On the impact of uncertain gene tree rooting on duplication-transfer-loss reconciliation

Duplication-Transfer-Loss (DTL) reconciliation is a powerful and increasingly popular technique for studying the evolution of microbial gene families. DTL reconciliation requires the use of rooted gene trees to perform the reconciliation with the species tree, and the standard technique for rooting...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 19; no. Suppl 9; p. 290
Main Authors Kundu, Soumya, Bansal, Mukul S
Format Journal Article
LanguageEnglish
Published England BioMed Central 13.08.2018
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Duplication-Transfer-Loss (DTL) reconciliation is a powerful and increasingly popular technique for studying the evolution of microbial gene families. DTL reconciliation requires the use of rooted gene trees to perform the reconciliation with the species tree, and the standard technique for rooting gene trees is to assign a root that results in the minimum reconciliation cost across all rootings of that gene tree. However, even though it is well understood that many gene trees have multiple optimal roots, only a single optimal root is randomly chosen to create the rooted gene tree and perform the reconciliation. This remains an important overlooked and unaddressed problem in DTL reconciliation, leading to incorrect evolutionary inferences. In this work, we perform an in-depth analysis of the impact of uncertain gene tree rooting on the computed DTL reconciliation and provide the first computational tools to quantify and negate the impact of gene tree rooting uncertainty on DTL reconciliation. Our analysis of a large data set of over 4500 gene families from 100 species shows that a large fraction of gene trees have multiple optimal rootings, that these multiple roots often, but not always, appear closely clustered together in the same region of the gene tree, that many aspects of the reconciliation remain conserved across the multiple rootings, that gene tree error has a profound impact on the prevalence and structure of multiple optimal rootings, and that there are specific interesting patterns in the reconciliation of those gene trees that have multiple optimal roots. Our results show that unrooted gene trees can be meaningfully reconciled and high-quality evolutionary information can be obtained from them even after accounting for multiple optimal rootings. In addition, the techniques and tools introduced in this paper make it possible to systematically avoid incorrect evolutionary inferences caused by incorrect or uncertain gene tree rooting. These tools have been implemented in the phylogenetic reconciliation software package RANGER-DTL 2.0, freely available from http://compbio.engr.uconn.edu/software/RANGER-DTL/ .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-018-2269-0