Malate Transport and Metabolism in Nitrogen-Fixing Legume Nodules
Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacte...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 26; no. 22; p. 6876 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored. |
---|---|
AbstractList | Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized
system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored. Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored. Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored. Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored. |
Author | Day, David A. Smith, Penelope M. C. Ramesh, Sunita A. Booth, Nicholas J. |
AuthorAffiliation | 1 College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; nick.booth@flinders.edu.au (N.J.B.); sunita.ramesh@flinders.edu.au (S.A.R.) 2 School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia; p.smith3@latrobe.edu.au |
AuthorAffiliation_xml | – name: 1 College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; nick.booth@flinders.edu.au (N.J.B.); sunita.ramesh@flinders.edu.au (S.A.R.) – name: 2 School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia; p.smith3@latrobe.edu.au |
Author_xml | – sequence: 1 givenname: Nicholas J. surname: Booth fullname: Booth, Nicholas J. – sequence: 2 givenname: Penelope M. C. orcidid: 0000-0001-9841-1112 surname: Smith fullname: Smith, Penelope M. C. – sequence: 3 givenname: Sunita A. orcidid: 0000-0003-2230-4737 surname: Ramesh fullname: Ramesh, Sunita A. – sequence: 4 givenname: David A. orcidid: 0000-0001-7967-2173 surname: Day fullname: Day, David A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34833968$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1vFSEUhompsR_6A9yYSdy4GeXrMrAxaRqrTW7rpq4Jw5wZuWHgCkyj_77c3ta0Na4gh_d9eDmcY3QQYgCE3hL8kTGFP83Rg108ZCooFbITL9AR4RS3DHN18Gh_iI5z3mBMCSerV-iQcVkBQh6h00vjTYHmOpmQtzGVxoShuYRi-uhdnhsXmitXUpwgtOfutwtTs4ZpmaG5isPu7tfo5Wh8hjf36wn6cf7l-uxbu_7-9eLsdN1arlhpZdcL3lOiRrUyIEdF7MAMUWplQUrOGO4EBiYtHzuDAUY2GlDSYKlqiazYCbrYc4doNnqb3GzSHx2N03eFmCZtUnHWgwbB6ws5H02Heb_iCohRwygoZhIL21fW5z1ru_QzDBZCScY_gT49Ce6nnuKNloLI2sQK-HAPSPHXArno2WUL3psAccmaCswxwZzRKn3_TLqJSwq1VTsVJTWVklX17nGiv1EefqoKur3ApphzglFbV0xxcRfQeU2w3s2E_mcmqpM8cz7A_--5BXMOu6w |
CitedBy_id | crossref_primary_10_1007_s11104_024_06518_9 crossref_primary_10_3390_agronomy14030511 crossref_primary_10_1016_j_molp_2023_09_021 crossref_primary_10_3390_ijms24054647 crossref_primary_10_1016_j_envexpbot_2022_104810 crossref_primary_10_1016_j_plaphy_2024_108362 crossref_primary_10_3389_fpls_2023_1114840 crossref_primary_10_1016_j_ncrops_2024_100015 crossref_primary_10_1016_j_jhazmat_2024_136062 crossref_primary_10_1134_S1021443724607249 crossref_primary_10_3390_d16120734 crossref_primary_10_1016_j_stress_2024_100368 crossref_primary_10_1111_pce_15026 crossref_primary_10_1016_j_plgene_2022_100388 crossref_primary_10_1038_s41598_024_78295_5 crossref_primary_10_3390_ijms231810618 crossref_primary_10_1016_j_xplc_2024_100888 |
Cites_doi | 10.1111/j.1399-3054.1997.tb03452.x 10.1104/pp.010714 10.1073/pnas.1832002100 10.1104/pp.70.5.1290 10.1007/978-94-011-5159-7_274 10.1104/pp.81.4.1092 10.1016/0014-5793(91)81183-9 10.1016/S1360-1385(99)01486-7 10.1046/j.1365-3040.1997.d01-25.x 10.1007/BF00414724 10.1016/0038-0717(95)98609-R 10.1016/j.jplph.2009.12.016 10.1093/jxb/47.3.421 10.1146/annurev.arplant.48.1.493 10.4161/psb.6.1.14318 10.1093/plphys/kiab044 10.1104/pp.68.5.1115 10.1007/BF01275710 10.1016/j.femsre.2004.04.002 10.1146/annurev.pp.42.060191.002105 10.1111/j.1365-3040.2010.02214.x 10.1093/jxb/41.8.961 10.1016/S0014-5793(99)01729-9 10.1093/jxb/erw499 10.1111/j.1365-313X.2003.01991.x 10.1093/jxb/36.5.756 10.1038/ncb1782 10.1073/pnas.78.7.4284 10.1038/nature06720 10.1080/07352680091139277 10.1128/AEM.01561-17 10.1038/srep39447 10.3390/genes11050483 10.1099/00221287-143-2-489 10.1080/00380768.1989.10434759 10.1104/pp.90.3.982 10.1186/1471-2229-10-160 10.1111/pce.12116 10.1104/pp.74.3.499 10.1146/annurev-arplant-050312-120235 10.1111/tpj.12442 10.1105/tpc.017020 10.1094/MPMI-4-037 10.1094/MPMI-20-11-1353 10.1104/pp.85.3.768 10.1002/9781119053095 10.1104/pp.71.4.841 10.1094/MPMI-01-12-0011-R 10.1034/j.1399-3054.1998.1020111.x 10.1105/tpc.009787 10.1104/pp.81.4.1097 10.1104/pp.102.015362 10.1016/S0031-9422(00)00162-X 10.1104/pp.104.058453 10.1016/j.plaphy.2010.01.020 10.1046/j.1365-3040.1999.00490.x 10.1007/BF02411397 10.1093/mp/sss084 10.1016/S0176-1617(00)80056-5 10.1007/978-1-4020-3548-7 10.1146/annurev.pp.39.060188.001501 10.1104/pp.15.01910 10.1111/j.1365-3040.1995.tb00574.x 10.1104/pp.103.032102 10.1126/scisignal.2005703 10.1105/tpc.114.128736 10.1016/j.pbi.2017.08.003 10.1074/jbc.272.26.16256 10.1074/mcp.M114.043166 10.1016/0014-5793(88)80697-5 10.1128/JB.00926-08 10.1002/1615-9861(200203)2:3<325::AID-PROT325>3.0.CO;2-W 10.1104/pp.103.031484 10.1104/pp.93.1.12 10.1105/tpc.106.048173 10.1146/annurev-genet-110410-132549 10.1111/j.1365-313X.2011.04587.x 10.1007/BF00248427 10.1111/j.1399-3054.1988.tb00606.x 10.1111/j.1365-2958.1993.tb01177.x 10.1007/BF01279476 10.1038/emboj.2012.120 10.1111/j.1365-3040.2004.01208.x 10.1016/j.cub.2018.09.031 10.1016/j.pbi.2021.102041 10.1128/jb.160.3.903-909.1984 10.1016/0168-9452(87)90024-0 10.1007/s00018-016-2415-7 10.1111/j.1365-313X.2007.03367.x 10.1094/MPMI-04-16-0071-R 10.1093/jxb/42.10.1325 10.1111/j.1365-313X.2011.04612.x 10.1007/BF00248711 10.1104/pp.109.148379 10.1128/JB.184.15.4071-4080.2002 10.1016/j.tplants.2016.08.001 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules26226876 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_e6434844fa704b549e1a9df6203806cb PMC8618214 34833968 10_3390_molecules26226876 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Australian Research Council grantid: IH140100013. |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-87b64b219f95ae8f91cd3a1995ce884330760e38c4f7a0eef3fae98a089c4f153 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:28:01 EDT 2025 Thu Aug 21 14:10:18 EDT 2025 Thu Jul 10 21:59:35 EDT 2025 Fri Jul 25 09:31:45 EDT 2025 Mon Jul 21 05:40:32 EDT 2025 Tue Jul 01 03:12:02 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | metabolism malate legume nitrogen fixation nodules |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-87b64b219f95ae8f91cd3a1995ce884330760e38c4f7a0eef3fae98a089c4f153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9841-1112 0000-0003-2230-4737 0000-0001-7967-2173 |
OpenAccessLink | https://doaj.org/article/e6434844fa704b549e1a9df6203806cb |
PMID | 34833968 |
PQID | 2602162098 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6434844fa704b549e1a9df6203806cb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618214 proquest_miscellaneous_2604010432 proquest_journals_2602162098 pubmed_primary_34833968 crossref_citationtrail_10_3390_molecules26226876 crossref_primary_10_3390_molecules26226876 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211115 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211115 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Emmerlich (ref_72) 2003; 100 Ribeiro (ref_35) 1996; 250 Meyer (ref_79) 2011; 67 Michaeli (ref_92) 2011; 67 ref_11 Lacombe (ref_62) 2017; 68 Parsons (ref_101) 1996; 47 Driscoll (ref_52) 1997; 143 Millar (ref_42) 1995; 18 Kovermann (ref_78) 2007; 52 Wienkoop (ref_60) 2003; 131 Kinnersley (ref_87) 2000; 19 Udvardi (ref_53) 1991; 156 Udvardi (ref_28) 1988; 231 Do (ref_65) 2018; 41 Koyro (ref_21) 2000; 157 Jeong (ref_63) 2004; 134 Sulieman (ref_88) 2011; 6 Layzell (ref_102) 1982; 70 Schubert (ref_10) 1981; 68 Hosie (ref_96) 2002; 184 Fedorova (ref_18) 1999; 22 Segonzac (ref_64) 2007; 19 Liu (ref_73) 2017; 8 Saalbach (ref_61) 2002; 2 Beck (ref_23) 2018; 28 Bryce (ref_33) 1990; 41 Sulieman (ref_89) 2010; 167 Giacomello (ref_107) 2021; 60 Yurgel (ref_38) 2004; 28 Whitehead (ref_46) 1998; 203 Udvardi (ref_55) 1989; 90 Rawsthorne (ref_34) 1986; 81 Udvardi (ref_6) 1997; 48 Pate (ref_100) 1984; 74 Gordon (ref_12) 1985; 36 Millar (ref_47) 1997; 20 Day (ref_17) 1991; 29 Smith (ref_15) 2002; 129 Whitehead (ref_2) 1997; 100 Scherzer (ref_76) 2012; 5 Rosendahl (ref_13) 1990; 93 Pessi (ref_30) 2007; 20 Gavrin (ref_9) 2021; 186 McKay (ref_48) 1988; 134 ref_83 Whelan (ref_54) 1991; 293 ref_81 Rawsthorne (ref_31) 1986; 81 Complainville (ref_22) 2003; 15 Guenther (ref_58) 2003; 15 Oldroyd (ref_1) 2011; 45 Takanashi (ref_26) 2016; 29 Sugiyama (ref_25) 2017; 58 Puppo (ref_43) 1987; 50 Hurth (ref_71) 2005; 137 Kryvoruchko (ref_24) 2016; 171 Shelp (ref_84) 1999; 4 Streeter (ref_39) 1987; 85 Copeland (ref_49) 1989; 135 Wandrey (ref_68) 2004; 134 Girousse (ref_98) 1991; 29 White (ref_91) 2009; 191 Niemietz (ref_57) 2000; 465 Day (ref_32) 1988; 26 Ramesh (ref_105) 2015; 6 Rivers (ref_59) 1997; 272 Mitsch (ref_41) 2018; 84 Vance (ref_90) 1991; 42 Atkins (ref_99) 1983; 71 Beuve (ref_103) 2004; 27 Negi (ref_74) 2008; 452 Udvardi (ref_3) 2013; 64 Pierre (ref_56) 2013; 36 Driscoll (ref_51) 1993; 7 Bolton (ref_37) 1986; 144 Gavrin (ref_4) 2014; 26 Day (ref_44) 1986; 134 Jin (ref_94) 1990; 153 Maierhofer (ref_75) 2014; 7 Sasaki (ref_77) 2004; 37 Libault (ref_82) 2010; 152 Li (ref_27) 1991; 42 Sulieman (ref_97) 2010; 33 Bown (ref_86) 2016; 21 Udvardi (ref_80) 1990; 182 Sunita (ref_85) 2017; 74 Mun (ref_70) 2016; 6 Barbosa (ref_104) 2010; 48 Li (ref_40) 2000; 54 Bown (ref_93) 1989; 8 Elmerich (ref_14) 1998; Volume 31 Takanashi (ref_19) 2012; 25 Ronson (ref_29) 1984; 160 Miller (ref_95) 1991; 4 Henrichs (ref_67) 2012; 31 Clarke (ref_7) 2015; 14 Brown (ref_20) 1995; 27 Kouchi (ref_16) 1988; 73 ref_45 Lee (ref_66) 2008; 10 Roux (ref_69) 2014; 77 Ronson (ref_36) 1981; 78 Rolfe (ref_8) 1988; 39 ref_5 Kimura (ref_50) 1989; 35 Serraj (ref_106) 1998; 102 |
References_xml | – volume: 100 start-page: 30 year: 1997 ident: ref_2 article-title: The peribacteroid membrane publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1997.tb03452.x – volume: 129 start-page: 1216 year: 2002 ident: ref_15 article-title: Effect of short-term N2 deficiency on expression of the ureide pathway in cowpea root nodules publication-title: Plant Physiol. doi: 10.1104/pp.010714 – volume: 100 start-page: 11122 year: 2003 ident: ref_72 article-title: The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1832002100 – volume: 70 start-page: 1290 year: 1982 ident: ref_102 article-title: Modeling C and N transport to developing soybean fruits publication-title: Plant Physiol. doi: 10.1104/pp.70.5.1290 – volume: Volume 31 start-page: 443 year: 1998 ident: ref_14 article-title: Nodule Carbon Metabolism: Organic Acids for N2 Fixation publication-title: Biological Nitrogen Fixation for the 21st Century doi: 10.1007/978-94-011-5159-7_274 – volume: 81 start-page: 1092 year: 1986 ident: ref_34 article-title: Preparation and properties of mitochondria from cowpea nodules publication-title: Plant Physiol. doi: 10.1104/pp.81.4.1092 – volume: 29 start-page: 41 year: 1991 ident: ref_98 article-title: Sugar and amino acid composition of phloem sap of Medicago sativa: A comparative study of two collecting methods publication-title: Plant Physiol. Biochem. – volume: 293 start-page: 188 year: 1991 ident: ref_54 article-title: Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules publication-title: FEBS Lett. doi: 10.1016/0014-5793(91)81183-9 – volume: 8 start-page: 186 year: 2017 ident: ref_73 article-title: Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum) publication-title: Front. Plant Sci. – volume: 4 start-page: 446 year: 1999 ident: ref_84 article-title: Metabolism and functions of gamma-aminobutyric acid publication-title: Trends Plant Sci. doi: 10.1016/S1360-1385(99)01486-7 – volume: 20 start-page: 1273 year: 1997 ident: ref_47 article-title: Expression and kinetics of the mitochondrial alternative oxidase in nitrogen-fixing nodules of soybean roots publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.1997.d01-25.x – volume: 144 start-page: 142 year: 1986 ident: ref_37 article-title: Dicarboxylic acid transport in Rhizobium meliloti: Isolation of mutants and cloning of dicarboxylic acid transport genes publication-title: Arch. Microbiol. doi: 10.1007/BF00414724 – volume: 27 start-page: 387 year: 1995 ident: ref_20 article-title: Symplastic transport in soybean root nodules publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)98609-R – volume: 167 start-page: 683 year: 2010 ident: ref_89 article-title: The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa publication-title: Plant Physiol. doi: 10.1016/j.jplph.2009.12.016 – volume: 47 start-page: 421 year: 1996 ident: ref_101 article-title: Cycling of amino compounds in symbiotic lupin publication-title: J. Exp. Bot. doi: 10.1093/jxb/47.3.421 – volume: 48 start-page: 493 year: 1997 ident: ref_6 article-title: Metabolite transport across symbiotic membranes of legume nodules publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.arplant.48.1.493 – volume: 6 start-page: 32 year: 2011 ident: ref_88 article-title: Does GABA increase the efficiency of symbiotic N2 fixation in legumes? publication-title: Plant Signal. Behav. doi: 10.4161/psb.6.1.14318 – volume: 186 start-page: 581 year: 2021 ident: ref_9 article-title: Soybean Yellow Stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation publication-title: Plant Physiol. doi: 10.1093/plphys/kiab044 – volume: 68 start-page: 1115 year: 1981 ident: ref_10 article-title: Enzymes of Purine Biosynthesis and Catabolism in Glycine max: I. Comparison of Activities with N₂ Fixation and Composition of Xylem Exudate during Nodule Development publication-title: Plant Physiol. doi: 10.1104/pp.68.5.1115 – volume: 134 start-page: 121 year: 1986 ident: ref_44 article-title: Isolation and oxidative properties of mitochondria and bacteroids from soybean root nodules publication-title: Protoplasma doi: 10.1007/BF01275710 – volume: 28 start-page: 489 year: 2004 ident: ref_38 article-title: Dicarboxylate transport by rhizobia publication-title: FEMS Microbiol. Rev. doi: 10.1016/j.femsre.2004.04.002 – volume: 42 start-page: 373 year: 1991 ident: ref_90 article-title: Carbon in N2 fixation: Limitation or exquisite adaptation publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.pp.42.060191.002105 – volume: 33 start-page: 2162 year: 2010 ident: ref_97 article-title: Phloem-derived gamma-aminobutyric acid (GABA) is involved in upregulating nodule N2 fixation efficiency in the model legume Medicago truncatula publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2010.02214.x – volume: 41 start-page: 961 year: 1990 ident: ref_33 article-title: Tricarboxylic Acid Cycle Activity in Mitochondria from Soybean Nodules and Cotyledons publication-title: J. Exp. Bot. doi: 10.1093/jxb/41.8.961 – volume: 465 start-page: 110 year: 2000 ident: ref_57 article-title: Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)01729-9 – volume: 68 start-page: 3107 year: 2017 ident: ref_62 article-title: Substrate(un)specificity of Arabidopsis NRT1/PTR FAMILY(NPF) proteins publication-title: J. Exp. Bot. doi: 10.1093/jxb/erw499 – volume: 37 start-page: 645 year: 2004 ident: ref_77 article-title: A wheat gene encoding an aluminum-activated malate transporter publication-title: Plant J. doi: 10.1111/j.1365-313X.2003.01991.x – volume: 36 start-page: 756 year: 1985 ident: ref_12 article-title: The Flux of 14C-Labelled Photosynthate through Soyabean Root Nodules during N2 Fixation publication-title: J. Exp. Bot. doi: 10.1093/jxb/36.5.756 – ident: ref_45 – volume: 10 start-page: 1217 year: 2008 ident: ref_66 article-title: The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1782 – volume: 78 start-page: 4284 year: 1981 ident: ref_36 article-title: C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.78.7.4284 – volume: 452 start-page: 483 year: 2008 ident: ref_74 article-title: CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells publication-title: Nature doi: 10.1038/nature06720 – volume: 19 start-page: 479 year: 2000 ident: ref_87 article-title: Gamma aminobutyric acid(GABA) and plant responses to stress publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680091139277 – volume: 84 start-page: 1 year: 2018 ident: ref_41 article-title: Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01561-17 – volume: 6 start-page: 39447 year: 2016 ident: ref_70 article-title: Lotus Base: An integrated information portal for the model legume Lotus japonicus publication-title: Sci. Rep. doi: 10.1038/srep39447 – ident: ref_81 doi: 10.3390/genes11050483 – volume: 134 start-page: 1433 year: 1988 ident: ref_48 article-title: C4-dicarboxylate metabolism in free-living and bacteroid forms of Rhizobium leguminosarum MNF3841 publication-title: J. Microbiol. – volume: 143 start-page: 489 year: 1997 ident: ref_52 article-title: Properties of NAD+- and NADP+-dependent malic enzymes of Rhizobium meliloti and differential expression of their genes in nitrogen-fixing bacteroids publication-title: Microbiology doi: 10.1099/00221287-143-2-489 – volume: 35 start-page: 271 year: 1989 ident: ref_50 article-title: Presence and characteristics of NADP-malic enzyme in soybean nodule bacteroids publication-title: J. Soil Sci. Plant Nutr. doi: 10.1080/00380768.1989.10434759 – volume: 8 start-page: 21 year: 1989 ident: ref_93 article-title: The metabolism and physiological roles of 4-aminobutyric acid publication-title: Life Sci. Adv. – volume: 90 start-page: 982 year: 1989 ident: ref_55 article-title: Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean Glycine max Root Nodules publication-title: Plant Physiol. doi: 10.1104/pp.90.3.982 – ident: ref_83 doi: 10.1186/1471-2229-10-160 – volume: 26 start-page: 567 year: 1988 ident: ref_32 article-title: Malate oxidation by soybean nodule mitochondria and the possible consequences for nitrogen fixation publication-title: Plant Physiol. Biochem. – volume: 36 start-page: 2059 year: 2013 ident: ref_56 article-title: Peribacteroid space acidification: A marker of mature bacteroid functioning in Medicago truncatula nodules publication-title: Plant Cell Environ. doi: 10.1111/pce.12116 – volume: 74 start-page: 499 year: 1984 ident: ref_100 article-title: Spontaneous phloem bleeding from cryopunctured fruits of a ureide-producing legume publication-title: Plant Physiol. doi: 10.1104/pp.74.3.499 – volume: 6 start-page: 78 year: 2015 ident: ref_105 article-title: GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters publication-title: Nat. Commun. – volume: 64 start-page: 781 year: 2013 ident: ref_3 article-title: Transport and Metabolism in Legume-Rhizobia Symbioses publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120235 – volume: 77 start-page: 817 year: 2014 ident: ref_69 article-title: An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing publication-title: Plant J. doi: 10.1111/tpj.12442 – volume: 135 start-page: 2005 year: 1989 ident: ref_49 article-title: Malic Enzyme Activity in Bacteroids from Soybean Nodules publication-title: J. Gen. Micrbiol. – volume: 15 start-page: 2778 year: 2003 ident: ref_22 article-title: Nodule initiation involves the creation of a new symplasmic field in specific root cells of medicago species publication-title: Plant Cell doi: 10.1105/tpc.017020 – volume: 4 start-page: 37 year: 1991 ident: ref_95 article-title: Glutamate and γ-Aminobutyrate Metabolism publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-4-037 – volume: 20 start-page: 1353 year: 2007 ident: ref_30 article-title: Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-20-11-1353 – volume: 85 start-page: 768 year: 1987 ident: ref_39 article-title: Carbohydrate, organic Acid, and amino Acid composition of bacteroids and cytosol from soybean nodules publication-title: Plant Physiol. doi: 10.1104/pp.85.3.768 – ident: ref_5 doi: 10.1002/9781119053095 – volume: 71 start-page: 841 year: 1983 ident: ref_99 article-title: Amino acid transport and metabolism in relation to the nitrogen economy of a legume leaf publication-title: Plant Physiol. doi: 10.1104/pp.71.4.841 – volume: 25 start-page: 869 year: 2012 ident: ref_19 article-title: Tissue-Specific Transcriptome Analysis in Nodules of Lotus japonicus publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-01-12-0011-R – volume: 102 start-page: 79 year: 1998 ident: ref_106 article-title: Accumulation of gamma-aminobutyric acid in nodulated soybean in response to drought stress publication-title: Physiol. Plant. doi: 10.1034/j.1399-3054.1998.1020111.x – volume: 15 start-page: 981 year: 2003 ident: ref_58 article-title: Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals publication-title: Plant Cell doi: 10.1105/tpc.009787 – volume: 81 start-page: 1097 year: 1986 ident: ref_31 article-title: Metabolism under Microaerobic Conditions of Mitochondria from Cowpea Nodules publication-title: Plant Physiol. doi: 10.1104/pp.81.4.1097 – volume: 131 start-page: 1080 year: 2003 ident: ref_60 article-title: Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules publication-title: Plant Physiol. doi: 10.1104/pp.102.015362 – volume: 54 start-page: 585 year: 2000 ident: ref_40 article-title: Role of malonate in chickpeas publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)00162-X – volume: 137 start-page: 901 year: 2005 ident: ref_71 article-title: Impaired pH Homeostasis in Arabidopsis Lacking the Vacuolar Dicarboxylate Transporter and Analysis of Carboxylic Acid Transport across the Tonoplast publication-title: Plant Physiol. doi: 10.1104/pp.104.058453 – volume: 48 start-page: 443 year: 2010 ident: ref_104 article-title: Nitrate uptake and utilization is modulated by exogenous gamma-aminobutyric acid in Arabidopsis thaliana seedlings publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.01.020 – volume: 22 start-page: 1249 year: 1999 ident: ref_18 article-title: Expression of C-assimilating enzymes in pea (Pisum sativum L.) root nodules. In situ localization in effective nodules publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.1999.00490.x – volume: 182 start-page: 437 year: 1990 ident: ref_80 article-title: Specificity and regulation of the dicarboxylate carrier on the peribacteroid membrane of soybean nodules publication-title: Planta doi: 10.1007/BF02411397 – volume: 5 start-page: 1409 year: 2012 ident: ref_76 article-title: Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels publication-title: Mol. Plant doi: 10.1093/mp/sss084 – volume: 157 start-page: 335 year: 2000 ident: ref_21 article-title: Functional structure of the indeterminate Vicia faba L. root nodule: Implications for metabolite transport publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(00)80056-5 – ident: ref_11 doi: 10.1007/978-1-4020-3548-7 – volume: 29 start-page: 185 year: 1991 ident: ref_17 article-title: Carbon metabolism and compartmentation in nitrogen-fixing legume nodules publication-title: Plant Physiol. Biochem. – volume: 39 start-page: 297 year: 1988 ident: ref_8 article-title: Genetic Analysis of Legume Nodule Initiation publication-title: Annu. Rev. Plant Physiol. doi: 10.1146/annurev.pp.39.060188.001501 – volume: 171 start-page: 554 year: 2016 ident: ref_24 article-title: MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula publication-title: Plant Physiol. doi: 10.1104/pp.15.01910 – volume: 18 start-page: 715 year: 1995 ident: ref_42 article-title: Microaerobic respiration and oxidative phosphorylation by soybean nodule mitochondria: Implications for nitrogen fixation publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.1995.tb00574.x – volume: 134 start-page: 969 year: 2004 ident: ref_63 article-title: A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family publication-title: Plant Physiol. doi: 10.1104/pp.103.032102 – volume: 7 start-page: ra86 year: 2014 ident: ref_75 article-title: Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid publication-title: Sci. Signal. doi: 10.1126/scisignal.2005703 – volume: 26 start-page: 3809 year: 2014 ident: ref_4 article-title: Adjustment of Host Cells for Accommodation of Symbiotic Bacteria: Vacuole Defunctionalization, HOPS Suppression, and TIP1g Retargeting in Medicago publication-title: Plant Cell doi: 10.1105/tpc.114.128736 – volume: 41 start-page: 32 year: 2018 ident: ref_65 article-title: Functions of ABC transporters in plant growth and development publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2017.08.003 – volume: 272 start-page: 16256 year: 1997 ident: ref_59 article-title: Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.26.16256 – volume: 14 start-page: 1301 year: 2015 ident: ref_7 article-title: Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M114.043166 – volume: 231 start-page: 36 year: 1988 ident: ref_28 article-title: A dicarboxylate transporter on the peribacteroid membrane of soybean nodules publication-title: FEBS Lett. doi: 10.1016/0014-5793(88)80697-5 – volume: 250 start-page: 437 year: 1996 ident: ref_35 article-title: Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: Comparison with legume nodules publication-title: Mol. Gen. Genet. – volume: 191 start-page: 1547 year: 2009 ident: ref_91 article-title: Characterization of a γ-aminobutyric acid transport system of Rhizobium leguminosarum bv. viciae 3841 publication-title: J. Bacteriol. doi: 10.1128/JB.00926-08 – volume: 2 start-page: 325 year: 2002 ident: ref_61 article-title: Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes publication-title: Proteomics doi: 10.1002/1615-9861(200203)2:3<325::AID-PROT325>3.0.CO;2-W – volume: 134 start-page: 182 year: 2004 ident: ref_68 article-title: Molecular and Cell Biology of a Family of Voltage-Dependent Anion Channel Porins in Lotus japonicus publication-title: Plant Physiol. doi: 10.1104/pp.103.031484 – volume: 93 start-page: 12 year: 1990 ident: ref_13 article-title: Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism publication-title: Plant Physiol. doi: 10.1104/pp.93.1.12 – volume: 19 start-page: 3760 year: 2007 ident: ref_64 article-title: Nitrate Efflux at the Root Plasma Membrane: Identification of an Arabidopsis Excretion Transporter publication-title: Plant Cell doi: 10.1105/tpc.106.048173 – volume: 45 start-page: 119 year: 2011 ident: ref_1 article-title: The rules of engagement in the legume-rhizobial symbiosis publication-title: Annu. Rev. Gen. doi: 10.1146/annurev-genet-110410-132549 – volume: 67 start-page: 247 year: 2011 ident: ref_79 article-title: Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04587.x – volume: 153 start-page: 455 year: 1990 ident: ref_94 article-title: 4-Aminobutyrate is not available to bacteroids of cowpea Rhizobium MNF2030 in snake bean nodules publication-title: Arch. Microbiol. doi: 10.1007/BF00248427 – volume: 73 start-page: 327 year: 1988 ident: ref_16 article-title: Isolation and enzymological characterization of infected and uninfected protoplasts from root nodules of Glycine max publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1988.tb00606.x – volume: 7 start-page: 865 year: 1993 ident: ref_51 article-title: NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01177.x – volume: 203 start-page: 194 year: 1998 ident: ref_46 article-title: Cytoskeletal arrays in the cells of soybean root nodules: The role of actin microfilaments in the organisation of symbiosomes publication-title: Protoplasma doi: 10.1007/BF01279476 – volume: 31 start-page: 2965 year: 2012 ident: ref_67 article-title: Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation publication-title: EMBO J. doi: 10.1038/emboj.2012.120 – volume: 27 start-page: 1035 year: 2004 ident: ref_103 article-title: Putative role of γ-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2004.01208.x – volume: 28 start-page: 3562 year: 2018 ident: ref_23 article-title: Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.09.031 – volume: 60 start-page: 102041 year: 2021 ident: ref_107 article-title: A new era for plant science: Spatial single-cell transcriptomics publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2021.102041 – volume: 160 start-page: 903 year: 1984 ident: ref_29 article-title: Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum publication-title: J. Bacteriol. doi: 10.1128/jb.160.3.903-909.1984 – volume: 50 start-page: 3 year: 1987 ident: ref_43 article-title: O2 consumption and superoxide dismutase content in purified mitochondria from soybean root nodules publication-title: Plant Sci. doi: 10.1016/0168-9452(87)90024-0 – volume: 58 start-page: 298 year: 2017 ident: ref_25 article-title: Molecular Characterization of LjSWEET3, a Sugar Transporter in Nodules of Lotus japonicus publication-title: Plant Cell Physiol. – volume: 74 start-page: 1577 year: 2017 ident: ref_85 article-title: Gamma-Aminobutyric acid(GABA) signalling in plants publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2415-7 – volume: 52 start-page: 1169 year: 2007 ident: ref_78 article-title: The Arabidopsis vacuolar malate channel is a member of the ALMT family publication-title: Plant J. doi: 10.1111/j.1365-313X.2007.03367.x – volume: 29 start-page: 584 year: 2016 ident: ref_26 article-title: A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-04-16-0071-R – volume: 42 start-page: 1325 year: 1991 ident: ref_27 article-title: Permeability of Isolated Infected Cells from Soybean Nodules publication-title: J. Exp. Bot. doi: 10.1093/jxb/42.10.1325 – volume: 67 start-page: 485 year: 2011 ident: ref_92 article-title: A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04612.x – volume: 156 start-page: 362 year: 1991 ident: ref_53 article-title: ATPase activity and anion transport across the peribacteroid membrane of isolated soybean symbiosomes publication-title: Arch. Microbiol. doi: 10.1007/BF00248711 – volume: 152 start-page: 541 year: 2010 ident: ref_82 article-title: Complete Transcriptome of the Soybean Root Hair Cell, a Single-Cell Model, and Its Alteration in Response to Bradyrhizobium japonicum Infection publication-title: Plant Physiol. doi: 10.1104/pp.109.148379 – volume: 184 start-page: 4071 year: 2002 ident: ref_96 article-title: Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family publication-title: J. Bacteriol doi: 10.1128/JB.184.15.4071-4080.2002 – volume: 21 start-page: 811 year: 2016 ident: ref_86 article-title: Plant GABA: Not just a metabolite publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2016.08.001 |
SSID | ssj0021415 |
Score | 2.4478142 |
SecondaryResourceType | review_article |
Snippet | Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 6876 |
SubjectTerms | Biological Transport Carbon Enzymes Exports Fabaceae - metabolism Infections legume Legumes malate Malates - metabolism Membranes Metabolism Metabolites Nitrogen Nitrogen Fixation nodules Proteins Review Rhizobiaceae - metabolism Root Nodules, Plant - metabolism Soybeans Sucrose Symbiosis |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtemgvIX07TYsLPRVMbGsky6eShC6hdPfUwN6MLI9Sw8ZOdx3Iz8-M7XWybcnVkvCgGc1DM_pGiC8-qwwgP_tQLo0g01VUulhFSkJVxjLL0fGF_nyhzy_gx1Itxwu3zVhWudWJvaKuWsd35Mfkd6eJTuPcfLv-E3HXKM6uji00nopnDF3GUp0t7wOuhKzTkMmUFNofXw0NZ3GTanI6DMOMPLBFPWT___zMv8slH9if2YHYHx3H8GTg9EvxBJtX4vnZtl_ba3EytytyHMMJrjy0TRXOsSM2r-rNVVg34aLu1i2JTDSrb8lmhT_xknRTuGgrJviNuJh9_3V2Ho0NEiIHuexIk5UaStI5PlcWjc8TV0nLj64dGgNSctoNpXHgMxsjeukt5sbGJqdPpOveir2mbfC9CJ1S2lqtrEwkaEmBjS8BkBQAQ8SBDkS83arCjejh3MRiVVAUwbtb_LO7gfg6LbkeoDMem3zK-z9NZNTr_kO7vizGQ1QguU9gALzNYigpssXE5pUnqZAm1q4MxNGWe8V4FDfFveAE4vM0TLzhzIhtsL3p5wAHpjINxLuB2RMl9EciWdPqbEcMdkjdHWnq3z1Qt9EUvSVw-DhZH8SLlAtluLZQHYm9bn2DH8nT6cpPvTjfAcNr_to priority: 102 providerName: ProQuest |
Title | Malate Transport and Metabolism in Nitrogen-Fixing Legume Nodules |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34833968 https://www.proquest.com/docview/2602162098 https://www.proquest.com/docview/2604010432 https://pubmed.ncbi.nlm.nih.gov/PMC8618214 https://doaj.org/article/e6434844fa704b549e1a9df6203806cb |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NBeQt9xHosKPRVMbGsky8ckZBtKdymlgb0ZWR63ho03ZB3oz-_I9prdNrSXXnywJDwejWbms-RvAN5XaWmQ_G8fyiUhproMCxepUEksi0imGTn_QX8211fX-GmhFlulvvyZsJ4euFfcKXHIRINY2TTCgtEMxTYrK51E0kTaFd77cszbgKkBasUcl_o9TMmg_vSmLzVL60RzumE8wchWFOrI-h_KMH8_KLkVeabPYX9IGcVZL-oLeETNS3h6sanU9grOZnbJKaMYicqFbUoxo5YneFmvb0TdiHnd3q3YWMJp_ZOjlfhM39krifmq9AK_huvp5beLq3AojRA6zGTLPqzQWLC3qTJlyVRZ7Epp_e_WjoxBKf2GG0njsEptRFTJylJmbGQyvsVe7g3sNauGDkA4pbS1WlkZS9SSIU1VIBIvfU8OhzqAaKOq3A284b58xTJn_OC1m_-h3QA-jENue9KMv3U-9_ofO3q-6-4GW0E-WEH-LysI4Hgze_mwCNc5Q7Uk5i6ZCeDd2Mxz4_dEbEOr-64PekgqkwDe9pM9SsJPZJE1j053zGBH1N2Wpv7RUXQbzbgtxsP_8W5H8CzxB2n82UN1DHvt3T2dcCbUFhN4nC5Svprpxwk8Ob-cf_k66RbCL3FiCjQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9lAuiPIMFDASXJCiOrHjOAeESmHZ0t09tVJvwXEmbaRtUnZTAX-K38hMsgldQL31ao-V0XheX2zPMPa6iHOjgJ59RC70VaxzP3Mi8iOp8kzIOAFHP_SnMz0-UV9Oo9MN9qt_C0PXKnuf2DrqvHb0j3wP8-4w0KFIzPvLbz51jaLT1b6FRqcWR_DzO0K25bvDj7i_b8Jw9On4YOyvugr4TiWyQfPPtMrQUIsksmCKJHC5tPRS2YExCvF9rAVI41QRWwFQyMJCYqwwCQ4F1CUCXf4WEiYE9szo8wDwAoyG3ckpToq9i67BLSxDjUmOobIm12Jf2yLgf3nt39czr8W70T12d5Wo8v1Os3bYBlT32fZB3x_uAduf2jkmqnwoj85tlfMpNKhW83J5wcuKz8pmUaOK-qPyB8ZIPoEz9IV8VufE8EN2ciuie8Q2q7qCJ4y7KNLW6sjKQCotEUgVmVKADodK0intMdGLKnWrauXUNGOeImoh6ab_SNdjb4cll12pjpuIP5D8B0Kqst0O1IuzdGW0KWC6poxShY2FyhBJQ2CTvEAtlEZol3lst9-9dGX6y_SPonrs1TCNe0MnMbaC-qqlUQSEZeixx91mD5zgF5FljavjNTVYY3V9pirP28LgRiNaDNTTm9l6ybbHx9NJOjmcHT1jd0K6pEP3GqNdttksruA5ZllN9qJVbc6-3rYt_QYU8Dvd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcEG9CCxgJLkjROrHjOAeE-lq1tBtViEq9BcexS6Rt0u6mAv4av46ZzYMuoN569UMZzcvzxeMZQt66uFDC4rOPyIS-iGXh54ZFfsRFkTMeJ9bgD_1pKvdPxKfT6HSN_OrfwmBaZe8Tl466qA3-Ix9D3B0GMmSJGrsuLeJ4d_Lx4tLHDlJ409q302hV5ND-_A7wbfHhYBdk_S4MJ3tfdvb9rsOAb0TCG3AFuRQ5GK1LIm2VSwJTcI2vlo1VSgDWjyWzXBnhYs2sddxpmyjNVAJDAXaMAPe_HiMqGpH17b30-PMA9wI4G9t7VM4TNj5v293aRSgh5FFY5OTaSbhsGPC_KPfvZM1rp9_kAbnfha10q9Wzh2TNVo_I3Z2-W9xjsjXVMwhb6VAsneqqoFPbgJLNysU5LSuals28BoX1J-UPODHpkT0Dz0jTukCCn5CTW2HeUzKq6so-J9REkdRaRpoHXEgOsMrlQlhwP1igTkiPsJ5Vmelql2MLjVkGGAa5m_3DXY-8H7ZctIU7blq8jfwfFmLN7eVAPT_LOhPOLARvQgnhdMxEDrjaBjopHOgkV0ya3CObvfSyzhEssj9q65E3wzTIBu9ldGXrq-UagbCYhx551gp7oAS-CCRL2B2vqMEKqaszVfltWSZcScCOgXhxM1mvyR2wo-zoID3cIPdCzNjBJMdok4ya-ZV9CSFXk7_qdJuSr7dtTr8B3y9Bbw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malate+Transport+and+Metabolism+in+Nitrogen-Fixing+Legume+Nodules&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Booth%2C+Nicholas+J&rft.au=Smith%2C+Penelope+M+C&rft.au=Ramesh%2C+Sunita+A&rft.au=Day%2C+David+A&rft.date=2021-11-15&rft.eissn=1420-3049&rft.volume=26&rft.issue=22&rft_id=info:doi/10.3390%2Fmolecules26226876&rft_id=info%3Apmid%2F34833968&rft.externalDocID=34833968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |