Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit
In intensive care medicine close monitoring of organ failure status is important for the prognosis of patients and for choices regarding ICU management. Major challenges in analyzing the multitude of data pertaining to the functioning of the organ systems over time are to extract meaningful clinical...
Saved in:
Published in | Journal of biomedical informatics Vol. 43; no. 2; pp. 273 - 286 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In intensive care medicine close monitoring of organ failure status is important for the prognosis of patients and for choices regarding ICU management. Major challenges in analyzing the multitude of data pertaining to the functioning of the organ systems over time are to extract meaningful clinical patterns and to provide predictions for the future course of diseases. With their explicit states and probabilistic state transitions, Markov models seem to fit this purpose well. In complex domains such as intensive care a choice is often made between a simple model that is estimated from the data, or a more complex model in which the parameters are provided by domain experts.
Our primary aim is to combine these approaches and develop a set of complex Markov models based on clinical data. In this paper we describe the design choices underlying the models, which enable them to identify temporal patterns, predict outcomes, and test clinical hypotheses. Our models are characterized by the choice of the dynamic hierarchical Bayesian network structure and the use of logistic regression equations in estimating the transition probabilities. We demonstrate the induction, inference, evaluation, and use of these models in practice in a case-study of patients with severe sepsis admitted to four Dutch ICUs. |
---|---|
AbstractList | In intensive care medicine close monitoring of organ failure status is important for the prognosis of patients and for choices regarding ICU management. Major challenges in analyzing the multitude of data pertaining to the functioning of the organ systems over time are to extract meaningful clinical patterns and to provide predictions for the future course of diseases. With their explicit states and probabilistic state transitions, Markov models seem to fit this purpose well. In complex domains such as intensive care a choice is often made between a simple model that is estimated from the data, or a more complex model in which the parameters are provided by domain experts. Our primary aim is to combine these approaches and develop a set of complex Markov models based on clinical data. In this paper we describe the design choices underlying the models, which enable them to identify temporal patterns, predict outcomes, and test clinical hypotheses. Our models are characterized by the choice of the dynamic hierarchical Bayesian network structure and the use of logistic regression equations in estimating the transition probabilities. We demonstrate the induction, inference, evaluation, and use of these models in practice in a case-study of patients with severe sepsis admitted to four Dutch ICUs. In intensive care medicine close monitoring of organ failure status is important for the prognosis of patients and for choices regarding ICU management. Major challenges in analyzing the multitude of data pertaining to the functioning of the organ systems over time are to extract meaningful clinical patterns and to provide predictions for the future course of diseases. With their explicit states and probabilistic state transitions, Markov models seem to fit this purpose well. In complex domains such as intensive care a choice is often made between a simple model that is estimated from the data, or a more complex model in which the parameters are provided by domain experts. Our primary aim is to combine these approaches and develop a set of complex Markov models based on clinical data. In this paper we describe the design choices underlying the models, which enable them to identify temporal patterns, predict outcomes, and test clinical hypotheses. Our models are characterized by the choice of the dynamic hierarchical Bayesian network structure and the use of logistic regression equations in estimating the transition probabilities. We demonstrate the induction, inference, evaluation, and use of these models in practice in a case-study of patients with severe sepsis admitted to four Dutch ICUs. |
Author | Peelen, Linda de Keizer, Nicolette F. Peek, Niels Bosman, Robert-Jan Jonge, Evert de Abu-Hanna, Ameen |
Author_xml | – sequence: 1 givenname: Linda surname: Peelen fullname: Peelen, Linda email: l.m.peelen@umcutrecht.nl organization: Department of Medical Informatics, Academic Medical Center, Amsterdam, The Netherlands – sequence: 2 givenname: Nicolette F. surname: de Keizer fullname: de Keizer, Nicolette F. organization: Department of Medical Informatics, Academic Medical Center, Amsterdam, The Netherlands – sequence: 3 givenname: Evert de surname: Jonge fullname: Jonge, Evert de organization: Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands – sequence: 4 givenname: Robert-Jan surname: Bosman fullname: Bosman, Robert-Jan organization: Department of Intensive Care Medicine, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands – sequence: 5 givenname: Ameen surname: Abu-Hanna fullname: Abu-Hanna, Ameen organization: Department of Medical Informatics, Academic Medical Center, Amsterdam, The Netherlands – sequence: 6 givenname: Niels surname: Peek fullname: Peek, Niels organization: Department of Medical Informatics, Academic Medical Center, Amsterdam, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19874913$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1rGzEQhkVJaT7aH9BL0S0nO6P9kHbpqTHNBwR6qc9iVjtry1lLriS7GPrjK2M3uaWnmRHPvIh5LtmZ844Y-yxgKkDIm9V01dlpAdDmeQpQvGMXoi6LCVQNnL30sjpnlzGuAISoa_mBnYu2UVUrygv2Zx6tW_ClpYDBLK3Bkfd7h2tr-C3uKVp03FH67cNz5Mlz63YUk11gon9g5H7gPiwyOaAdt4EyxTeYLLkUD31aEn90iVy0O-IzzMTc2fSRvR9wjPTpVK_Y_O77z9nD5OnH_ePs29PEVG2ZJo3qQJi-xUrWRQXSmELRQEYpI7BUqpFdCx32qu0EKlE0VA_U0AAom8GgKa_Y9TF3E_yvbf6-XttoaBzRkd9G3ShVKyig-i-pyrJUICVkUhxJE3yMgQa9CXaNYa8F6IMdvdLZjj7YOTxlO3nnyyl9262pf9046cjA1yNA-Rq77ERHk49oqLeBTNK9t2_E_wVooqO1 |
CitedBy_id | crossref_primary_10_1016_j_jbi_2020_103540 crossref_primary_10_1016_j_engappai_2020_103475 crossref_primary_10_1186_s12894_023_01330_6 crossref_primary_10_1177_0962280220929045 crossref_primary_10_1016_j_chest_2018_03_013 crossref_primary_10_1007_s11910_022_01167_w crossref_primary_10_1016_j_ijmedinf_2017_04_010 crossref_primary_10_1016_j_jbi_2016_12_010 crossref_primary_10_1371_journal_pone_0250787 crossref_primary_10_1016_j_ccc_2023_03_002 crossref_primary_10_1016_j_artmed_2013_01_004 crossref_primary_10_1038_nrneurol_2011_101 crossref_primary_10_1134_S2070048223060121 crossref_primary_10_1007_s10489_023_04920_x crossref_primary_10_1016_j_jbi_2012_11_003 crossref_primary_10_1016_j_jbi_2018_10_004 crossref_primary_10_1016_j_compchemeng_2024_108659 crossref_primary_10_1016_j_jns_2019_06_024 crossref_primary_10_1177_1460458219852872 crossref_primary_10_1007_s11910_019_0998_8 crossref_primary_10_4103_2153_3539_197191 crossref_primary_10_1136_amiajnl_2013_001815 crossref_primary_10_1007_s12028_015_0139_4 crossref_primary_10_1097_CCM_0000000000004705 crossref_primary_10_2139_ssrn_3805931 crossref_primary_10_2196_15358 crossref_primary_10_20948_mm_2023_05_03 crossref_primary_10_1145_3127881 crossref_primary_10_1371_journal_pone_0230172 crossref_primary_10_1016_j_artmed_2013_12_007 crossref_primary_10_1016_j_jbi_2013_12_007 crossref_primary_10_1016_j_jbi_2013_12_008 crossref_primary_10_1016_j_jbi_2014_02_016 crossref_primary_10_2310_JIM_0b013e318224d8cc |
Cites_doi | 10.1161/CIRCULATIONAHA.105.535922 10.7326/0003-4819-132-1-200001040-00008 10.1007/s001340050931 10.1007/s001340051313 10.1109/34.204913 10.1016/0020-7101(94)90058-2 10.1109/34.204906 10.1197/jamia.M1087 10.1016/S0933-3657(98)00048-7 10.1007/s00134-008-1018-7 10.1378/chest.101.6.1644 10.1016/S0002-9610(00)00298-1 10.1002/0471249688 10.1016/B978-1-4832-8287-9.50010-4 10.1186/cc5942 10.1164/rccm.200208-785OC 10.1016/S0377-2217(99)00296-9 10.1016/S0004-3702(96)00025-2 10.1177/0272989X8300300403 10.1007/s00134-004-2456-5 10.1001/jama.1993.03510240069035 10.1007/978-3-540-73599-1_10 10.1002/(SICI)1521-4036(199810)40:6<703::AID-BIMJ703>3.0.CO;2-7 10.1001/jama.1996.03540100046027 10.1007/s00134-005-0038-9 10.1016/0169-2070(94)02003-8 10.1016/S1386-5056(00)00099-X 10.1111/j.2044-8317.1992.tb00992.x 10.1002/sim.1680 10.1097/00000658-198512000-00004 10.1097/01.CCM.0000182998.90016.EF 10.1097/00003246-199811000-00016 10.1097/00003246-200107000-00002 10.1016/S0933-3657(00)00048-8 10.1016/j.annemergmed.2009.03.006 10.1016/B978-1-55860-203-8.50008-5 10.1016/j.jbi.2007.03.007 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1001/jama.286.14.1754 10.1097/01.CCM.0000182798.39709.84 10.1016/0933-3657(95)00034-8 10.1007/s00134-007-0943-1 10.1186/cc5950 10.1016/B978-1-4832-1451-1.50012-3 10.1097/00003246-200010000-00005 10.1097/01.CCM.0000117317.18092.E4 10.1056/NEJMoa022139 10.1056/NEJM200103083441001 10.1177/0272989X9301300409 10.1097/01.CCM.0000194725.48928.3A 10.1164/ajrccm.153.2.8564118 10.1007/s10742-006-0009-9 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. 2009 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: 2009 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QL 7QO 8FD C1K FR3 P64 |
DOI | 10.1016/j.jbi.2009.10.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Public Health |
EISSN | 1532-0480 |
EndPage | 286 |
ExternalDocumentID | 10_1016_j_jbi_2009_10_002 19874913 S1532046409001373 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABBQC ABFRF ABJNI ABLVK ABMAC ABMZM ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LCYCR LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- 0SF AAXKI ADVLN AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QL 7QO 8FD C1K FR3 P64 |
ID | FETCH-LOGICAL-c493t-87b01cd9a4652406cc27efec77c1a37786b90bad79b1a7128e5fe8ef0a68fcac3 |
IEDL.DBID | IXB |
ISSN | 1532-0464 |
IngestDate | Fri Oct 25 07:59:33 EDT 2024 Fri Oct 25 03:40:28 EDT 2024 Thu Sep 26 15:55:58 EDT 2024 Sat Sep 28 07:49:35 EDT 2024 Fri Feb 23 02:33:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Clinical data Organ failure Intensive care Prognosis Dynamic Bayesian network Temporal patterns |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 2009 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-87b01cd9a4652406cc27efec77c1a37786b90bad79b1a7128e5fe8ef0a68fcac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1532046409001373 |
PMID | 19874913 |
PQID | 733370660 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_877570204 proquest_miscellaneous_733370660 crossref_primary_10_1016_j_jbi_2009_10_002 pubmed_primary_19874913 elsevier_sciencedirect_doi_10_1016_j_jbi_2009_10_002 |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomedical informatics |
PublicationTitleAlternate | J Biomed Inform |
PublicationYear | 2010 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kjaerulff (bib17) 1995; 11 Toma, Abu-Hanna, Bosman (bib12) 2007; 40 Visscher S, Lucas P, Flesch I, Schurink K. Using temporal context-specific independence information in the exploratory analysis of disease processes. In: Bellazi R, Abu-Hanna A, Hunter J, editors. Proceedings of the 11th conference of Artificial Intelligence in Medicine (AIME), 2007. Lecture Notes in Artificial Intelligence 4594. Springer-Verlag; 2007. p. 87–96. Saka, Kreke, Schaefer, Chang, Roberts, Angus (bib34) 2007; 11 Dagum, Chavez (bib44) 1993; 15 McCarthy, Zeger, Ding, Levin, Desmond, Lee (bib46) 2009 Gaziano, Steyn, Cohen, Weinstein, Opie (bib50) 2005; 112 Dagum P, Galper A, Horvitz E. Dynamic network models for forecasting. In: Proceedings of the eighth annual conference on Uncertainty in Artificial Intelligence (UAI-92). San Mateo, CA: Morgan Kaufmann; 1992. p. 41–8. Derksen, Keselman (bib58) 1992; 45 Magni, Quaglini, Marchetti, Barosi (bib51) 2000; 60 Charitos T, van der Gaag LC, Visscher S, et al. A dynamic Bayesian network for diagnosing ventilator-associated pneumonia in ICU patients. Working notes of the workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP); 2005. p. 32–7. Knaus, Draper, Wagner, Zimmerman (bib29) 1985; 202 Berzuini C, Bellazzi R, Spiegelhalter D. Bayesian networks applied to therapy monitoring. In: Proceedings of the seventh annual conference on Uncertainty in Artificial Intelligence (UAI-91). Morgan Kaufmann; 1991. p. 35–43. Pittet, Thiévent, Wenzel, Li, Auckenthaler, Suter (bib28) 1996; 153 Pérez-Ocon, Ruiz-Castro, Gámiz-Pérez (bib15) 1998; 40 Hosmer, Lemeshow (bib42) 1989 Arts, De Keizer, Scheffer (bib33) 2002; 9 Riva, Bellazzi (bib22) 1996; 8 Dagum P, Galper A. Forecasting sleep apnea with dynamic network models. In: Proceedings of the 10th annual conference on Uncertainty in Artificial Intelligence (UAI-93). Palo Alto: Morgan Kaufmann Publishers; 1993. p. 64–71. Shahar (bib5) 1997; 90 Moreno, Metnitz, Adler, Hoechtl, Bauer (bib48) 2008; 34 Clermont, Kalplan, Moreno, Vincent, Linde-Zwirble, Van Hout (bib57) 2004; 30 Provan, Clarke (bib37) 1993; 15 Bäuerle, Rücker, TSchmandra, Holzer, Encke, Hanisch (bib54) 2000; 179 Kayaalp MM, Cooper GF, Clermont G. Predicting ICU mortality: a comparison of stationary and non-stationary models. In: Proceedings AMIA symposium; 2002. p. 418–22. Bernard, Vincent, Laterre (bib31) 2001; 344 Harrell, Lee, Mark (bib59) 1996; 15 Dellinger, Carlet, Masur (bib61) 2004; 32 Gyftodimos E, Flach P. Hierarchical Bayesian networks: a probabilistic reasoning model for structured domains. In: Proceedings of the ICML-2002 workshop on development of representations; 2002. p. 23–30. Gerlach, Toussaint (bib56) 2007; 11 Graf, Janssens (bib8) 2005; 33 Kapadia, Chan, Sachdeva, Moye, Jefferson (bib52) 2000; 124 Levy, Macias, Vincent, Russell, Silva, Trzaskoma (bib10) 2005; 33 Lucas, de Bruijn, Schurink, Hoepelman (bib19) 2000; 19 LeGall, Klar, Lemeshow, Saulnier, Alberti, Artigas (bib2) 1996; 276 Pérez, Chan, Dennis (bib53) 2006; 6 Andreassen, Riekehr, Kristensen (bib18) 1999; 15 Kayaalp MM. Learning dynamic Bayesian network structures from data. PhD Thesis. University of Pittsburgh; 2003. LeGall, Lemeshow, Saulnier (bib32) 1993; 270 Beck, Pauker (bib13) 1983; 3 Kayaalp M, Cooper G, Clermont G. Predicting with variables constructed from temporal sequences. In: Jaakkola T, Richardson T, editors. Proceedings of the eighth international workshop on artificial intelligence and statistics. Morgan Kaufmann; 2001. p. 220–5. Agresti (bib40) 2002 Sonnenberg, Beck (bib14) 1993; 13 Lopes Ferreira, Peres Bota, Bross, Mélot, Vincent (bib7) 2001; 286 Alberti, Brun-Buisson, Goodman, Guidici, Granton, Moreno (bib49) 2003; 168 Bone, Balk, Cerra, Dellinger, Fein, Knaus (bib30) 1992; 101 Vincent, Lopes Ferreira (bib47) 2000; 26 Ackerman (bib55) 1994; 36 Friedman, Goldszmidt (bib60) 1998 Vosylius, Sipylaite, Ivaskevicius (bib4) 2004; 45 Russell, Singer, Bernard, Wheeler, Fulkerson, Hudson (bib9) 2000; 28 Shahar (bib1) 2000; 132 Singh, Evans (bib27) 2006; 32 Moreno, Vincent, Matos, Mendonca, Cantraine, Thijs (bib6) 1999; 25 Venables, Ripley (bib41) 2002 Saint-Pierre, Combescure, Daures, Godard (bib16) 2003; 22 Damas, Ledoux, Nys, Monchi, Wiesen, Beauve (bib62) 2008; 34 Altman (bib45) 1991 Vincent, De Mendonca, Cantraine, Moreno, Takala, Suter (bib3) 1998; 26 Martin, Mannino, Eaton, Moss (bib26) 2003; 348 Vincent, Sakr, Sprung, Ranieri, Reinhart, Gerlach (bib24) 2006; 34 Angus, Linde-Zwirble, Lidicker (bib25) 2001; 29 Pittet (10.1016/j.jbi.2009.10.002_bib28) 1996; 153 Saint-Pierre (10.1016/j.jbi.2009.10.002_bib16) 2003; 22 10.1016/j.jbi.2009.10.002_bib35 Kjaerulff (10.1016/j.jbi.2009.10.002_bib17) 1995; 11 10.1016/j.jbi.2009.10.002_bib36 Vincent (10.1016/j.jbi.2009.10.002_bib47) 2000; 26 10.1016/j.jbi.2009.10.002_bib38 10.1016/j.jbi.2009.10.002_bib39 Lopes Ferreira (10.1016/j.jbi.2009.10.002_bib7) 2001; 286 LeGall (10.1016/j.jbi.2009.10.002_bib2) 1996; 276 Arts (10.1016/j.jbi.2009.10.002_bib33) 2002; 9 Shahar (10.1016/j.jbi.2009.10.002_bib5) 1997; 90 Shahar (10.1016/j.jbi.2009.10.002_bib1) 2000; 132 McCarthy (10.1016/j.jbi.2009.10.002_bib46) 2009 Graf (10.1016/j.jbi.2009.10.002_bib8) 2005; 33 Bone (10.1016/j.jbi.2009.10.002_bib30) 1992; 101 Angus (10.1016/j.jbi.2009.10.002_bib25) 2001; 29 Martin (10.1016/j.jbi.2009.10.002_bib26) 2003; 348 Singh (10.1016/j.jbi.2009.10.002_bib27) 2006; 32 Vincent (10.1016/j.jbi.2009.10.002_bib24) 2006; 34 10.1016/j.jbi.2009.10.002_bib21 Friedman (10.1016/j.jbi.2009.10.002_bib60) 1998 10.1016/j.jbi.2009.10.002_bib23 Damas (10.1016/j.jbi.2009.10.002_bib62) 2008; 34 Alberti (10.1016/j.jbi.2009.10.002_bib49) 2003; 168 Provan (10.1016/j.jbi.2009.10.002_bib37) 1993; 15 Riva (10.1016/j.jbi.2009.10.002_bib22) 1996; 8 Gaziano (10.1016/j.jbi.2009.10.002_bib50) 2005; 112 Russell (10.1016/j.jbi.2009.10.002_bib9) 2000; 28 10.1016/j.jbi.2009.10.002_bib20 Saka (10.1016/j.jbi.2009.10.002_bib34) 2007; 11 Kapadia (10.1016/j.jbi.2009.10.002_bib52) 2000; 124 Vincent (10.1016/j.jbi.2009.10.002_bib3) 1998; 26 Magni (10.1016/j.jbi.2009.10.002_bib51) 2000; 60 Ackerman (10.1016/j.jbi.2009.10.002_bib55) 1994; 36 10.1016/j.jbi.2009.10.002_bib11 Vosylius (10.1016/j.jbi.2009.10.002_bib4) 2004; 45 Moreno (10.1016/j.jbi.2009.10.002_bib6) 1999; 25 LeGall (10.1016/j.jbi.2009.10.002_bib32) 1993; 270 Venables (10.1016/j.jbi.2009.10.002_bib41) 2002 Altman (10.1016/j.jbi.2009.10.002_bib45) 1991 Knaus (10.1016/j.jbi.2009.10.002_bib29) 1985; 202 Beck (10.1016/j.jbi.2009.10.002_bib13) 1983; 3 Lucas (10.1016/j.jbi.2009.10.002_bib19) 2000; 19 Andreassen (10.1016/j.jbi.2009.10.002_bib18) 1999; 15 Dellinger (10.1016/j.jbi.2009.10.002_bib61) 2004; 32 Gerlach (10.1016/j.jbi.2009.10.002_bib56) 2007; 11 Pérez-Ocon (10.1016/j.jbi.2009.10.002_bib15) 1998; 40 10.1016/j.jbi.2009.10.002_bib43 Derksen (10.1016/j.jbi.2009.10.002_bib58) 1992; 45 Hosmer (10.1016/j.jbi.2009.10.002_bib42) 1989 Dagum (10.1016/j.jbi.2009.10.002_bib44) 1993; 15 Bernard (10.1016/j.jbi.2009.10.002_bib31) 2001; 344 Moreno (10.1016/j.jbi.2009.10.002_bib48) 2008; 34 Harrell (10.1016/j.jbi.2009.10.002_bib59) 1996; 15 Sonnenberg (10.1016/j.jbi.2009.10.002_bib14) 1993; 13 Bäuerle (10.1016/j.jbi.2009.10.002_bib54) 2000; 179 Levy (10.1016/j.jbi.2009.10.002_bib10) 2005; 33 Clermont (10.1016/j.jbi.2009.10.002_bib57) 2004; 30 Toma (10.1016/j.jbi.2009.10.002_bib12) 2007; 40 Agresti (10.1016/j.jbi.2009.10.002_bib40) 2002 Pérez (10.1016/j.jbi.2009.10.002_bib53) 2006; 6 |
References_xml | – volume: 348 start-page: 1546 year: 2003 end-page: 1554 ident: bib26 article-title: The epidemiology of sepsis in the United States from 1979 through 2000 publication-title: N Engl J Med contributor: fullname: Moss – volume: 28 start-page: 3405 year: 2000 end-page: 3411 ident: bib9 article-title: Changing patterns of organ dysfunction in early human sepsis is related to mortality publication-title: Crit Care Med contributor: fullname: Hudson – year: 2002 ident: bib40 article-title: Categorical data analysis. Wiley series in probability and statistics contributor: fullname: Agresti – year: 1998 ident: bib60 article-title: Learning Bayesian networks with local structure publication-title: Learning and inference in graphical models contributor: fullname: Goldszmidt – volume: 34 start-page: 856 year: 2008 end-page: 864 ident: bib62 article-title: Intensive care unit acquired infection and organ failure publication-title: Intensive Care Med contributor: fullname: Beauve – volume: 25 start-page: 686 year: 1999 end-page: 696 ident: bib6 article-title: The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study publication-title: Intensive Care Med contributor: fullname: Thijs – volume: 132 start-page: 45 year: 2000 end-page: 53 ident: bib1 article-title: Dimensions of time in illness: an objective view publication-title: Ann Intern Med contributor: fullname: Shahar – volume: 40 start-page: 649 year: 2007 end-page: 660 ident: bib12 article-title: Discovery and inclusion of SOFA score episodes in mortality prediction publication-title: J Biomed Inform contributor: fullname: Bosman – volume: 15 start-page: 246 year: 1993 end-page: 255 ident: bib44 article-title: Approximating probabilistic inference in Bayesian belief networks publication-title: IEEE PAMI contributor: fullname: Chavez – volume: 15 start-page: 361 year: 1996 end-page: 387 ident: bib59 article-title: Tutorial in biostatistics. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat Med contributor: fullname: Mark – volume: 153 start-page: 684 year: 1996 end-page: 693 ident: bib28 article-title: Bedside prediction of mortality from bacteremic sepsis. A dynamic analysis of ICU patients publication-title: Am J Respir Crit Care Med contributor: fullname: Suter – volume: 6 start-page: 127 year: 2006 end-page: 138 ident: bib53 article-title: Predicting the length of stay of patients admitted for intensive care using a first step analysis publication-title: Health Serv Outcomes Res Method contributor: fullname: Dennis – volume: 60 start-page: 237 year: 2000 end-page: 253 ident: bib51 article-title: Deciding when to intervene: a Markov decision approach publication-title: Int J Med Inform contributor: fullname: Barosi – volume: 9 start-page: 600 year: 2002 end-page: 611 ident: bib33 article-title: Defining and improving data quality in medical registries: a literature review, case study, and generic framework publication-title: J Am Med Inform Assoc contributor: fullname: Scheffer – volume: 286 start-page: 1754 year: 2001 end-page: 1758 ident: bib7 article-title: Serial evaluation of the SOFA score to predict outcome in critically ill patients publication-title: JAMA contributor: fullname: Vincent – volume: 344 start-page: 699 year: 2001 end-page: 709 ident: bib31 article-title: Efficacy and safety of recombinant human activated protein C for severe sepsis publication-title: N Engl J Med contributor: fullname: Laterre – volume: 45 start-page: 265 year: 1992 end-page: 282 ident: bib58 article-title: Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables publication-title: Br J Math Stat Psychol contributor: fullname: Keselman – year: 1991 ident: bib45 article-title: Practical statistics for medical research contributor: fullname: Altman – volume: 32 start-page: 858 year: 2004 end-page: 873 ident: bib61 article-title: Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock publication-title: Crit Care Med contributor: fullname: Masur – volume: 34 start-page: 344 year: 2006 end-page: 353 ident: bib24 article-title: Sepsis in European Intensive Care Units: results of the SOAP study publication-title: Crit Care Med contributor: fullname: Gerlach – volume: 168 start-page: 77 year: 2003 end-page: 84 ident: bib49 article-title: Le Gall JR for the European Sepsis Group. Influence of systemic inflammatory response syndrome and sepsis on outcome of critically ill infected patients publication-title: Am J Respir Crit Care Med contributor: fullname: Moreno – volume: 34 start-page: 496 year: 2008 end-page: 504 ident: bib48 article-title: Metnitz PGH for the SAPS 3 investigators. Sepsis mortality prediction based on predisposition, infection and response publication-title: Intensive Care Med contributor: fullname: Bauer – volume: 22 start-page: 3755 year: 2003 end-page: 3770 ident: bib16 article-title: The analysis of asthma control under a Markov assumption with use of covariates publication-title: Stat Med contributor: fullname: Godard – volume: 101 start-page: 1644 year: 1992 end-page: 1655 ident: bib30 article-title: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis publication-title: Chest contributor: fullname: Knaus – volume: 32 start-page: 349 year: 2006 end-page: 360 ident: bib27 article-title: Organ dysfunction during sepsis publication-title: Intensive Care Med contributor: fullname: Evans – volume: 33 start-page: 2194 year: 2005 end-page: 2201 ident: bib10 article-title: Early changes in organ function predict eventual survival in severe sepsis publication-title: Crit Care Med contributor: fullname: Trzaskoma – volume: 270 start-page: 2957 year: 1993 end-page: 2963 ident: bib32 article-title: A new simplified acute physiology score (SAPS) II based on a European/North American multicenter study publication-title: JAMA contributor: fullname: Saulnier – year: 2009 ident: bib46 article-title: Crowding delays treatment and lengthens emergency department length of stay, even among high-acuity patients publication-title: Ann Emerg Med contributor: fullname: Lee – volume: 29 start-page: 1303 year: 2001 end-page: 1310 ident: bib25 article-title: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care publication-title: Crit Care Med contributor: fullname: Lidicker – volume: 13 start-page: 322 year: 1993 end-page: 338 ident: bib14 article-title: Markov models in medical decision making: a practical guide publication-title: Med Decis Making contributor: fullname: Beck – volume: 11 start-page: R65 year: 2007 ident: bib34 article-title: Using dynamic microsimulation to predict disease progression in patients with pneumonia-related sepsis publication-title: Crit Care contributor: fullname: Angus – volume: 11 start-page: 146 year: 2007 ident: bib56 article-title: Between prediction, education and quality control: simulation models in critical care publication-title: Crit Care contributor: fullname: Toussaint – volume: 15 start-page: 299 year: 1993 end-page: 307 ident: bib37 article-title: Dynamic network construction and updating techniques for the diagnosis of acute abdominal pain publication-title: IEEE Trans Pattern Anal Mach Intell contributor: fullname: Clarke – volume: 40 start-page: 703 year: 1998 end-page: 715 ident: bib15 article-title: A multivariate model to measure the effect of treatments in survival to breast cancer publication-title: Biom J contributor: fullname: Gámiz-Pérez – volume: 276 start-page: 802 year: 1996 end-page: 810 ident: bib2 article-title: The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit publication-title: JAMA contributor: fullname: Artigas – volume: 8 start-page: 217 year: 1996 end-page: 234 ident: bib22 article-title: Learning temporal probabilistic causal models from longitudinal data publication-title: Artif Intell Med contributor: fullname: Bellazzi – volume: 179 start-page: 207 year: 2000 end-page: 211 ident: bib54 article-title: Markov cohort simulation study reveals evidence for sex-based risk difference in intensive care unit patients publication-title: Am J Surg contributor: fullname: Hanisch – volume: 19 start-page: 251 year: 2000 end-page: 279 ident: bib19 article-title: A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU publication-title: Artif Intell Med contributor: fullname: Hoepelman – volume: 112 start-page: 3569 year: 2005 end-page: 3576 ident: bib50 article-title: Cost-effectiveness analysis of hypertension guidelines in South Africa; absolute risk versus blood pressure level publication-title: Circulation contributor: fullname: Opie – volume: 124 start-page: 353 year: 2000 end-page: 359 ident: bib52 article-title: Predicting duration of stay in a pediatric intensive care unit: a Markovian approach publication-title: Eur J Oper Res contributor: fullname: Jefferson – year: 1989 ident: bib42 article-title: Applied logistic regression. Wiley series in probability and statistics contributor: fullname: Lemeshow – volume: 15 start-page: 121 year: 1999 end-page: 134 ident: bib18 article-title: Using probabilistic and decision-theoretic methods in treatment and prognosis modeling publication-title: Artif Intell Med contributor: fullname: Kristensen – year: 2002 ident: bib41 article-title: Modern applied statistics with S. Springer series in statistics and computing contributor: fullname: Ripley – volume: 90 start-page: 79 year: 1997 end-page: 133 ident: bib5 article-title: A framework for knowledge-based temporal abstraction publication-title: Artif Intell contributor: fullname: Shahar – volume: 45 start-page: 715 year: 2004 end-page: 720 ident: bib4 article-title: Sequential organ failure assessment score as the determinant of outcome for patients with severe sepsis publication-title: Croat Med J contributor: fullname: Ivaskevicius – volume: 202 start-page: 685 year: 1985 end-page: 693 ident: bib29 article-title: Prognosis in acute organ-system failure publication-title: Ann Surg contributor: fullname: Zimmerman – volume: 30 start-page: 2237 year: 2004 end-page: 2244 ident: bib57 article-title: Dynamic microsomulation to model multiple outcomes in cohorts of critically ill patients publication-title: Intensive Care Med contributor: fullname: Van Hout – volume: 3 start-page: 419 year: 1983 end-page: 458 ident: bib13 article-title: The Markov-process in medical prognosis publication-title: Med Decis Making contributor: fullname: Pauker – volume: 26 start-page: 1793 year: 1998 end-page: 1800 ident: bib3 article-title: Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study publication-title: Crit Care Med contributor: fullname: Suter – volume: 33 start-page: 2412 year: 2005 end-page: 2413 ident: bib8 article-title: The early bird catches the worm publication-title: Crit Care Med contributor: fullname: Janssens – volume: 11 start-page: 89 year: 1995 end-page: 111 ident: bib17 article-title: dHugin: a computational system for dynamic time-sliced Bayesian networks publication-title: Int J Forecast contributor: fullname: Kjaerulff – volume: 26 start-page: 1023 year: 2000 end-page: 1024 ident: bib47 article-title: Evaluation of organ failure: we are making progress publication-title: Intensive Care Med contributor: fullname: Lopes Ferreira – volume: 36 start-page: 229 year: 1994 end-page: 238 ident: bib55 article-title: Simulation of micropopulations in epidemiology. Tutorial I. Simulation: an introduction publication-title: Int J Biomed Comput contributor: fullname: Ackerman – volume: 112 start-page: 3569 year: 2005 ident: 10.1016/j.jbi.2009.10.002_bib50 article-title: Cost-effectiveness analysis of hypertension guidelines in South Africa; absolute risk versus blood pressure level publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.535922 contributor: fullname: Gaziano – volume: 132 start-page: 45 year: 2000 ident: 10.1016/j.jbi.2009.10.002_bib1 article-title: Dimensions of time in illness: an objective view publication-title: Ann Intern Med doi: 10.7326/0003-4819-132-1-200001040-00008 contributor: fullname: Shahar – volume: 25 start-page: 686 year: 1999 ident: 10.1016/j.jbi.2009.10.002_bib6 article-title: The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study publication-title: Intensive Care Med doi: 10.1007/s001340050931 contributor: fullname: Moreno – volume: 26 start-page: 1023 year: 2000 ident: 10.1016/j.jbi.2009.10.002_bib47 article-title: Evaluation of organ failure: we are making progress publication-title: Intensive Care Med doi: 10.1007/s001340051313 contributor: fullname: Vincent – volume: 15 start-page: 299 year: 1993 ident: 10.1016/j.jbi.2009.10.002_bib37 article-title: Dynamic network construction and updating techniques for the diagnosis of acute abdominal pain publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.204913 contributor: fullname: Provan – volume: 36 start-page: 229 year: 1994 ident: 10.1016/j.jbi.2009.10.002_bib55 article-title: Simulation of micropopulations in epidemiology. Tutorial I. Simulation: an introduction publication-title: Int J Biomed Comput doi: 10.1016/0020-7101(94)90058-2 contributor: fullname: Ackerman – volume: 15 start-page: 246 year: 1993 ident: 10.1016/j.jbi.2009.10.002_bib44 article-title: Approximating probabilistic inference in Bayesian belief networks publication-title: IEEE PAMI doi: 10.1109/34.204906 contributor: fullname: Dagum – ident: 10.1016/j.jbi.2009.10.002_bib20 – volume: 9 start-page: 600 year: 2002 ident: 10.1016/j.jbi.2009.10.002_bib33 article-title: Defining and improving data quality in medical registries: a literature review, case study, and generic framework publication-title: J Am Med Inform Assoc doi: 10.1197/jamia.M1087 contributor: fullname: Arts – year: 2002 ident: 10.1016/j.jbi.2009.10.002_bib41 contributor: fullname: Venables – year: 1991 ident: 10.1016/j.jbi.2009.10.002_bib45 contributor: fullname: Altman – volume: 15 start-page: 121 year: 1999 ident: 10.1016/j.jbi.2009.10.002_bib18 article-title: Using probabilistic and decision-theoretic methods in treatment and prognosis modeling publication-title: Artif Intell Med doi: 10.1016/S0933-3657(98)00048-7 contributor: fullname: Andreassen – volume: 34 start-page: 856 year: 2008 ident: 10.1016/j.jbi.2009.10.002_bib62 article-title: Intensive care unit acquired infection and organ failure publication-title: Intensive Care Med doi: 10.1007/s00134-008-1018-7 contributor: fullname: Damas – volume: 101 start-page: 1644 year: 1992 ident: 10.1016/j.jbi.2009.10.002_bib30 article-title: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis publication-title: Chest doi: 10.1378/chest.101.6.1644 contributor: fullname: Bone – volume: 179 start-page: 207 year: 2000 ident: 10.1016/j.jbi.2009.10.002_bib54 article-title: Markov cohort simulation study reveals evidence for sex-based risk difference in intensive care unit patients publication-title: Am J Surg doi: 10.1016/S0002-9610(00)00298-1 contributor: fullname: Bäuerle – year: 2002 ident: 10.1016/j.jbi.2009.10.002_bib40 doi: 10.1002/0471249688 contributor: fullname: Agresti – ident: 10.1016/j.jbi.2009.10.002_bib38 doi: 10.1016/B978-1-4832-8287-9.50010-4 – volume: 11 start-page: R65 year: 2007 ident: 10.1016/j.jbi.2009.10.002_bib34 article-title: Using dynamic microsimulation to predict disease progression in patients with pneumonia-related sepsis publication-title: Crit Care doi: 10.1186/cc5942 contributor: fullname: Saka – volume: 168 start-page: 77 year: 2003 ident: 10.1016/j.jbi.2009.10.002_bib49 article-title: Le Gall JR for the European Sepsis Group. Influence of systemic inflammatory response syndrome and sepsis on outcome of critically ill infected patients publication-title: Am J Respir Crit Care Med doi: 10.1164/rccm.200208-785OC contributor: fullname: Alberti – volume: 124 start-page: 353 year: 2000 ident: 10.1016/j.jbi.2009.10.002_bib52 article-title: Predicting duration of stay in a pediatric intensive care unit: a Markovian approach publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(99)00296-9 contributor: fullname: Kapadia – volume: 90 start-page: 79 year: 1997 ident: 10.1016/j.jbi.2009.10.002_bib5 article-title: A framework for knowledge-based temporal abstraction publication-title: Artif Intell doi: 10.1016/S0004-3702(96)00025-2 contributor: fullname: Shahar – ident: 10.1016/j.jbi.2009.10.002_bib23 – volume: 45 start-page: 715 year: 2004 ident: 10.1016/j.jbi.2009.10.002_bib4 article-title: Sequential organ failure assessment score as the determinant of outcome for patients with severe sepsis publication-title: Croat Med J contributor: fullname: Vosylius – volume: 3 start-page: 419 year: 1983 ident: 10.1016/j.jbi.2009.10.002_bib13 article-title: The Markov-process in medical prognosis publication-title: Med Decis Making doi: 10.1177/0272989X8300300403 contributor: fullname: Beck – volume: 30 start-page: 2237 year: 2004 ident: 10.1016/j.jbi.2009.10.002_bib57 article-title: Dynamic microsomulation to model multiple outcomes in cohorts of critically ill patients publication-title: Intensive Care Med doi: 10.1007/s00134-004-2456-5 contributor: fullname: Clermont – volume: 270 start-page: 2957 year: 1993 ident: 10.1016/j.jbi.2009.10.002_bib32 article-title: A new simplified acute physiology score (SAPS) II based on a European/North American multicenter study publication-title: JAMA doi: 10.1001/jama.1993.03510240069035 contributor: fullname: LeGall – ident: 10.1016/j.jbi.2009.10.002_bib21 doi: 10.1007/978-3-540-73599-1_10 – volume: 40 start-page: 703 year: 1998 ident: 10.1016/j.jbi.2009.10.002_bib15 article-title: A multivariate model to measure the effect of treatments in survival to breast cancer publication-title: Biom J doi: 10.1002/(SICI)1521-4036(199810)40:6<703::AID-BIMJ703>3.0.CO;2-7 contributor: fullname: Pérez-Ocon – volume: 276 start-page: 802 year: 1996 ident: 10.1016/j.jbi.2009.10.002_bib2 article-title: The Logistic Organ Dysfunction system. A new way to assess organ dysfunction in the intensive care unit publication-title: JAMA doi: 10.1001/jama.1996.03540100046027 contributor: fullname: LeGall – volume: 32 start-page: 349 year: 2006 ident: 10.1016/j.jbi.2009.10.002_bib27 article-title: Organ dysfunction during sepsis publication-title: Intensive Care Med doi: 10.1007/s00134-005-0038-9 contributor: fullname: Singh – year: 1989 ident: 10.1016/j.jbi.2009.10.002_bib42 contributor: fullname: Hosmer – volume: 11 start-page: 89 year: 1995 ident: 10.1016/j.jbi.2009.10.002_bib17 article-title: dHugin: a computational system for dynamic time-sliced Bayesian networks publication-title: Int J Forecast doi: 10.1016/0169-2070(94)02003-8 contributor: fullname: Kjaerulff – volume: 60 start-page: 237 issue: 3 year: 2000 ident: 10.1016/j.jbi.2009.10.002_bib51 article-title: Deciding when to intervene: a Markov decision approach publication-title: Int J Med Inform doi: 10.1016/S1386-5056(00)00099-X contributor: fullname: Magni – volume: 45 start-page: 265 year: 1992 ident: 10.1016/j.jbi.2009.10.002_bib58 article-title: Backward, forward and stepwise automated subset selection algorithms: frequency of obtaining authentic and noise variables publication-title: Br J Math Stat Psychol doi: 10.1111/j.2044-8317.1992.tb00992.x contributor: fullname: Derksen – volume: 22 start-page: 3755 year: 2003 ident: 10.1016/j.jbi.2009.10.002_bib16 article-title: The analysis of asthma control under a Markov assumption with use of covariates publication-title: Stat Med doi: 10.1002/sim.1680 contributor: fullname: Saint-Pierre – ident: 10.1016/j.jbi.2009.10.002_bib35 – volume: 202 start-page: 685 year: 1985 ident: 10.1016/j.jbi.2009.10.002_bib29 article-title: Prognosis in acute organ-system failure publication-title: Ann Surg doi: 10.1097/00000658-198512000-00004 contributor: fullname: Knaus – volume: 33 start-page: 2412 year: 2005 ident: 10.1016/j.jbi.2009.10.002_bib8 article-title: The early bird catches the worm publication-title: Crit Care Med doi: 10.1097/01.CCM.0000182998.90016.EF contributor: fullname: Graf – volume: 26 start-page: 1793 year: 1998 ident: 10.1016/j.jbi.2009.10.002_bib3 article-title: Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study publication-title: Crit Care Med doi: 10.1097/00003246-199811000-00016 contributor: fullname: Vincent – volume: 29 start-page: 1303 year: 2001 ident: 10.1016/j.jbi.2009.10.002_bib25 article-title: Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care publication-title: Crit Care Med doi: 10.1097/00003246-200107000-00002 contributor: fullname: Angus – volume: 19 start-page: 251 year: 2000 ident: 10.1016/j.jbi.2009.10.002_bib19 article-title: A probabilistic and decision-theoretic approach to the management of infectious disease at the ICU publication-title: Artif Intell Med doi: 10.1016/S0933-3657(00)00048-8 contributor: fullname: Lucas – year: 2009 ident: 10.1016/j.jbi.2009.10.002_bib46 article-title: Crowding delays treatment and lengthens emergency department length of stay, even among high-acuity patients publication-title: Ann Emerg Med doi: 10.1016/j.annemergmed.2009.03.006 contributor: fullname: McCarthy – ident: 10.1016/j.jbi.2009.10.002_bib43 doi: 10.1016/B978-1-55860-203-8.50008-5 – volume: 40 start-page: 649 year: 2007 ident: 10.1016/j.jbi.2009.10.002_bib12 article-title: Discovery and inclusion of SOFA score episodes in mortality prediction publication-title: J Biomed Inform doi: 10.1016/j.jbi.2007.03.007 contributor: fullname: Toma – volume: 15 start-page: 361 issue: 4 year: 1996 ident: 10.1016/j.jbi.2009.10.002_bib59 article-title: Tutorial in biostatistics. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat Med doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 contributor: fullname: Harrell – volume: 286 start-page: 1754 year: 2001 ident: 10.1016/j.jbi.2009.10.002_bib7 article-title: Serial evaluation of the SOFA score to predict outcome in critically ill patients publication-title: JAMA doi: 10.1001/jama.286.14.1754 contributor: fullname: Lopes Ferreira – ident: 10.1016/j.jbi.2009.10.002_bib36 – ident: 10.1016/j.jbi.2009.10.002_bib11 – volume: 33 start-page: 2194 year: 2005 ident: 10.1016/j.jbi.2009.10.002_bib10 article-title: Early changes in organ function predict eventual survival in severe sepsis publication-title: Crit Care Med doi: 10.1097/01.CCM.0000182798.39709.84 contributor: fullname: Levy – volume: 8 start-page: 217 year: 1996 ident: 10.1016/j.jbi.2009.10.002_bib22 article-title: Learning temporal probabilistic causal models from longitudinal data publication-title: Artif Intell Med doi: 10.1016/0933-3657(95)00034-8 contributor: fullname: Riva – volume: 34 start-page: 496 year: 2008 ident: 10.1016/j.jbi.2009.10.002_bib48 article-title: Metnitz PGH for the SAPS 3 investigators. Sepsis mortality prediction based on predisposition, infection and response publication-title: Intensive Care Med doi: 10.1007/s00134-007-0943-1 contributor: fullname: Moreno – volume: 11 start-page: 146 year: 2007 ident: 10.1016/j.jbi.2009.10.002_bib56 article-title: Between prediction, education and quality control: simulation models in critical care publication-title: Crit Care doi: 10.1186/cc5950 contributor: fullname: Gerlach – ident: 10.1016/j.jbi.2009.10.002_bib39 doi: 10.1016/B978-1-4832-1451-1.50012-3 – volume: 28 start-page: 3405 year: 2000 ident: 10.1016/j.jbi.2009.10.002_bib9 article-title: Changing patterns of organ dysfunction in early human sepsis is related to mortality publication-title: Crit Care Med doi: 10.1097/00003246-200010000-00005 contributor: fullname: Russell – volume: 32 start-page: 858 issue: 3 year: 2004 ident: 10.1016/j.jbi.2009.10.002_bib61 article-title: Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock publication-title: Crit Care Med doi: 10.1097/01.CCM.0000117317.18092.E4 contributor: fullname: Dellinger – volume: 348 start-page: 1546 year: 2003 ident: 10.1016/j.jbi.2009.10.002_bib26 article-title: The epidemiology of sepsis in the United States from 1979 through 2000 publication-title: N Engl J Med doi: 10.1056/NEJMoa022139 contributor: fullname: Martin – volume: 344 start-page: 699 year: 2001 ident: 10.1016/j.jbi.2009.10.002_bib31 article-title: Efficacy and safety of recombinant human activated protein C for severe sepsis publication-title: N Engl J Med doi: 10.1056/NEJM200103083441001 contributor: fullname: Bernard – volume: 13 start-page: 322 year: 1993 ident: 10.1016/j.jbi.2009.10.002_bib14 article-title: Markov models in medical decision making: a practical guide publication-title: Med Decis Making doi: 10.1177/0272989X9301300409 contributor: fullname: Sonnenberg – volume: 34 start-page: 344 year: 2006 ident: 10.1016/j.jbi.2009.10.002_bib24 article-title: Sepsis in European Intensive Care Units: results of the SOAP study publication-title: Crit Care Med doi: 10.1097/01.CCM.0000194725.48928.3A contributor: fullname: Vincent – volume: 153 start-page: 684 year: 1996 ident: 10.1016/j.jbi.2009.10.002_bib28 article-title: Bedside prediction of mortality from bacteremic sepsis. A dynamic analysis of ICU patients publication-title: Am J Respir Crit Care Med doi: 10.1164/ajrccm.153.2.8564118 contributor: fullname: Pittet – volume: 6 start-page: 127 year: 2006 ident: 10.1016/j.jbi.2009.10.002_bib53 article-title: Predicting the length of stay of patients admitted for intensive care using a first step analysis publication-title: Health Serv Outcomes Res Method doi: 10.1007/s10742-006-0009-9 contributor: fullname: Pérez – year: 1998 ident: 10.1016/j.jbi.2009.10.002_bib60 article-title: Learning Bayesian networks with local structure contributor: fullname: Friedman |
SSID | ssj0011556 |
Score | 2.165691 |
Snippet | In intensive care medicine close monitoring of organ failure status is important for the prognosis of patients and for choices regarding ICU management. Major... |
SourceID | proquest crossref pubmed elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 273 |
SubjectTerms | Bayes Theorem Clinical data Computational Biology - methods Dynamic Bayesian network Female Humans Intensive care Intensive Care Units - statistics & numerical data Logistic Models Male Markov Chains Multiple Organ Failure - epidemiology Organ failure Predictive Value of Tests Prognosis Prospective Studies Sepsis - diagnosis Sepsis - mortality Temporal patterns Time Factors |
Title | Using hierarchical dynamic Bayesian networks to investigate dynamics of organ failure in patients in the Intensive Care Unit |
URI | https://dx.doi.org/10.1016/j.jbi.2009.10.002 https://www.ncbi.nlm.nih.gov/pubmed/19874913 https://search.proquest.com/docview/733370660 https://search.proquest.com/docview/877570204 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aQ0JMCEGBrQMqHzghhda1HSfHdTB1lO0CQ71FtmNL2SGdaHeYhPjbec9OyjiUA6dEliNZfs774fe97wG8ywUXVjuT1dz4TDplMstzlZnSiuCV0CLQPeTFZT6_kp-XarkHp30tDMEqO92fdHrU1t3IuNvN8U3TjL9y6mkgcwxQIjkmMX4KxWMR33K2zSSgvcwTZ-qUYIyyz2xGjNe1bRJlZQR4TXfZpl2-Z7RBZ8_gaec8spO0vuew59sBHNyjFBzAo4suWT6AJ-lKjqVKoxfwM8IDGDW_jukDlA6rU0N6NjN3nsopWZtg4Wu2WbFmy8Hh-4lrtgosdoJiwTQEacdZrCNnXdM7OpRsi4tnVN7EyK99CVdnn76dzrOu-ULmZCk2qCXthLu6NDJXZPWdm2ofvNPacSOIdc6WE2tqXVpuNFo5r4IvfJiYvAjOOPEK9ttV64-AhSKvOapRW6N3xqU2huJujPMwOPO6VkN43297dZM4NqoefHZdoYyoV2ZJQyijIcheMNVfB6VCG_Cvz1gvxAp_IMqKmNavbteVFkJodLwmu6cUWitNVcRDOEzy_7POstCy5OL4_5b1Gh4nOAJBgd7A_ubHrX-LXs7GjuDBh198BA9PZt8XX-h5vphf4ujH88UoHvHf6WYAXA |
link.rule.ids | 315,783,787,3513,4509,24128,27581,27936,27937,45597,45675,45691,45886 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa6FtgDw7BlXZc9edhpgJEoki3r2BUr0rXJZS3QmyHJEuAenGJJDwP640dadrYdssNuhiADgiiRH8WPJMCnQgrptLdZLWzIlM9t5kSRZ9Y4GUMutYz8DrlYFvMr9e06v96DkyEXhmmVve5POr3T1v3IpN_NyW3TTL4L7mmgCnJQuuKY8gEcEBowdDsPjs_O58ttMIFMZpHKps6YyaiG4GZH87pxTapa2XG8ZrvM0y742Zmh0-fwrMePeJyW-AL2QjuCJ39UFRzBw0UfLx_B0_QqhynZ6CXcdwwB5P7XXQSBBIR16kmPX-zPwBmV2CZm-Bo3K2y2ZTjCMHGNq4hdMyiMtmFWO83Cvj7rmr8JU-KWGo-c4YQMbQ_h6vTr5ck86_svZF4ZuSFF6abC18aqImfD7_1Mhxi81l5YyYXnnJk6W2vjhNVk6EIeQxni1BZl9NbLV7DfrtrwGjCWRS1Ik7qaAJpQ2lp2vcnVI_8s6Dofw-dh26vbVGajGvhnNxXJiNtlGh4iGY1BDYKp_jorFZmBf_2GgxArukMcGLFtWN2tKy2l1IS9prunlFrnmhOJx3CU5P97nabUygj55v-W9REezS8XF9XF2fL8LTxO7ARmBr2D_c2Pu_CeQM_GfegP9S-0cf9x |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+hierarchical+dynamic+Bayesian+networks+to+investigate+dynamics+of+organ+failure+in+patients+in+the+Intensive+Care+Unit&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Peelen%2C+Linda&rft.au=de+Keizer%2C+Nicolette+F&rft.au=Jonge%2C+Evert+de&rft.au=Bosman%2C+Robert-Jan&rft.date=2010-04-01&rft.eissn=1532-0480&rft.volume=43&rft.issue=2&rft.spage=273&rft.epage=286&rft_id=info:doi/10.1016%2Fj.jbi.2009.10.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |