Malate Transport and Metabolism in Nitrogen-Fixing Legume Nodules

Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacte...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 26; no. 22; p. 6876
Main Authors Booth, Nicholas J., Smith, Penelope M. C., Ramesh, Sunita A., Day, David A.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.11.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.
AbstractList Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.
Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.
Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.
Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.
Author Day, David A.
Smith, Penelope M. C.
Ramesh, Sunita A.
Booth, Nicholas J.
AuthorAffiliation 1 College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; nick.booth@flinders.edu.au (N.J.B.); sunita.ramesh@flinders.edu.au (S.A.R.)
2 School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia; p.smith3@latrobe.edu.au
AuthorAffiliation_xml – name: 1 College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; nick.booth@flinders.edu.au (N.J.B.); sunita.ramesh@flinders.edu.au (S.A.R.)
– name: 2 School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia; p.smith3@latrobe.edu.au
Author_xml – sequence: 1
  givenname: Nicholas J.
  surname: Booth
  fullname: Booth, Nicholas J.
– sequence: 2
  givenname: Penelope M. C.
  orcidid: 0000-0001-9841-1112
  surname: Smith
  fullname: Smith, Penelope M. C.
– sequence: 3
  givenname: Sunita A.
  orcidid: 0000-0003-2230-4737
  surname: Ramesh
  fullname: Ramesh, Sunita A.
– sequence: 4
  givenname: David A.
  orcidid: 0000-0001-7967-2173
  surname: Day
  fullname: Day, David A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34833968$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vFSEUhompsR_6A9yYSdy4GeXrMrAxaRqrTW7rpq4Jw5wZuWHgCkyj_77c3ta0Na4gh_d9eDmcY3QQYgCE3hL8kTGFP83Rg108ZCooFbITL9AR4RS3DHN18Gh_iI5z3mBMCSerV-iQcVkBQh6h00vjTYHmOpmQtzGVxoShuYRi-uhdnhsXmitXUpwgtOfutwtTs4ZpmaG5isPu7tfo5Wh8hjf36wn6cf7l-uxbu_7-9eLsdN1arlhpZdcL3lOiRrUyIEdF7MAMUWplQUrOGO4EBiYtHzuDAUY2GlDSYKlqiazYCbrYc4doNnqb3GzSHx2N03eFmCZtUnHWgwbB6ws5H02Heb_iCohRwygoZhIL21fW5z1ru_QzDBZCScY_gT49Ce6nnuKNloLI2sQK-HAPSPHXArno2WUL3psAccmaCswxwZzRKn3_TLqJSwq1VTsVJTWVklX17nGiv1EefqoKur3ApphzglFbV0xxcRfQeU2w3s2E_mcmqpM8cz7A_--5BXMOu6w
CitedBy_id crossref_primary_10_1007_s11104_024_06518_9
crossref_primary_10_3390_agronomy14030511
crossref_primary_10_1016_j_molp_2023_09_021
crossref_primary_10_3390_ijms24054647
crossref_primary_10_1016_j_envexpbot_2022_104810
crossref_primary_10_1016_j_plaphy_2024_108362
crossref_primary_10_3389_fpls_2023_1114840
crossref_primary_10_1016_j_ncrops_2024_100015
crossref_primary_10_1016_j_jhazmat_2024_136062
crossref_primary_10_1134_S1021443724607249
crossref_primary_10_3390_d16120734
crossref_primary_10_1016_j_stress_2024_100368
crossref_primary_10_1111_pce_15026
crossref_primary_10_1016_j_plgene_2022_100388
crossref_primary_10_1038_s41598_024_78295_5
crossref_primary_10_3390_ijms231810618
crossref_primary_10_1016_j_xplc_2024_100888
Cites_doi 10.1111/j.1399-3054.1997.tb03452.x
10.1104/pp.010714
10.1073/pnas.1832002100
10.1104/pp.70.5.1290
10.1007/978-94-011-5159-7_274
10.1104/pp.81.4.1092
10.1016/0014-5793(91)81183-9
10.1016/S1360-1385(99)01486-7
10.1046/j.1365-3040.1997.d01-25.x
10.1007/BF00414724
10.1016/0038-0717(95)98609-R
10.1016/j.jplph.2009.12.016
10.1093/jxb/47.3.421
10.1146/annurev.arplant.48.1.493
10.4161/psb.6.1.14318
10.1093/plphys/kiab044
10.1104/pp.68.5.1115
10.1007/BF01275710
10.1016/j.femsre.2004.04.002
10.1146/annurev.pp.42.060191.002105
10.1111/j.1365-3040.2010.02214.x
10.1093/jxb/41.8.961
10.1016/S0014-5793(99)01729-9
10.1093/jxb/erw499
10.1111/j.1365-313X.2003.01991.x
10.1093/jxb/36.5.756
10.1038/ncb1782
10.1073/pnas.78.7.4284
10.1038/nature06720
10.1080/07352680091139277
10.1128/AEM.01561-17
10.1038/srep39447
10.3390/genes11050483
10.1099/00221287-143-2-489
10.1080/00380768.1989.10434759
10.1104/pp.90.3.982
10.1186/1471-2229-10-160
10.1111/pce.12116
10.1104/pp.74.3.499
10.1146/annurev-arplant-050312-120235
10.1111/tpj.12442
10.1105/tpc.017020
10.1094/MPMI-4-037
10.1094/MPMI-20-11-1353
10.1104/pp.85.3.768
10.1002/9781119053095
10.1104/pp.71.4.841
10.1094/MPMI-01-12-0011-R
10.1034/j.1399-3054.1998.1020111.x
10.1105/tpc.009787
10.1104/pp.81.4.1097
10.1104/pp.102.015362
10.1016/S0031-9422(00)00162-X
10.1104/pp.104.058453
10.1016/j.plaphy.2010.01.020
10.1046/j.1365-3040.1999.00490.x
10.1007/BF02411397
10.1093/mp/sss084
10.1016/S0176-1617(00)80056-5
10.1007/978-1-4020-3548-7
10.1146/annurev.pp.39.060188.001501
10.1104/pp.15.01910
10.1111/j.1365-3040.1995.tb00574.x
10.1104/pp.103.032102
10.1126/scisignal.2005703
10.1105/tpc.114.128736
10.1016/j.pbi.2017.08.003
10.1074/jbc.272.26.16256
10.1074/mcp.M114.043166
10.1016/0014-5793(88)80697-5
10.1128/JB.00926-08
10.1002/1615-9861(200203)2:3<325::AID-PROT325>3.0.CO;2-W
10.1104/pp.103.031484
10.1104/pp.93.1.12
10.1105/tpc.106.048173
10.1146/annurev-genet-110410-132549
10.1111/j.1365-313X.2011.04587.x
10.1007/BF00248427
10.1111/j.1399-3054.1988.tb00606.x
10.1111/j.1365-2958.1993.tb01177.x
10.1007/BF01279476
10.1038/emboj.2012.120
10.1111/j.1365-3040.2004.01208.x
10.1016/j.cub.2018.09.031
10.1016/j.pbi.2021.102041
10.1128/jb.160.3.903-909.1984
10.1016/0168-9452(87)90024-0
10.1007/s00018-016-2415-7
10.1111/j.1365-313X.2007.03367.x
10.1094/MPMI-04-16-0071-R
10.1093/jxb/42.10.1325
10.1111/j.1365-313X.2011.04612.x
10.1007/BF00248711
10.1104/pp.109.148379
10.1128/JB.184.15.4071-4080.2002
10.1016/j.tplants.2016.08.001
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules26226876
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_e6434844fa704b549e1a9df6203806cb
PMC8618214
34833968
10_3390_molecules26226876
Genre Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
  grantid: IH140100013.
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-87b64b219f95ae8f91cd3a1995ce884330760e38c4f7a0eef3fae98a089c4f153
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:28:01 EDT 2025
Thu Aug 21 14:10:18 EDT 2025
Thu Jul 10 21:59:35 EDT 2025
Fri Jul 25 09:31:45 EDT 2025
Mon Jul 21 05:40:32 EDT 2025
Tue Jul 01 03:12:02 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords metabolism
malate
legume
nitrogen fixation
nodules
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-87b64b219f95ae8f91cd3a1995ce884330760e38c4f7a0eef3fae98a089c4f153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9841-1112
0000-0003-2230-4737
0000-0001-7967-2173
OpenAccessLink https://doaj.org/article/e6434844fa704b549e1a9df6203806cb
PMID 34833968
PQID 2602162098
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_e6434844fa704b549e1a9df6203806cb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8618214
proquest_miscellaneous_2604010432
proquest_journals_2602162098
pubmed_primary_34833968
crossref_citationtrail_10_3390_molecules26226876
crossref_primary_10_3390_molecules26226876
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211115
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 20211115
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Emmerlich (ref_72) 2003; 100
Ribeiro (ref_35) 1996; 250
Meyer (ref_79) 2011; 67
Michaeli (ref_92) 2011; 67
ref_11
Lacombe (ref_62) 2017; 68
Parsons (ref_101) 1996; 47
Driscoll (ref_52) 1997; 143
Millar (ref_42) 1995; 18
Kovermann (ref_78) 2007; 52
Wienkoop (ref_60) 2003; 131
Kinnersley (ref_87) 2000; 19
Udvardi (ref_53) 1991; 156
Udvardi (ref_28) 1988; 231
Do (ref_65) 2018; 41
Koyro (ref_21) 2000; 157
Jeong (ref_63) 2004; 134
Sulieman (ref_88) 2011; 6
Layzell (ref_102) 1982; 70
Schubert (ref_10) 1981; 68
Hosie (ref_96) 2002; 184
Fedorova (ref_18) 1999; 22
Segonzac (ref_64) 2007; 19
Liu (ref_73) 2017; 8
Saalbach (ref_61) 2002; 2
Beck (ref_23) 2018; 28
Bryce (ref_33) 1990; 41
Sulieman (ref_89) 2010; 167
Giacomello (ref_107) 2021; 60
Yurgel (ref_38) 2004; 28
Whitehead (ref_46) 1998; 203
Udvardi (ref_55) 1989; 90
Rawsthorne (ref_34) 1986; 81
Udvardi (ref_6) 1997; 48
Pate (ref_100) 1984; 74
Gordon (ref_12) 1985; 36
Millar (ref_47) 1997; 20
Day (ref_17) 1991; 29
Smith (ref_15) 2002; 129
Whitehead (ref_2) 1997; 100
Scherzer (ref_76) 2012; 5
Rosendahl (ref_13) 1990; 93
Pessi (ref_30) 2007; 20
Gavrin (ref_9) 2021; 186
McKay (ref_48) 1988; 134
ref_83
Whelan (ref_54) 1991; 293
ref_81
Rawsthorne (ref_31) 1986; 81
Complainville (ref_22) 2003; 15
Guenther (ref_58) 2003; 15
Oldroyd (ref_1) 2011; 45
Takanashi (ref_26) 2016; 29
Sugiyama (ref_25) 2017; 58
Puppo (ref_43) 1987; 50
Hurth (ref_71) 2005; 137
Kryvoruchko (ref_24) 2016; 171
Shelp (ref_84) 1999; 4
Streeter (ref_39) 1987; 85
Copeland (ref_49) 1989; 135
Wandrey (ref_68) 2004; 134
Girousse (ref_98) 1991; 29
White (ref_91) 2009; 191
Niemietz (ref_57) 2000; 465
Day (ref_32) 1988; 26
Ramesh (ref_105) 2015; 6
Rivers (ref_59) 1997; 272
Mitsch (ref_41) 2018; 84
Vance (ref_90) 1991; 42
Atkins (ref_99) 1983; 71
Beuve (ref_103) 2004; 27
Negi (ref_74) 2008; 452
Udvardi (ref_3) 2013; 64
Pierre (ref_56) 2013; 36
Driscoll (ref_51) 1993; 7
Bolton (ref_37) 1986; 144
Gavrin (ref_4) 2014; 26
Day (ref_44) 1986; 134
Jin (ref_94) 1990; 153
Maierhofer (ref_75) 2014; 7
Sasaki (ref_77) 2004; 37
Libault (ref_82) 2010; 152
Li (ref_27) 1991; 42
Sulieman (ref_97) 2010; 33
Bown (ref_86) 2016; 21
Udvardi (ref_80) 1990; 182
Sunita (ref_85) 2017; 74
Mun (ref_70) 2016; 6
Barbosa (ref_104) 2010; 48
Li (ref_40) 2000; 54
Bown (ref_93) 1989; 8
Elmerich (ref_14) 1998; Volume 31
Takanashi (ref_19) 2012; 25
Ronson (ref_29) 1984; 160
Miller (ref_95) 1991; 4
Henrichs (ref_67) 2012; 31
Clarke (ref_7) 2015; 14
Brown (ref_20) 1995; 27
Kouchi (ref_16) 1988; 73
ref_45
Lee (ref_66) 2008; 10
Roux (ref_69) 2014; 77
Ronson (ref_36) 1981; 78
Rolfe (ref_8) 1988; 39
ref_5
Kimura (ref_50) 1989; 35
Serraj (ref_106) 1998; 102
References_xml – volume: 100
  start-page: 30
  year: 1997
  ident: ref_2
  article-title: The peribacteroid membrane
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1997.tb03452.x
– volume: 129
  start-page: 1216
  year: 2002
  ident: ref_15
  article-title: Effect of short-term N2 deficiency on expression of the ureide pathway in cowpea root nodules
  publication-title: Plant Physiol.
  doi: 10.1104/pp.010714
– volume: 100
  start-page: 11122
  year: 2003
  ident: ref_72
  article-title: The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1832002100
– volume: 70
  start-page: 1290
  year: 1982
  ident: ref_102
  article-title: Modeling C and N transport to developing soybean fruits
  publication-title: Plant Physiol.
  doi: 10.1104/pp.70.5.1290
– volume: Volume 31
  start-page: 443
  year: 1998
  ident: ref_14
  article-title: Nodule Carbon Metabolism: Organic Acids for N2 Fixation
  publication-title: Biological Nitrogen Fixation for the 21st Century
  doi: 10.1007/978-94-011-5159-7_274
– volume: 81
  start-page: 1092
  year: 1986
  ident: ref_34
  article-title: Preparation and properties of mitochondria from cowpea nodules
  publication-title: Plant Physiol.
  doi: 10.1104/pp.81.4.1092
– volume: 29
  start-page: 41
  year: 1991
  ident: ref_98
  article-title: Sugar and amino acid composition of phloem sap of Medicago sativa: A comparative study of two collecting methods
  publication-title: Plant Physiol. Biochem.
– volume: 293
  start-page: 188
  year: 1991
  ident: ref_54
  article-title: Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(91)81183-9
– volume: 8
  start-page: 186
  year: 2017
  ident: ref_73
  article-title: Identification and Functional Characterization of a Tonoplast Dicarboxylate Transporter in Tomato (Solanum lycopersicum)
  publication-title: Front. Plant Sci.
– volume: 4
  start-page: 446
  year: 1999
  ident: ref_84
  article-title: Metabolism and functions of gamma-aminobutyric acid
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(99)01486-7
– volume: 20
  start-page: 1273
  year: 1997
  ident: ref_47
  article-title: Expression and kinetics of the mitochondrial alternative oxidase in nitrogen-fixing nodules of soybean roots
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1997.d01-25.x
– volume: 144
  start-page: 142
  year: 1986
  ident: ref_37
  article-title: Dicarboxylic acid transport in Rhizobium meliloti: Isolation of mutants and cloning of dicarboxylic acid transport genes
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00414724
– volume: 27
  start-page: 387
  year: 1995
  ident: ref_20
  article-title: Symplastic transport in soybean root nodules
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(95)98609-R
– volume: 167
  start-page: 683
  year: 2010
  ident: ref_89
  article-title: The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa
  publication-title: Plant Physiol.
  doi: 10.1016/j.jplph.2009.12.016
– volume: 47
  start-page: 421
  year: 1996
  ident: ref_101
  article-title: Cycling of amino compounds in symbiotic lupin
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/47.3.421
– volume: 48
  start-page: 493
  year: 1997
  ident: ref_6
  article-title: Metabolite transport across symbiotic membranes of legume nodules
  publication-title: Annu. Rev. Plant Physiol.
  doi: 10.1146/annurev.arplant.48.1.493
– volume: 6
  start-page: 32
  year: 2011
  ident: ref_88
  article-title: Does GABA increase the efficiency of symbiotic N2 fixation in legumes?
  publication-title: Plant Signal. Behav.
  doi: 10.4161/psb.6.1.14318
– volume: 186
  start-page: 581
  year: 2021
  ident: ref_9
  article-title: Soybean Yellow Stripe-like 7 is a symbiosome membrane peptide transporter important for nitrogen fixation
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab044
– volume: 68
  start-page: 1115
  year: 1981
  ident: ref_10
  article-title: Enzymes of Purine Biosynthesis and Catabolism in Glycine max: I. Comparison of Activities with N₂ Fixation and Composition of Xylem Exudate during Nodule Development
  publication-title: Plant Physiol.
  doi: 10.1104/pp.68.5.1115
– volume: 134
  start-page: 121
  year: 1986
  ident: ref_44
  article-title: Isolation and oxidative properties of mitochondria and bacteroids from soybean root nodules
  publication-title: Protoplasma
  doi: 10.1007/BF01275710
– volume: 28
  start-page: 489
  year: 2004
  ident: ref_38
  article-title: Dicarboxylate transport by rhizobia
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/j.femsre.2004.04.002
– volume: 42
  start-page: 373
  year: 1991
  ident: ref_90
  article-title: Carbon in N2 fixation: Limitation or exquisite adaptation
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.pp.42.060191.002105
– volume: 33
  start-page: 2162
  year: 2010
  ident: ref_97
  article-title: Phloem-derived gamma-aminobutyric acid (GABA) is involved in upregulating nodule N2 fixation efficiency in the model legume Medicago truncatula
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2010.02214.x
– volume: 41
  start-page: 961
  year: 1990
  ident: ref_33
  article-title: Tricarboxylic Acid Cycle Activity in Mitochondria from Soybean Nodules and Cotyledons
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/41.8.961
– volume: 465
  start-page: 110
  year: 2000
  ident: ref_57
  article-title: Channel-mediated permeation of ammonia gas through the peribacteroid membrane of soybean nodules
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)01729-9
– volume: 68
  start-page: 3107
  year: 2017
  ident: ref_62
  article-title: Substrate(un)specificity of Arabidopsis NRT1/PTR FAMILY(NPF) proteins
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erw499
– volume: 37
  start-page: 645
  year: 2004
  ident: ref_77
  article-title: A wheat gene encoding an aluminum-activated malate transporter
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2003.01991.x
– volume: 36
  start-page: 756
  year: 1985
  ident: ref_12
  article-title: The Flux of 14C-Labelled Photosynthate through Soyabean Root Nodules during N2 Fixation
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/36.5.756
– ident: ref_45
– volume: 10
  start-page: 1217
  year: 2008
  ident: ref_66
  article-title: The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1782
– volume: 78
  start-page: 4284
  year: 1981
  ident: ref_36
  article-title: C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.78.7.4284
– volume: 452
  start-page: 483
  year: 2008
  ident: ref_74
  article-title: CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells
  publication-title: Nature
  doi: 10.1038/nature06720
– volume: 19
  start-page: 479
  year: 2000
  ident: ref_87
  article-title: Gamma aminobutyric acid(GABA) and plant responses to stress
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680091139277
– volume: 84
  start-page: 1
  year: 2018
  ident: ref_41
  article-title: Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01561-17
– volume: 6
  start-page: 39447
  year: 2016
  ident: ref_70
  article-title: Lotus Base: An integrated information portal for the model legume Lotus japonicus
  publication-title: Sci. Rep.
  doi: 10.1038/srep39447
– ident: ref_81
  doi: 10.3390/genes11050483
– volume: 134
  start-page: 1433
  year: 1988
  ident: ref_48
  article-title: C4-dicarboxylate metabolism in free-living and bacteroid forms of Rhizobium leguminosarum MNF3841
  publication-title: J. Microbiol.
– volume: 143
  start-page: 489
  year: 1997
  ident: ref_52
  article-title: Properties of NAD+- and NADP+-dependent malic enzymes of Rhizobium meliloti and differential expression of their genes in nitrogen-fixing bacteroids
  publication-title: Microbiology
  doi: 10.1099/00221287-143-2-489
– volume: 35
  start-page: 271
  year: 1989
  ident: ref_50
  article-title: Presence and characteristics of NADP-malic enzyme in soybean nodule bacteroids
  publication-title: J. Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.1989.10434759
– volume: 8
  start-page: 21
  year: 1989
  ident: ref_93
  article-title: The metabolism and physiological roles of 4-aminobutyric acid
  publication-title: Life Sci. Adv.
– volume: 90
  start-page: 982
  year: 1989
  ident: ref_55
  article-title: Electrogenic ATPase Activity on the Peribacteroid Membrane of Soybean Glycine max Root Nodules
  publication-title: Plant Physiol.
  doi: 10.1104/pp.90.3.982
– ident: ref_83
  doi: 10.1186/1471-2229-10-160
– volume: 26
  start-page: 567
  year: 1988
  ident: ref_32
  article-title: Malate oxidation by soybean nodule mitochondria and the possible consequences for nitrogen fixation
  publication-title: Plant Physiol. Biochem.
– volume: 36
  start-page: 2059
  year: 2013
  ident: ref_56
  article-title: Peribacteroid space acidification: A marker of mature bacteroid functioning in Medicago truncatula nodules
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12116
– volume: 74
  start-page: 499
  year: 1984
  ident: ref_100
  article-title: Spontaneous phloem bleeding from cryopunctured fruits of a ureide-producing legume
  publication-title: Plant Physiol.
  doi: 10.1104/pp.74.3.499
– volume: 6
  start-page: 78
  year: 2015
  ident: ref_105
  article-title: GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters
  publication-title: Nat. Commun.
– volume: 64
  start-page: 781
  year: 2013
  ident: ref_3
  article-title: Transport and Metabolism in Legume-Rhizobia Symbioses
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120235
– volume: 77
  start-page: 817
  year: 2014
  ident: ref_69
  article-title: An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing
  publication-title: Plant J.
  doi: 10.1111/tpj.12442
– volume: 135
  start-page: 2005
  year: 1989
  ident: ref_49
  article-title: Malic Enzyme Activity in Bacteroids from Soybean Nodules
  publication-title: J. Gen. Micrbiol.
– volume: 15
  start-page: 2778
  year: 2003
  ident: ref_22
  article-title: Nodule initiation involves the creation of a new symplasmic field in specific root cells of medicago species
  publication-title: Plant Cell
  doi: 10.1105/tpc.017020
– volume: 4
  start-page: 37
  year: 1991
  ident: ref_95
  article-title: Glutamate and γ-Aminobutyrate Metabolism
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-4-037
– volume: 20
  start-page: 1353
  year: 2007
  ident: ref_30
  article-title: Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-20-11-1353
– volume: 85
  start-page: 768
  year: 1987
  ident: ref_39
  article-title: Carbohydrate, organic Acid, and amino Acid composition of bacteroids and cytosol from soybean nodules
  publication-title: Plant Physiol.
  doi: 10.1104/pp.85.3.768
– ident: ref_5
  doi: 10.1002/9781119053095
– volume: 71
  start-page: 841
  year: 1983
  ident: ref_99
  article-title: Amino acid transport and metabolism in relation to the nitrogen economy of a legume leaf
  publication-title: Plant Physiol.
  doi: 10.1104/pp.71.4.841
– volume: 25
  start-page: 869
  year: 2012
  ident: ref_19
  article-title: Tissue-Specific Transcriptome Analysis in Nodules of Lotus japonicus
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-01-12-0011-R
– volume: 102
  start-page: 79
  year: 1998
  ident: ref_106
  article-title: Accumulation of gamma-aminobutyric acid in nodulated soybean in response to drought stress
  publication-title: Physiol. Plant.
  doi: 10.1034/j.1399-3054.1998.1020111.x
– volume: 15
  start-page: 981
  year: 2003
  ident: ref_58
  article-title: Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals
  publication-title: Plant Cell
  doi: 10.1105/tpc.009787
– volume: 81
  start-page: 1097
  year: 1986
  ident: ref_31
  article-title: Metabolism under Microaerobic Conditions of Mitochondria from Cowpea Nodules
  publication-title: Plant Physiol.
  doi: 10.1104/pp.81.4.1097
– volume: 131
  start-page: 1080
  year: 2003
  ident: ref_60
  article-title: Proteome analysis. Novel proteins identified at the peribacteroid membrane from Lotus japonicus root nodules
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.015362
– volume: 54
  start-page: 585
  year: 2000
  ident: ref_40
  article-title: Role of malonate in chickpeas
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)00162-X
– volume: 137
  start-page: 901
  year: 2005
  ident: ref_71
  article-title: Impaired pH Homeostasis in Arabidopsis Lacking the Vacuolar Dicarboxylate Transporter and Analysis of Carboxylic Acid Transport across the Tonoplast
  publication-title: Plant Physiol.
  doi: 10.1104/pp.104.058453
– volume: 48
  start-page: 443
  year: 2010
  ident: ref_104
  article-title: Nitrate uptake and utilization is modulated by exogenous gamma-aminobutyric acid in Arabidopsis thaliana seedlings
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2010.01.020
– volume: 22
  start-page: 1249
  year: 1999
  ident: ref_18
  article-title: Expression of C-assimilating enzymes in pea (Pisum sativum L.) root nodules. In situ localization in effective nodules
  publication-title: Plant Cell Environ.
  doi: 10.1046/j.1365-3040.1999.00490.x
– volume: 182
  start-page: 437
  year: 1990
  ident: ref_80
  article-title: Specificity and regulation of the dicarboxylate carrier on the peribacteroid membrane of soybean nodules
  publication-title: Planta
  doi: 10.1007/BF02411397
– volume: 5
  start-page: 1409
  year: 2012
  ident: ref_76
  article-title: Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels
  publication-title: Mol. Plant
  doi: 10.1093/mp/sss084
– volume: 157
  start-page: 335
  year: 2000
  ident: ref_21
  article-title: Functional structure of the indeterminate Vicia faba L. root nodule: Implications for metabolite transport
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(00)80056-5
– ident: ref_11
  doi: 10.1007/978-1-4020-3548-7
– volume: 29
  start-page: 185
  year: 1991
  ident: ref_17
  article-title: Carbon metabolism and compartmentation in nitrogen-fixing legume nodules
  publication-title: Plant Physiol. Biochem.
– volume: 39
  start-page: 297
  year: 1988
  ident: ref_8
  article-title: Genetic Analysis of Legume Nodule Initiation
  publication-title: Annu. Rev. Plant Physiol.
  doi: 10.1146/annurev.pp.39.060188.001501
– volume: 171
  start-page: 554
  year: 2016
  ident: ref_24
  article-title: MtSWEET11, a Nodule-Specific Sucrose Transporter of Medicago truncatula
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.01910
– volume: 18
  start-page: 715
  year: 1995
  ident: ref_42
  article-title: Microaerobic respiration and oxidative phosphorylation by soybean nodule mitochondria: Implications for nitrogen fixation
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.1995.tb00574.x
– volume: 134
  start-page: 969
  year: 2004
  ident: ref_63
  article-title: A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.032102
– volume: 7
  start-page: ra86
  year: 2014
  ident: ref_75
  article-title: Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid
  publication-title: Sci. Signal.
  doi: 10.1126/scisignal.2005703
– volume: 26
  start-page: 3809
  year: 2014
  ident: ref_4
  article-title: Adjustment of Host Cells for Accommodation of Symbiotic Bacteria: Vacuole Defunctionalization, HOPS Suppression, and TIP1g Retargeting in Medicago
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.128736
– volume: 41
  start-page: 32
  year: 2018
  ident: ref_65
  article-title: Functions of ABC transporters in plant growth and development
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2017.08.003
– volume: 272
  start-page: 16256
  year: 1997
  ident: ref_59
  article-title: Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.26.16256
– volume: 14
  start-page: 1301
  year: 2015
  ident: ref_7
  article-title: Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M114.043166
– volume: 231
  start-page: 36
  year: 1988
  ident: ref_28
  article-title: A dicarboxylate transporter on the peribacteroid membrane of soybean nodules
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(88)80697-5
– volume: 250
  start-page: 437
  year: 1996
  ident: ref_35
  article-title: Sucrose synthase and enolase expression in actinorhizal nodules of Alnus glutinosa: Comparison with legume nodules
  publication-title: Mol. Gen. Genet.
– volume: 191
  start-page: 1547
  year: 2009
  ident: ref_91
  article-title: Characterization of a γ-aminobutyric acid transport system of Rhizobium leguminosarum bv. viciae 3841
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00926-08
– volume: 2
  start-page: 325
  year: 2002
  ident: ref_61
  article-title: Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes
  publication-title: Proteomics
  doi: 10.1002/1615-9861(200203)2:3<325::AID-PROT325>3.0.CO;2-W
– volume: 134
  start-page: 182
  year: 2004
  ident: ref_68
  article-title: Molecular and Cell Biology of a Family of Voltage-Dependent Anion Channel Porins in Lotus japonicus
  publication-title: Plant Physiol.
  doi: 10.1104/pp.103.031484
– volume: 93
  start-page: 12
  year: 1990
  ident: ref_13
  article-title: Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism
  publication-title: Plant Physiol.
  doi: 10.1104/pp.93.1.12
– volume: 19
  start-page: 3760
  year: 2007
  ident: ref_64
  article-title: Nitrate Efflux at the Root Plasma Membrane: Identification of an Arabidopsis Excretion Transporter
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.048173
– volume: 45
  start-page: 119
  year: 2011
  ident: ref_1
  article-title: The rules of engagement in the legume-rhizobial symbiosis
  publication-title: Annu. Rev. Gen.
  doi: 10.1146/annurev-genet-110410-132549
– volume: 67
  start-page: 247
  year: 2011
  ident: ref_79
  article-title: Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04587.x
– volume: 153
  start-page: 455
  year: 1990
  ident: ref_94
  article-title: 4-Aminobutyrate is not available to bacteroids of cowpea Rhizobium MNF2030 in snake bean nodules
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00248427
– volume: 73
  start-page: 327
  year: 1988
  ident: ref_16
  article-title: Isolation and enzymological characterization of infected and uninfected protoplasts from root nodules of Glycine max
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1988.tb00606.x
– volume: 7
  start-page: 865
  year: 1993
  ident: ref_51
  article-title: NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1993.tb01177.x
– volume: 203
  start-page: 194
  year: 1998
  ident: ref_46
  article-title: Cytoskeletal arrays in the cells of soybean root nodules: The role of actin microfilaments in the organisation of symbiosomes
  publication-title: Protoplasma
  doi: 10.1007/BF01279476
– volume: 31
  start-page: 2965
  year: 2012
  ident: ref_67
  article-title: Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.120
– volume: 27
  start-page: 1035
  year: 2004
  ident: ref_103
  article-title: Putative role of γ-aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2004.01208.x
– volume: 28
  start-page: 3562
  year: 2018
  ident: ref_23
  article-title: Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.09.031
– volume: 60
  start-page: 102041
  year: 2021
  ident: ref_107
  article-title: A new era for plant science: Spatial single-cell transcriptomics
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/j.pbi.2021.102041
– volume: 160
  start-page: 903
  year: 1984
  ident: ref_29
  article-title: Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.160.3.903-909.1984
– volume: 50
  start-page: 3
  year: 1987
  ident: ref_43
  article-title: O2 consumption and superoxide dismutase content in purified mitochondria from soybean root nodules
  publication-title: Plant Sci.
  doi: 10.1016/0168-9452(87)90024-0
– volume: 58
  start-page: 298
  year: 2017
  ident: ref_25
  article-title: Molecular Characterization of LjSWEET3, a Sugar Transporter in Nodules of Lotus japonicus
  publication-title: Plant Cell Physiol.
– volume: 74
  start-page: 1577
  year: 2017
  ident: ref_85
  article-title: Gamma-Aminobutyric acid(GABA) signalling in plants
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2415-7
– volume: 52
  start-page: 1169
  year: 2007
  ident: ref_78
  article-title: The Arabidopsis vacuolar malate channel is a member of the ALMT family
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2007.03367.x
– volume: 29
  start-page: 584
  year: 2016
  ident: ref_26
  article-title: A Dicarboxylate Transporter, LjALMT4, Mainly Expressed in Nodules of Lotus japonicus
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-04-16-0071-R
– volume: 42
  start-page: 1325
  year: 1991
  ident: ref_27
  article-title: Permeability of Isolated Infected Cells from Soybean Nodules
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/42.10.1325
– volume: 67
  start-page: 485
  year: 2011
  ident: ref_92
  article-title: A mitochondrial GABA permease connects the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04612.x
– volume: 156
  start-page: 362
  year: 1991
  ident: ref_53
  article-title: ATPase activity and anion transport across the peribacteroid membrane of isolated soybean symbiosomes
  publication-title: Arch. Microbiol.
  doi: 10.1007/BF00248711
– volume: 152
  start-page: 541
  year: 2010
  ident: ref_82
  article-title: Complete Transcriptome of the Soybean Root Hair Cell, a Single-Cell Model, and Its Alteration in Response to Bradyrhizobium japonicum Infection
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.148379
– volume: 184
  start-page: 4071
  year: 2002
  ident: ref_96
  article-title: Rhizobium leguminosarum has a second general amino acid permease with unusually broad substrate specificity and high similarity to branched-chain amino acid transporters (Bra/LIV) of the ABC family
  publication-title: J. Bacteriol
  doi: 10.1128/JB.184.15.4071-4080.2002
– volume: 21
  start-page: 811
  year: 2016
  ident: ref_86
  article-title: Plant GABA: Not just a metabolite
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2016.08.001
SSID ssj0021415
Score 2.4478142
SecondaryResourceType review_article
Snippet Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 6876
SubjectTerms Biological Transport
Carbon
Enzymes
Exports
Fabaceae - metabolism
Infections
legume
Legumes
malate
Malates - metabolism
Membranes
Metabolism
Metabolites
Nitrogen
Nitrogen Fixation
nodules
Proteins
Review
Rhizobiaceae - metabolism
Root Nodules, Plant - metabolism
Soybeans
Sucrose
Symbiosis
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtemgvIX07TYsLPRVMbGsky6eShC6hdPfUwN6MLI9Sw8ZOdx3Iz8-M7XWybcnVkvCgGc1DM_pGiC8-qwwgP_tQLo0g01VUulhFSkJVxjLL0fGF_nyhzy_gx1Itxwu3zVhWudWJvaKuWsd35Mfkd6eJTuPcfLv-E3HXKM6uji00nopnDF3GUp0t7wOuhKzTkMmUFNofXw0NZ3GTanI6DMOMPLBFPWT___zMv8slH9if2YHYHx3H8GTg9EvxBJtX4vnZtl_ba3EytytyHMMJrjy0TRXOsSM2r-rNVVg34aLu1i2JTDSrb8lmhT_xknRTuGgrJviNuJh9_3V2Ho0NEiIHuexIk5UaStI5PlcWjc8TV0nLj64dGgNSctoNpXHgMxsjeukt5sbGJqdPpOveir2mbfC9CJ1S2lqtrEwkaEmBjS8BkBQAQ8SBDkS83arCjejh3MRiVVAUwbtb_LO7gfg6LbkeoDMem3zK-z9NZNTr_kO7vizGQ1QguU9gALzNYigpssXE5pUnqZAm1q4MxNGWe8V4FDfFveAE4vM0TLzhzIhtsL3p5wAHpjINxLuB2RMl9EciWdPqbEcMdkjdHWnq3z1Qt9EUvSVw-DhZH8SLlAtluLZQHYm9bn2DH8nT6cpPvTjfAcNr_to
  priority: 102
  providerName: ProQuest
Title Malate Transport and Metabolism in Nitrogen-Fixing Legume Nodules
URI https://www.ncbi.nlm.nih.gov/pubmed/34833968
https://www.proquest.com/docview/2602162098
https://www.proquest.com/docview/2604010432
https://pubmed.ncbi.nlm.nih.gov/PMC8618214
https://doaj.org/article/e6434844fa704b549e1a9df6203806cb
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NBeQt9xHosKPRVMbGsky8ckZBtKdymlgb0ZWR63ho03ZB3oz-_I9prdNrSXXnywJDwejWbms-RvAN5XaWmQ_G8fyiUhproMCxepUEksi0imGTn_QX8211fX-GmhFlulvvyZsJ4euFfcKXHIRINY2TTCgtEMxTYrK51E0kTaFd77cszbgKkBasUcl_o9TMmg_vSmLzVL60RzumE8wchWFOrI-h_KMH8_KLkVeabPYX9IGcVZL-oLeETNS3h6sanU9grOZnbJKaMYicqFbUoxo5YneFmvb0TdiHnd3q3YWMJp_ZOjlfhM39krifmq9AK_huvp5beLq3AojRA6zGTLPqzQWLC3qTJlyVRZ7Epp_e_WjoxBKf2GG0njsEptRFTJylJmbGQyvsVe7g3sNauGDkA4pbS1WlkZS9SSIU1VIBIvfU8OhzqAaKOq3A284b58xTJn_OC1m_-h3QA-jENue9KMv3U-9_ofO3q-6-4GW0E-WEH-LysI4Hgze_mwCNc5Q7Uk5i6ZCeDd2Mxz4_dEbEOr-64PekgqkwDe9pM9SsJPZJE1j053zGBH1N2Wpv7RUXQbzbgtxsP_8W5H8CzxB2n82UN1DHvt3T2dcCbUFhN4nC5Svprpxwk8Ob-cf_k66RbCL3FiCjQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9lAuiPIMFDASXJCiOrHjOAeESmHZ0t09tVJvwXEmbaRtUnZTAX-K38hMsgldQL31ao-V0XheX2zPMPa6iHOjgJ59RC70VaxzP3Mi8iOp8kzIOAFHP_SnMz0-UV9Oo9MN9qt_C0PXKnuf2DrqvHb0j3wP8-4w0KFIzPvLbz51jaLT1b6FRqcWR_DzO0K25bvDj7i_b8Jw9On4YOyvugr4TiWyQfPPtMrQUIsksmCKJHC5tPRS2YExCvF9rAVI41QRWwFQyMJCYqwwCQ4F1CUCXf4WEiYE9szo8wDwAoyG3ckpToq9i67BLSxDjUmOobIm12Jf2yLgf3nt39czr8W70T12d5Wo8v1Os3bYBlT32fZB3x_uAduf2jkmqnwoj85tlfMpNKhW83J5wcuKz8pmUaOK-qPyB8ZIPoEz9IV8VufE8EN2ciuie8Q2q7qCJ4y7KNLW6sjKQCotEUgVmVKADodK0intMdGLKnWrauXUNGOeImoh6ab_SNdjb4cll12pjpuIP5D8B0Kqst0O1IuzdGW0KWC6poxShY2FyhBJQ2CTvEAtlEZol3lst9-9dGX6y_SPonrs1TCNe0MnMbaC-qqlUQSEZeixx91mD5zgF5FljavjNTVYY3V9pirP28LgRiNaDNTTm9l6ybbHx9NJOjmcHT1jd0K6pEP3GqNdttksruA5ZllN9qJVbc6-3rYt_QYU8Dvd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcEG9CCxgJLkjROrHjOAeE-lq1tBtViEq9BcexS6Rt0u6mAv4av46ZzYMuoN569UMZzcvzxeMZQt66uFDC4rOPyIS-iGXh54ZFfsRFkTMeJ9bgD_1pKvdPxKfT6HSN_OrfwmBaZe8Tl466qA3-Ix9D3B0GMmSJGrsuLeJ4d_Lx4tLHDlJ409q302hV5ND-_A7wbfHhYBdk_S4MJ3tfdvb9rsOAb0TCG3AFuRQ5GK1LIm2VSwJTcI2vlo1VSgDWjyWzXBnhYs2sddxpmyjNVAJDAXaMAPe_HiMqGpH17b30-PMA9wI4G9t7VM4TNj5v293aRSgh5FFY5OTaSbhsGPC_KPfvZM1rp9_kAbnfha10q9Wzh2TNVo_I3Z2-W9xjsjXVMwhb6VAsneqqoFPbgJLNysU5LSuals28BoX1J-UPODHpkT0Dz0jTukCCn5CTW2HeUzKq6so-J9REkdRaRpoHXEgOsMrlQlhwP1igTkiPsJ5Vmelql2MLjVkGGAa5m_3DXY-8H7ZctIU7blq8jfwfFmLN7eVAPT_LOhPOLARvQgnhdMxEDrjaBjopHOgkV0ya3CObvfSyzhEssj9q65E3wzTIBu9ldGXrq-UagbCYhx551gp7oAS-CCRL2B2vqMEKqaszVfltWSZcScCOgXhxM1mvyR2wo-zoID3cIPdCzNjBJMdok4ya-ZV9CSFXk7_qdJuSr7dtTr8B3y9Bbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Malate+Transport+and+Metabolism+in+Nitrogen-Fixing+Legume+Nodules&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Booth%2C+Nicholas+J&rft.au=Smith%2C+Penelope+M+C&rft.au=Ramesh%2C+Sunita+A&rft.au=Day%2C+David+A&rft.date=2021-11-15&rft.eissn=1420-3049&rft.volume=26&rft.issue=22&rft_id=info:doi/10.3390%2Fmolecules26226876&rft_id=info%3Apmid%2F34833968&rft.externalDocID=34833968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon