Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration
Purpose To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. Methods First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD:...
Saved in:
Published in | International ophthalmology Vol. 39; no. 6; pp. 1269 - 1275 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.
Methods
First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times.
Results
DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%.
Conclusion
A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine. |
---|---|
AbstractList | Purpose
To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.
Methods
First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times.
Results
DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%.
Conclusion
A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine. To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.PURPOSETo predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times.METHODSFirst, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times.DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%.RESULTSDCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%.A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.CONCLUSIONA combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine. PurposeTo predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.MethodsFirst, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times.ResultsDCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%.ConclusionA combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine. To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times. DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%. A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine. |
Author | Tabuchi, Hitoshi Ishitobi, Naofumi Matsuba, Shinji Ohsugi, Hideharu Enno, Hiroki Masumoto, Hiroki Kiuchi, Yoshiaki |
Author_xml | – sequence: 1 givenname: Shinji orcidid: 0000-0002-7958-2511 surname: Matsuba fullname: Matsuba, Shinji email: s.matsuba@tsukazaki-eye.net organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital, Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Hiroshima University – sequence: 2 givenname: Hitoshi surname: Tabuchi fullname: Tabuchi, Hitoshi organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital – sequence: 3 givenname: Hideharu surname: Ohsugi fullname: Ohsugi, Hideharu organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital – sequence: 4 givenname: Hiroki surname: Enno fullname: Enno, Hiroki organization: Rist Inc – sequence: 5 givenname: Naofumi surname: Ishitobi fullname: Ishitobi, Naofumi organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital – sequence: 6 givenname: Hiroki surname: Masumoto fullname: Masumoto, Hiroki organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital – sequence: 7 givenname: Yoshiaki surname: Kiuchi fullname: Kiuchi, Yoshiaki organization: Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Hiroshima University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29744763$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1q3TAQRkVJaW7SPkA3RdBNF1E7smTLXobQPwhkk6yNLI99FWTJlWzKfZM-buXepIVAsxKMzhmN5jsjJz54JOQth48cQH1KHFRTMOA1g0YCgxdkx0slWFEJOCE74FXJSgX8lJyldA8AjWqqV-S0aJSUqhI78uvSmDVqc6BhoKtbomY_bY9ssOh6Oqy-XxMN837ZazeFZMJ8YDolmxbsaY84U4c6euvHC6rppM3eemSPNbqg2fvgwni4oEOI2ciVZbvRI7KITm99srY6vd2O6DHqxQb_mrwctEv45uE8J3dfPt9efWPXN1-_X11eMyMbsbDSmPwPGEwpZVWrAVE3PS-6CpseQQCXojOmrjrVga6xrjutUCiQZdUMvdTinHw49p1j-LFiWtrJJoPOaY9hTW0BmS5FASqj75-g92GNPk-3UVWppOAiU-8eqLWbsG_naCcdD-3jzjPAj4CJIaWIw1-EQ7vl2h5zbXOu7ZZrC9lRTxxjlz97yolZ96xZHM2UX_Ejxn9D_1_6DUKLuQw |
CitedBy_id | crossref_primary_10_1371_journal_pone_0284060 crossref_primary_10_1007_s10489_021_02242_4 crossref_primary_10_1002_14651858_CD015522_pub2 crossref_primary_10_1097_IIO_0000000000000334 crossref_primary_10_3390_electronics12122697 crossref_primary_10_1016_j_ophtha_2018_11_015 crossref_primary_10_1097_ICO_0000000000002279 crossref_primary_10_1016_j_eswa_2021_115068 crossref_primary_10_1038_s41746_020_00350_y crossref_primary_10_1109_ACCESS_2020_3004766 crossref_primary_10_1016_j_bspc_2020_102167 crossref_primary_10_1038_s41746_021_00438_z crossref_primary_10_2139_ssrn_3990833 crossref_primary_10_1080_13816810_2025_2455576 crossref_primary_10_1097_ICU_0000000000000679 crossref_primary_10_1007_s00417_021_05475_8 crossref_primary_10_3390_diagnostics13182965 crossref_primary_10_1136_bjophthalmol_2021_319030 crossref_primary_10_3390_jimaging9040084 crossref_primary_10_1001_jamaophthalmol_2020_5900 crossref_primary_10_1109_ACCESS_2024_3477420 crossref_primary_10_1136_bjophthalmol_2019_314161 crossref_primary_10_3389_fmed_2021_710329 crossref_primary_10_1109_ACCESS_2023_3278596 crossref_primary_10_1136_bjophthalmol_2020_316300 crossref_primary_10_1007_s40123_022_00627_3 crossref_primary_10_1007_s00417_021_05105_3 crossref_primary_10_1038_s42256_022_00566_5 crossref_primary_10_1186_s12903_022_02539_x crossref_primary_10_1016_j_eij_2023_100402 crossref_primary_10_1016_S2589_7500_19_30123_2 crossref_primary_10_3390_life12070973 crossref_primary_10_3390_ejihpe14050097 crossref_primary_10_1016_j_pdpdt_2024_104454 crossref_primary_10_3390_diagnostics14010105 crossref_primary_10_1016_j_ibmed_2022_100079 crossref_primary_10_1038_s41433_024_03148_4 crossref_primary_10_1016_j_ajo_2020_05_042 crossref_primary_10_4239_wjd_v13_i10_822 crossref_primary_10_1097_ICU_0000000000000694 crossref_primary_10_1007_s40123_023_00651_x crossref_primary_10_1007_s00417_021_05078_3 crossref_primary_10_1016_j_media_2021_102031 crossref_primary_10_1007_s00417_022_05741_3 crossref_primary_10_4018_IJCINI_355767 crossref_primary_10_1167_tvst_11_10_16 crossref_primary_10_3390_jcm11123309 crossref_primary_10_1186_s40942_024_00554_4 crossref_primary_10_3390_ph16121735 crossref_primary_10_1109_TEM_2022_3224290 crossref_primary_10_1007_s00521_020_05457_7 crossref_primary_10_1016_j_artmed_2019_101758 crossref_primary_10_1155_2019_7820971 crossref_primary_10_1371_journal_pone_0227240 crossref_primary_10_1038_s41598_020_76513_4 crossref_primary_10_1016_j_neunet_2020_09_005 crossref_primary_10_1097_WNO_0000000000000827 crossref_primary_10_1007_s11517_018_1915_z crossref_primary_10_1145_3586580 |
Cites_doi | 10.1038/s41598-017-09891-x 10.1002/sim.2993 10.1016/j.compbiomed.2017.01.018 10.1038/srep38897 10.1016/S0140-6736(12)60282-7 10.1016/j.ophtha.2016.03.045 10.1097/IAE.0000000000000937 10.1056/NEJMoa054481 10.1038/eye.2012.122 10.1016/j.ophtha.2013.05.018 10.1055/s-0041-111835 10.1016/j.ophtha.2013.03.046 10.1016/j.ophtha.2008.10.018 10.1080/17441692.2011.634815 10.3109/08820538.2012.708812 10.1038/nature14539 10.1016/j.ophtha.2009.04.017 10.1038/srep26286 10.1001/jama.2016.17216 10.1016/S0893-6080(98)00116-6 10.2147/OPTH.S41731 10.1109/TBME.2014.2372011 10.1109/ICCV.2017.74 10.1109/CVPR.2009.5206848 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V., part of Springer Nature 2018 International Ophthalmology is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media B.V., part of Springer Nature 2018 – notice: International Ophthalmology is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION NPM 3V. 7QL 7T7 7TK 7U9 7X7 7XB 88E 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA BENPR C1K CCPQU FR3 FYUFA GHDGH H94 K9. M0S M1P M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.1007/s10792-018-0940-0 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Environmental Sciences and Pollution Management ProQuest One Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1573-2630 |
EndPage | 1275 |
ExternalDocumentID | 29744763 10_1007_s10792_018_0940_0 |
Genre | Journal Article |
GroupedDBID | --- -53 -5E -5G -BR -EM -~C .86 .VR 06C 06D 0R~ 0VY 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40E 5GY 5VS 67Z 6NX 7X7 88E 8AO 8FI 8FJ 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IMOTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LLZTM M1P M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I ROL RPX RRX RSV S16 S27 S37 S3B SAP SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UKHRP UOJIU UTJUX VC2 W23 W48 WJK WK8 YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZMTXR ZOVNA ~EX -Y2 .GJ 1SB 2.D 28- 2P1 2VQ 3O- 53G 5QI AANXM AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACSTC ACUDM ADHKG ADKPE AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF EN4 GRRUI H13 HZ~ IHE KOW N2Q NDZJH O9- OVD PHGZM PHGZT R4E RHV RNI RZC RZE RZK S1Z S26 S28 SCLPG SDE T16 TEORI UZXMN VFIZW 3V. NPM 7QL 7T7 7TK 7U9 7XB 8FD 8FK ABRTQ C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c493t-5cc7630fc544687feea9d12b6e9de030143bcc86b7b0a8e88ba7e3704569fd4a3 |
IEDL.DBID | U2A |
ISSN | 0165-5701 1573-2630 |
IngestDate | Fri Jul 11 02:25:16 EDT 2025 Sat Jul 26 02:22:39 EDT 2025 Wed Feb 19 02:36:36 EST 2025 Thu Apr 24 23:07:08 EDT 2025 Tue Jul 01 03:22:24 EDT 2025 Fri Feb 21 02:40:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Ultra-wide-field scanning laser ophthalmoscope Pattern recognition Telemedicine Neural networks Age-related macular degeneration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-5cc7630fc544687feea9d12b6e9de030143bcc86b7b0a8e88ba7e3704569fd4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7958-2511 |
PMID | 29744763 |
PQID | 2036574313 |
PQPubID | 37279 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2037053207 proquest_journals_2036574313 pubmed_primary_29744763 crossref_primary_10_1007_s10792_018_0940_0 crossref_citationtrail_10_1007_s10792_018_0940_0 springer_journals_10_1007_s10792_018_0940_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationSubtitle | The International Journal of Clinical Ophthalmology and Visual Sciences |
PublicationTitle | International ophthalmology |
PublicationTitleAbbrev | Int Ophthalmol |
PublicationTitleAlternate | Int Ophthalmol |
PublicationYear | 2019 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Yasuda, Kiyohara, Hata, Arakawa, Yonemoto, Doi, Iida, Ishibashi (CR2) 2009; 116 Ohsugi, Tabuchi, Enno, Ishitobi (CR20) 2017; 7 CR19 Lim, Mitchell, Seddon, Holz, Wong (CR1) 2012; 379 Litjens, Sánchez, Timofeeva, Hermsen, Nagtegaal, Kovacs, Hulsbergen-van de Kaa, Bult, van Ginneken, van der Laak (CR15) 2016; 6 CR30 Gerding (CR31) 2016; 233 Rofagha, Bhisitkul, Boyer, Sadda, Zhang (CR6) 2013; 120 Qian (CR24) 1999; 12 Rosenfeld, Brown, Heier, Boyer, Kaiser, Chung, Kim (CR3) 2006; 355 Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (CR14) 2015; 62 Schisterman, Faraggi, Reiser, Hu (CR26) 2008; 27 Maguire, Martin, Ying, Jaffe, Daniel, Grunwald, Toth, Ferris, Fine (CR5) 2016; 123 Gordois, Cutler, Pezzullo, Gordon, Cruess, Winyard, Hamilton, Chua (CR32) 2012; 7 Nagiel, Lalane, Sadda, Schwartz (CR9) 2016; 36 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR23) 2014; 15 Witmer, Parlitsis, Patel, Kiss (CR8) 2013; 7 Soliman, Silva, Aiello, Sun (CR11) 2012; 27 Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (CR16) 2016; 316 Burlina, Pacheco, Joshi, Freund, Bressler (CR18) 2017; 82 Brown, Michels, Kaiser, Heier, Sy, Ianchulev (CR4) 2009; 116 CR29 Pinaya, Gadelha, Doyle, Noto, Zugman, Cordeiro, Jackowski, Bressan, Sato (CR17) 2016; 6 CR28 CR27 CR25 CR22 CR21 Rasmussen, Bloch, Fuchs, Hansen, Larsen, Lacour, Lund-Andersen, Sander (CR7) 2013; 120 LeCun, Bengio, Hinton (CR13) 2015; 521 Witmer, Cho, Favarone, Chan, D’Amico, Kiss (CR12) 2012; 26 Ghasemi Falavarjani, Tsui, Sadda (CR10) 2017; S0042–6989 A Nagiel (940_CR9) 2016; 36 H Gerding (940_CR31) 2016; 233 MT Witmer (940_CR12) 2012; 26 LS Lim (940_CR1) 2012; 379 S Rofagha (940_CR6) 2013; 120 AZ Soliman (940_CR11) 2012; 27 940_CR19 S Liu (940_CR14) 2015; 62 N Qian (940_CR24) 1999; 12 K Ghasemi Falavarjani (940_CR10) 2017; S0042–6989 V Gulshan (940_CR16) 2016; 316 940_CR21 Y LeCun (940_CR13) 2015; 521 940_CR22 940_CR27 940_CR28 940_CR25 H Ohsugi (940_CR20) 2017; 7 MG Maguire (940_CR5) 2016; 123 MT Witmer (940_CR8) 2013; 7 N Srivastava (940_CR23) 2014; 15 EF Schisterman (940_CR26) 2008; 27 PJ Rosenfeld (940_CR3) 2006; 355 DM Brown (940_CR4) 2009; 116 940_CR29 WH Pinaya (940_CR17) 2016; 6 G Litjens (940_CR15) 2016; 6 A Gordois (940_CR32) 2012; 7 A Rasmussen (940_CR7) 2013; 120 940_CR30 M Yasuda (940_CR2) 2009; 116 P Burlina (940_CR18) 2017; 82 |
References_xml | – volume: 7 start-page: 9425 year: 2017 ident: CR20 article-title: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment publication-title: Sci Rep doi: 10.1038/s41598-017-09891-x – volume: 27 start-page: 297 issue: 2 year: 2008 end-page: 315 ident: CR26 article-title: Youden index and the optimal threshold for markers with mass at zero publication-title: Stat Med doi: 10.1002/sim.2993 – ident: CR22 – volume: 82 start-page: 80 year: 2017 end-page: 86 ident: CR18 article-title: Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.01.018 – volume: S0042–6989 start-page: 30118 issue: 17 year: 2017 end-page: 30119 ident: CR10 article-title: Ultra-wide-field imaging in diabetic retinopathy publication-title: Vis Res – ident: CR30 – volume: 6 start-page: 38897 year: 2016 ident: CR17 article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia publication-title: Sci Rep doi: 10.1038/srep38897 – ident: CR29 – volume: 379 start-page: 1728 year: 2012 end-page: 1738 ident: CR1 article-title: Age-related macular degeneration publication-title: Lancet doi: 10.1016/S0140-6736(12)60282-7 – volume: 123 start-page: 1751 issue: 8 year: 2016 end-page: 1761 ident: CR5 article-title: Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.03.045 – volume: 36 start-page: 660 year: 2016 end-page: 678 ident: CR9 article-title: Ultra-widefield fundus imaging: a review of clinical applications and future trends publication-title: Retina doi: 10.1097/IAE.0000000000000937 – ident: CR25 – ident: CR27 – volume: 355 start-page: 1419 year: 2006 end-page: 1431 ident: CR3 article-title: Ranibizumab for neovascular age-related macular degeneration publication-title: N Engl J Med doi: 10.1056/NEJMoa054481 – ident: CR21 – volume: 26 start-page: 1209 issue: 9 year: 2012 end-page: 1216 ident: CR12 article-title: Ultra-wide-field autofluorescence imaging in non-traumatic rhegmatogenous retinal detachment publication-title: Eye (Lond) doi: 10.1038/eye.2012.122 – ident: CR19 – volume: 120 start-page: 2630 year: 2013 end-page: 2636 ident: CR7 article-title: A 4-year longitudinal study of 555 patients treated with ranibizumab for neovascular age-related macular degeneration publication-title: Ophthalmology doi: 10.1016/j.ophtha.2013.05.018 – volume: 233 start-page: 471 year: 2016 end-page: 474 ident: CR31 article-title: Long-term results of intravitreal Anti-VEGF injections in wet AMD: a meta-analysis publication-title: Klin Monbl Augenheilkd doi: 10.1055/s-0041-111835 – volume: 120 start-page: 2292 issue: 11 year: 2013 end-page: 2299 ident: CR6 article-title: Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP) publication-title: Ophthalmology doi: 10.1016/j.ophtha.2013.03.046 – volume: 116 start-page: 57 year: 2009 end-page: 65 ident: CR4 article-title: Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2008.10.018 – volume: 7 start-page: 465 issue: 5 year: 2012 end-page: 481 ident: CR32 article-title: An estimation of the worldwide economic and health burden of visual impairment publication-title: Glob Public Health doi: 10.1080/17441692.2011.634815 – volume: 27 start-page: 221 issue: 5–6 year: 2012 end-page: 227 ident: CR11 article-title: Ultra-wide field retinal imaging in detection, classification, and management of diabetic retinopathy publication-title: Semin Ophthalmol doi: 10.3109/08820538.2012.708812 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR13 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 116 start-page: 2135 year: 2009 end-page: 2140 ident: CR2 article-title: Nine-year incidence and risk factors for age-related macular degeneration in a defined Japanese population the Hisayama study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.04.017 – volume: 6 start-page: 26286 year: 2016 ident: CR15 article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis publication-title: Sci Rep doi: 10.1038/srep26286 – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: CR16 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 12 start-page: 145 issue: 1 year: 1999 end-page: 151 ident: CR24 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00116-6 – ident: CR28 – volume: 7 start-page: 389 year: 2013 end-page: 394 ident: CR8 article-title: Comparison of ultra-widefield fluorescein angiography with the Heidelberg Sp ectralis( ) noncontact ultra-widefield module versus the Optos( ) Optomap( ) publication-title: Clin Ophthalmol doi: 10.2147/OPTH.S41731 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR23 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – volume: 62 start-page: 1132 year: 2015 end-page: 1140 ident: CR14 article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2372011 – volume: 26 start-page: 1209 issue: 9 year: 2012 ident: 940_CR12 publication-title: Eye (Lond) doi: 10.1038/eye.2012.122 – volume: 116 start-page: 2135 year: 2009 ident: 940_CR2 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2009.04.017 – volume: 36 start-page: 660 year: 2016 ident: 940_CR9 publication-title: Retina doi: 10.1097/IAE.0000000000000937 – volume: 316 start-page: 2402 year: 2016 ident: 940_CR16 publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 7 start-page: 389 year: 2013 ident: 940_CR8 publication-title: Clin Ophthalmol doi: 10.2147/OPTH.S41731 – ident: 940_CR30 – volume: 27 start-page: 221 issue: 5–6 year: 2012 ident: 940_CR11 publication-title: Semin Ophthalmol doi: 10.3109/08820538.2012.708812 – volume: 6 start-page: 26286 year: 2016 ident: 940_CR15 publication-title: Sci Rep doi: 10.1038/srep26286 – volume: 12 start-page: 145 issue: 1 year: 1999 ident: 940_CR24 publication-title: Neural Netw doi: 10.1016/S0893-6080(98)00116-6 – volume: 120 start-page: 2630 year: 2013 ident: 940_CR7 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2013.05.018 – volume: 82 start-page: 80 year: 2017 ident: 940_CR18 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.01.018 – ident: 940_CR22 – volume: 355 start-page: 1419 year: 2006 ident: 940_CR3 publication-title: N Engl J Med doi: 10.1056/NEJMoa054481 – volume: 62 start-page: 1132 year: 2015 ident: 940_CR14 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2372011 – volume: 116 start-page: 57 year: 2009 ident: 940_CR4 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2008.10.018 – ident: 940_CR29 – volume: 7 start-page: 9425 year: 2017 ident: 940_CR20 publication-title: Sci Rep doi: 10.1038/s41598-017-09891-x – volume: 7 start-page: 465 issue: 5 year: 2012 ident: 940_CR32 publication-title: Glob Public Health doi: 10.1080/17441692.2011.634815 – volume: 15 start-page: 1929 year: 2014 ident: 940_CR23 publication-title: J Mach Learn Res – volume: 233 start-page: 471 year: 2016 ident: 940_CR31 publication-title: Klin Monbl Augenheilkd doi: 10.1055/s-0041-111835 – volume: S0042–6989 start-page: 30118 issue: 17 year: 2017 ident: 940_CR10 publication-title: Vis Res – ident: 940_CR19 – ident: 940_CR27 doi: 10.1109/ICCV.2017.74 – volume: 6 start-page: 38897 year: 2016 ident: 940_CR17 publication-title: Sci Rep doi: 10.1038/srep38897 – volume: 521 start-page: 436 year: 2015 ident: 940_CR13 publication-title: Nature doi: 10.1038/nature14539 – volume: 379 start-page: 1728 year: 2012 ident: 940_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(12)60282-7 – volume: 27 start-page: 297 issue: 2 year: 2008 ident: 940_CR26 publication-title: Stat Med doi: 10.1002/sim.2993 – ident: 940_CR21 – volume: 123 start-page: 1751 issue: 8 year: 2016 ident: 940_CR5 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2016.03.045 – ident: 940_CR25 – ident: 940_CR28 doi: 10.1109/CVPR.2009.5206848 – volume: 120 start-page: 2292 issue: 11 year: 2013 ident: 940_CR6 publication-title: Ophthalmology doi: 10.1016/j.ophtha.2013.03.046 |
SSID | ssj0009796 |
Score | 2.4545274 |
Snippet | Purpose
To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with... To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos,... PurposeTo predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1269 |
SubjectTerms | Accuracy Age Age related diseases Artificial neural networks Deep learning Diagnostic systems Exudation Learning algorithms Machine learning Macular degeneration Medical imaging Medical personnel Medicine Medicine & Public Health Neural networks Ophthalmology Original Paper Sensitivity Telemedicine |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtCqWX0He3TYsKPbURtS3Lkk8lhIZQSE8N7M3oMU4Km_V21ybkn_TndkaWdwmhuVoaWWhGo0-aF2OfwFWIamUmnM2tKGXrhFVWC-yss7ZQMiiKdz77WZ2elz_map4e3DbJrXLSiVFRh87TG_lXMpgpOu7kt9UfQVWjyLqaSmg8ZI8odRm5dOm53iXd1bE-F0XsCKWzfLJqjqFzmvwuczL-k4fj7XPpDti8YyiN58_JU7afgCM_Gjn9jD2A5XP2-CyZxl-wv0feD2vrb3jX8mHRr624_h1ARBc1jsdXGDa8W132l3Zx1VEwyo1A4ExcDjwArHgqIHFxyC2_ij6WIKZvvN8-wR9yxLlIQdYHakGFJGJEDI6DZOTWiq0XMZ01cf0lOz_5_uv4VKSyC8KXteyF8h6VTtZ6hVdFo1sAW4e8cBXUAeIVTDrvTeW0y6wBY5zVIDVhw7oNpZWv2N6yW8IbxoOE3NStQTVRlgGUcQXUrbM1BBOqIpuxbFr0xqec5FQaY9HssikTnxrkU0N8apDk85ZkNSbkuK_zwcTJJu3NTbOTpBn7uG3GXUWmEruEboh9dKyZoWfs9SgB278VeAUrcYVm7MskErvB_zuVt_dP5R17glCsHp3QDthevx7gPcKd3n2IMv0P0RT9bA priority: 102 providerName: ProQuest |
Title | Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration |
URI | https://link.springer.com/article/10.1007/s10792-018-0940-0 https://www.ncbi.nlm.nih.gov/pubmed/29744763 https://www.proquest.com/docview/2036574313 https://www.proquest.com/docview/2037053207 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEF6aBEpfSu-6TcwW-tRmQddqpUc72AktMaXU4D6JPUZJwLGMLVHyT_JzM7OW7JakhT4taGdWYmePbzQXYx_BpIhq40AYHWqRxKURWmolkFgFZSRjJyne-XySnk2TLzM5a-O41523e2eS9Cf1b8FuijwlQzLXk0_iHjuQpLrjIp5Gg12mXeWLclGYjpAqCDtT5kND_HkZ3UOY96yj_tIZP2NPW7TIBxvxPmePYPGCPT5v7eEv2e3A2mal7Q2vSt7M65UWv64cCO-XxvHOcs2aV8vL-lLPryuKQLkRiJZJtI47gCVvq0ZcHHPNr71jJYjuGa-3_92POYJb5CCTA_XgKSR8GAyOg2zky4q9Fz6HNYn6FZuORz9OzkRba0HYJI9rIa3FkyYorUT9MFMlgM5dGJkUcgde74qNtVlqlAl0BllmtIJYESDMS5fo-DXbX1QLeMu4iyHM8jLDsyFJHMjMRJCXRufgMpdGQY8F3aQXtk1ETvUw5sUuhTLJqUA5FSSnAlk-bVmWmywc_yI-7CRZtBtyXZC9VRJainvsw7YbtxLZR_QCqsbTKF8oQ_XYm80K2L4tQr0rwRnqsc_dktgN_tdPefdf1O_ZE4Rj-cYR7ZDt16sGjhDy1KbP9tRM9dnBYDwcTqg9_fl1hO1wNPn2ve83wB38Df-K |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSCbgg3gQKLBJcoCtsr521DwgVaJXSJkKolXoz-3KLlMYhsVXlT_gKvpGZtZ0IVfTWq3dnvdqZncfOC-C10wPUakXAtQoVj0WhuUqU5DhZBkWUCJtQvvNoPBgex19PkpMN-NPlwlBYZccTPaO2paE38vfkMEtI3ImPs1-cukaRd7VrodGQxYFbXqDJtviw_wXx-yaK9naPPg9521WAmzgTFU-MwTsVFCZBSyiVhXMqs2GkBy6zzlsYQhuTDrTUgUpdmmolnZCk-mSFjZXAdW_AZizQlOnB5qfd8bfv6zK_0ncEoxwhnsgg7PyoTbKepEjPkMINKKbyX0l4Sb295Jr1Em_vLtxpVVW209DWPdhw0_twc9Q64x_A7x1j6rkyS1YWrJ5Uc8UvflrHfVAcQ4Fp6wUrZ2fVmZqcl5T-suSoqhNdWWadm7G2ZcXpNlPs3Ed1Ot59Y9Xq0X-boWaNEOTvoBFkgdzn4OA6CEaBtDh66gtoE509hONrQckj6E3LqXsCzAoXplmRImOKY-uSVEcuK7TKnE3tIAr6EHSHnpu2Cjo145jk6_rNhKcc8ZQTnnIEebsCmTUlQK6avNVhMm-5wSJf024fXq2G8R6Tc0ZNXVn7OdJ36ZB9eNxQwOpvERp9MZ5QH951JLFe_L9beXr1Vl7CreHR6DA_3B8fPIPbqAhmTQjcFvSqee2eo7JV6RcthTP4cd2X6i-97Txe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDcLBYwEF6jVJI7j5IBQRVm1lFYcqLS34MekRdpult2sqv0n_BZ-HTNOsitU0Vuv8SOW5-Gx55sZxt6AzdCqlZGwJjYilZUVRhktsLOOqkRJryje-fgkOzhNv4zUaIP96WNhCFbZ68SgqH3t6I18lxxmio47uVt1sIhv-8OP01-CKkiRp7Uvp9GyyBEsL_H6Nv9wuI-0fpskw8_fPx2IrsKAcGkhG6GcQ_mKKqfwVpTrCsAUPk5sBoWHcNuQ1rk8s9pGJoc8t0aD1GQGFZVPjcR5b7HbWqqYZEyP9Drhrw61wShaSCgdxb1HtQ3b04T5jAl4QOjKf8_EK4buFSdtOPuG99jdzmjley2X3WcbMHnAto47t_xD9nvPucXMuCWvK74YNzMjLn96EAEex_Ho9Is5r6fnzbkZX9QUCLMUaLQTh3nuAaa8K15xtsMNvwj4ThD9N96snv93ONrYOII8H9SCylCEaBycB4cRpBZbz0IqbeK4R-z0RgjymG1O6gk8ZdxLiPOiylFFpakHldsEisqaAnzusyQasKjf9NJ1-dCpLMe4XGdyJjqVSKeS6FTikHerIdM2Gch1nbd7SpadXpiXay4esNerZpRoctOYCdSL0EeHeh16wJ60HLD6W4LXvxR3aMDe9yyxnvy_S3l2_VJesS0UpfLr4cnRc3YHLcKixcJts81mtoAXaHU19mVgb85-3LQ8_QUCjD8u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+ultra-wide-field+fundus+ophthalmoscopy-assisted+deep+learning%2C+a+machine-learning+technology%2C+for+detecting+age-related+macular+degeneration&rft.jtitle=International+ophthalmology&rft.au=Matsuba%2C+Shinji&rft.au=Tabuchi%2C+Hitoshi&rft.au=Ohsugi%2C+Hideharu&rft.au=Enno%2C+Hiroki&rft.date=2019-06-01&rft.eissn=1573-2630&rft.volume=39&rft.issue=6&rft.spage=1269&rft_id=info:doi/10.1007%2Fs10792-018-0940-0&rft_id=info%3Apmid%2F29744763&rft.externalDocID=29744763 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5701&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5701&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5701&client=summon |