Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization
Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In...
Saved in:
Published in | Frontiers in human neuroscience Vol. 15; p. 675154 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
31.05.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5161 1662-5161 |
DOI | 10.3389/fnhum.2021.675154 |
Cover
Abstract | Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies. |
---|---|
AbstractList | Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8–16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81–100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies. Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e. the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13200 five-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested 3 classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies. Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies.Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the electroencephalograph (EEG) background activity. This needs development of bedside methods for an automated assessment of the EEG background activity. In this paper, we present development of the key components of a neonatal EEG background classifier, starting from the visual background scoring to classifier design, and finally to possible bedside visualization of the classifier results. A dataset with 13,200 5-minute EEG epochs (8-16 channels) from 27 infants with birth asphyxia was used for classifier training after scoring by two independent experts. We tested three classifier designs based on 98 computational features, and their performance was assessed with respect to scoring system, pre- and post-processing of labels and outputs, choice of channels, and visualization in monitor displays. The optimal solution achieved an overall classification accuracy of 97% with a range across subjects of 81-100%. We identified a set of 23 features that make the classifier highly robust to the choice of channels and missing data due to artefact rejection. Our results showed that an automated bedside classifier of EEG background is achievable, and we publish the full classifier algorithm to allow further clinical replication and validation studies. |
Author | Tse, Ilse Nevalainen, Päivi Airaksinen, Manu Pinchefsky, Elana Marchi, Viviana Vanhatalo, Sampsa Hahn, Cecil Montazeri, Saeed Kohonen, Jukka Kauppila, Minna Tam, Emily W. Y. Stevenson, Nathan J. Tapani, Karoliina |
AuthorAffiliation | 8 Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki , Helsinki , Finland 2 Division of Neurology, Department of Paediatrics, Sainte-Justine University Hospital Centre, University of Montreal , Montreal, QC , Canada 3 Department of Developmental Neuroscience, Stella Maris Scientific Institute, IRCCS Fondazione Stella Maris Foundation , Pisa , Italy 1 BABA Center, Pediatric Research Centre, Department of Clinical Neurophysiology, Children’s Hospital and HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki , Helsinki , Finland 4 Department of Computer Science, Aalto University , Espoo , Finland 7 Brain Modelling Group, QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia 5 Department of Signal Processing and Acoustics, Aalto University , Espoo , Finland 6 Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto , Toronto, ON , Canada |
AuthorAffiliation_xml | – name: 7 Brain Modelling Group, QIMR Berghofer Medical Research Institute , Brisbane, QLD , Australia – name: 5 Department of Signal Processing and Acoustics, Aalto University , Espoo , Finland – name: 4 Department of Computer Science, Aalto University , Espoo , Finland – name: 1 BABA Center, Pediatric Research Centre, Department of Clinical Neurophysiology, Children’s Hospital and HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki , Helsinki , Finland – name: 6 Department of Paediatrics (Neurology), The Hospital for Sick Children and University of Toronto , Toronto, ON , Canada – name: 8 Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki , Helsinki , Finland – name: 2 Division of Neurology, Department of Paediatrics, Sainte-Justine University Hospital Centre, University of Montreal , Montreal, QC , Canada – name: 3 Department of Developmental Neuroscience, Stella Maris Scientific Institute, IRCCS Fondazione Stella Maris Foundation , Pisa , Italy |
Author_xml | – sequence: 1 givenname: Saeed surname: Montazeri fullname: Montazeri, Saeed – sequence: 2 givenname: Elana surname: Pinchefsky fullname: Pinchefsky, Elana – sequence: 3 givenname: Ilse surname: Tse fullname: Tse, Ilse – sequence: 4 givenname: Viviana surname: Marchi fullname: Marchi, Viviana – sequence: 5 givenname: Jukka surname: Kohonen fullname: Kohonen, Jukka – sequence: 6 givenname: Minna surname: Kauppila fullname: Kauppila, Minna – sequence: 7 givenname: Manu surname: Airaksinen fullname: Airaksinen, Manu – sequence: 8 givenname: Karoliina surname: Tapani fullname: Tapani, Karoliina – sequence: 9 givenname: Päivi surname: Nevalainen fullname: Nevalainen, Päivi – sequence: 10 givenname: Cecil surname: Hahn fullname: Hahn, Cecil – sequence: 11 givenname: Emily W. Y. surname: Tam fullname: Tam, Emily W. Y. – sequence: 12 givenname: Nathan J. surname: Stevenson fullname: Stevenson, Nathan J. – sequence: 13 givenname: Sampsa surname: Vanhatalo fullname: Vanhatalo, Sampsa |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34135744$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstuEzEUhkeoiF7gAdggS2zYJPg6FxZISZSUShVdBNhaHs9x4jBjD_YMorwH74uTtKitxMqW_Z_vP_b5z7MT5x1k2WuCp4yV1XvjtmM3pZiSaV4IIviz7IzkOZ0IkpOTB_vT7DzGHcY5zQV5kZ0yTpgoOD_L_sxH2zbWbZBy6KYHh9Z-DBrQolUxWmMhIOMDGraAPoN3alAtWi4v0Vzp75vgR9d8QDO0vo0DdGqwGq1ADWOAyVxFaNCs74NXeotWwXdo-auHMKC19mFvOfhkY53VifnNxlG19ndiePcye25UG-HV3XqRfV0tvyw-Ta5vLq8Ws-uJ5hUbJiVnmjBlCM05bYzWgLWusDLccKhrLCpR0oI0mqeVc8NERYUGTQqNeVnm7CK7OnIbr3ayD7ZT4VZ6ZeXhwIeNVCE9qgWJjclpKSiu6mRW1yXQkjTJhzGstDCJ9fHI6se6g0aDG4JqH0Ef3zi7lRv_U5YUY45pAry7AwT_Y4Q4yM5GDW2rHPgxSio4ZTljHCfp2yfSXZqaS1-VVExwQSpSJdWbhx39a-V--klQHAU6-BgDGKntcBhAatC2kmC5z5k85EzucyaPOUuV5EnlPfz_NX8BTj3XwQ |
CitedBy_id | crossref_primary_10_1016_j_clinph_2024_03_007 crossref_primary_10_3389_frai_2025_1481338 crossref_primary_10_3390_app13053211 crossref_primary_10_1109_ACCESS_2022_3159653 crossref_primary_10_1016_S2589_7500_22_00196_0 crossref_primary_10_1002_acn3_52233 crossref_primary_10_3390_biomedinformatics4020067 crossref_primary_10_3390_bioengineering11030217 crossref_primary_10_1038_s41597_023_02002_8 crossref_primary_10_1016_j_pneurobio_2022_102268 crossref_primary_10_3389_fncel_2021_814012 crossref_primary_10_1016_j_clinph_2022_08_022 crossref_primary_10_1016_j_eswa_2022_118917 crossref_primary_10_3390_signals4030034 crossref_primary_10_1038_s41390_024_03235_y crossref_primary_10_3390_signals5020014 |
Cites_doi | 10.1111/epi.13661 10.1088/1741-2552/ab260c 10.1136/adc.2005.086314 10.1016/j.clinph.2011.01.043 10.1613/jair.953 10.1016/j.clinph.2015.05.024 10.1186/1471-2431-13-194 10.1080/08874417.1996.11647233 10.1016/s0167-7012(00)00201-3 10.1016/j.earlhumdev.2008.11.007 10.1088/1741-2552/abca18 10.1016/B978-1-55860-335-6.50023-4 10.1109/CEC.2000.870311 10.1016/j.clinph.2020.09.024 10.1136/archdischild-2016-311770 10.1007/s10439-012-0710-5 10.1016/j.clinph.2010.12.059 10.1016/j.dss.2014.12.006 10.1542/peds.2004-0863 10.1162/neco.1989.1.2.270 10.1007/s00381-003-0809-y 10.1136/adc.2004.062745 10.1016/j.clinph.2016.06.018 10.1088/1741-2560/11/6/066007 10.1016/j.clinph.2017.06.250 10.1109/TBME.2015.2477946 10.1111/j.1651-2227.2010.01809.x 10.1016/0013-4694(72)90063-6 10.1097/WNP.0b013e3182872b24 10.1142/S021800140300271X 10.1016/s0387-7604(99)00034-0 10.1016/j.siny.2013.04.004 10.1542/peds.2008-2190 10.1542/peds.2009-2938 10.32604/cmes.2020.07470 10.1089/heat.2019.0006 10.1016/j.jpeds.2019.02.027 10.1142/9789814343138_0005 10.1016/j.neucom.2019.04.058 10.1016/j.clinph.2017.10.031 10.1016/S0031-3203(99)00041-2 10.1088/1741-2552/ab5469 10.1097/WNP.0000000000000534 10.1002/acn3.51132 10.1016/s0887-8994(02)00396-x 10.1080/08035250410022882 10.1088/1741-2552/abe8ae |
ContentType | Journal Article |
Copyright | Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Montazeri, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo |
Copyright_xml | – notice: Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Montazeri, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. – notice: Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2021.675154 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_0ff6285209b642bb8e281df4e330ac5f PMC8200402 34135744 10_3389_fnhum_2021_675154 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD101419 – fundername: Suomen Aivosäätiö – fundername: National Health and Medical Research Council grantid: APP1144936; APP2002135 – fundername: Lastentautien Tutkimussäätiö – fundername: H2020 Marie Skłodowska-Curie Actions grantid: 813483 – fundername: Suomalainen Tiedeakatemia grantid: 313242; 288220; 3104450 – fundername: National Institutes of Health grantid: R01 HD101419 – fundername: Sigrid Juséliuksen Säätiö – fundername: Canadian Institutes of Health Research grantid: MOP-133710; PJT-166076 – fundername: Hospital for Sick Children |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c493t-843c13af12642dfcce0cc90af4f4ebb05958271dc458244f35925cec17c048863 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:23:50 EDT 2025 Thu Aug 21 18:40:48 EDT 2025 Thu Sep 04 21:30:15 EDT 2025 Fri Jul 25 11:41:46 EDT 2025 Tue Apr 29 09:22:38 EDT 2025 Tue Jul 01 03:44:34 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | neonatal EEG artificial neural network support vector machine EEG trend EEG monitoring neonatal intensive care unit background classifier |
Language | English |
License | Copyright © 2021 Moghadam, Pinchefsky, Tse, Marchi, Kohonen, Kauppila, Airaksinen, Tapani, Nevalainen, Hahn, Tam, Stevenson and Vanhatalo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-843c13af12642dfcce0cc90af4f4ebb05958271dc458244f35925cec17c048863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Reviewed by: Jiahua Xu, Otto von Guericke University Magdeburg, Germany; Sumit Raurale, University College Cork, Ireland This article was submitted to Brain-Computer Interfaces, a section of the journal Frontiers in Human Neuroscience Edited by: Ren Xu, Guger Technologies, Austria |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2021.675154 |
PMID | 34135744 |
PQID | 2535451919 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0ff6285209b642bb8e281df4e330ac5f pubmedcentral_primary_oai_pubmedcentral_nih_gov_8200402 proquest_miscellaneous_2542363340 proquest_journals_2535451919 pubmed_primary_34135744 crossref_citationtrail_10_3389_fnhum_2021_675154 crossref_primary_10_3389_fnhum_2021_675154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-31 |
PublicationDateYYYYMMDD | 2021-05-31 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2021 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Temko (B44) 2015; 70 Matić (B24) 2015; 63 Williams (B52) 1989; 1 de Vries (B13) 2005; 90 Menache (B26) 2002; 27 Kamino (B18) 2021; 132 Ahmed (B1) 2016; 127 Olischar (B30) 2004; 20 Banville (B4) 2019 John (B17) 1994 Massey (B23) 2019; 36 Boylan (B8) 2010; 99 Kudo (B21) 2000; 33 Guo (B16) 2020; 122 Stevenson (B43) 2020; 7 Matic (B25) 2014; 11 Emmanouilidis (B15) 2000 Versaggi (B49) 1995; 10 Roy (B38) 2019; 16 Monod (B27) 1972; 32 Kauppila (B19) 2017 Raggad (B34) 1996; 36 Ansari (B3) 2020; 17 Stevenson (B41) 2018; 129 Dereymaeker (B14) 2017; 128 Banville (B5) 2020; 18 Basheer (B6) 2000; 43 Ter Horst (B45) 2004; 93 Stevenson (B40) 2013; 41 Borjali (B7) 2020 Chen (B11) 2019; 356 Thoresen (B46) 2010; 126 Siedlecki (B39) 1993 Weeke (B51) 2017; 102 Murray (B29) 2009; 124 Korotchikova (B20) 2011; 122 Cherian (B12) 2011; 122 Raurale (B37) 2019 Raurale (B36) 2021; 18 Osredkar (B32) 2005; 115 Wusthoff (B53) 2017; 58 Boylan (B9) 2013; 18 Chawla (B10) 2002; 16 Marics (B22) 2013; 13 Stevenson (B42) 2014 Watanabe (B50) 1999; 21 Pinchefsky (B33) 2019; 209 Oliveira (B31) 2003; 17 Raurale (B35) 2020 Toet (B47) 2009; 85 Ansari (B2) 2016; 127 Tsuchida (B48) 2013; 30 Murray (B28) 2008; 93 38741595 - Front Hum Neurosci. 2024 Apr 29;18:1417744 |
References_xml | – volume: 58 start-page: 429 year: 2017 ident: B53 article-title: Interrater agreement in the interpretation of neonatal electroencephalography in hypoxic-ischemic encephalopathy. publication-title: Epilepsia doi: 10.1111/epi.13661 – volume: 16 year: 2019 ident: B38 article-title: Deep learning-based electroencephalography analysis: a systematic review. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c – volume: 93 start-page: F187 year: 2008 ident: B28 article-title: Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. publication-title: Arch. Dis. Child. Fetal Neonatal Ed. doi: 10.1136/adc.2005.086314 – volume: 122 start-page: 1490 year: 2011 ident: B12 article-title: Validation of a new automated neonatal seizure detection system: a clinician’s perspective. publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2011.01.043 – volume: 16 start-page: 321 year: 2002 ident: B10 article-title: SMOTE: synthetic minority over-sampling technique. publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.953 – volume: 127 start-page: 297 year: 2016 ident: B1 article-title: Grading hypoxic–ischemic encephalopathy severity in neonatal EEG using GMM supervectors and the support vector machine. publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2015.05.024 – volume: 13 year: 2013 ident: B22 article-title: Prevalence and etiology of false normal aEEG recordings in neonatal hypoxic-ischaemic encephalopathy. publication-title: BMC Pediatr. doi: 10.1186/1471-2431-13-194 – volume: 36 start-page: 92 year: 1996 ident: B34 article-title: Data conflict elimination in neural network training. publication-title: J. Comput. Inf. Syst. doi: 10.1080/08874417.1996.11647233 – start-page: 4125 year: 2019 ident: B37 article-title: Suitability of an inter-burst detection method for grading hypoxic-ischemic encephalopathy in newborn EEG publication-title: Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 43 start-page: 3 year: 2000 ident: B6 article-title: Artificial neural networks: fundamentals, computing, design, and application. publication-title: J. Microbiol. Methods doi: 10.1016/s0167-7012(00)00201-3 – volume: 85 start-page: 77 year: 2009 ident: B47 article-title: Brain monitoring in neonates. publication-title: Early Hum. Dev. doi: 10.1016/j.earlhumdev.2008.11.007 – volume: 18 year: 2020 ident: B5 article-title: Uncovering the structure of clinical EEG signals with self-supervised learning. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abca18 – start-page: 926 year: 2014 ident: B42 article-title: Artefact detection in neonatal EEG publication-title: Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – start-page: 121 year: 1994 ident: B17 article-title: Irrelevant features and the subset selection problem publication-title: Machine Learning Proceedings 1994 doi: 10.1016/B978-1-55860-335-6.50023-4 – start-page: 309 year: 2000 ident: B15 article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator publication-title: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No. 00TH8512) doi: 10.1109/CEC.2000.870311 – volume: 132 start-page: 307 year: 2021 ident: B18 article-title: Abnormalities in evoked potentials associated with abnormal glycemia and brain injury in neonatal hypoxic-ischemic encephalopathy. publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2020.09.024 – volume: 102 start-page: F383 year: 2017 ident: B51 article-title: Severe hypercapnia causes reversible depression of aEEG background activity in neonates: an observational study. publication-title: Arch. Dis. Child. Fetal Neonatal Ed. doi: 10.1136/archdischild-2016-311770 – volume: 41 start-page: 775 year: 2013 ident: B40 article-title: An automated system for grading EEG abnormality in term neonates with hypoxic-ischaemic encephalopathy. publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0710-5 – volume: 122 start-page: 1671 year: 2011 ident: B20 article-title: Quantitative EEG analysis in neonatal hypoxic ischaemic encephalopathy. publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.12.059 – volume: 70 start-page: 86 year: 2015 ident: B44 article-title: Clinical implementation of a neonatal seizure detection algorithm. publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2014.12.006 – volume: 115 start-page: 327 year: 2005 ident: B32 article-title: Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. publication-title: Pediatrics doi: 10.1542/peds.2004-0863 – volume: 1 start-page: 270 year: 1989 ident: B52 article-title: A learning algorithm for continually running fully recurrent neural networks. publication-title: Neural Comput. doi: 10.1162/neco.1989.1.2.270 – volume: 20 start-page: 41 year: 2004 ident: B30 article-title: Progressive posthemorrhagic hydrocephalus leads to changes of amplitude-integrated EEG activity in preterm infants. publication-title: Childs Nerv. Syst. doi: 10.1007/s00381-003-0809-y – volume: 90 start-page: F201 year: 2005 ident: B13 article-title: Role of cerebral function monitoring in the newborn. publication-title: Arch. Dis. Child. Fetal Neonatal Ed. doi: 10.1136/adc.2004.062745 – volume: 127 start-page: 3014 year: 2016 ident: B2 article-title: Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor. publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2016.06.018 – volume: 11 year: 2014 ident: B25 article-title: Holistic approach for automated background EEG assessment in asphyxiated full-term infants. publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/6/066007 – volume: 128 start-page: 1737 year: 2017 ident: B14 article-title: Interrater agreement in visual scoring of neonatal seizures based on majority voting on a web-based system: the neoguard EEG database. publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.06.250 – volume: 63 start-page: 973 year: 2015 ident: B24 article-title: Improving reliability of monitoring background EEG dynamics in asphyxiated infants. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2477946 – volume: 99 start-page: 1150 year: 2010 ident: B8 article-title: An international survey of EEG use in the neonatal intensive care unit. publication-title: Acta Paediatr. doi: 10.1111/j.1651-2227.2010.01809.x – volume: 32 start-page: 529 year: 1972 ident: B27 article-title: The neonatal EEG: statistical studies and prognostic value in full-term and pre-term babies. publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(72)90063-6 – volume: 10 start-page: 21 year: 1995 ident: B49 article-title: Understanding conflicting data. publication-title: AI Expert – volume: 30 start-page: 161 year: 2013 ident: B48 article-title: American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0b013e3182872b24 – volume: 17 start-page: 903 year: 2003 ident: B31 article-title: A methodology for feature selection using multiobjective genetic algorithms for handwritten digit string recognition. publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S021800140300271X – volume: 21 start-page: 361 year: 1999 ident: B50 article-title: Neonatal EEG: a powerful tool in the assessment of brain damage in preterm infants. publication-title: Brain Dev. doi: 10.1016/s0387-7604(99)00034-0 – volume: 18 start-page: 202 year: 2013 ident: B9 article-title: Monitoring neonatal seizures. publication-title: Semin. Fetal Neonatal Med. doi: 10.1016/j.siny.2013.04.004 – volume: 124 start-page: e459 year: 2009 ident: B29 article-title: Early EEG findings in hypoxic-ischemic encephalopathy predict outcomes at 2 years. publication-title: Pediatrics doi: 10.1542/peds.2008-2190 – volume: 126 start-page: e131 year: 2010 ident: B46 article-title: Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. publication-title: Pediatrics doi: 10.1542/peds.2009-2938 – volume: 122 start-page: 721 year: 2020 ident: B16 article-title: Grading Method for Hypoxic-Ischemic Encephalopathy Based on Neonatal EEG. publication-title: Comput. Model. Eng. Sci. doi: 10.32604/cmes.2020.07470 – start-page: 1 year: 2020 ident: B7 article-title: Deep learning in orthopedics: how do we build trust in the machine? publication-title: Healthc. Transform Artif. Intell. Autom. Rob. doi: 10.1089/heat.2019.0006 – volume: 209 start-page: 23 year: 2019 ident: B33 article-title: Hyperglycemia and glucose variability are associated with worse brain function and seizures in neonatal encephalopathy: a prospective cohort study. publication-title: J. Pediatr. doi: 10.1016/j.jpeds.2019.02.027 – start-page: 88 year: 1993 ident: B39 article-title: A note on genetic algorithms for large-scale feature selection publication-title: Handbook of Pattern Recognition and Computer Vision doi: 10.1142/9789814343138_0005 – volume: 356 start-page: 83 year: 2019 ident: B11 article-title: A deep learning framework for identifying children with ADHD using an EEG-based brain network. publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.058 – year: 2020 ident: B35 article-title: Grading the severity of hypoxic-ischemic encephalopathy in newborn EEG using a convolutional neural network publication-title: Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – volume: 129 start-page: 265 year: 2018 ident: B41 article-title: The effect of reducing EEG electrode number on the visual interpretation of the human expert for neonatal seizure detection. publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.10.031 – volume: 33 start-page: 25 year: 2000 ident: B21 article-title: Comparison of algorithms that select features for pattern classifiers. publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(99)00041-2 – volume: 17 year: 2020 ident: B3 article-title: A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab5469 – volume: 36 start-page: 1 year: 2019 ident: B23 article-title: Interrater and intrarater agreement in neonatal electroencephalogram background scoring. publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0000000000000534 – volume: 7 start-page: 1564 year: 2020 ident: B43 article-title: Reliability and accuracy of EEG interpretation for estimating age in preterm infants. publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.51132 – volume: 27 start-page: 93 year: 2002 ident: B26 article-title: Prognostic value of neonatal discontinuous EEG. publication-title: Pediatr. Neurol. doi: 10.1016/s0887-8994(02)00396-x – start-page: 1 year: 2019 ident: B4 article-title: Self-supervised representation learning from electroencephalography signals publication-title: Proceedings of the 2019 IEEE 29th International Workshop on Machine Learning for Signal Processing (MLSP) – volume: 93 start-page: 559 year: 2004 ident: B45 article-title: Burst suppression on amplitude−integrated electroencephalogram may be induced by midazolam: a report on three cases. publication-title: Acta Paediatr. doi: 10.1080/08035250410022882 – start-page: 221 year: 2017 ident: B19 article-title: Artifact detection in neonatal EEG using Gaussian mixture models publication-title: EMBEC & NBC 2017 – volume: 18 year: 2021 ident: B36 article-title: Grading hypoxic-ischemic encephalopathy in neonatal EEG with convolutional neural networks and quadratic time–frequency distributions. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abe8ae – reference: 38741595 - Front Hum Neurosci. 2024 Apr 29;18:1417744 |
SSID | ssj0062651 |
Score | 2.3960464 |
Snippet | Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e., the... Neonatal brain monitoring in the neonatal intensive care units (NICU) requires a continuous review of the spontaneous cortical activity, i.e. the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 675154 |
SubjectTerms | Algorithms Annotations artificial neural network Asphyxia background classifier Classification Computational neuroscience Datasets Design EEG EEG monitoring Electroencephalography Intensive care units neonatal EEG neonatal intensive care unit Neonates Neural networks Neuroscience Newborn babies support vector machine Support vector machines Trends Visualization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT1wQUD4CBQ0S4oAUajv2Jua2i3apkOhlKeotchxbXdFm0TZ74If0_3bGzkZdhODCNXYixzMev7Fn3jD21gluS0VFM1ptcxVklVszafLKFW2jyhbtMp1Dfj2dnJypL-f6_E6pL4oJS_TAaeKOeQiU5Se5aRAqN03lJUKsoDw64tbpQNaXG75zppINRpSuRbrDRBfMHIfuYktp51J8QIAstNrbhSJZ_58Q5u-Bknd2nsVD9mCAjDBNQ33E7vnuMTucduguX_2CdxCDOOPp-CG7mQ1lrsF2QMEisIyn8xCLX64CboKAMBUQ9sGpp5Nz_PJ8_hlm1v2gDI-u_QhTWI78zkAYcbvx-Qy3uxamAwU5LDbrK4g8yT0sXYzig34NA83oJXxfXVO6ZkryfMLOFvNvn07yofJC7pQp-rxShROFDQLhkmyDc547Z7gNCie-aRCS6UqWonV066ZUKLSR2nknSkcWYVI8ZQfduvPPGZSEiLiyWlqrQtsYF4T2ptVeVdp6lTG-k0TtBlpyqo5xWaN7QsKro_BqEl6dhJex9-MrPxMnx986z0i8Y0ei044PUMnqQcnqfylZxo52ylEPa_y6lrrQRM4jTMbejM24OunKxXZ-vaU-CFcnRaF4xp4lXRpHQvhBlwpHWO5p2d5Q91u61UVkAK_ItnH54n_820t2n6YrRUQcsYN-s_WvEGj1zeu4pm4BwFopGg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHmEFjRIiANSaOLHJuGCNmiXCokVYinqLXIcm65ok3Y3e-CH8H-ZcbwLi1CvsRPZmfH483jmG8ZemjTRmaSiGY3SsXQ8j3UxquPciKaWWYN2mfyQn2ajk1P58UydBYfbKoRVbmyiN9RNZ8hHfsyVUESFkhbvrq5jqhpFt6uhhMZtto8mOEc93y8ns89fNrYY0bpKh7tMPIoVx649X1P6OU_fIFBOldzZjTxp__-Q5r8Bk3_tQNN77G6AjjAeZH2f3bLtA3YwbvHYfPkTXoEP5vRe8gP2qwzlrkG3QEEjMPdeevBFMBcON0NAuAoI_2BmyYOOX55MPkCpzQ_K9GibtzCG-ZbnGQgrrpc2LnHba2AcqMhhuuwuwfMl9zA3PpoP-g4C3egFfFusKG1zSPZ8yE6nk6_vT-JQgSE2shB9nEthUqFdirCJN84YmxhTJNpJJ21dIzRTOc_SxtDtm5ROqIIrY02aGbIMI_GI7bVda58wyAgZJVIrrrV0TV0YlypbNMrKXGkrI5ZsJFGZQE9OVTIuKjymkPAqL7yKhFcNwovY6-0rVwM3x02dSxLvtiPRavsH3fJ7FVZplThHKaU8KWqccF3nliOex7kKkWijXMSONspRhbW-qv5oZsRebJtxldLVi25tt6Y-CFtHQsgkYo8HXdqOhHCEyiSOMNvRsp2h7ra0i3PPBJ6TjUv405uHdcju0I8YYh6O2F6_XNtnCKX6-nlYL78BF6sh8A priority: 102 providerName: ProQuest |
Title | Building an Open Source Classifier for the Neonatal EEG Background: A Systematic Feature-Based Approach From Expert Scoring to Clinical Visualization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34135744 https://www.proquest.com/docview/2535451919 https://www.proquest.com/docview/2542363340 https://pubmed.ncbi.nlm.nih.gov/PMC8200402 https://doaj.org/article/0ff6285209b642bb8e281df4e330ac5f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGJqG9IGB8ZIzqkBAPSBlJbOcDCaEWtZuQViFKUd8ix7FZRZeMrpXYH8L_y52TRhQVXvrQOFaSO_t-d777HWMvdRioRFDTjFIqX9go9VUWF36qeVmIpMR9meKQF-P4fCo-zuRsj23aW7Uf8Gana0f9pKbLxenPH7fvccG_I48T7e0bW12uqag8Ck8R_iImuMMO0DDF5ItdiO5QAaG768YYxjH6X4h0mkPO3VMcsru0v8tEiC2L5Yj9d6HRv5Mq_7BSo_vsXgsvod_owwO2Z6qH7KhfoWt9dQuvwCV8ukj6Efs1aFtig6qAEktg4iL54Bplzi0aTEBICwgRYWwoyo4zD4dnMFD6O1WDVOVb6MOk44IGwpPrpfEHaBpL6Ld05TBa1lfgOJVXMNEu4w9WNbSUpAv4Or-h0s6mIPQRm46GXz6c-22XBl-LjK_8VHAdcmVDhFZRabU2gdZZoKywwhQFwjeZRklYajqhE8JymUVSGx0mmnaPmD9m-1VdmacMEkJPgVAyUkrYssi0DaXJSmlEKpURHgs2ksh1S2FOnTQWOboyJMfcyTEnOeaNHD32urvluuHv-N_gAYm3G0jU2-6Pevktb1dyHlhLZadRkBX4wkWRmggxP74r54HS0nrsZKMc-Uad80hySUQ-YeaxF91lXMl0PKMqU69pDELbmHMReOxJo0vdk2x00WPJlpZtPer2lWp-6djCU9oHg-j4n3M-Y4f0DZqUiBO2v1quzXNEWquixw4Gw_Gnzz0XqcDfs1nYc2vqNwC9KZ0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdG9wAvCBh_OgYcEvCAFJY4dpMgIdRCS8e2CtEN7S04jr1VbMnoH6F9EL4Gn5E7JykUob3tNXEiJ3c-_8539zvGnunAV5Ggphm5VJ6wPPZU0sm8WId5JqIc7TKdQ-6POsND8fFIHq2xX00tDKVVNjbRGeq81HRGvs1lKIkKJUjenn_3qGsURVebFhqVWuyaix_oss3e7LxH-T7nfNA_eDf06q4CnhZJOPdiEeogVDZAKMBzq7XxtU58ZYUVJssQbsiYR0GuKaIkhA1lwqU2Oog0aXsnxPdeY-uCKlpbbL3XH3363Nh-9A5kUMVO0fVLtm1xsqBydx68QmAeSLGy-7kmAf9Dtv8maP614w1usZs1VIVupVu32Zop7rCNboFu-tkFvACXPOpO5TfYz17dXhtUAZSkAmMXFQDXdHNicfMFhMeAcBNGhk7s8c39_gfoKf2NKkuK_DV0YbzklQbCpoup8Xq4zebQranPYTAtz8DxM89hrF32IMxLqOlNT-HLZEZlolVx6V12eCWyucdaRVmYBwwiQmK-UJIrJWyeJdoG0iS5NCKWyog28xtJpLqmQ6euHKcpukUkvNQJLyXhpZXw2uzl8pHzigvkssE9Eu9yINF4uwvl9DitrULqW0slrNxPMvzgLIsNR_8BvzUMfaWlbbOtRjnS2rbM0j8roc2eLm-jVaBQjypMuaAxCJM7YSj8Nrtf6dJyJoRbZCRwhtGKlq1MdfVOMTlxzOMx2VSfb14-rSfs-vBgfy_d2xntPmQ36KdU-RZbrDWfLswjhHHz7HG9doB9verl-htBxl5H |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJcEFAegQKDBByQTO19xDYSQglNaClEFaFVb2a93qURrV0SR6g_hD_Dr2PGj0AQ6q3XeGPNemZnvtl5MfbUBL4OJQ3NyJT2pOORp-Ne6kVGZKkMM9TLdA_5cdzbOZDvj9TRGvvV1sJQWmWrEytFnRWG7si3uBKKWqEE8ZZr0iL2t0dvzr57NEGKIq3tOI1aRPbs-Q903-avd7eR1884Hw0_v93xmgkDnpGxKL1IChMI7QKEBTxzxljfmNjXTjpp0xShh4p4GGSGoktSOqFirow1QWhI8nsC33uFreNme7LD1gfD8f6n1g6gp6CCOo6KbiBSnR8vqPSdBy8RpAdKrljCamDA_1Duv8maf1m_0Q12vYGt0K_l7CZbs_ktttHP0WU_PYfnUCWSVjf0G-znoBm1DToHSliBSRUhgGoA59ShIQaEyoDQE8aWbu_xzcPhOxho842qTPLsFfRhsuwxDYRTFzPrDdDkZtBv2qDDaFacQtWruYSJqTIJoSygaXV6AofTOZWM1oWmt9nBpfDmDuvkRW7vMQgJlflSK661dFkaGxcoG2fKykhpK7vMbzmRmKY1Ok3oOEnQRSLmJRXzEmJeUjOvy14s_3JW9wW5aPGA2LtcSC29qx-K2dek0RCJ7xyVs3I_TnHDaRpZjr4E7lUIXxvlumyzFY6k0TPz5M-p6LIny8eoISjso3NbLGgNQuaeENLvsru1LC0pIQyjQokUhitStkLq6pN8elx1IY9Iv_r8_sVkPWZX8ZgmH3bHew_YNfomderFJuuUs4V9iIiuTB81RwfYl8s-rb8BR_xicw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Building+an+Open+Source+Classifier+for+the+Neonatal+EEG+Background%3A+A+Systematic+Feature-Based+Approach+From+Expert+Scoring+to+Clinical+Visualization&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Moghadam%2C+Saeed+Montazeri&rft.au=Pinchefsky%2C+Elana&rft.au=Tse%2C+Ilse&rft.au=Marchi%2C+Viviana&rft.date=2021-05-31&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=15&rft.spage=675154&rft_id=info:doi/10.3389%2Ffnhum.2021.675154&rft_id=info%3Apmid%2F34135744&rft.externalDocID=34135744 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |