Nanostructured ZnO/Ag Film Prepared by Magnetron Sputtering Method for Fast Response of Ammonia Gas Detection
Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent the...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 25; no. 8; p. 1899 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.04.2020
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1420-3049 1420-3049 |
DOI | 10.3390/molecules25081899 |
Cover
Loading…
Abstract | Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community. |
---|---|
AbstractList | Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community. Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community.Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO2/Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community. Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO /Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community. Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response ammonia gas sensor based on porous nanostructured zinc oxide (ZnO) film, which is fabricated through physical vapor deposition and subsequent thermal annealing. In general, an extremely thin silver (Ag) layer (1, 3, 5 nm) and a 100 nm ZnO film are sequentially deposited on the SiO 2 /Si substrate by a magnetron sputtering method. The porous nanostructure of ZnO film is formed after thermal annealing contributed by the diffusion of Ag among ZnO crystal grains and the expansion of the ZnO film. Different thicknesses of the Ag layer help the formation of different sizes and quantities of hollows uniformly distributed in the ZnO film, which is demonstrated to hold superior gas sensing abilities than the compact ZnO film. The responses of the different porous ZnO films were also investigated in the ammonia concentration range of 10 to 300 ppm. Experimental results demonstrate that the ZnO/Ag(3 nm) sensor possesses a good electrical resistance variation of 85.74% after exposing the sample to 300 ppm ammonia gas for 310 s. Interestingly, a fast response of 61.18% in 60 s for 300 ppm ammonia gas has been achieved from the ZnO/Ag(5 nm) sensor, which costs only 6 s for the response increase to 10%. Therefore, this controllable, porous, nanostructured ZnO film maintaining a sensitive gas response, fabricated by the physical deposition approach, will be of great interest to the gas-sensing community. |
Author | Li, Min Lu, Haifei Ho, Ho-Pui Wen, Xiaoyan Zheng, Yiran |
AuthorAffiliation | 1 School of Science, Wuhan University of Technology, Wuhan 430070, China 2 Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China |
AuthorAffiliation_xml | – name: 1 School of Science, Wuhan University of Technology, Wuhan 430070, China – name: 2 Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China |
Author_xml | – sequence: 1 givenname: Yiran surname: Zheng fullname: Zheng, Yiran – sequence: 2 givenname: Min surname: Li fullname: Li, Min – sequence: 3 givenname: Xiaoyan surname: Wen fullname: Wen, Xiaoyan – sequence: 4 givenname: Ho-Pui surname: Ho fullname: Ho, Ho-Pui – sequence: 5 givenname: Haifei surname: Lu fullname: Lu, Haifei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32326005$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAURi1URB_wA9ggS2zYDPUrsb1BGhWmVGop4rFhY3mcm9SjxE5tB6n_nkynRW0RK1vX5x598r2HaC_EAAi9puQ955ocD7EHN_WQWUUUVVo_QwdUMLLgROi9B_d9dJjzhhBGBa1eoH3OOKsJqQ7Q8MWGmEuaXJkSNPhXuDxednjl-wF_TTDabXF9gy9sF6CkGPD3cSoFkg8dvoByFRvcxoRXNhf8DfIYQwYcW7wchhi8xac2449QwBUfw0v0vLV9hld35xH6ufr04-Tz4vzy9Oxkeb5wQvOykNxxAUw1GhpFiKg5sVRWimkuXOWErZiqKShwgoBqhdNUOdcSYNa2quH8CJ3tvE20GzMmP9h0Y6L15rYQU2dsKt71YCpSEwm8krJZC225bZkEpikIR3RFt64PO9c4rQdoHISSbP9I-vgl-CvTxd9GMkZrqWfBuztBitcT5GIGnx30vQ0Qp2wY10JJwaic0bdP0E2cUpi_6paqqaZ1PVNvHib6G-V-qjMgd4BLMecErXG-2O0A5oC-N5SY7f6Yf_Zn7qRPOu_l_-_5AzMAyxA |
CitedBy_id | crossref_primary_10_3390_electronics13234800 crossref_primary_10_1016_j_synthmet_2021_116710 crossref_primary_10_3390_chemosensors12030043 crossref_primary_10_3390_molecules25153552 crossref_primary_10_1021_acsomega_0c06272 crossref_primary_10_1016_j_apsadv_2022_100349 crossref_primary_10_3390_coatings14010069 |
Cites_doi | 10.1016/j.tsf.2014.06.033 10.1098/rsta.2011.0506 10.1016/j.snb.2004.11.054 10.1080/10408439508243733 10.1016/j.matlet.2016.04.138 10.1016/j.cplett.2016.10.068 10.1007/s00339-018-1852-6 10.1016/j.vacuum.2010.04.009 10.1016/j.tsf.2003.11.242 10.1016/j.spmi.2019.106187 10.3390/mi8110333 10.1021/ie504030v 10.3762/bjnano.10.151 10.1109/JSEN.2006.886977 10.1007/s10854-017-7830-5 10.1016/j.jngse.2015.09.033 10.1016/j.snb.2017.05.162 10.1016/j.tsf.2019.04.030 10.1016/j.snb.2017.08.015 10.1016/j.snb.2017.12.128 10.1088/2043-6262/7/1/015004 10.1088/2053-1591/ab41e3 10.1016/j.cclet.2017.06.021 10.1016/j.snb.2018.10.031 10.35840/2631-5068/6513 10.1021/cm900225p 10.1007/s11164-017-3185-z 10.1007/s40820-014-0023-3 10.1016/j.talanta.2019.06.034 10.1016/j.jallcom.2014.03.120 10.1109/JSEN.2016.2517085 10.1016/j.jallcom.2014.01.200 10.1038/s41598-019-46247-z 10.1088/0256-307X/28/5/057803 10.1016/j.matchemphys.2018.04.101 10.1063/1.3216464 10.1007/s11664-018-6099-7 10.1016/j.jcis.2017.05.061 10.1016/j.jcis.2016.06.046 10.1016/j.snb.2008.06.006 10.1088/0957-4484/18/20/205504 10.1016/j.ssc.2008.09.034 10.1002/adma.201503825 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules25081899 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_50607e3577db49a3af27e291e4c09513 PMC7221679 32326005 10_3390_molecules25081899 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11974266 – fundername: Fundamental Research Funds for the Central Universities grantid: WUT2018IB008 – fundername: Fundamental Research Funds for the Central Universities grantid: WUT2019IB014 – fundername: National Natural Science Foundation of China grantid: 11704293 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IHR KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI CGR CUY CVF ECM EIF HCIFZ KB. M7P M~E NPM PDBOC 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-73c34e28d9ed8004630a17582934c5c4a52861e8ec40e8f4c918ccf0e2aaf8d33 |
IEDL.DBID | DOA |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:32:15 EDT 2025 Thu Aug 21 14:11:16 EDT 2025 Mon Jul 21 10:44:41 EDT 2025 Fri Jul 25 20:02:55 EDT 2025 Wed Feb 19 02:30:00 EST 2025 Tue Jul 01 01:16:43 EDT 2025 Thu Apr 24 22:58:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | fast response ammonia gas sensor nanostructured film semiconductor magnetron sputtering method |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-73c34e28d9ed8004630a17582934c5c4a52861e8ec40e8f4c918ccf0e2aaf8d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/50607e3577db49a3af27e291e4c09513 |
PMID | 32326005 |
PQID | 2394619166 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_50607e3577db49a3af27e291e4c09513 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7221679 proquest_miscellaneous_2394874217 proquest_journals_2394619166 pubmed_primary_32326005 crossref_citationtrail_10_3390_molecules25081899 crossref_primary_10_3390_molecules25081899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200420 |
PublicationDateYYYYMMDD | 2020-04-20 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200420 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Liu (ref_29) 2011; 28 Timmer (ref_1) 2005; 107 Ozutok (ref_10) 2018; 47 Kwak (ref_3) 2019; 204 Tshabalala (ref_16) 2017; 504 Shingange (ref_8) 2016; 479 Platonov (ref_44) 2019; 10 Anasthasiya (ref_38) 2018; 214 Sahay (ref_39) 2008; 134 Vinoth (ref_7) 2018; 124 Zhu (ref_26) 2016; 665 Kumar (ref_11) 2014; 7 Yang (ref_23) 2018; 279 Rout (ref_41) 2007; 18 Xu (ref_20) 2018; 259 Lokesh (ref_19) 2016; 16 ref_18 Fanni (ref_13) 2014; 565 Chen (ref_35) 2018; 4 Zhang (ref_9) 2017; 44 Sharma (ref_40) 2012; 370 Gao (ref_33) 2004; 455 Jeong (ref_28) 2019; 133 Wang (ref_5) 2017; 252 McCluskey (ref_30) 2009; 106 Li (ref_15) 2014; 606 Mhlongo (ref_43) 2019; 9 Utlu (ref_34) 2019; 680 Noyan (ref_32) 1995; 20 Hassan (ref_22) 2016; 176 Nguyen (ref_42) 2016; 7 Ramesan (ref_25) 2017; 28 Kim (ref_27) 2008; 148 Patil (ref_21) 2007; 7 Zhang (ref_17) 2015; 28 ref_2 Alvi (ref_24) 2019; 6 Lin (ref_31) 2009; 21 Tarwal (ref_14) 2014; 598 Wu (ref_37) 2015; 54 Sheng (ref_36) 2015; 27 Abdullah (ref_4) 2010; 85 Zhou (ref_12) 2018; 29 Ganesh (ref_6) 2018; 255 |
References_xml | – volume: 565 start-page: 1 year: 2014 ident: ref_13 article-title: C-texture versus a-texture low pressure metalorganic chemical vapor deposition ZnO films: Lower resistivity despite smaller grain size publication-title: Thin Solid Films doi: 10.1016/j.tsf.2014.06.033 – volume: 370 start-page: 2448 year: 2012 ident: ref_40 article-title: A new approach to gas sensing with nanotechnology publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2011.0506 – volume: 107 start-page: 666 year: 2005 ident: ref_1 article-title: Ammonia sensors and their applications—A review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2004.11.054 – volume: 20 start-page: 125 year: 1995 ident: ref_32 article-title: Residual stress/strain analysis in thin films by X-ray diffraction publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408439508243733 – volume: 176 start-page: 232 year: 2016 ident: ref_22 article-title: Platinum/palladium bimetallic ultra-thin film decorated on a one-dimensional ZnO nanorods array for use as fast response flexible hydrogen sensor publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.04.138 – volume: 665 start-page: 147 year: 2016 ident: ref_26 article-title: Gas sensors based on polyaniline/zinc oxide hybrid film for ammonia detection at room temperature publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2016.10.068 – volume: 124 start-page: 433 year: 2018 ident: ref_7 article-title: Effect of Mg doping in the gas-sensing performance of RF-sputtered ZnO thin films publication-title: Appl. Phys. A doi: 10.1007/s00339-018-1852-6 – volume: 85 start-page: 101 year: 2010 ident: ref_4 article-title: ZnO thin films for VOC sensing applications publication-title: Vacuum doi: 10.1016/j.vacuum.2010.04.009 – volume: 455 start-page: 438 year: 2004 ident: ref_33 article-title: Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.11.242 – volume: 133 start-page: 133 year: 2019 ident: ref_28 article-title: Effect of Ni-doped Ag on the thermal stability of ZnO/Ag/ZnO multilayer thin films publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2019.106187 – ident: ref_18 doi: 10.3390/mi8110333 – volume: 54 start-page: 3225 year: 2015 ident: ref_37 article-title: Model for Surface Diffusion of Adsorbed Gas in Nanopores of Shale Gas Reservoirs publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie504030v – volume: 10 start-page: 1537 year: 2019 ident: ref_44 article-title: High-temperature resistive gas sensors based on ZnO/SiC nanocomposites publication-title: Beilstein J. Nanotechnol. doi: 10.3762/bjnano.10.151 – volume: 7 start-page: 434 year: 2007 ident: ref_21 article-title: Ammonia Sensing Resistors Based on Fe2O3 Modified ZnO Thick Films publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2006.886977 – volume: 28 start-page: 18804 year: 2017 ident: ref_25 article-title: In situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-017-7830-5 – volume: 27 start-page: 979 year: 2015 ident: ref_36 article-title: Pore-scale modeling and analysis of surface diffusion effects on shale-gas flow in Kerogen pores publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.09.033 – volume: 252 start-page: 284 year: 2017 ident: ref_5 article-title: Studies on NH3 gas sensing by zinc oxide nanowire-reduced graphene oxide nanocomposites publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.05.162 – volume: 680 start-page: 48 year: 2019 ident: ref_34 article-title: The comparison of transient photocurrent spectroscopy measurements of Pulsed Electron Deposited ZnO thin film for air and vacuum ambient conditions publication-title: Thin Solid Films doi: 10.1016/j.tsf.2019.04.030 – volume: 255 start-page: 672 year: 2018 ident: ref_6 article-title: Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.08.015 – volume: 259 start-page: 709 year: 2018 ident: ref_20 article-title: Light-activated gas sensing activity of ZnO nanotetrapods enhanced by plasmonic resonant energy from Au nanoparticles publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.12.128 – volume: 7 start-page: 15004 year: 2016 ident: ref_42 article-title: ZnO nanoplates surfaced-decorated by WO 3 nanorods for NH 3 gas sensing application publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. doi: 10.1088/2043-6262/7/1/015004 – volume: 6 start-page: 1050c5 year: 2019 ident: ref_24 article-title: Synthesis and characterization of SWCNTs/ZnO hybrid nanocomposite for sensor applications publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab41e3 – volume: 29 start-page: 405 year: 2018 ident: ref_12 article-title: Ordered porous metal oxide semiconductors for gas sensing publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.06.021 – volume: 279 start-page: 410 year: 2018 ident: ref_23 article-title: ZnO-SnO2 heterojunction nanobelts: Synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.10.031 – ident: ref_2 – volume: 4 start-page: 1 year: 2018 ident: ref_35 article-title: Hydrogen Annealing on the Structural, Optical and Magnetic Properties of Yb-Doped Zno Diluted Magnetic Semiconductor Thin Films publication-title: Int. J. Magn. Electromagn. doi: 10.35840/2631-5068/6513 – volume: 21 start-page: 3479 year: 2009 ident: ref_31 article-title: Enhanced Photocatalysis of Electrospun Ag−ZnO Heterostructured Nanofibers publication-title: Chem. Mater. doi: 10.1021/cm900225p – volume: 44 start-page: 1569 year: 2017 ident: ref_9 article-title: Facile synthesis of Pd-decorated ZnO nanoparticles for acetone sensors with enhanced performance publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-017-3185-z – volume: 7 start-page: 97 year: 2014 ident: ref_11 article-title: Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review publication-title: Nano-Micro Lett. doi: 10.1007/s40820-014-0023-3 – volume: 204 start-page: 713 year: 2019 ident: ref_3 article-title: Ammonia gas sensors: A comprehensive review publication-title: Talanta doi: 10.1016/j.talanta.2019.06.034 – volume: 606 start-page: 27 year: 2014 ident: ref_15 article-title: NH3 sensing properties of ZnO thin films prepared via sol–gel method publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2014.03.120 – volume: 16 start-page: 2477 year: 2016 ident: ref_19 article-title: Effective Ammonia Detection Using n-ZnO/p-NiO Heterostructured Nanofibers publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2517085 – volume: 598 start-page: 282 year: 2014 ident: ref_14 article-title: Gas sensing performance of the spray deposited Cd-ZnO thin films publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2014.01.200 – volume: 9 start-page: 9881 year: 2019 ident: ref_43 article-title: A highly responsive NH3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach publication-title: Sci. Rep. doi: 10.1038/s41598-019-46247-z – volume: 28 start-page: 057803 year: 2011 ident: ref_29 article-title: Localized Surface Plasmons Enhanced Ultraviolet Emission of ZnO Films publication-title: Chin. Phys. Lett. doi: 10.1088/0256-307X/28/5/057803 – volume: 214 start-page: 540 year: 2018 ident: ref_38 article-title: Understanding ammonia adsorption and charge transfer process on ZnO using experimental and DFT approach publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2018.04.101 – volume: 106 start-page: 13 year: 2009 ident: ref_30 article-title: Defects in ZnO publication-title: J. Appl. Phys. doi: 10.1063/1.3216464 – volume: 47 start-page: 2648 year: 2018 ident: ref_10 article-title: Influence of Different Aluminum Sources on the NH3 Gas-Sensing Properties of ZnO Thin Films publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-6099-7 – volume: 504 start-page: 371 year: 2017 ident: ref_16 article-title: Ultra-sensitive and selective NH3 room temperature gas sensing induced by manganese-doped titanium dioxide nanoparticles publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.05.061 – volume: 479 start-page: 127 year: 2016 ident: ref_8 article-title: Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.06.046 – volume: 134 start-page: 654 year: 2008 ident: ref_39 article-title: Al-doped ZnO thin films as methanol sensors publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2008.06.006 – volume: 18 start-page: 205504 year: 2007 ident: ref_41 article-title: Ammonia sensors based on metal oxide nanostructures publication-title: Nanotechnology doi: 10.1088/0957-4484/18/20/205504 – volume: 148 start-page: 395 year: 2008 ident: ref_27 article-title: Effects of annealing temperature of buffer layer on structural and optical properties of ZnO thin film grown by atomic layer deposition publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.09.034 – volume: 28 start-page: 795 year: 2015 ident: ref_17 article-title: Nanostructured Materials for Room-Temperature Gas Sensors publication-title: Adv. Mater. doi: 10.1002/adma.201503825 |
SSID | ssj0021415 |
Score | 2.3230891 |
Snippet | Possessing a large surface-to-volume ratio is significant to the sensitive gas detection of semiconductor nanostructures. Here, we propose a fast-response... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1899 |
SubjectTerms | Ammonia Ammonia - analysis ammonia gas sensor Annealing Biosensing Techniques Crystallization Electrodes fast response Gases Gases - analysis magnetron sputtering method Metal oxides Morphology Nanoparticles nanostructured film Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology Organic chemicals Photovoltaic cells semiconductor Sensors Silver - chemistry Spectrum analysis X-Ray Diffraction X-rays Zinc Oxide - chemistry Zinc oxides |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELVgOcAF8U2WBRmJE1LUxHZi-4TKQlkhFRCwUsUlcuxxqbRNStM97L9n7KQtBbTXxIkcz2TmjT16j5BXhUAQWtZFWoPDAsXJIjWeQVpCXTMH3hobCsXpp_LsXHycFbNhw60b2iq3MTEGatfasEc-ChLeCPbzsnyz-pUG1ahwujpIaNwktwJ1WWjpkrN9wZVjdupPMjmW9qNlLzgLHaZ9zFOR7nWfiyJl__9w5t_tkn_kn8k9cncAjnTcW_o-uQHNA3L7dKvX9pAsMVC2PR3s5Roc_dF8Ho3ndLK4WNIva4id5rS-olMzbyBsgNNvq6hSjcmLTqOQNEUESyem29Cvfess0NbTcfj2haEfTEffwSb2bjWPyPnk_ffTs3QQU0it0HyTSm65AKacBqdCVcwzg9BBYboXtrDCFEyVOSiwIgPlhdW5stZnwIzxynH-mBw1bQNPCeUM3c_r0nkhBAOtai0xUkiNr9OlLxKSbZe1sgPTeBC8uKiw4giWqP6xREJe7x5Z9TQb1w1-G2y1GxgYsuOFdj2vhh-uCsSJEnghpauFNhw9UALTOQgbUCVPyMnW0tXw23bV3skS8nJ3G-0YTlFMA-1lP0ZJgaVcQp70jrGbCUd8iggSV0AeuMzBVA_vNIufkdRbMhZOxI6vn9YzcoeFgj8TGN5OyBE6FTxHVLSpX0TX_w3qRRAo priority: 102 providerName: ProQuest |
Title | Nanostructured ZnO/Ag Film Prepared by Magnetron Sputtering Method for Fast Response of Ammonia Gas Detection |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32326005 https://www.proquest.com/docview/2394619166 https://www.proquest.com/docview/2394874217 https://pubmed.ncbi.nlm.nih.gov/PMC7221679 https://doaj.org/article/50607e3577db49a3af27e291e4c09513 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHOCCyndoWRmJE1K0ie3E9nH7kVZIW6pCpRWXyHHGZaVutupuD_33HdvZbRcQXLjkEDuW45l43otHbwj5VAgEoWVTpA20SFBaWaTGMUhLaBrWgrPGeqI4PimPz8WXSTF5UOrL54RFeeC4cEMvgCeBF1K2jdCG40gSmM5BWI8Ogs4nxrwVmeqpVo5xKZ5hciT1w1ksNQsLDPgYoYLQ630UCmL9f0KYvyZKPog81TZ53kNGOopTfUEeQfeSPN1fVWp7RWa4Rc6jEOzNNbT0R_d1OLqg1fRyRk-vIeSY0-aWjs1FB_7XN_12FepTY9ii41BCmiJ2pZVZLOlZTJoFOnd05J10auiRWdADWIasre41Oa8Ov-8fp30ZhdQKzZep5JYLYKrV0CrPh3lmEDQoDPTCFlaYgqkyBwVWZKCcsDpX1roMmDFOtZy_IVvdvIN3hHKGjud02TohBAOtGi1xj5Aah9OlKxKSrZa1tr3GuC91cVkj1_CWqH-zREI-rx-5igIbf-u852217ui1scMN9Ji695j6Xx6TkN2Vpev-g13UvkI8csm8LBPycd2MdvTnJ6aD-U3so6RAEpeQt9Ex1jPhiEwRO-IKyA2X2ZjqZks3_RnkvCVj_izs_f94tx3yjPkfApnA7W-XbKHrwQdETctmQB7LicSrqo4G5Mne4cnp2SB8NHfRrBr8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcigXxJtAASPBBSnarO3E9gGhpSXd0m5B0EoVl-A4k2WlbrJstkL9U_xGxnmVBdRbr7ETWZ7xzDeeyXyEvAwFgtAoDf0UMgxQMhn6JmfgR5CmLIPcGusCxclRND4RH07D0w3yq_sXxpVVdjaxNtRZad0d-cBReCPYH0bR28UP37FGuexqR6HRqMUBXPzEkK16s7-L8n3FWPz-eGfst6wCvhWar3zJLRfAVKYhUy485IFBH6rQ7wkbWmFCpqIhKLAiAJULq4fK2jwAZkyuMncBiib_huBcuxOl4r0-wBuiN2wypzgYDOYNwS1UCDPQL9btZS99X00R8D9c-3d55h_-Lr5NbrVAlY4azbpDNqC4S7Z2On64e2SOhrls2s-eLyGjX4uPg9GUxrOzOf20hLqynaYXdGKmBbgLd_plUbNio7Okk5q4miJiprGpVvRzU6oLtMzpyO31zNA9U9FdWNW1YsV9cnIt2_yAbBZlAY8I5QzVPddRlgshGGiVaomWSWr8nI7y0CNBt62JbTubO4KNswQjHCeJ5B9JeOR1_8qiaetx1eR3Tlb9RNeRu35QLqdJe8AT16hRAg-lzFKhDUeNl8D0EIR1KJZ7ZLuTdNKaiSq5VGqPvOiHUY4ua2MKKM-bOUoKDB098rBRjH4lHPEwIlbcAbmmMmtLXR8pZt_rJuKSMZeBe3z1sp6TrfHx5DA53D86eEJuMnfZEAg0rdtkExUMniIiW6XP6mNAybfrPne_AX1FTIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamIQEviDuBAUaCF6Soie3E8QNC3UrZGB0TMKniJTjOcam0JqXphPbX-HU7zqWlgPa219iJLJ_bd-yT8xHyMhIIQuMs8jPIMUHJZeRry8CPIctYDtZo4xLF0VG8fyI-jKPxFvnd_Qvjyio7n1g76rw07oy85yi8EeyHcdyzbVnE8WD4dv7TdwxS7qa1o9NoVOQQzn9h-la9ORigrF8xNnz3dW_fbxkGfCMUX_qSGy6AJbmCPHGpIg80xtMEY6AwkRE6YkkcQgJGBJBYYVSYGGMDYFrbJHeHoej-r0kehc7G5Hid7IUYGZtbVM5V0Js1ZLdQIeTAGFm3ml3HwZou4H8Y9-9SzT9i3_A2udWCVtpvtOwO2YLiLrmx13HF3SMzdNJl04r2bAE5_VZ86vUndDg9ndHjBdRV7jQ7pyM9KcAdvtMv85ohGwMnHdUk1hTRMx3qakk_N2W7QEtL-26vp5q-1xUdwLKuGyvuk5Mr2eYHZLsoC3hEKGeo-lbFuRVCMFBJpiR6Kanwcyq2kUeCbltT03Y5d2QbpylmO04S6T-S8Mjr1SvzpsXHZZN3naxWE1137vpBuZikrbGnrmmjBB5JmWdCaY7aL4GpEIRxiJZ7ZKeTdNq6jCpdK7hHXqyGUY7uBkcXUJ41cxIpMI30yMNGMVYr4YiNEb3iDsgNldlY6uZIMf1RNxSXjLnbuMeXL-s5uY4Wl348ODp8Qm4yd-4QCPSyO2Qb9QueIjhbZs9qK6Dk-1Wb3QWj01Cx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanostructured+ZnO%2FAg+Film+Prepared+by+Magnetron+Sputtering+Method+for+Fast+Response+of+Ammonia+Gas+Detection&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Zheng%2C+Yiran&rft.au=Li%2C+Min&rft.au=Wen%2C+Xiaoyan&rft.au=Ho%2C+Ho-Pui&rft.date=2020-04-20&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=25&rft.issue=8&rft_id=info:doi/10.3390%2Fmolecules25081899&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |