Electrochemical Characteristics of Shewanella loihica PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied
The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) ele...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 27; no. 16; p. 5330 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
21.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES. |
---|---|
AbstractList | The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES. The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen PV-4, which is limited in conventional flat electrodes. PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES. The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES. The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES. |
Author | Zhang, Xiaoming Wang, Shixin Marsili, Enrico |
AuthorAffiliation | 1 School of Science, Minzu University of China, Beijing 100081, China 2 Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan |
AuthorAffiliation_xml | – name: 2 Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan – name: 1 School of Science, Minzu University of China, Beijing 100081, China |
Author_xml | – sequence: 1 givenname: Shixin surname: Wang fullname: Wang, Shixin – sequence: 2 givenname: Xiaoming surname: Zhang fullname: Zhang, Xiaoming – sequence: 3 givenname: Enrico orcidid: 0000-0003-3150-1564 surname: Marsili fullname: Marsili, Enrico |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36014568$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNURC_wAGyQJTZlMeBbnHiDVIUClSpRFZhtdOKcNB554qntULHkzfEwpWqLxMqX8_2_zu2w2Jv8hEXxktG3Qmj6bu0dmtlh5BVTpRD0SXHAJKcLQaXeu3ffLw5jXFHKmWTls2JfKMpkqeqD4tdptkjBmxHX1oAjzQgBTMJgY7ImEj-QryPewITOAXHejhkjF8uFJH4il5ih2UHCnixtCujnSBoIXY4dXy6bN-TGppF8sMOAAadELnzKhwUXyclm4yz2z4unQ37ii9vzqPj-8fRb83lx_uXTWXNyvjBSi7SoOeVlqbEDKkTf0ZpCBYNkg-aIui_VwDttONXAWFaANrXolKIK2FDSWomj4mzn23tYtZtg1xB-th5s--fDh6sWQq7GYatljUJ3A-e6lLzsO8V4JaTkgIr2Qmav9zuvzdytsTe5pADugenDyGTH9sr_yM4sj4lng-Nbg-CvZ4ypXdtoti2eti1seUUrRUWeX0ZfP0JXfg5TbtWWUoJJretMvbqf0V0qfyedAbYDTPAxBhzuEEbb7Ta1_2xT1lSPNMYmSNZvi7LuP8rfuXPRwQ |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2023_132126 crossref_primary_10_1016_j_diamond_2023_110673 |
Cites_doi | 10.1016/j.scitotenv.2021.149207 10.1016/S0379-6779(97)80272-X 10.1016/j.apenergy.2018.10.015 10.1016/j.elecom.2021.107003 10.1016/S0378-7753(02)00553-0 10.1021/acs.accounts.9b00523 10.1016/j.chemosphere.2021.130828 10.1016/j.bioelechem.2006.03.031 10.1073/pnas.0710525105 10.1080/08927014.2015.1105222 10.1016/j.jpowsour.2017.03.109 10.3390/app8122384 10.1016/j.biortech.2019.01.083 10.1016/j.carbon.2006.02.022 10.1042/EBC20200178 10.1016/j.electacta.2016.01.033 10.3390/en12173390 10.1016/j.mib.2021.12.003 10.1016/j.chemosphere.2021.131138 10.1016/j.cbpa.2018.06.007 10.1016/j.bioflm.2021.100051 10.1016/j.bioelechem.2020.107519 10.1016/j.jclepro.2021.126951 10.1016/j.electacta.2013.04.039 10.1128/mbio.03822-21 10.1016/j.renene.2020.05.049 10.1016/j.jelechem.2003.07.019 10.1007/s12274-019-2438-0 10.1128/AEM.03109-20 10.1080/00914037.2022.2066669 10.1002/anie.200804917 10.3389/fmicb.2018.02886 10.1016/j.biortech.2018.02.073 10.1002/celc.201402128 10.1016/j.solener.2011.12.011 10.1007/s10529-015-1929-7 10.3389/fmicb.2017.00756 10.1038/nrmicro1442 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules27165330 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_948e39bf2295425db61273442ae60d34 PMC9413302 36014568 10_3390_molecules27165330 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12174462 – fundername: Ministry of Science and Technology grantid: QN2021184001L – fundername: Ministry of Science and Technology grantid: DL2021184002L – fundername: Ministry of Science and Technology grantid: G2021184007L – fundername: the international collaboration project of the Ministry of Science and Technology grantid: G2021184007L; QN2021184001L; DL2021184002L |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-8202559eba033db080a7af41f92ee9d56f2b9c209a11c49a9c83b6606a1f50863 |
IEDL.DBID | 7X7 |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:28:12 EDT 2025 Thu Aug 21 13:42:03 EDT 2025 Fri Jul 11 12:11:23 EDT 2025 Fri Jul 25 09:32:41 EDT 2025 Mon Jul 21 05:36:45 EDT 2025 Thu Apr 24 22:57:51 EDT 2025 Tue Jul 01 01:21:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | mediated electron transfer (MET) reticulated vitreous carbon (RVC) biofilm formation direct electron transfer (DET) bioelectrochemical systems (BES) Shewanella loihica PV-4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-8202559eba033db080a7af41f92ee9d56f2b9c209a11c49a9c83b6606a1f50863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3150-1564 |
OpenAccessLink | https://www.proquest.com/docview/2706314998?pq-origsite=%requestingapplication% |
PMID | 36014568 |
PQID | 2706314998 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_948e39bf2295425db61273442ae60d34 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9413302 proquest_miscellaneous_2707603420 proquest_journals_2706314998 pubmed_primary_36014568 crossref_primary_10_3390_molecules27165330 crossref_citationtrail_10_3390_molecules27165330 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220821 |
PublicationDateYYYYMMDD | 2022-08-21 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220821 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tsutsumi (ref_21) 1997; 85 Doyle (ref_7) 2018; 258 Guo (ref_14) 2021; 797 Rogulski (ref_19) 2004; 78 Flexer (ref_27) 2020; 53 Clarke (ref_3) 2022; 66 Huang (ref_36) 2018; 9 Sleutels (ref_15) 2020; 157 Strong (ref_33) 2006; 44 ref_12 Friedrich (ref_24) 2004; 561 Nakamura (ref_34) 2009; 48 Juarez (ref_23) 2012; 86 Ikeda (ref_32) 2021; 65 Mouhib (ref_18) 2019; 12 Lovley (ref_28) 2006; 4 Zheng (ref_29) 2019; 278 Peng (ref_5) 2016; 191 Huang (ref_16) 2021; 301 Su (ref_41) 2020; 134 Kim (ref_40) 2000; 21 Gul (ref_11) 2021; 281 Yang (ref_13) 2015; 37 Cho (ref_37) 2007; 70 Obileke (ref_10) 2021; 125 Sultana (ref_39) 2015; 31 Mier (ref_17) 2021; 283 ref_25 Chen (ref_6) 2019; 233–234 Gyenge (ref_22) 2003; 113 Zhang (ref_42) 2013; 102 LaBelle (ref_26) 2017; 8 Chong (ref_4) 2018; 47 Zhou (ref_31) 2020; 38 Ueki (ref_1) 2021; 87 Eddie (ref_30) 2021; 3 Teravest (ref_38) 2014; 1 Rogulski (ref_20) 2006; 9 Marsili (ref_35) 2008; 105 ref_9 Ye (ref_2) 2022; 13 Santoro (ref_8) 2017; 356 |
References_xml | – volume: 797 start-page: 149207 year: 2021 ident: ref_14 article-title: Redox potential-induced regulation of extracellular polymeric substances in an electroactive mixed community biofilm publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149207 – volume: 85 start-page: 1361 year: 1997 ident: ref_21 article-title: Application of polyaniline/poly(p-styrenesulfonic acid) composite prepared by post-polymerization technique to positive active material for a rechargeable lithium battery publication-title: Synth. Met. doi: 10.1016/S0379-6779(97)80272-X – volume: 233–234 start-page: 15 year: 2019 ident: ref_6 article-title: Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.015 – volume: 125 start-page: 107003 year: 2021 ident: ref_10 article-title: Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2021.107003 – volume: 113 start-page: 388 year: 2003 ident: ref_22 article-title: Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: Opportunities and challenges publication-title: J. Power Source doi: 10.1016/S0378-7753(02)00553-0 – volume: 53 start-page: 311 year: 2020 ident: ref_27 article-title: Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00523 – volume: 281 start-page: 130828 year: 2021 ident: ref_11 article-title: Progress in microbial fuel cell technology for wastewater treatment and energy harvesting publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130828 – volume: 70 start-page: 165 year: 2007 ident: ref_37 article-title: Optimization of the biological component of a bioelectrochemical cell publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2006.03.031 – volume: 105 start-page: 3968 year: 2008 ident: ref_35 article-title: Shewanella secretes flavins that mediate extracellular electron transfer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0710525105 – volume: 31 start-page: 745 year: 2015 ident: ref_39 article-title: Electrochemical biofilm control: A review publication-title: Biofouling doi: 10.1080/08927014.2015.1105222 – volume: 356 start-page: 225 year: 2017 ident: ref_8 article-title: Microbial fuel cells: From fundamentals to applications publication-title: J. Power Source doi: 10.1016/j.jpowsour.2017.03.109 – volume: 9 start-page: 333 year: 2006 ident: ref_20 article-title: New generation of the zinc—Manganese dioxide cell publication-title: J. New Mater. Elect. Syst. – ident: ref_9 doi: 10.3390/app8122384 – volume: 278 start-page: 272 year: 2019 ident: ref_29 article-title: A rapid inoculation method for microalgae biofilm cultivation based on microalgae-microalgae co-flocculation and zeta-potential adjustment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.01.083 – volume: 44 start-page: 1936 year: 2006 ident: ref_33 article-title: Introduction of ion-exchange moieties to reticulated vitreous carbon by direct chemical modification publication-title: Carbon doi: 10.1016/j.carbon.2006.02.022 – volume: 65 start-page: 355 year: 2021 ident: ref_32 article-title: Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology publication-title: Essays Biochem. doi: 10.1042/EBC20200178 – volume: 191 start-page: 743 year: 2016 ident: ref_5 article-title: Geobacter sulfurreducens adapts to low electrode potential for extracellular electron transfer publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.01.033 – ident: ref_12 doi: 10.3390/en12173390 – volume: 66 start-page: 56 year: 2022 ident: ref_3 article-title: Plugging into bacterial nanowires: A comparison of model electrogenic organisms publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2021.12.003 – volume: 78 start-page: 1357 year: 2004 ident: ref_19 article-title: Applications of Reticulated Vitreous Carbon (RVC) in the electrochemical power sources publication-title: Pol. J. Chem. – volume: 21 start-page: 44 year: 2000 ident: ref_40 article-title: Development of microbial fuel cells using Proteus vulgaris publication-title: Bull. Korean Chem. Soc. – volume: 283 start-page: 131138 year: 2021 ident: ref_17 article-title: A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131138 – volume: 38 start-page: 1122663 year: 2020 ident: ref_31 article-title: Electrode potential regulates phenol degradation pathways in oxygen-diffused microbial electrochemical system publication-title: Chem. Eng. J. – volume: 47 start-page: 7 year: 2018 ident: ref_4 article-title: Nature’s conductors: What can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion? publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2018.06.007 – volume: 3 start-page: 100051 year: 2021 ident: ref_30 article-title: Marinobacter atlanticus electrode biofilms differentially regulate gene expression depending on electrode potential and lifestyle publication-title: Biofilm doi: 10.1016/j.bioflm.2021.100051 – volume: 134 start-page: 107519 year: 2020 ident: ref_41 article-title: Synergistic improvement of Shewanella loihica PV-4 extracellular electron transfer using a TiO2@TiN nanocomposite publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2020.107519 – volume: 301 start-page: 126951 year: 2021 ident: ref_16 article-title: Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): A review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126951 – volume: 102 start-page: 252 year: 2013 ident: ref_42 article-title: Electrochemical characteristics of Shewanella loihica PV-4 on CNTs-modified graphite surfaces publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.04.039 – volume: 13 start-page: e0382221 year: 2022 ident: ref_2 article-title: Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms publication-title: mBio doi: 10.1128/mbio.03822-21 – volume: 157 start-page: 782 year: 2020 ident: ref_15 article-title: Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems publication-title: Renew. Energy doi: 10.1016/j.renene.2020.05.049 – volume: 561 start-page: 203 year: 2004 ident: ref_24 article-title: Reticulated vitreous carbon as an electrode material publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.07.019 – volume: 12 start-page: 2184 year: 2019 ident: ref_18 article-title: Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials publication-title: Nano Res. doi: 10.1007/s12274-019-2438-0 – volume: 87 start-page: e03109-20 year: 2021 ident: ref_1 article-title: Cytochromes in extracellular electron transfer in Geobacter publication-title: Appl. Environ. Microb. doi: 10.1128/AEM.03109-20 – ident: ref_25 doi: 10.1080/00914037.2022.2066669 – volume: 48 start-page: 1606 year: 2009 ident: ref_34 article-title: Electronic absorption spectra and redox properties of C type cytochromes in living microbes publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.200804917 – volume: 9 start-page: 2886 year: 2018 ident: ref_36 article-title: Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02886 – volume: 258 start-page: 354 year: 2018 ident: ref_7 article-title: Weak electricigens: A new avenue for bioelectrochemical research publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.073 – volume: 1 start-page: 2000 year: 2014 ident: ref_38 article-title: Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochromec inactivation in Shewanella oneidensis MR-1 publication-title: ChemElectroChem doi: 10.1002/celc.201402128 – volume: 86 start-page: 1099 year: 2012 ident: ref_23 article-title: Influence of NaCl, Na2SO4 and O2 on power generation from microbial fuel cells with non-catalyzed carbon electrodes and natural inocula publication-title: Sol. Energy doi: 10.1016/j.solener.2011.12.011 – volume: 37 start-page: 2357 year: 2015 ident: ref_13 article-title: Microbial fuel cells for biosensor applications publication-title: Biotechnol. Lett. doi: 10.1007/s10529-015-1929-7 – volume: 8 start-page: 756 year: 2017 ident: ref_26 article-title: Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00756 – volume: 4 start-page: 497 year: 2006 ident: ref_28 article-title: Bug juice: Harvesting electricity with microorganisms publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1442 |
SSID | ssj0021415 |
Score | 2.3875628 |
Snippet | The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5330 |
SubjectTerms | Acids Bacteria Bioelectric Energy Sources - microbiology bioelectrochemical systems (BES) biofilm formation Biofilms Carbon Carbon - metabolism Cytochrome direct electron transfer (DET) Electrodes Electron Transport Experiments Heat resistance mediated electron transfer (MET) Metabolism Microorganisms reticulated vitreous carbon (RVC) Shewanella - chemistry Shewanella loihica PV-4 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLnBBFGjZ8iEj9dBWikhirxMfIQUhpFaIlhW3aPwRsRJN0G5Qz_3nnUm8K1IquHBd25LXM9l5bz15j7GPQlRgJYwjRBdIUNzYRxqrVqQ1WCczJW3ndfjtuzq_lhc345tHVl_UE9bLA_cHd6Rl7oU2FdlOY345gyU5E1Km4FXsRKcEijVvQaYC1UqwLvV3mAJJ_dGv3mrWz1OkB9RPOahCnVj__xDmv42SjyrP2QZbD5CRH_dbfcve-HqTrRYLp7Yt9ue097Kx4eV_XgxVmHlT8R-3_jdQSwvwu2ZK_Rf8chJJ3tT8yncCHAg6HZ9M25lvHua8gJnBsU9Xk-Izpz9r-ddgpdLyy6alHiNMXB5A7Da7Pjv9WZxHwVohslKLNsK6T1zCG4iFcAZhI2RQyaTSqffajVWVGm3xYCFJcAVomwujkOxAUiGkU-IdW6mb2u8wrqwQWQ65dTFIZzTkOvMxOV0pcEnuRyxeHHVpg-442V_clcg_KDrlk-iM2JflkvtedOO5yScUv-VE0svuPsAsKkMWlS9l0YjtLaJfhod4XqYZ4jdkkDofscPlMMaW7lQwZBgNmpMpklHEfbzvk2W5E6Hozlbh6myQRoOtDkfq6W0n8a0RW4g4_fAa322XraX0zkaMP4nJHltpZw9-H5FUaw66h-YvLzodEw priority: 102 providerName: Directory of Open Access Journals |
Title | Electrochemical Characteristics of Shewanella loihica PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36014568 https://www.proquest.com/docview/2706314998 https://www.proquest.com/docview/2707603420 https://pubmed.ncbi.nlm.nih.gov/PMC9413302 https://doaj.org/article/948e39bf2295425db61273442ae60d34 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgO8AFMX4WtspIHAApWhK7dnxCLGuZkJiqwqreIv_KVmkko83Emf-c9xK3WwDtkkNsS1ae7fc9v5fvI-QtY6W2XI8iQBcQoLiRjxR4rUgpbR2XgttW6_DrqTg5418Wo0W4cFuHssrNmdge1K62eEd-mEpwpgDnVfbx6meEqlGYXQ0SGvfJLlKXYUmXXNwEXAl4py6TySC0P_zRCc76dQpBAlZV9nxRS9n_P5z5d7nkLf8zeUweBeBIP3WW3iP3fPWEPMg3em1Pye9xp2hjAwUAzftczLQu6bcL_0tjYYuml_USqzDodB5xWld05lsaDoCejs6XzcrX12ua65WBtnezef6e4pUtPQ6CKg2d1g1WGsHypQHKPiNnk_H3_CQKAguR5Yo1EXh_jCi80TFjzgB41FKXPClV6r1yI1GmRtk0VjpJYIRWNmNGQMijkxKAnWDPyU5VV_4locIyJjOdWRdr7ozSmZI-Rr0roV2S-QGJN5-6sIF9HEUwLguIQtA6xT_WGZAP2yFXHfXGXZ2P0H7bjsia3b6oV-dF2ISF4plnypQoYQ5nlTMA7yTjPNVexI7xAdnfWL8IW3ld3Cy8AXmzbQbbYmYFTAbWwD5SIJkizONFt1i2M2ECM7cCRsveMupNtd9SLS9aom8FCIPF6au7p_WaPEzxn4wYjrxkn-w0q2t_AEipMcN2O8Azm3wekt2j8el0NmxvHf4APlAZew |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4s1CC0YCCZCiJrbXiQ9VBWmXLX2oKu2qt9SxHbpSScpuqopj_xC_kZm8IIB66zW2Iyvz-iYez0fIa84zbYQeeoAuIEGxQ-cpiFqeUtpYEUphKq7D3T05PhKfj4fHC-RnexcGyypbn1g5alsY_Ee-ykIIpgDnVbR-_t1D1ig8XW0pNGq12HY_LiFlm69tbYB83zA22jyMx17DKuAZoXjpQchDGO1S7XNuU0BMOtSZCDLFnFN2KDOWKsN8pYMAVmhlIp5KwPk6yADNSA7vvUVuC84VWlQ0-tQleAFEw_rkFAb91W81wa2bM0hKsIqzF_sqioD_4dq_yzP_iHeje-RuA1Tph1qz7pMFlz8gS3HLD_eQXG3WDDqmaTlA437vZ1pk9Mupu9RYSKPpWTHFqg-6P_EELXJ64Kq2HwB1LZ1My5krLuY01rMUxt4eTOJ3FH8R042GwKWk-0WJlU1gLrSBzo_I0Y18-sdkMS9y95RQaTgPIx0Z62thU6UjFTof-bWktkHkBsRvP3Vimm7nSLpxlkDWg9JJ_pHOgLzvlpzXrT6um_wR5ddNxC7d1YNi9jVpjD5RInJcpRlSpoNvtCnAyZALwbSTvuViQJZb6SeN65gnvxV9QF51wyBbPMkBkYE0cE4osXkj7ONJrSzdTrjEk2IJq8OeGvW22h_Jp6dVY3EFiIb77Nn123pJlsaHuzvJztbe9nNyh-F9EB_cbbBMFsvZhVsBlFamLyrToOTkpm3xF7nRUeY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4s1CASOBBEjRJrbjxAeE2mxXLYVqVehqb8GxHbpSScpuqoojf4tfx0weWwKot15jO7Iyr2_i8XyEvOA810bo0AN0AQmKDZ2nIGp5SmljRSSFqbkOP-7LnUPxfhbO1siv7i4MllV2PrF21LY0-I98yCIIpgDnVTzM27KIyWj87uS7hwxSeNLa0Wk0KrLnfpxB-rZ8uzsCWb9kbLz9OdnxWoYBzwjFKw_CH0Jql2mfc5sBetKRzkWQK-acsqHMWaYM85UOAlihlYl5JgHz6yAHZCM5vPcKuRrxMEAbi2bnyV4AkbE5ReVc-cNvDdmtWzJIULCisxcHa7qA_2Hcv0s1_4h941vkZgta6WajZbfJmivukOtJxxV3l_zcbth0TNt-gCb9PtC0zOmnI3emsahG0-NyjhUgdDL1BC0LeuDqFiAAey2dzquFK0-XNNGLDMZeHUyT1xR_F9NRS-ZS0UlZYZUTmA5tYfQ9cngpn_4-WS_Kwj0kVBrOo1jHxvpa2EzpWEXOR64tqW0QuwHxu0-dmrbzORJwHKeQAaF00n-kMyBvVktOmrYfF03eQvmtJmLH7vpBufiatg4gVSJ2XGU50qeDn7QZQMuIC8G0k77lYkA2OumnrRtZpudKPyDPV8MgWzzVAZGBNHBOJLGRI-zjQaMsq51wiafGElZHPTXqbbU_UsyP6ibjCtAN99mji7f1jFwDK0w_7O7vPSY3GF4N8cHzBhtkvVqcuicA2KrsaW0ZlHy5bFP8DSY5VhM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Characteristics+of+Shewanella+loihica+PV-4+on+Reticulated+Vitreous+Carbon+%28RVC%29+with+Different+Potentials+Applied&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Shixin&rft.au=Zhang%2C+Xiaoming&rft.au=Marsili%2C+Enrico&rft.date=2022-08-21&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=27&rft.issue=16&rft_id=info:doi/10.3390%2Fmolecules27165330&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |