Electrochemical Characteristics of Shewanella loihica PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied

The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) ele...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 16; p. 5330
Main Authors Wang, Shixin, Zhang, Xiaoming, Marsili, Enrico
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 21.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.
AbstractList The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.
The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen PV-4, which is limited in conventional flat electrodes. PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.
The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.
The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen Shewanella loihica PV-4, which is limited in conventional flat electrodes. S. loihica PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of S. loihica PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.
Author Zhang, Xiaoming
Wang, Shixin
Marsili, Enrico
AuthorAffiliation 1 School of Science, Minzu University of China, Beijing 100081, China
2 Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
AuthorAffiliation_xml – name: 2 Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
– name: 1 School of Science, Minzu University of China, Beijing 100081, China
Author_xml – sequence: 1
  givenname: Shixin
  surname: Wang
  fullname: Wang, Shixin
– sequence: 2
  givenname: Xiaoming
  surname: Zhang
  fullname: Zhang, Xiaoming
– sequence: 3
  givenname: Enrico
  orcidid: 0000-0003-3150-1564
  surname: Marsili
  fullname: Marsili, Enrico
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36014568$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNURC_wAGyQJTZlMeBbnHiDVIUClSpRFZhtdOKcNB554qntULHkzfEwpWqLxMqX8_2_zu2w2Jv8hEXxktG3Qmj6bu0dmtlh5BVTpRD0SXHAJKcLQaXeu3ffLw5jXFHKmWTls2JfKMpkqeqD4tdptkjBmxHX1oAjzQgBTMJgY7ImEj-QryPewITOAXHejhkjF8uFJH4il5ih2UHCnixtCujnSBoIXY4dXy6bN-TGppF8sMOAAadELnzKhwUXyclm4yz2z4unQ37ii9vzqPj-8fRb83lx_uXTWXNyvjBSi7SoOeVlqbEDKkTf0ZpCBYNkg-aIui_VwDttONXAWFaANrXolKIK2FDSWomj4mzn23tYtZtg1xB-th5s--fDh6sWQq7GYatljUJ3A-e6lLzsO8V4JaTkgIr2Qmav9zuvzdytsTe5pADugenDyGTH9sr_yM4sj4lng-Nbg-CvZ4ypXdtoti2eti1seUUrRUWeX0ZfP0JXfg5TbtWWUoJJretMvbqf0V0qfyedAbYDTPAxBhzuEEbb7Ta1_2xT1lSPNMYmSNZvi7LuP8rfuXPRwQ
CitedBy_id crossref_primary_10_1016_j_colsurfa_2023_132126
crossref_primary_10_1016_j_diamond_2023_110673
Cites_doi 10.1016/j.scitotenv.2021.149207
10.1016/S0379-6779(97)80272-X
10.1016/j.apenergy.2018.10.015
10.1016/j.elecom.2021.107003
10.1016/S0378-7753(02)00553-0
10.1021/acs.accounts.9b00523
10.1016/j.chemosphere.2021.130828
10.1016/j.bioelechem.2006.03.031
10.1073/pnas.0710525105
10.1080/08927014.2015.1105222
10.1016/j.jpowsour.2017.03.109
10.3390/app8122384
10.1016/j.biortech.2019.01.083
10.1016/j.carbon.2006.02.022
10.1042/EBC20200178
10.1016/j.electacta.2016.01.033
10.3390/en12173390
10.1016/j.mib.2021.12.003
10.1016/j.chemosphere.2021.131138
10.1016/j.cbpa.2018.06.007
10.1016/j.bioflm.2021.100051
10.1016/j.bioelechem.2020.107519
10.1016/j.jclepro.2021.126951
10.1016/j.electacta.2013.04.039
10.1128/mbio.03822-21
10.1016/j.renene.2020.05.049
10.1016/j.jelechem.2003.07.019
10.1007/s12274-019-2438-0
10.1128/AEM.03109-20
10.1080/00914037.2022.2066669
10.1002/anie.200804917
10.3389/fmicb.2018.02886
10.1016/j.biortech.2018.02.073
10.1002/celc.201402128
10.1016/j.solener.2011.12.011
10.1007/s10529-015-1929-7
10.3389/fmicb.2017.00756
10.1038/nrmicro1442
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules27165330
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
Publicly Available Content Database


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_948e39bf2295425db61273442ae60d34
PMC9413302
36014568
10_3390_molecules27165330
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12174462
– fundername: Ministry of Science and Technology
  grantid: QN2021184001L
– fundername: Ministry of Science and Technology
  grantid: DL2021184002L
– fundername: Ministry of Science and Technology
  grantid: G2021184007L
– fundername: the international collaboration project of the Ministry of Science and Technology
  grantid: G2021184007L; QN2021184001L; DL2021184002L
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-8202559eba033db080a7af41f92ee9d56f2b9c209a11c49a9c83b6606a1f50863
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:28:12 EDT 2025
Thu Aug 21 13:42:03 EDT 2025
Fri Jul 11 12:11:23 EDT 2025
Fri Jul 25 09:32:41 EDT 2025
Mon Jul 21 05:36:45 EDT 2025
Thu Apr 24 22:57:51 EDT 2025
Tue Jul 01 01:21:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords mediated electron transfer (MET)
reticulated vitreous carbon (RVC)
biofilm formation
direct electron transfer (DET)
bioelectrochemical systems (BES)
Shewanella loihica PV-4
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-8202559eba033db080a7af41f92ee9d56f2b9c209a11c49a9c83b6606a1f50863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3150-1564
OpenAccessLink https://www.proquest.com/docview/2706314998?pq-origsite=%requestingapplication%
PMID 36014568
PQID 2706314998
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_948e39bf2295425db61273442ae60d34
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9413302
proquest_miscellaneous_2707603420
proquest_journals_2706314998
pubmed_primary_36014568
crossref_primary_10_3390_molecules27165330
crossref_citationtrail_10_3390_molecules27165330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220821
PublicationDateYYYYMMDD 2022-08-21
PublicationDate_xml – month: 8
  year: 2022
  text: 20220821
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tsutsumi (ref_21) 1997; 85
Doyle (ref_7) 2018; 258
Guo (ref_14) 2021; 797
Rogulski (ref_19) 2004; 78
Flexer (ref_27) 2020; 53
Clarke (ref_3) 2022; 66
Huang (ref_36) 2018; 9
Sleutels (ref_15) 2020; 157
Strong (ref_33) 2006; 44
ref_12
Friedrich (ref_24) 2004; 561
Nakamura (ref_34) 2009; 48
Juarez (ref_23) 2012; 86
Ikeda (ref_32) 2021; 65
Mouhib (ref_18) 2019; 12
Lovley (ref_28) 2006; 4
Zheng (ref_29) 2019; 278
Peng (ref_5) 2016; 191
Huang (ref_16) 2021; 301
Su (ref_41) 2020; 134
Kim (ref_40) 2000; 21
Gul (ref_11) 2021; 281
Yang (ref_13) 2015; 37
Cho (ref_37) 2007; 70
Obileke (ref_10) 2021; 125
Sultana (ref_39) 2015; 31
Mier (ref_17) 2021; 283
ref_25
Chen (ref_6) 2019; 233–234
Gyenge (ref_22) 2003; 113
Zhang (ref_42) 2013; 102
LaBelle (ref_26) 2017; 8
Chong (ref_4) 2018; 47
Zhou (ref_31) 2020; 38
Ueki (ref_1) 2021; 87
Eddie (ref_30) 2021; 3
Teravest (ref_38) 2014; 1
Rogulski (ref_20) 2006; 9
Marsili (ref_35) 2008; 105
ref_9
Ye (ref_2) 2022; 13
Santoro (ref_8) 2017; 356
References_xml – volume: 797
  start-page: 149207
  year: 2021
  ident: ref_14
  article-title: Redox potential-induced regulation of extracellular polymeric substances in an electroactive mixed community biofilm
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149207
– volume: 85
  start-page: 1361
  year: 1997
  ident: ref_21
  article-title: Application of polyaniline/poly(p-styrenesulfonic acid) composite prepared by post-polymerization technique to positive active material for a rechargeable lithium battery
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(97)80272-X
– volume: 233–234
  start-page: 15
  year: 2019
  ident: ref_6
  article-title: Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.015
– volume: 125
  start-page: 107003
  year: 2021
  ident: ref_10
  article-title: Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2021.107003
– volume: 113
  start-page: 388
  year: 2003
  ident: ref_22
  article-title: Electroplated reticulated vitreous carbon current collectors for lead-acid batteries: Opportunities and challenges
  publication-title: J. Power Source
  doi: 10.1016/S0378-7753(02)00553-0
– volume: 53
  start-page: 311
  year: 2020
  ident: ref_27
  article-title: Purposely designed hierarchical porous electrodes for high rate microbial electrosynthesis of acetate from carbon dioxide
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00523
– volume: 281
  start-page: 130828
  year: 2021
  ident: ref_11
  article-title: Progress in microbial fuel cell technology for wastewater treatment and energy harvesting
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130828
– volume: 70
  start-page: 165
  year: 2007
  ident: ref_37
  article-title: Optimization of the biological component of a bioelectrochemical cell
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2006.03.031
– volume: 105
  start-page: 3968
  year: 2008
  ident: ref_35
  article-title: Shewanella secretes flavins that mediate extracellular electron transfer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0710525105
– volume: 31
  start-page: 745
  year: 2015
  ident: ref_39
  article-title: Electrochemical biofilm control: A review
  publication-title: Biofouling
  doi: 10.1080/08927014.2015.1105222
– volume: 356
  start-page: 225
  year: 2017
  ident: ref_8
  article-title: Microbial fuel cells: From fundamentals to applications
  publication-title: J. Power Source
  doi: 10.1016/j.jpowsour.2017.03.109
– volume: 9
  start-page: 333
  year: 2006
  ident: ref_20
  article-title: New generation of the zinc—Manganese dioxide cell
  publication-title: J. New Mater. Elect. Syst.
– ident: ref_9
  doi: 10.3390/app8122384
– volume: 278
  start-page: 272
  year: 2019
  ident: ref_29
  article-title: A rapid inoculation method for microalgae biofilm cultivation based on microalgae-microalgae co-flocculation and zeta-potential adjustment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.01.083
– volume: 44
  start-page: 1936
  year: 2006
  ident: ref_33
  article-title: Introduction of ion-exchange moieties to reticulated vitreous carbon by direct chemical modification
  publication-title: Carbon
  doi: 10.1016/j.carbon.2006.02.022
– volume: 65
  start-page: 355
  year: 2021
  ident: ref_32
  article-title: Shewanella oneidensis MR-1 as a bacterial platform for electro-biotechnology
  publication-title: Essays Biochem.
  doi: 10.1042/EBC20200178
– volume: 191
  start-page: 743
  year: 2016
  ident: ref_5
  article-title: Geobacter sulfurreducens adapts to low electrode potential for extracellular electron transfer
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.01.033
– ident: ref_12
  doi: 10.3390/en12173390
– volume: 66
  start-page: 56
  year: 2022
  ident: ref_3
  article-title: Plugging into bacterial nanowires: A comparison of model electrogenic organisms
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2021.12.003
– volume: 78
  start-page: 1357
  year: 2004
  ident: ref_19
  article-title: Applications of Reticulated Vitreous Carbon (RVC) in the electrochemical power sources
  publication-title: Pol. J. Chem.
– volume: 21
  start-page: 44
  year: 2000
  ident: ref_40
  article-title: Development of microbial fuel cells using Proteus vulgaris
  publication-title: Bull. Korean Chem. Soc.
– volume: 283
  start-page: 131138
  year: 2021
  ident: ref_17
  article-title: A review of recent advances in electrode materials for emerging bioelectrochemical systems: From biofilm-bearing anodes to specialized cathodes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131138
– volume: 38
  start-page: 1122663
  year: 2020
  ident: ref_31
  article-title: Electrode potential regulates phenol degradation pathways in oxygen-diffused microbial electrochemical system
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 7
  year: 2018
  ident: ref_4
  article-title: Nature’s conductors: What can microbial multi-heme cytochromes teach us about electron transport and biological energy conversion?
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2018.06.007
– volume: 3
  start-page: 100051
  year: 2021
  ident: ref_30
  article-title: Marinobacter atlanticus electrode biofilms differentially regulate gene expression depending on electrode potential and lifestyle
  publication-title: Biofilm
  doi: 10.1016/j.bioflm.2021.100051
– volume: 134
  start-page: 107519
  year: 2020
  ident: ref_41
  article-title: Synergistic improvement of Shewanella loihica PV-4 extracellular electron transfer using a TiO2@TiN nanocomposite
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2020.107519
– volume: 301
  start-page: 126951
  year: 2021
  ident: ref_16
  article-title: Role of electrode materials on performance and microbial characteristics in the constructed wetland coupled microbial fuel cell (CW-MFC): A review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126951
– volume: 102
  start-page: 252
  year: 2013
  ident: ref_42
  article-title: Electrochemical characteristics of Shewanella loihica PV-4 on CNTs-modified graphite surfaces
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.04.039
– volume: 13
  start-page: e0382221
  year: 2022
  ident: ref_2
  article-title: Dissecting the structural and conductive functions of nanowires in Geobacter sulfurreducens electroactive biofilms
  publication-title: mBio
  doi: 10.1128/mbio.03822-21
– volume: 157
  start-page: 782
  year: 2020
  ident: ref_15
  article-title: Considerations for application of granular activated carbon as capacitive bioanode in bioelectrochemical systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.05.049
– volume: 561
  start-page: 203
  year: 2004
  ident: ref_24
  article-title: Reticulated vitreous carbon as an electrode material
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.07.019
– volume: 12
  start-page: 2184
  year: 2019
  ident: ref_18
  article-title: Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2438-0
– volume: 87
  start-page: e03109-20
  year: 2021
  ident: ref_1
  article-title: Cytochromes in extracellular electron transfer in Geobacter
  publication-title: Appl. Environ. Microb.
  doi: 10.1128/AEM.03109-20
– ident: ref_25
  doi: 10.1080/00914037.2022.2066669
– volume: 48
  start-page: 1606
  year: 2009
  ident: ref_34
  article-title: Electronic absorption spectra and redox properties of C type cytochromes in living microbes
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.200804917
– volume: 9
  start-page: 2886
  year: 2018
  ident: ref_36
  article-title: Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02886
– volume: 258
  start-page: 354
  year: 2018
  ident: ref_7
  article-title: Weak electricigens: A new avenue for bioelectrochemical research
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.073
– volume: 1
  start-page: 2000
  year: 2014
  ident: ref_38
  article-title: Oxidizing electrode potentials decrease current production and coulombic efficiency through cytochromec inactivation in Shewanella oneidensis MR-1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201402128
– volume: 86
  start-page: 1099
  year: 2012
  ident: ref_23
  article-title: Influence of NaCl, Na2SO4 and O2 on power generation from microbial fuel cells with non-catalyzed carbon electrodes and natural inocula
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.12.011
– volume: 37
  start-page: 2357
  year: 2015
  ident: ref_13
  article-title: Microbial fuel cells for biosensor applications
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-015-1929-7
– volume: 8
  start-page: 756
  year: 2017
  ident: ref_26
  article-title: Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00756
– volume: 4
  start-page: 497
  year: 2006
  ident: ref_28
  article-title: Bug juice: Harvesting electricity with microorganisms
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1442
SSID ssj0021415
Score 2.3875628
Snippet The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5330
SubjectTerms Acids
Bacteria
Bioelectric Energy Sources - microbiology
bioelectrochemical systems (BES)
biofilm formation
Biofilms
Carbon
Carbon - metabolism
Cytochrome
direct electron transfer (DET)
Electrodes
Electron Transport
Experiments
Heat resistance
mediated electron transfer (MET)
Metabolism
Microorganisms
reticulated vitreous carbon (RVC)
Shewanella - chemistry
Shewanella loihica PV-4
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLnBBFGjZ8iEj9dBWikhirxMfIQUhpFaIlhW3aPwRsRJN0G5Qz_3nnUm8K1IquHBd25LXM9l5bz15j7GPQlRgJYwjRBdIUNzYRxqrVqQ1WCczJW3ndfjtuzq_lhc345tHVl_UE9bLA_cHd6Rl7oU2FdlOY345gyU5E1Km4FXsRKcEijVvQaYC1UqwLvV3mAJJ_dGv3mrWz1OkB9RPOahCnVj__xDmv42SjyrP2QZbD5CRH_dbfcve-HqTrRYLp7Yt9ue097Kx4eV_XgxVmHlT8R-3_jdQSwvwu2ZK_Rf8chJJ3tT8yncCHAg6HZ9M25lvHua8gJnBsU9Xk-Izpz9r-ddgpdLyy6alHiNMXB5A7Da7Pjv9WZxHwVohslKLNsK6T1zCG4iFcAZhI2RQyaTSqffajVWVGm3xYCFJcAVomwujkOxAUiGkU-IdW6mb2u8wrqwQWQ65dTFIZzTkOvMxOV0pcEnuRyxeHHVpg-442V_clcg_KDrlk-iM2JflkvtedOO5yScUv-VE0svuPsAsKkMWlS9l0YjtLaJfhod4XqYZ4jdkkDofscPlMMaW7lQwZBgNmpMpklHEfbzvk2W5E6Hozlbh6myQRoOtDkfq6W0n8a0RW4g4_fAa322XraX0zkaMP4nJHltpZw9-H5FUaw66h-YvLzodEw
  priority: 102
  providerName: Directory of Open Access Journals
Title Electrochemical Characteristics of Shewanella loihica PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied
URI https://www.ncbi.nlm.nih.gov/pubmed/36014568
https://www.proquest.com/docview/2706314998
https://www.proquest.com/docview/2707603420
https://pubmed.ncbi.nlm.nih.gov/PMC9413302
https://doaj.org/article/948e39bf2295425db61273442ae60d34
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Pb9MwFLZgO8AFMX4WtspIHAApWhK7dnxCLGuZkJiqwqreIv_KVmkko83Emf-c9xK3WwDtkkNsS1ae7fc9v5fvI-QtY6W2XI8iQBcQoLiRjxR4rUgpbR2XgttW6_DrqTg5418Wo0W4cFuHssrNmdge1K62eEd-mEpwpgDnVfbx6meEqlGYXQ0SGvfJLlKXYUmXXNwEXAl4py6TySC0P_zRCc76dQpBAlZV9nxRS9n_P5z5d7nkLf8zeUweBeBIP3WW3iP3fPWEPMg3em1Pye9xp2hjAwUAzftczLQu6bcL_0tjYYuml_USqzDodB5xWld05lsaDoCejs6XzcrX12ua65WBtnezef6e4pUtPQ6CKg2d1g1WGsHypQHKPiNnk_H3_CQKAguR5Yo1EXh_jCi80TFjzgB41FKXPClV6r1yI1GmRtk0VjpJYIRWNmNGQMijkxKAnWDPyU5VV_4locIyJjOdWRdr7ozSmZI-Rr0roV2S-QGJN5-6sIF9HEUwLguIQtA6xT_WGZAP2yFXHfXGXZ2P0H7bjsia3b6oV-dF2ISF4plnypQoYQ5nlTMA7yTjPNVexI7xAdnfWL8IW3ld3Cy8AXmzbQbbYmYFTAbWwD5SIJkizONFt1i2M2ECM7cCRsveMupNtd9SLS9aom8FCIPF6au7p_WaPEzxn4wYjrxkn-w0q2t_AEipMcN2O8Azm3wekt2j8el0NmxvHf4APlAZew
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4s1CC0YCCZCiJrbXiQ9VBWmXLX2oKu2qt9SxHbpSScpuqopj_xC_kZm8IIB66zW2Iyvz-iYez0fIa84zbYQeeoAuIEGxQ-cpiFqeUtpYEUphKq7D3T05PhKfj4fHC-RnexcGyypbn1g5alsY_Ee-ykIIpgDnVbR-_t1D1ig8XW0pNGq12HY_LiFlm69tbYB83zA22jyMx17DKuAZoXjpQchDGO1S7XNuU0BMOtSZCDLFnFN2KDOWKsN8pYMAVmhlIp5KwPk6yADNSA7vvUVuC84VWlQ0-tQleAFEw_rkFAb91W81wa2bM0hKsIqzF_sqioD_4dq_yzP_iHeje-RuA1Tph1qz7pMFlz8gS3HLD_eQXG3WDDqmaTlA437vZ1pk9Mupu9RYSKPpWTHFqg-6P_EELXJ64Kq2HwB1LZ1My5krLuY01rMUxt4eTOJ3FH8R042GwKWk-0WJlU1gLrSBzo_I0Y18-sdkMS9y95RQaTgPIx0Z62thU6UjFTof-bWktkHkBsRvP3Vimm7nSLpxlkDWg9JJ_pHOgLzvlpzXrT6um_wR5ddNxC7d1YNi9jVpjD5RInJcpRlSpoNvtCnAyZALwbSTvuViQJZb6SeN65gnvxV9QF51wyBbPMkBkYE0cE4osXkj7ONJrSzdTrjEk2IJq8OeGvW22h_Jp6dVY3EFiIb77Nn123pJlsaHuzvJztbe9nNyh-F9EB_cbbBMFsvZhVsBlFamLyrToOTkpm3xF7nRUeY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4s1CASOBBEjRJrbjxAeE2mxXLYVqVehqb8GxHbpSScpuqoojf4tfx0weWwKot15jO7Iyr2_i8XyEvOA810bo0AN0AQmKDZ2nIGp5SmljRSSFqbkOP-7LnUPxfhbO1siv7i4MllV2PrF21LY0-I98yCIIpgDnVTzM27KIyWj87uS7hwxSeNLa0Wk0KrLnfpxB-rZ8uzsCWb9kbLz9OdnxWoYBzwjFKw_CH0Jql2mfc5sBetKRzkWQK-acsqHMWaYM85UOAlihlYl5JgHz6yAHZCM5vPcKuRrxMEAbi2bnyV4AkbE5ReVc-cNvDdmtWzJIULCisxcHa7qA_2Hcv0s1_4h941vkZgta6WajZbfJmivukOtJxxV3l_zcbth0TNt-gCb9PtC0zOmnI3emsahG0-NyjhUgdDL1BC0LeuDqFiAAey2dzquFK0-XNNGLDMZeHUyT1xR_F9NRS-ZS0UlZYZUTmA5tYfQ9cngpn_4-WS_Kwj0kVBrOo1jHxvpa2EzpWEXOR64tqW0QuwHxu0-dmrbzORJwHKeQAaF00n-kMyBvVktOmrYfF03eQvmtJmLH7vpBufiatg4gVSJ2XGU50qeDn7QZQMuIC8G0k77lYkA2OumnrRtZpudKPyDPV8MgWzzVAZGBNHBOJLGRI-zjQaMsq51wiafGElZHPTXqbbU_UsyP6ibjCtAN99mji7f1jFwDK0w_7O7vPSY3GF4N8cHzBhtkvVqcuicA2KrsaW0ZlHy5bFP8DSY5VhM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Characteristics+of+Shewanella+loihica+PV-4+on+Reticulated+Vitreous+Carbon+%28RVC%29+with+Different+Potentials+Applied&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Wang%2C+Shixin&rft.au=Zhang%2C+Xiaoming&rft.au=Marsili%2C+Enrico&rft.date=2022-08-21&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=27&rft.issue=16&rft_id=info:doi/10.3390%2Fmolecules27165330&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon