Nanostructured ZnO/Ag Film Prepared by Magnetron Sputtering Method for Fast Response of Ammonia Gas Detection

Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent the...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 25; no. 8; p. 1899
Main Authors Zheng, Yiran, Li, Min, Wen, Xiaoyan, Ho, Ho-Pui, Lu, Haifei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.04.2020
MDPI
Subjects
Online AccessGet full text
ISSN1420-3049
1420-3049
DOI10.3390/molecules25081899

Cover

Loading…
Abstract Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community.
AbstractList Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community.
Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community.Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community.
Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO /Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community.
Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO 2 /Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community.
Author Li, Min
Lu, Haifei
Ho, Ho-Pui
Wen, Xiaoyan
Zheng, Yiran
AuthorAffiliation 1 School of Science, Wuhan University of Technology, Wuhan 430070, China
2 Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
AuthorAffiliation_xml – name: 1 School of Science, Wuhan University of Technology, Wuhan 430070, China
– name: 2 Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China
Author_xml – sequence: 1
  givenname: Yiran
  surname: Zheng
  fullname: Zheng, Yiran
– sequence: 2
  givenname: Min
  surname: Li
  fullname: Li, Min
– sequence: 3
  givenname: Xiaoyan
  surname: Wen
  fullname: Wen, Xiaoyan
– sequence: 4
  givenname: Ho-Pui
  surname: Ho
  fullname: Ho, Ho-Pui
– sequence: 5
  givenname: Haifei
  surname: Lu
  fullname: Lu, Haifei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32326005$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAURi1URB_wA9ggS2zYDPUrsb1BGhWmVGop4rFhY3mcm9SjxE5tB6n_nkynRW0RK1vX5x598r2HaC_EAAi9puQ955ocD7EHN_WQWUUUVVo_QwdUMLLgROi9B_d9dJjzhhBGBa1eoH3OOKsJqQ7Q8MWGmEuaXJkSNPhXuDxednjl-wF_TTDabXF9gy9sF6CkGPD3cSoFkg8dvoByFRvcxoRXNhf8DfIYQwYcW7wchhi8xac2449QwBUfw0v0vLV9hld35xH6ufr04-Tz4vzy9Oxkeb5wQvOykNxxAUw1GhpFiKg5sVRWimkuXOWErZiqKShwgoBqhdNUOdcSYNa2quH8CJ3tvE20GzMmP9h0Y6L15rYQU2dsKt71YCpSEwm8krJZC225bZkEpikIR3RFt64PO9c4rQdoHISSbP9I-vgl-CvTxd9GMkZrqWfBuztBitcT5GIGnx30vQ0Qp2wY10JJwaic0bdP0E2cUpi_6paqqaZ1PVNvHib6G-V-qjMgd4BLMecErXG-2O0A5oC-N5SY7f6Yf_Zn7qRPOu_l_-_5AzMAyxA
CitedBy_id crossref_primary_10_3390_electronics13234800
crossref_primary_10_1016_j_synthmet_2021_116710
crossref_primary_10_3390_chemosensors12030043
crossref_primary_10_3390_molecules25153552
crossref_primary_10_1021_acsomega_0c06272
crossref_primary_10_1016_j_apsadv_2022_100349
crossref_primary_10_3390_coatings14010069
Cites_doi 10.1016/j.tsf.2014.06.033
10.1098/rsta.2011.0506
10.1016/j.snb.2004.11.054
10.1080/10408439508243733
10.1016/j.matlet.2016.04.138
10.1016/j.cplett.2016.10.068
10.1007/s00339-018-1852-6
10.1016/j.vacuum.2010.04.009
10.1016/j.tsf.2003.11.242
10.1016/j.spmi.2019.106187
10.3390/mi8110333
10.1021/ie504030v
10.3762/bjnano.10.151
10.1109/JSEN.2006.886977
10.1007/s10854-017-7830-5
10.1016/j.jngse.2015.09.033
10.1016/j.snb.2017.05.162
10.1016/j.tsf.2019.04.030
10.1016/j.snb.2017.08.015
10.1016/j.snb.2017.12.128
10.1088/2043-6262/7/1/015004
10.1088/2053-1591/ab41e3
10.1016/j.cclet.2017.06.021
10.1016/j.snb.2018.10.031
10.35840/2631-5068/6513
10.1021/cm900225p
10.1007/s11164-017-3185-z
10.1007/s40820-014-0023-3
10.1016/j.talanta.2019.06.034
10.1016/j.jallcom.2014.03.120
10.1109/JSEN.2016.2517085
10.1016/j.jallcom.2014.01.200
10.1038/s41598-019-46247-z
10.1088/0256-307X/28/5/057803
10.1016/j.matchemphys.2018.04.101
10.1063/1.3216464
10.1007/s11664-018-6099-7
10.1016/j.jcis.2017.05.061
10.1016/j.jcis.2016.06.046
10.1016/j.snb.2008.06.006
10.1088/0957-4484/18/20/205504
10.1016/j.ssc.2008.09.034
10.1002/adma.201503825
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the authors. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules25081899
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_50607e3577db49a3af27e291e4c09513
PMC7221679
32326005
10_3390_molecules25081899
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11974266
– fundername: Fundamental Research Funds for the Central Universities
  grantid: WUT2018IB008
– fundername: Fundamental Research Funds for the Central Universities
  grantid: WUT2019IB014
– fundername: National Natural Science Foundation of China
  grantid: 11704293
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IHR
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-73c34e28d9ed8004630a17582934c5c4a52861e8ec40e8f4c918ccf0e2aaf8d33
IEDL.DBID DOA
ISSN 1420-3049
IngestDate Wed Aug 27 01:32:15 EDT 2025
Thu Aug 21 14:11:16 EDT 2025
Mon Jul 21 10:44:41 EDT 2025
Fri Jul 25 20:02:55 EDT 2025
Wed Feb 19 02:30:00 EST 2025
Tue Jul 01 01:16:43 EDT 2025
Thu Apr 24 22:58:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords fast response
ammonia gas sensor
nanostructured film
semiconductor
magnetron sputtering method
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-73c34e28d9ed8004630a17582934c5c4a52861e8ec40e8f4c918ccf0e2aaf8d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/50607e3577db49a3af27e291e4c09513
PMID 32326005
PQID 2394619166
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_50607e3577db49a3af27e291e4c09513
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7221679
proquest_miscellaneous_2394874217
proquest_journals_2394619166
pubmed_primary_32326005
crossref_citationtrail_10_3390_molecules25081899
crossref_primary_10_3390_molecules25081899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200420
PublicationDateYYYYMMDD 2020-04-20
PublicationDate_xml – month: 4
  year: 2020
  text: 20200420
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Liu (ref_29) 2011; 28
Timmer (ref_1) 2005; 107
Ozutok (ref_10) 2018; 47
Kwak (ref_3) 2019; 204
Tshabalala (ref_16) 2017; 504
Shingange (ref_8) 2016; 479
Platonov (ref_44) 2019; 10
Anasthasiya (ref_38) 2018; 214
Sahay (ref_39) 2008; 134
Vinoth (ref_7) 2018; 124
Zhu (ref_26) 2016; 665
Kumar (ref_11) 2014; 7
Yang (ref_23) 2018; 279
Rout (ref_41) 2007; 18
Xu (ref_20) 2018; 259
Lokesh (ref_19) 2016; 16
ref_18
Fanni (ref_13) 2014; 565
Chen (ref_35) 2018; 4
Zhang (ref_9) 2017; 44
Sharma (ref_40) 2012; 370
Gao (ref_33) 2004; 455
Jeong (ref_28) 2019; 133
Wang (ref_5) 2017; 252
McCluskey (ref_30) 2009; 106
Li (ref_15) 2014; 606
Mhlongo (ref_43) 2019; 9
Utlu (ref_34) 2019; 680
Noyan (ref_32) 1995; 20
Hassan (ref_22) 2016; 176
Nguyen (ref_42) 2016; 7
Ramesan (ref_25) 2017; 28
Kim (ref_27) 2008; 148
Patil (ref_21) 2007; 7
Zhang (ref_17) 2015; 28
ref_2
Alvi (ref_24) 2019; 6
Lin (ref_31) 2009; 21
Tarwal (ref_14) 2014; 598
Wu (ref_37) 2015; 54
Sheng (ref_36) 2015; 27
Abdullah (ref_4) 2010; 85
Zhou (ref_12) 2018; 29
Ganesh (ref_6) 2018; 255
References_xml – volume: 565
  start-page: 1
  year: 2014
  ident: ref_13
  article-title: C-texture versus a-texture low pressure metalorganic chemical vapor deposition ZnO films: Lower resistivity despite smaller grain size
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2014.06.033
– volume: 370
  start-page: 2448
  year: 2012
  ident: ref_40
  article-title: A new approach to gas sensing with nanotechnology
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2011.0506
– volume: 107
  start-page: 666
  year: 2005
  ident: ref_1
  article-title: Ammonia sensors and their applications—A review
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2004.11.054
– volume: 20
  start-page: 125
  year: 1995
  ident: ref_32
  article-title: Residual stress/strain analysis in thin films by X-ray diffraction
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408439508243733
– volume: 176
  start-page: 232
  year: 2016
  ident: ref_22
  article-title: Platinum/palladium bimetallic ultra-thin film decorated on a one-dimensional ZnO nanorods array for use as fast response flexible hydrogen sensor
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.04.138
– volume: 665
  start-page: 147
  year: 2016
  ident: ref_26
  article-title: Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.10.068
– volume: 124
  start-page: 433
  year: 2018
  ident: ref_7
  article-title: Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-018-1852-6
– volume: 85
  start-page: 101
  year: 2010
  ident: ref_4
  article-title: ZnO thin films for VOC sensing applications
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2010.04.009
– volume: 455
  start-page: 438
  year: 2004
  ident: ref_33
  article-title: Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2003.11.242
– volume: 133
  start-page: 133
  year: 2019
  ident: ref_28
  article-title: Effect of Ni-doped Ag on the thermal stability of ZnO/Ag/ZnO multilayer thin films
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2019.106187
– ident: ref_18
  doi: 10.3390/mi8110333
– volume: 54
  start-page: 3225
  year: 2015
  ident: ref_37
  article-title: Model for Surface Diffusion of Adsorbed Gas in Nanopores of Shale Gas Reservoirs
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie504030v
– volume: 10
  start-page: 1537
  year: 2019
  ident: ref_44
  article-title: High-temperature resistive gas sensors based on ZnO/SiC nanocomposites
  publication-title: Beilstein J. Nanotechnol.
  doi: 10.3762/bjnano.10.151
– volume: 7
  start-page: 434
  year: 2007
  ident: ref_21
  article-title: Ammonia Sensing Resistors Based on Fe2O3 Modified ZnO Thick Films
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2006.886977
– volume: 28
  start-page: 18804
  year: 2017
  ident: ref_25
  article-title: In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-017-7830-5
– volume: 27
  start-page: 979
  year: 2015
  ident: ref_36
  article-title: Pore-scale modeling and analysis of surface diffusion effects on shale-gas flow in Kerogen pores
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.09.033
– volume: 252
  start-page: 284
  year: 2017
  ident: ref_5
  article-title: Studies on NH3 gas sensing by zinc oxide nanowire-reduced graphene oxide nanocomposites
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.05.162
– volume: 680
  start-page: 48
  year: 2019
  ident: ref_34
  article-title: The comparison of transient photocurrent spectroscopy measurements of Pulsed Electron Deposited ZnO thin film for air and vacuum ambient conditions
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2019.04.030
– volume: 255
  start-page: 672
  year: 2018
  ident: ref_6
  article-title: Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.08.015
– volume: 259
  start-page: 709
  year: 2018
  ident: ref_20
  article-title: Light-activated gas sensing activity of ZnO nanotetrapods enhanced by plasmonic resonant energy from Au nanoparticles
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2017.12.128
– volume: 7
  start-page: 15004
  year: 2016
  ident: ref_42
  article-title: ZnO nanoplates surfaced-decorated by WO 3 nanorods for NH 3 gas sensing application
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
  doi: 10.1088/2043-6262/7/1/015004
– volume: 6
  start-page: 1050c5
  year: 2019
  ident: ref_24
  article-title: Synthesis and characterization of SWCNTs/ZnO hybrid nanocomposite for sensor applications
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab41e3
– volume: 29
  start-page: 405
  year: 2018
  ident: ref_12
  article-title: Ordered porous metal oxide semiconductors for gas sensing
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.06.021
– volume: 279
  start-page: 410
  year: 2018
  ident: ref_23
  article-title: ZnO-SnO2 heterojunction nanobelts: Synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2018.10.031
– ident: ref_2
– volume: 4
  start-page: 1
  year: 2018
  ident: ref_35
  article-title: Hydrogen Annealing on the Structural, Optical and Magnetic Properties of Yb-Doped Zno Diluted Magnetic Semiconductor Thin Films
  publication-title: Int. J. Magn. Electromagn.
  doi: 10.35840/2631-5068/6513
– volume: 21
  start-page: 3479
  year: 2009
  ident: ref_31
  article-title: Enhanced Photocatalysis of Electrospun Ag−ZnO Heterostructured Nanofibers
  publication-title: Chem. Mater.
  doi: 10.1021/cm900225p
– volume: 44
  start-page: 1569
  year: 2017
  ident: ref_9
  article-title: Facile synthesis of Pd-decorated ZnO nanoparticles for acetone sensors with enhanced performance
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-017-3185-z
– volume: 7
  start-page: 97
  year: 2014
  ident: ref_11
  article-title: Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-014-0023-3
– volume: 204
  start-page: 713
  year: 2019
  ident: ref_3
  article-title: Ammonia gas sensors: A comprehensive review
  publication-title: Talanta
  doi: 10.1016/j.talanta.2019.06.034
– volume: 606
  start-page: 27
  year: 2014
  ident: ref_15
  article-title: NH3 sensing properties of ZnO thin films prepared via sol–gel method
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.03.120
– volume: 16
  start-page: 2477
  year: 2016
  ident: ref_19
  article-title: Effective Ammonia Detection Using n-ZnO/p-NiO Heterostructured Nanofibers
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2517085
– volume: 598
  start-page: 282
  year: 2014
  ident: ref_14
  article-title: Gas sensing performance of the spray deposited Cd-ZnO thin films
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.01.200
– volume: 9
  start-page: 9881
  year: 2019
  ident: ref_43
  article-title: A highly responsive NH3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-46247-z
– volume: 28
  start-page: 057803
  year: 2011
  ident: ref_29
  article-title: Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/28/5/057803
– volume: 214
  start-page: 540
  year: 2018
  ident: ref_38
  article-title: Understanding ammonia adsorption and charge transfer process on ZnO using experimental and DFT approach
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2018.04.101
– volume: 106
  start-page: 13
  year: 2009
  ident: ref_30
  article-title: Defects in ZnO
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3216464
– volume: 47
  start-page: 2648
  year: 2018
  ident: ref_10
  article-title: Influence of Different Aluminum Sources on the NH3 Gas-Sensing Properties of ZnO Thin Films
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-018-6099-7
– volume: 504
  start-page: 371
  year: 2017
  ident: ref_16
  article-title: Ultra-sensitive and selective NH3 room temperature gas sensing induced by manganese-doped titanium dioxide nanoparticles
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.05.061
– volume: 479
  start-page: 127
  year: 2016
  ident: ref_8
  article-title: Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.06.046
– volume: 134
  start-page: 654
  year: 2008
  ident: ref_39
  article-title: Al-doped ZnO thin films as methanol sensors
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2008.06.006
– volume: 18
  start-page: 205504
  year: 2007
  ident: ref_41
  article-title: Ammonia sensors based on metal oxide nanostructures
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/20/205504
– volume: 148
  start-page: 395
  year: 2008
  ident: ref_27
  article-title: Effects of annealing temperature of buffer layer on structural and optical properties of ZnO thin film grown by atomic layer deposition
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.09.034
– volume: 28
  start-page: 795
  year: 2015
  ident: ref_17
  article-title: Nanostructured Materials for Room-Temperature Gas Sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503825
SSID ssj0021415
Score 2.3230891
Snippet Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1899
SubjectTerms Ammonia
Ammonia - analysis
ammonia gas sensor
Annealing
Biosensing Techniques
Crystallization
Electrodes
fast response
Gases
Gases - analysis
magnetron sputtering method
Metal oxides
Morphology
Nanoparticles
nanostructured film
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Organic chemicals
Photovoltaic cells
semiconductor
Sensors
Silver - chemistry
Spectrum analysis
X-Ray Diffraction
X-rays
Zinc Oxide - chemistry
Zinc oxides
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELVgOcAF8U2WBRmJE1LUxHZi-4TKQlkhFRCwUsUlcuxxqbRNStM97L9n7KQtBbTXxIkcz2TmjT16j5BXhUAQWtZFWoPDAsXJIjWeQVpCXTMH3hobCsXpp_LsXHycFbNhw60b2iq3MTEGatfasEc-ChLeCPbzsnyz-pUG1ahwujpIaNwktwJ1WWjpkrN9wZVjdupPMjmW9qNlLzgLHaZ9zFOR7nWfiyJl__9w5t_tkn_kn8k9cncAjnTcW_o-uQHNA3L7dKvX9pAsMVC2PR3s5Roc_dF8Ho3ndLK4WNIva4id5rS-olMzbyBsgNNvq6hSjcmLTqOQNEUESyem29Cvfess0NbTcfj2haEfTEffwSb2bjWPyPnk_ffTs3QQU0it0HyTSm65AKacBqdCVcwzg9BBYboXtrDCFEyVOSiwIgPlhdW5stZnwIzxynH-mBw1bQNPCeUM3c_r0nkhBAOtai0xUkiNr9OlLxKSbZe1sgPTeBC8uKiw4giWqP6xREJe7x5Z9TQb1w1-G2y1GxgYsuOFdj2vhh-uCsSJEnghpauFNhw9UALTOQgbUCVPyMnW0tXw23bV3skS8nJ3G-0YTlFMA-1lP0ZJgaVcQp70jrGbCUd8iggSV0AeuMzBVA_vNIufkdRbMhZOxI6vn9YzcoeFgj8TGN5OyBE6FTxHVLSpX0TX_w3qRRAo
  priority: 102
  providerName: ProQuest
Title Nanostructured ZnO/Ag Film Prepared by Magnetron Sputtering Method for Fast Response of Ammonia Gas Detection
URI https://www.ncbi.nlm.nih.gov/pubmed/32326005
https://www.proquest.com/docview/2394619166
https://www.proquest.com/docview/2394874217
https://pubmed.ncbi.nlm.nih.gov/PMC7221679
https://doaj.org/article/50607e3577db49a3af27e291e4c09513
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHOCCyndoWRmJE1K0ie3E9nH7kVZIW6pCpRWXyHHGZaVutupuD_33HdvZbRcQXLjkEDuW45l43otHbwj5VAgEoWVTpA20SFBaWaTGMUhLaBrWgrPGeqI4PimPz8WXSTF5UOrL54RFeeC4cEMvgCeBF1K2jdCG40gSmM5BWI8Ogs4nxrwVmeqpVo5xKZ5hciT1w1ksNQsLDPgYoYLQ630UCmL9f0KYvyZKPog81TZ53kNGOopTfUEeQfeSPN1fVWp7RWa4Rc6jEOzNNbT0R_d1OLqg1fRyRk-vIeSY0-aWjs1FB_7XN_12FepTY9ii41BCmiJ2pZVZLOlZTJoFOnd05J10auiRWdADWIasre41Oa8Ov-8fp30ZhdQKzZep5JYLYKrV0CrPh3lmEDQoDPTCFlaYgqkyBwVWZKCcsDpX1roMmDFOtZy_IVvdvIN3hHKGjud02TohBAOtGi1xj5Aah9OlKxKSrZa1tr3GuC91cVkj1_CWqH-zREI-rx-5igIbf-u852217ui1scMN9Ji695j6Xx6TkN2Vpev-g13UvkI8csm8LBPycd2MdvTnJ6aD-U3so6RAEpeQt9Ex1jPhiEwRO-IKyA2X2ZjqZks3_RnkvCVj_izs_f94tx3yjPkfApnA7W-XbKHrwQdETctmQB7LicSrqo4G5Mne4cnp2SB8NHfRrBr8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXxJtAASPBBSnarO3E9gGhpSXd0m5B0EoVl-A4k2WlbrJstkL9U_xGxnmVBdRbr7ETWZ7xzDeeyXyEvAwFgtAoDf0UMgxQMhn6JmfgR5CmLIPcGusCxclRND4RH07D0w3yq_sXxpVVdjaxNtRZad0d-cBReCPYH0bR28UP37FGuexqR6HRqMUBXPzEkK16s7-L8n3FWPz-eGfst6wCvhWar3zJLRfAVKYhUy485IFBH6rQ7wkbWmFCpqIhKLAiAJULq4fK2jwAZkyuMncBiib_huBcuxOl4r0-wBuiN2wypzgYDOYNwS1UCDPQL9btZS99X00R8D9c-3d55h_-Lr5NbrVAlY4azbpDNqC4S7Z2On64e2SOhrls2s-eLyGjX4uPg9GUxrOzOf20hLqynaYXdGKmBbgLd_plUbNio7Okk5q4miJiprGpVvRzU6oLtMzpyO31zNA9U9FdWNW1YsV9cnIt2_yAbBZlAY8I5QzVPddRlgshGGiVaomWSWr8nI7y0CNBt62JbTubO4KNswQjHCeJ5B9JeOR1_8qiaetx1eR3Tlb9RNeRu35QLqdJe8AT16hRAg-lzFKhDUeNl8D0EIR1KJZ7ZLuTdNKaiSq5VGqPvOiHUY4ua2MKKM-bOUoKDB098rBRjH4lHPEwIlbcAbmmMmtLXR8pZt_rJuKSMZeBe3z1sp6TrfHx5DA53D86eEJuMnfZEAg0rdtkExUMniIiW6XP6mNAybfrPne_AX1FTIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIQEviDuBAUaCF6Soie3E8QNC3UrZGB0TMKniJTjOcam0JqXphPbX-HU7zqWlgPa219iJLJ_bd-yT8xHyMhIIQuMs8jPIMUHJZeRry8CPIctYDtZo4xLF0VG8fyI-jKPxFvnd_Qvjyio7n1g76rw07oy85yi8EeyHcdyzbVnE8WD4dv7TdwxS7qa1o9NoVOQQzn9h-la9ORigrF8xNnz3dW_fbxkGfCMUX_qSGy6AJbmCPHGpIg80xtMEY6AwkRE6YkkcQgJGBJBYYVSYGGMDYFrbJHeHoej-r0kehc7G5Hid7IUYGZtbVM5V0Js1ZLdQIeTAGFm3ml3HwZou4H8Y9-9SzT9i3_A2udWCVtpvtOwO2YLiLrmx13HF3SMzdNJl04r2bAE5_VZ86vUndDg9ndHjBdRV7jQ7pyM9KcAdvtMv85ohGwMnHdUk1hTRMx3qakk_N2W7QEtL-26vp5q-1xUdwLKuGyvuk5Mr2eYHZLsoC3hEKGeo-lbFuRVCMFBJpiR6Kanwcyq2kUeCbltT03Y5d2QbpylmO04S6T-S8Mjr1SvzpsXHZZN3naxWE1137vpBuZikrbGnrmmjBB5JmWdCaY7aL4GpEIRxiJZ7ZKeTdNq6jCpdK7hHXqyGUY7uBkcXUJ41cxIpMI30yMNGMVYr4YiNEb3iDsgNldlY6uZIMf1RNxSXjLnbuMeXL-s5uY4Wl348ODp8Qm4yd-4QCPSyO2Qb9QueIjhbZs9qK6Dk-1Wb3QWj01Cx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+ZnO%2FAg+Film+Prepared+by+Magnetron+Sputtering+Method+for+Fast+Response+of+Ammonia+Gas+Detection&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Zheng%2C+Yiran&rft.au=Li%2C+Min&rft.au=Wen%2C+Xiaoyan&rft.au=Ho%2C+Ho-Pui&rft.date=2020-04-20&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=25&rft.issue=8&rft_id=info:doi/10.3390%2Fmolecules25081899&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon