Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization

Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 15; p. 675154
Main Authors Montazeri, Saeed, Pinchefsky, Elana, Tse, Ilse, Marchi, Viviana, Kohonen, Jukka, Kauppila, Minna, Airaksinen, Manu, Tapani, Karoliina, Nevalainen, Päivi, Hahn, Cecil, Tam, Emily W. Y., Stevenson, Nathan J., Vanhatalo, Sampsa
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 31.05.2021
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2021.675154

Cover

Abstract Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.
AbstractList Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.
Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e. the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13200 five-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested 3 classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.
Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.
Author Tse, Ilse
Nevalainen, Päivi
Airaksinen, Manu
Pinchefsky, Elana
Marchi, Viviana
Vanhatalo, Sampsa
Hahn, Cecil
Montazeri, Saeed
Kohonen, Jukka
Kauppila, Minna
Tam, Emily W. Y.
Stevenson, Nathan J.
Tapani, Karoliina
AuthorAffiliation 8 Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki , Helsinki , Finland
2 Division of Neurology, Department of Paediatrics, Sainte-Justine University Hospital Centre, University of Montreal , Montreal, QC , Canada
3 Department of Developmental Neuroscience, Stella Maris Scientific Institute, IRCCS Fondazione Stella Maris Foundation , Pisa , Italy
1 BABA Center, Pediatric Research Centre, Department of Clinical Neurophysiology, Children’s Hospital and HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki , Helsinki , Finland
4 Department of Computer Science, Aalto University , Espoo , Finland
7 Brain Modelling Group, QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
5 Department of Signal Processing and Acoustics, Aalto University , Espoo , Finland
6 Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto , Toronto, ON , Canada
AuthorAffiliation_xml – name: 7 Brain Modelling Group, QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia
– name: 5 Department of Signal Processing and Acoustics, Aalto University , Espoo , Finland
– name: 4 Department of Computer Science, Aalto University , Espoo , Finland
– name: 1 BABA Center, Pediatric Research Centre, Department of Clinical Neurophysiology, Children’s Hospital and HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki , Helsinki , Finland
– name: 6 Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto , Toronto, ON , Canada
– name: 8 Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki , Helsinki , Finland
– name: 2 Division of Neurology, Department of Paediatrics, Sainte-Justine University Hospital Centre, University of Montreal , Montreal, QC , Canada
– name: 3 Department of Developmental Neuroscience, Stella Maris Scientific Institute, IRCCS Fondazione Stella Maris Foundation , Pisa , Italy
Author_xml – sequence: 1
  givenname: Saeed
  surname: Montazeri
  fullname: Montazeri, Saeed
– sequence: 2
  givenname: Elana
  surname: Pinchefsky
  fullname: Pinchefsky, Elana
– sequence: 3
  givenname: Ilse
  surname: Tse
  fullname: Tse, Ilse
– sequence: 4
  givenname: Viviana
  surname: Marchi
  fullname: Marchi, Viviana
– sequence: 5
  givenname: Jukka
  surname: Kohonen
  fullname: Kohonen, Jukka
– sequence: 6
  givenname: Minna
  surname: Kauppila
  fullname: Kauppila, Minna
– sequence: 7
  givenname: Manu
  surname: Airaksinen
  fullname: Airaksinen, Manu
– sequence: 8
  givenname: Karoliina
  surname: Tapani
  fullname: Tapani, Karoliina
– sequence: 9
  givenname: Päivi
  surname: Nevalainen
  fullname: Nevalainen, Päivi
– sequence: 10
  givenname: Cecil
  surname: Hahn
  fullname: Hahn, Cecil
– sequence: 11
  givenname: Emily W. Y.
  surname: Tam
  fullname: Tam, Emily W. Y.
– sequence: 12
  givenname: Nathan J.
  surname: Stevenson
  fullname: Stevenson, Nathan J.
– sequence: 13
  givenname: Sampsa
  surname: Vanhatalo
  fullname: Vanhatalo, Sampsa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34135744$$D View this record in MEDLINE/PubMed
BookMark eNp1kstuEzEUhkeoiF7gAdggS2zYJPg6FxZISZSUShVdBNhaHs9x4jBjD_YMorwH74uTtKitxMqW_Z_vP_b5z7MT5x1k2WuCp4yV1XvjtmM3pZiSaV4IIviz7IzkOZ0IkpOTB_vT7DzGHcY5zQV5kZ0yTpgoOD_L_sxH2zbWbZBy6KYHh9Z-DBrQolUxWmMhIOMDGraAPoN3alAtWi4v0Vzp75vgR9d8QDO0vo0DdGqwGq1ADWOAyVxFaNCs74NXeotWwXdo-auHMKC19mFvOfhkY53VifnNxlG19ndiePcye25UG-HV3XqRfV0tvyw-Ta5vLq8Ws-uJ5hUbJiVnmjBlCM05bYzWgLWusDLccKhrLCpR0oI0mqeVc8NERYUGTQqNeVnm7CK7OnIbr3ayD7ZT4VZ6ZeXhwIeNVCE9qgWJjclpKSiu6mRW1yXQkjTJhzGstDCJ9fHI6se6g0aDG4JqH0Ef3zi7lRv_U5YUY45pAry7AwT_Y4Q4yM5GDW2rHPgxSio4ZTljHCfp2yfSXZqaS1-VVExwQSpSJdWbhx39a-V--klQHAU6-BgDGKntcBhAatC2kmC5z5k85EzucyaPOUuV5EnlPfz_NX8BTj3XwQ
CitedBy_id crossref_primary_10_1016_j_clinph_2024_03_007
crossref_primary_10_3389_frai_2025_1481338
crossref_primary_10_3390_app13053211
crossref_primary_10_1109_ACCESS_2022_3159653
crossref_primary_10_1016_S2589_7500_22_00196_0
crossref_primary_10_1002_acn3_52233
crossref_primary_10_3390_biomedinformatics4020067
crossref_primary_10_3390_bioengineering11030217
crossref_primary_10_1038_s41597_023_02002_8
crossref_primary_10_1016_j_pneurobio_2022_102268
crossref_primary_10_3389_fncel_2021_814012
crossref_primary_10_1016_j_clinph_2022_08_022
crossref_primary_10_1016_j_eswa_2022_118917
crossref_primary_10_3390_signals4030034
crossref_primary_10_1038_s41390_024_03235_y
crossref_primary_10_3390_signals5020014
Cites_doi 10.1111/epi.13661
10.1088/1741-2552/ab260c
10.1136/adc.2005.086314
10.1016/j.clinph.2011.01.043
10.1613/jair.953
10.1016/j.clinph.2015.05.024
10.1186/1471-2431-13-194
10.1080/08874417.1996.11647233
10.1016/s0167-7012(00)00201-3
10.1016/j.earlhumdev.2008.11.007
10.1088/1741-2552/abca18
10.1016/B978-1-55860-335-6.50023-4
10.1109/CEC.2000.870311
10.1016/j.clinph.2020.09.024
10.1136/archdischild-2016-311770
10.1007/s10439-012-0710-5
10.1016/j.clinph.2010.12.059
10.1016/j.dss.2014.12.006
10.1542/peds.2004-0863
10.1162/neco.1989.1.2.270
10.1007/s00381-003-0809-y
10.1136/adc.2004.062745
10.1016/j.clinph.2016.06.018
10.1088/1741-2560/11/6/066007
10.1016/j.clinph.2017.06.250
10.1109/TBME.2015.2477946
10.1111/j.1651-2227.2010.01809.x
10.1016/0013-4694(72)90063-6
10.1097/WNP.0b013e3182872b24
10.1142/S021800140300271X
10.1016/s0387-7604(99)00034-0
10.1016/j.siny.2013.04.004
10.1542/peds.2008-2190
10.1542/peds.2009-2938
10.32604/cmes.2020.07470
10.1089/heat.2019.0006
10.1016/j.jpeds.2019.02.027
10.1142/9789814343138_0005
10.1016/j.neucom.2019.04.058
10.1016/j.clinph.2017.10.031
10.1016/S0031-3203(99)00041-2
10.1088/1741-2552/ab5469
10.1097/WNP.0000000000000534
10.1002/acn3.51132
10.1016/s0887-8994(02)00396-x
10.1080/08035250410022882
10.1088/1741-2552/abe8ae
ContentType Journal Article
Copyright Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo.
2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Montazeri, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo.
Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo
Copyright_xml – notice: Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo.
– notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Montazeri, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo.
– notice: Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2021.675154
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_0ff6285209b642bb8e281df4e330ac5f
PMC8200402
34135744
10_3389_fnhum_2021_675154
Genre Journal Article
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD101419
– fundername: Suomen Aivosäätiö
– fundername: National Health and Medical Research Council
  grantid: APP1144936; APP2002135
– fundername: Lastentautien Tutkimussäätiö
– fundername: H2020 Marie Skłodowska-Curie Actions
  grantid: 813483
– fundername: Suomalainen Tiedeakatemia
  grantid: 313242; 288220; 3104450
– fundername: National Institutes of Health
  grantid: R01 HD101419
– fundername: Sigrid Juséliuksen Säätiö
– fundername: Canadian Institutes of Health Research
  grantid: MOP-133710; PJT-166076
– fundername: Hospital for Sick Children
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c493t-843c13af12642dfcce0cc90af4f4ebb05958271dc458244f35925cec17c048863
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:23:50 EDT 2025
Thu Aug 21 18:40:48 EDT 2025
Thu Sep 04 21:30:15 EDT 2025
Fri Jul 25 11:41:46 EDT 2025
Tue Apr 29 09:22:38 EDT 2025
Tue Jul 01 03:44:34 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords neonatal EEG
artificial neural network
support vector machine
EEG trend
EEG monitoring
neonatal intensive care unit
background classifier
Language English
License Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-843c13af12642dfcce0cc90af4f4ebb05958271dc458244f35925cec17c048863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Jiahua Xu, Otto von Guericke University Magdeburg, Germany; Sumit Raurale, University College Cork, Ireland
This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience
Edited by: Ren Xu, Guger Technologies, Austria
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2021.675154
PMID 34135744
PQID 2535451919
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_0ff6285209b642bb8e281df4e330ac5f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8200402
proquest_miscellaneous_2542363340
proquest_journals_2535451919
pubmed_primary_34135744
crossref_citationtrail_10_3389_fnhum_2021_675154
crossref_primary_10_3389_fnhum_2021_675154
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-31
PublicationDateYYYYMMDD 2021-05-31
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-31
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Temko (B44) 2015; 70
Matić (B24) 2015; 63
Williams (B52) 1989; 1
de Vries (B13) 2005; 90
Menache (B26) 2002; 27
Kamino (B18) 2021; 132
Ahmed (B1) 2016; 127
Olischar (B30) 2004; 20
Banville (B4) 2019
John (B17) 1994
Massey (B23) 2019; 36
Boylan (B8) 2010; 99
Kudo (B21) 2000; 33
Guo (B16) 2020; 122
Stevenson (B43) 2020; 7
Matic (B25) 2014; 11
Emmanouilidis (B15) 2000
Versaggi (B49) 1995; 10
Roy (B38) 2019; 16
Monod (B27) 1972; 32
Kauppila (B19) 2017
Raggad (B34) 1996; 36
Ansari (B3) 2020; 17
Stevenson (B41) 2018; 129
Dereymaeker (B14) 2017; 128
Banville (B5) 2020; 18
Basheer (B6) 2000; 43
Ter Horst (B45) 2004; 93
Stevenson (B40) 2013; 41
Borjali (B7) 2020
Chen (B11) 2019; 356
Thoresen (B46) 2010; 126
Siedlecki (B39) 1993
Weeke (B51) 2017; 102
Murray (B29) 2009; 124
Korotchikova (B20) 2011; 122
Cherian (B12) 2011; 122
Raurale (B37) 2019
Raurale (B36) 2021; 18
Osredkar (B32) 2005; 115
Wusthoff (B53) 2017; 58
Boylan (B9) 2013; 18
Chawla (B10) 2002; 16
Marics (B22) 2013; 13
Stevenson (B42) 2014
Watanabe (B50) 1999; 21
Pinchefsky (B33) 2019; 209
Oliveira (B31) 2003; 17
Raurale (B35) 2020
Toet (B47) 2009; 85
Ansari (B2) 2016; 127
Tsuchida (B48) 2013; 30
Murray (B28) 2008; 93
38741595 - Front Hum Neurosci. 2024 Apr 29;18:1417744
References_xml – volume: 58
  start-page: 429
  year: 2017
  ident: B53
  article-title: Interrater agreement in the interpretation of neonatal electroencephalography in hypoxic-ischemic encephalopathy.
  publication-title: Epilepsia
  doi: 10.1111/epi.13661
– volume: 16
  year: 2019
  ident: B38
  article-title: Deep learning-based electroencephalography analysis: a systematic review.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– volume: 93
  start-page: F187
  year: 2008
  ident: B28
  article-title: Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures.
  publication-title: Arch. Dis. Child. Fetal Neonatal Ed.
  doi: 10.1136/adc.2005.086314
– volume: 122
  start-page: 1490
  year: 2011
  ident: B12
  article-title: Validation of a new automated neonatal seizure detection system: a clinician’s perspective.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.01.043
– volume: 16
  start-page: 321
  year: 2002
  ident: B10
  article-title: SMOTE: synthetic minority over-sampling technique.
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 127
  start-page: 297
  year: 2016
  ident: B1
  article-title: Grading hypoxic–ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.05.024
– volume: 13
  year: 2013
  ident: B22
  article-title: Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy.
  publication-title: BMC Pediatr.
  doi: 10.1186/1471-2431-13-194
– volume: 36
  start-page: 92
  year: 1996
  ident: B34
  article-title: Data conflict elimination in neural network training.
  publication-title: J. Comput. Inf. Syst.
  doi: 10.1080/08874417.1996.11647233
– start-page: 4125
  year: 2019
  ident: B37
  article-title: Suitability of an inter-burst detection method for grading hypoxic-ischemic encephalopathy in newborn EEG
  publication-title: Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 43
  start-page: 3
  year: 2000
  ident: B6
  article-title: Artificial neural networks: fundamentals, computing, design, and application.
  publication-title: J. Microbiol. Methods
  doi: 10.1016/s0167-7012(00)00201-3
– volume: 85
  start-page: 77
  year: 2009
  ident: B47
  article-title: Brain monitoring in neonates.
  publication-title: Early Hum. Dev.
  doi: 10.1016/j.earlhumdev.2008.11.007
– volume: 18
  year: 2020
  ident: B5
  article-title: Uncovering the structure of clinical EEG signals with self-supervised learning.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abca18
– start-page: 926
  year: 2014
  ident: B42
  article-title: Artefact detection in neonatal EEG
  publication-title: Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– start-page: 121
  year: 1994
  ident: B17
  article-title: Irrelevant features and the subset selection problem
  publication-title: Machine Learning Proceedings 1994
  doi: 10.1016/B978-1-55860-335-6.50023-4
– start-page: 309
  year: 2000
  ident: B15
  article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator
  publication-title: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512)
  doi: 10.1109/CEC.2000.870311
– volume: 132
  start-page: 307
  year: 2021
  ident: B18
  article-title: Abnormalities in evoked potentials associated with abnormal glycemia and brain injury in neonatal hypoxic-ischemic encephalopathy.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2020.09.024
– volume: 102
  start-page: F383
  year: 2017
  ident: B51
  article-title: Severe hypercapnia causes reversible depression of aEEG background activity in neonates: an observational study.
  publication-title: Arch. Dis. Child. Fetal Neonatal Ed.
  doi: 10.1136/archdischild-2016-311770
– volume: 41
  start-page: 775
  year: 2013
  ident: B40
  article-title: An automated system for grading EEG abnormality in term neonates with hypoxic-ischaemic encephalopathy.
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0710-5
– volume: 122
  start-page: 1671
  year: 2011
  ident: B20
  article-title: Quantitative EEG analysis in neonatal hypoxic ischaemic encephalopathy.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.12.059
– volume: 70
  start-page: 86
  year: 2015
  ident: B44
  article-title: Clinical implementation of a neonatal seizure detection algorithm.
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2014.12.006
– volume: 115
  start-page: 327
  year: 2005
  ident: B32
  article-title: Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy.
  publication-title: Pediatrics
  doi: 10.1542/peds.2004-0863
– volume: 1
  start-page: 270
  year: 1989
  ident: B52
  article-title: A learning algorithm for continually running fully recurrent neural networks.
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– volume: 20
  start-page: 41
  year: 2004
  ident: B30
  article-title: Progressive posthemorrhagic hydrocephalus leads to changes of amplitude-integrated EEG activity in preterm infants.
  publication-title: Childs Nerv. Syst.
  doi: 10.1007/s00381-003-0809-y
– volume: 90
  start-page: F201
  year: 2005
  ident: B13
  article-title: Role of cerebral function monitoring in the newborn.
  publication-title: Arch. Dis. Child. Fetal Neonatal Ed.
  doi: 10.1136/adc.2004.062745
– volume: 127
  start-page: 3014
  year: 2016
  ident: B2
  article-title: Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2016.06.018
– volume: 11
  year: 2014
  ident: B25
  article-title: Holistic approach for automated background EEG assessment in asphyxiated full-term infants.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/6/066007
– volume: 128
  start-page: 1737
  year: 2017
  ident: B14
  article-title: Interrater agreement in visual scoring of neonatal seizures based on majority voting on a web-based system: the neoguard EEG database.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.06.250
– volume: 63
  start-page: 973
  year: 2015
  ident: B24
  article-title: Improving reliability of monitoring background EEG dynamics in asphyxiated infants.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2477946
– volume: 99
  start-page: 1150
  year: 2010
  ident: B8
  article-title: An international survey of EEG use in the neonatal intensive care unit.
  publication-title: Acta Paediatr.
  doi: 10.1111/j.1651-2227.2010.01809.x
– volume: 32
  start-page: 529
  year: 1972
  ident: B27
  article-title: The neonatal EEG: statistical studies and prognostic value in full-term and pre-term babies.
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(72)90063-6
– volume: 10
  start-page: 21
  year: 1995
  ident: B49
  article-title: Understanding conflicting data.
  publication-title: AI Expert
– volume: 30
  start-page: 161
  year: 2013
  ident: B48
  article-title: American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee.
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0b013e3182872b24
– volume: 17
  start-page: 903
  year: 2003
  ident: B31
  article-title: A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition.
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S021800140300271X
– volume: 21
  start-page: 361
  year: 1999
  ident: B50
  article-title: Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants.
  publication-title: Brain Dev.
  doi: 10.1016/s0387-7604(99)00034-0
– volume: 18
  start-page: 202
  year: 2013
  ident: B9
  article-title: Monitoring neonatal seizures.
  publication-title: Semin. Fetal Neonatal Med.
  doi: 10.1016/j.siny.2013.04.004
– volume: 124
  start-page: e459
  year: 2009
  ident: B29
  article-title: Early EEG findings in hypoxic-ischemic encephalopathy predict outcomes at 2 years.
  publication-title: Pediatrics
  doi: 10.1542/peds.2008-2190
– volume: 126
  start-page: e131
  year: 2010
  ident: B46
  article-title: Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia.
  publication-title: Pediatrics
  doi: 10.1542/peds.2009-2938
– volume: 122
  start-page: 721
  year: 2020
  ident: B16
  article-title: Grading Method for Hypoxic-Ischemic Encephalopathy Based on Neonatal EEG.
  publication-title: Comput. Model. Eng. Sci.
  doi: 10.32604/cmes.2020.07470
– start-page: 1
  year: 2020
  ident: B7
  article-title: Deep learning in orthopedics: how do we build trust in the machine?
  publication-title: Healthc. Transform Artif. Intell. Autom. Rob.
  doi: 10.1089/heat.2019.0006
– volume: 209
  start-page: 23
  year: 2019
  ident: B33
  article-title: Hyperglycemia and glucose variability are associated with worse brain function and seizures in neonatal encephalopathy: a prospective cohort study.
  publication-title: J. Pediatr.
  doi: 10.1016/j.jpeds.2019.02.027
– start-page: 88
  year: 1993
  ident: B39
  article-title: A note on genetic algorithms for large-scale feature selection
  publication-title: Handbook of Pattern Recognition and Computer Vision
  doi: 10.1142/9789814343138_0005
– volume: 356
  start-page: 83
  year: 2019
  ident: B11
  article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.058
– year: 2020
  ident: B35
  article-title: Grading the severity of hypoxic-ischemic encephalopathy in newborn EEG using a convolutional neural network
  publication-title: Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 129
  start-page: 265
  year: 2018
  ident: B41
  article-title: The effect of reducing EEG electrode number on the visual interpretation of the human expert for neonatal seizure detection.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.10.031
– volume: 33
  start-page: 25
  year: 2000
  ident: B21
  article-title: Comparison of algorithms that select features for pattern classifiers.
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(99)00041-2
– volume: 17
  year: 2020
  ident: B3
  article-title: A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab5469
– volume: 36
  start-page: 1
  year: 2019
  ident: B23
  article-title: Interrater and intrarater agreement in neonatal electroencephalogram background scoring.
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0000000000000534
– volume: 7
  start-page: 1564
  year: 2020
  ident: B43
  article-title: Reliability and accuracy of EEG interpretation for estimating age in preterm infants.
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.51132
– volume: 27
  start-page: 93
  year: 2002
  ident: B26
  article-title: Prognostic value of neonatal discontinuous EEG.
  publication-title: Pediatr. Neurol.
  doi: 10.1016/s0887-8994(02)00396-x
– start-page: 1
  year: 2019
  ident: B4
  article-title: Self-supervised representation learning from electroencephalography signals
  publication-title: Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP)
– volume: 93
  start-page: 559
  year: 2004
  ident: B45
  article-title: Burst suppression on amplitude−integrated electroencephalogram may be induced by midazolam: a report on three cases.
  publication-title: Acta Paediatr.
  doi: 10.1080/08035250410022882
– start-page: 221
  year: 2017
  ident: B19
  article-title: Artifact detection in neonatal EEG using Gaussian mixture models
  publication-title: EMBEC & NBC 2017
– volume: 18
  year: 2021
  ident: B36
  article-title: Grading hypoxic-ischemic encephalopathy in neonatal EEG with convolutional neural networks and quadratic time–frequency distributions.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abe8ae
– reference: 38741595 - Front Hum Neurosci. 2024 Apr 29;18:1417744
SSID ssj0062651
Score 2.3960464
Snippet Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the...
Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e. the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 675154
SubjectTerms Algorithms
Annotations
artificial neural network
Asphyxia
background classifier
Classification
Computational neuroscience
Datasets
Design
EEG
EEG monitoring
Electroencephalography
Intensive care units
neonatal EEG
neonatal intensive care unit
Neonates
Neural networks
Neuroscience
Newborn babies
support vector machine
Support vector machines
Trends
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQUD4CBQ0S4oAUajv2Jua2i3apkOhlKeotchxbXdFm0TZ74If0_3bGzkZdhODCNXYixzMev7Fn3jD21gluS0VFM1ptcxVklVszafLKFW2jyhbtMp1Dfj2dnJypL-f6_E6pL4oJS_TAaeKOeQiU5Se5aRAqN03lJUKsoDw64tbpQNaXG75zppINRpSuRbrDRBfMHIfuYktp51J8QIAstNrbhSJZ_58Q5u-Bknd2nsVD9mCAjDBNQ33E7vnuMTucduguX_2CdxCDOOPp-CG7mQ1lrsF2QMEisIyn8xCLX64CboKAMBUQ9sGpp5Nz_PJ8_hlm1v2gDI-u_QhTWI78zkAYcbvx-Qy3uxamAwU5LDbrK4g8yT0sXYzig34NA83oJXxfXVO6ZkryfMLOFvNvn07yofJC7pQp-rxShROFDQLhkmyDc547Z7gNCie-aRCS6UqWonV066ZUKLSR2nknSkcWYVI8ZQfduvPPGZSEiLiyWlqrQtsYF4T2ptVeVdp6lTG-k0TtBlpyqo5xWaN7QsKro_BqEl6dhJex9-MrPxMnx986z0i8Y0ei044PUMnqQcnqfylZxo52ylEPa_y6lrrQRM4jTMbejM24OunKxXZ-vaU-CFcnRaF4xp4lXRpHQvhBlwpHWO5p2d5Q91u61UVkAK_ItnH54n_820t2n6YrRUQcsYN-s_WvEGj1zeu4pm4BwFopGg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHmEFjRIiANSaOLHJuGCNmiXCokVYinqLXIcm65ok3Y3e-CH8H-ZcbwLi1CvsRPZmfH483jmG8ZemjTRmaSiGY3SsXQ8j3UxquPciKaWWYN2mfyQn2ajk1P58UydBYfbKoRVbmyiN9RNZ8hHfsyVUESFkhbvrq5jqhpFt6uhhMZtto8mOEc93y8ns89fNrYY0bpKh7tMPIoVx649X1P6OU_fIFBOldzZjTxp__-Q5r8Bk3_tQNN77G6AjjAeZH2f3bLtA3YwbvHYfPkTXoEP5vRe8gP2qwzlrkG3QEEjMPdeevBFMBcON0NAuAoI_2BmyYOOX55MPkCpzQ_K9GibtzCG-ZbnGQgrrpc2LnHba2AcqMhhuuwuwfMl9zA3PpoP-g4C3egFfFusKG1zSPZ8yE6nk6_vT-JQgSE2shB9nEthUqFdirCJN84YmxhTJNpJJ21dIzRTOc_SxtDtm5ROqIIrY02aGbIMI_GI7bVda58wyAgZJVIrrrV0TV0YlypbNMrKXGkrI5ZsJFGZQE9OVTIuKjymkPAqL7yKhFcNwovY6-0rVwM3x02dSxLvtiPRavsH3fJ7FVZplThHKaU8KWqccF3nliOex7kKkWijXMSONspRhbW-qv5oZsRebJtxldLVi25tt6Y-CFtHQsgkYo8HXdqOhHCEyiSOMNvRsp2h7ra0i3PPBJ6TjUv405uHdcju0I8YYh6O2F6_XNtnCKX6-nlYL78BF6sh8A
  priority: 102
  providerName: ProQuest
Title Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization
URI https://www.ncbi.nlm.nih.gov/pubmed/34135744
https://www.proquest.com/docview/2535451919
https://www.proquest.com/docview/2542363340
https://pubmed.ncbi.nlm.nih.gov/PMC8200402
https://doaj.org/article/0ff6285209b642bb8e281df4e330ac5f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGJqG9IGB8ZIzqkBAPSBlJbOcDCaEWtZuQViFKUd8ix7FZRZeMrpXYH8L_y52TRhQVXvrQOFaSO_t-d777HWMvdRioRFDTjFIqX9go9VUWF36qeVmIpMR9meKQF-P4fCo-zuRsj23aW7Uf8Gana0f9pKbLxenPH7fvccG_I48T7e0bW12uqag8Ck8R_iImuMMO0DDF5ItdiO5QAaG768YYxjH6X4h0mkPO3VMcsru0v8tEiC2L5Yj9d6HRv5Mq_7BSo_vsXgsvod_owwO2Z6qH7KhfoWt9dQuvwCV8ukj6Efs1aFtig6qAEktg4iL54Bplzi0aTEBICwgRYWwoyo4zD4dnMFD6O1WDVOVb6MOk44IGwpPrpfEHaBpL6Ld05TBa1lfgOJVXMNEu4w9WNbSUpAv4Or-h0s6mIPQRm46GXz6c-22XBl-LjK_8VHAdcmVDhFZRabU2gdZZoKywwhQFwjeZRklYajqhE8JymUVSGx0mmnaPmD9m-1VdmacMEkJPgVAyUkrYssi0DaXJSmlEKpURHgs2ksh1S2FOnTQWOboyJMfcyTEnOeaNHD32urvluuHv-N_gAYm3G0jU2-6Pevktb1dyHlhLZadRkBX4wkWRmggxP74r54HS0nrsZKMc-Uad80hySUQ-YeaxF91lXMl0PKMqU69pDELbmHMReOxJo0vdk2x00WPJlpZtPer2lWp-6djCU9oHg-j4n3M-Y4f0DZqUiBO2v1quzXNEWquixw4Gw_Gnzz0XqcDfs1nYc2vqNwC9KZ0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wAvCBh_OgYcEvCAFJY4dpMgIdRCS8e2CtEN7S04jr1VbMnoH6F9EL4Gn5E7JykUob3tNXEiJ3c-_8539zvGnunAV5Ggphm5VJ6wPPZU0sm8WId5JqIc7TKdQ-6POsND8fFIHq2xX00tDKVVNjbRGeq81HRGvs1lKIkKJUjenn_3qGsURVebFhqVWuyaix_oss3e7LxH-T7nfNA_eDf06q4CnhZJOPdiEeogVDZAKMBzq7XxtU58ZYUVJssQbsiYR0GuKaIkhA1lwqU2Oog0aXsnxPdeY-uCKlpbbL3XH3363Nh-9A5kUMVO0fVLtm1xsqBydx68QmAeSLGy-7kmAf9Dtv8maP614w1usZs1VIVupVu32Zop7rCNboFu-tkFvACXPOpO5TfYz17dXhtUAZSkAmMXFQDXdHNicfMFhMeAcBNGhk7s8c39_gfoKf2NKkuK_DV0YbzklQbCpoup8Xq4zebQranPYTAtz8DxM89hrF32IMxLqOlNT-HLZEZlolVx6V12eCWyucdaRVmYBwwiQmK-UJIrJWyeJdoG0iS5NCKWyog28xtJpLqmQ6euHKcpukUkvNQJLyXhpZXw2uzl8pHzigvkssE9Eu9yINF4uwvl9DitrULqW0slrNxPMvzgLIsNR_8BvzUMfaWlbbOtRjnS2rbM0j8roc2eLm-jVaBQjypMuaAxCJM7YSj8Nrtf6dJyJoRbZCRwhtGKlq1MdfVOMTlxzOMx2VSfb14-rSfs-vBgfy_d2xntPmQ36KdU-RZbrDWfLswjhHHz7HG9doB9verl-htBxl5H
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJcEFAegQKDBByQTO19xDYSQglNaClEFaFVb2a93qURrV0SR6g_hD_Dr2PGj0AQ6q3XeGPNemZnvtl5MfbUBL4OJQ3NyJT2pOORp-Ne6kVGZKkMM9TLdA_5cdzbOZDvj9TRGvvV1sJQWmWrEytFnRWG7si3uBKKWqEE8ZZr0iL2t0dvzr57NEGKIq3tOI1aRPbs-Q903-avd7eR1884Hw0_v93xmgkDnpGxKL1IChMI7QKEBTxzxljfmNjXTjpp0xShh4p4GGSGoktSOqFirow1QWhI8nsC33uFreNme7LD1gfD8f6n1g6gp6CCOo6KbiBSnR8vqPSdBy8RpAdKrljCamDA_1Duv8maf1m_0Q12vYGt0K_l7CZbs_ktttHP0WU_PYfnUCWSVjf0G-znoBm1DToHSliBSRUhgGoA59ShIQaEyoDQE8aWbu_xzcPhOxho842qTPLsFfRhsuwxDYRTFzPrDdDkZtBv2qDDaFacQtWruYSJqTIJoSygaXV6AofTOZWM1oWmt9nBpfDmDuvkRW7vMQgJlflSK661dFkaGxcoG2fKykhpK7vMbzmRmKY1Ok3oOEnQRSLmJRXzEmJeUjOvy14s_3JW9wW5aPGA2LtcSC29qx-K2dek0RCJ7xyVs3I_TnHDaRpZjr4E7lUIXxvlumyzFY6k0TPz5M-p6LIny8eoISjso3NbLGgNQuaeENLvsru1LC0pIQyjQokUhitStkLq6pN8elx1IY9Iv_r8_sVkPWZX8ZgmH3bHew_YNfomderFJuuUs4V9iIiuTB81RwfYl8s-rb8BR_xicw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+an+Open+Source+Classifier+for+the+Neonatal+EEG+Background%3A+A+Systematic+Feature-Based+Approach+From+Expert+Scoring+to+Clinical+Visualization&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Moghadam%2C+Saeed+Montazeri&rft.au=Pinchefsky%2C+Elana&rft.au=Tse%2C+Ilse&rft.au=Marchi%2C+Viviana&rft.date=2021-05-31&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=15&rft.spage=675154&rft_id=info:doi/10.3389%2Ffnhum.2021.675154&rft_id=info%3Apmid%2F34135744&rft.externalDocID=34135744
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon