mk_3NHpbXKrw5G0aAV_h-y5-i45KGqIoRfX9DkNmZ3hl_kB-VVMx_G0OJm45i0t6HQFK3a02DRLZLGs3Po11XVFx86tAlkHvHfSZodTLJU2pwBsoRWPG8DR4cDLqwXFyvXNerOgPYEnfQHfeUlDEgL1518-0bFu9D0yOz35-vEs7qouxFYo3sTS6SRRPtXM6yrNlMlkJX3mU-tz4Q3nCfPMjAyz0iObSwYQoLLQpXIMxJvz-2S_XtbuIaHepImFCDRBoGA9VyyV2kiIkTjnKWcRYf2Gl7ajJMfKGPMSQhOUURlkVKKMylZGEXk1DFm1fBz_6vwBpTh0RCrt8GC5_lZ2llkmTplEOi-8QnSVGWVZBY9EpvM8VVlEjnodKHv1LAE4KglILlMReTo0g2XicYuu3XKDfUawUGT_iciDVmWGmeB8c65kRPItZdqa6nZLffk9sH9L2HOAqYf_Y22PyE3crpCJJI_IPmiNewwgqzFPgun8BvXmJNg
  priority: 102
  providerName: Scholars Portal
Title ASD-SAENet: A Sparse Autoencoder, and Deep-Neural Network Model for Detecting Autism Spectrum Disorder (ASD) Using fMRI Data
URI https://www.ncbi.nlm.nih.gov/pubmed/33897398
https://www.proquest.com/docview/2509897669
https://www.proquest.com/docview/2518734949
https://pubmed.ncbi.nlm.nih.gov/PMC8060560
https://doaj.org/article/2e9b28ef4f974156b9c0d9b246a77596
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbQuHBBwPgRGJOREAJEmBM7ic0tox0DaRVamdSbZTu2mLSm1ZYekPjjec9JqxYhuHDJIXZSx--573vxl-8R8jKIzLuArEaR-1RABEgtEmysslYw25jcRbbFpDy9EF9mxWyr1Bdywnp54H7ijnKvbC59EEFh8CutcqyBU6I0VVWoKLYNMW-dTPX_wYDSi2EPE1IwdRRapIZAnp-9x28psQbuVhSKYv1_Qpi_EyW3Is_JPXJ3gIy07od6n9zy7QOyX7eQLs9_0Fc0kjjj2_F98rOejtJpPZ747gOt6XQJeaun9apboGBl46_fUdM2dOT9MupywH0nPRGcYlW0KwoYFlpxZwFiGl54eTOnWKS-u17N6Vqrk76G33lDI9-AhrPzz3RkOvOQXJyMv308TYcCC6kTinep9CbPVSgMC6YpSmVL2chQhsKFSgTLec4Cs5llTgYUbinBAI2DLo1nYMmKPyJ77aL1TwgNtsgdJJs5YgIXuGKFNFZCOsQ5LzhLCFtPuHaD-jgWwbjSkIWgjXS0kUYb6d5GCXm7uWTZS2_8rfMxWnHTEVWz4wnwJT34kv6XLyXkYO0DeljKNxowopIA2kqVkBebZliEuLNiWr9YYZ8MHhSFfhLyuHeZzUhwvBVXMiHVjjPtDHW3pb38HoW-Jcw5INKn_-PZnpE7OF2RdCQPyB54jX8OeKqzh-T28Xjy9fwwLiE4fpplcDwT8hd_Hh-t
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCBgfgQFGAgSIsNTOh42EUEY7tWyr0LpJewuxY8OkNSlrKzSJv4m_kTsnKStCe9tr7DgX39l3F__yO0Ke27BrtEVUY8iMH4IH8BUCbJRUKgxUkTPt0BajeHAUfj6OjtfI7_ZfGIRVtnui26iLSuM38i1w1VKA74zlx-kPH6tG4elqW0KjNotdc_4TUrbZh2EP9PuCsZ3-4aeB31QV8HUo-dwXJmdM2igPbF5EsVSxKISNbaRtElrFOQtsoLoq0MIiW0kMLq7Q0KUwAYifcBj3GlkPOaQyHbK-3R99OWj3fsgOoubsFFI_uWVLhKQw8KPv8B9OrL17wfu5IgH_i2z_BWhe8Hg7t8jNJlSlaW1bt8maKe-QjbSENH1yTl9SBx51X-U3yK903PPHaX9k5u9pSsdTyJcNTRfzCokyC3P2luZlQXvGTB0fCIw7qgHoFKuxnVKInaEVTzTAl-KNJ7MJDIM1ehYT2nKE0lfwnNfU4Ryo3T8Y0l4-z--SoytRwT3SKavSPCDUqohpSHIZxiLachlEIlcC0jDOecQDjwTthGe6YT3H4hunGWQ_qKPM6ShDHWW1jjzyZnnLtKb8uKzzNmpx2RHZut2F6uxb1iz-jBmpmDA2tBIDuFhJHRRwKYzzJIlk7JHN1gayZguZZX8N3iPPls2w-PFEJy9NtcA-XXhRJBjyyP3aZJaSoLwJl8IjyYoxrYi62lKefHcE4wLmHCLhh5eL9ZRcHxzu72V7w9HuI3IDJ8VBmsQm6YBtmMcQrc3Vk2aJUPL1qlflHw3GU4I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IGB8BAYYCRAgwlzny0ZCKKOrVgbVtDJpbyFObJi0pmVthSbxl_HXceckZUVob3uLYse5-M73Yf9yB_DUhl1TWEI1hsL4IVoAXxPARiutQ67LXBQObTGMdw_Dj0fR0Rr8bv-FIVhlqxOdoi4nBe2Rb6GpVhJtZ6y2bAOL2O_1309_-FRBik5a23IatYjsmbOfGL7N3g16yOtnQvR3vnzY9ZsKA34RqmDuS5MLoWyUc5uXUax0LEtpYxsVNgmtDgLBLdddzQtpKXNJjOauLLBLaTh-ShLguFdgPcFL3oH17Z3h_kFrBzBSiJpzVAwDkeqK4CkCbeob-p-T6vCes4SuYMD_vNx_wZrnrF__Blxv3FaW1nJ2E9ZMdQs20gpD9vEZe84ckNTt0G_Ar3TU80fpztDM37KUjaYYOxuWLuYTSppZmtPXLK9K1jNm6nKD4LjDGozOqDLbCUM_GlvpdAPtKj14PBvjMFSvZzFmbb5Q9gLf85I5zAOznw8GrJfP89tweCksuAOdalKZe8CsjkSBAa8gv6SwgeKRzLXEkCwIgijgHvB2wrOiyYBOhThOMoyEiEeZ41FGPMpqHnnwavnItE7_cVHnbeLisiNl7nY3JqffskYRZMIoLaSxoVXkzMVaFbzEW2GcJ0mkYg82WxnIGnUyy_4KvwdPls2oCOh0J6_MZEF9uvihlGzIg7u1yCwpIXqTQEkPkhVhWiF1taU6_u6SjUucc_SK719M1mO4iqsx-zQY7j2AazQnDt0kN6GDomEeouM214-aFcLg62Uvyj_Mlle3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASD-SAENet%3A+A+Sparse+Autoencoder%2C+and+Deep-Neural+Network+Model+for+Detecting+Autism+Spectrum+Disorder+%28ASD%29+Using+fMRI+Data&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Fahad+Almuqhim&rft.au=Fahad+Saeed&rft.date=2021-04-08&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5188&rft.volume=15&rft_id=info:doi/10.3389%2Ffncom.2021.654315&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2e9b28ef4f974156b9c0d9b246a77596
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon