Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration

Purpose To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. Methods First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD:...

Full description

Saved in:
Bibliographic Details
Published inInternational ophthalmology Vol. 39; no. 6; pp. 1269 - 1275
Main Authors Matsuba, Shinji, Tabuchi, Hitoshi, Ohsugi, Hideharu, Enno, Hiroki, Ishitobi, Naofumi, Masumoto, Hiroki, Kiuchi, Yoshiaki
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. Methods First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times. Results DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%. Conclusion A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.
AbstractList Purpose To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. Methods First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times. Results DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%. Conclusion A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.
To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.PURPOSETo predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times.METHODSFirst, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times.DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%.RESULTSDCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%.A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.CONCLUSIONA combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.
PurposeTo predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system.MethodsFirst, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times.ResultsDCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%.ConclusionA combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.
To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos, an ultra-wide-field fundus imaging system. First, to evaluate the diagnostic accuracy of DCNN, 364 photographic images (AMD: 137) were amplified and the area under the curve (AUC), sensitivity and specificity were examined. Furthermore, in order to compare the diagnostic abilities between DCNN and six ophthalmologists, we prepared yield 84 sheets comprising 50% of normal and wet-AMD data each, and calculated the correct answer rate, specificity, sensitivity, and response times. DCNN exhibited 100% sensitivity and 97.31% specificity for wet-AMD images, with an average AUC of 99.76%. Moreover, comparing the diagnostic abilities of DCNN versus six ophthalmologists, the average accuracy of the DCNN was 100%. On the other hand, the accuracy of ophthalmologists, determined only by Optos images without a fundus examination, was 81.9%. A combination of DCNN with Optos images is not better than a medical examination; however, it can identify exudative AMD with a high level of accuracy. Our system is considered useful for screening and telemedicine.
Author Tabuchi, Hitoshi
Ishitobi, Naofumi
Matsuba, Shinji
Ohsugi, Hideharu
Enno, Hiroki
Masumoto, Hiroki
Kiuchi, Yoshiaki
Author_xml – sequence: 1
  givenname: Shinji
  orcidid: 0000-0002-7958-2511
  surname: Matsuba
  fullname: Matsuba, Shinji
  email: s.matsuba@tsukazaki-eye.net
  organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital, Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Hiroshima University
– sequence: 2
  givenname: Hitoshi
  surname: Tabuchi
  fullname: Tabuchi, Hitoshi
  organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital
– sequence: 3
  givenname: Hideharu
  surname: Ohsugi
  fullname: Ohsugi, Hideharu
  organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital
– sequence: 4
  givenname: Hiroki
  surname: Enno
  fullname: Enno, Hiroki
  organization: Rist Inc
– sequence: 5
  givenname: Naofumi
  surname: Ishitobi
  fullname: Ishitobi, Naofumi
  organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital
– sequence: 6
  givenname: Hiroki
  surname: Masumoto
  fullname: Masumoto, Hiroki
  organization: Department of Ophthalmology, Saneikai Tsukazaki Hospital
– sequence: 7
  givenname: Yoshiaki
  surname: Kiuchi
  fullname: Kiuchi, Yoshiaki
  organization: Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Hiroshima University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29744763$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1q3TAQRkVJaW7SPkA3RdBNF1E7smTLXobQPwhkk6yNLI99FWTJlWzKfZM-buXepIVAsxKMzhmN5jsjJz54JOQth48cQH1KHFRTMOA1g0YCgxdkx0slWFEJOCE74FXJSgX8lJyldA8AjWqqV-S0aJSUqhI78uvSmDVqc6BhoKtbomY_bY9ssOh6Oqy-XxMN837ZazeFZMJ8YDolmxbsaY84U4c6euvHC6rppM3eemSPNbqg2fvgwni4oEOI2ciVZbvRI7KITm99srY6vd2O6DHqxQb_mrwctEv45uE8J3dfPt9efWPXN1-_X11eMyMbsbDSmPwPGEwpZVWrAVE3PS-6CpseQQCXojOmrjrVga6xrjutUCiQZdUMvdTinHw49p1j-LFiWtrJJoPOaY9hTW0BmS5FASqj75-g92GNPk-3UVWppOAiU-8eqLWbsG_naCcdD-3jzjPAj4CJIaWIw1-EQ7vl2h5zbXOu7ZZrC9lRTxxjlz97yolZ96xZHM2UX_Ejxn9D_1_6DUKLuQw
CitedBy_id crossref_primary_10_1371_journal_pone_0284060
crossref_primary_10_1007_s10489_021_02242_4
crossref_primary_10_1002_14651858_CD015522_pub2
crossref_primary_10_1097_IIO_0000000000000334
crossref_primary_10_3390_electronics12122697
crossref_primary_10_1016_j_ophtha_2018_11_015
crossref_primary_10_1097_ICO_0000000000002279
crossref_primary_10_1016_j_eswa_2021_115068
crossref_primary_10_1038_s41746_020_00350_y
crossref_primary_10_1109_ACCESS_2020_3004766
crossref_primary_10_1016_j_bspc_2020_102167
crossref_primary_10_1038_s41746_021_00438_z
crossref_primary_10_2139_ssrn_3990833
crossref_primary_10_1080_13816810_2025_2455576
crossref_primary_10_1097_ICU_0000000000000679
crossref_primary_10_1007_s00417_021_05475_8
crossref_primary_10_3390_diagnostics13182965
crossref_primary_10_1136_bjophthalmol_2021_319030
crossref_primary_10_3390_jimaging9040084
crossref_primary_10_1001_jamaophthalmol_2020_5900
crossref_primary_10_1109_ACCESS_2024_3477420
crossref_primary_10_1136_bjophthalmol_2019_314161
crossref_primary_10_3389_fmed_2021_710329
crossref_primary_10_1109_ACCESS_2023_3278596
crossref_primary_10_1136_bjophthalmol_2020_316300
crossref_primary_10_1007_s40123_022_00627_3
crossref_primary_10_1007_s00417_021_05105_3
crossref_primary_10_1038_s42256_022_00566_5
crossref_primary_10_1186_s12903_022_02539_x
crossref_primary_10_1016_j_eij_2023_100402
crossref_primary_10_1016_S2589_7500_19_30123_2
crossref_primary_10_3390_life12070973
crossref_primary_10_3390_ejihpe14050097
crossref_primary_10_1016_j_pdpdt_2024_104454
crossref_primary_10_3390_diagnostics14010105
crossref_primary_10_1016_j_ibmed_2022_100079
crossref_primary_10_1038_s41433_024_03148_4
crossref_primary_10_1016_j_ajo_2020_05_042
crossref_primary_10_4239_wjd_v13_i10_822
crossref_primary_10_1097_ICU_0000000000000694
crossref_primary_10_1007_s40123_023_00651_x
crossref_primary_10_1007_s00417_021_05078_3
crossref_primary_10_1016_j_media_2021_102031
crossref_primary_10_1007_s00417_022_05741_3
crossref_primary_10_4018_IJCINI_355767
crossref_primary_10_1167_tvst_11_10_16
crossref_primary_10_3390_jcm11123309
crossref_primary_10_1186_s40942_024_00554_4
crossref_primary_10_3390_ph16121735
crossref_primary_10_1109_TEM_2022_3224290
crossref_primary_10_1007_s00521_020_05457_7
crossref_primary_10_1016_j_artmed_2019_101758
crossref_primary_10_1155_2019_7820971
crossref_primary_10_1371_journal_pone_0227240
crossref_primary_10_1038_s41598_020_76513_4
crossref_primary_10_1016_j_neunet_2020_09_005
crossref_primary_10_1097_WNO_0000000000000827
crossref_primary_10_1007_s11517_018_1915_z
crossref_primary_10_1145_3586580
Cites_doi 10.1038/s41598-017-09891-x
10.1002/sim.2993
10.1016/j.compbiomed.2017.01.018
10.1038/srep38897
10.1016/S0140-6736(12)60282-7
10.1016/j.ophtha.2016.03.045
10.1097/IAE.0000000000000937
10.1056/NEJMoa054481
10.1038/eye.2012.122
10.1016/j.ophtha.2013.05.018
10.1055/s-0041-111835
10.1016/j.ophtha.2013.03.046
10.1016/j.ophtha.2008.10.018
10.1080/17441692.2011.634815
10.3109/08820538.2012.708812
10.1038/nature14539
10.1016/j.ophtha.2009.04.017
10.1038/srep26286
10.1001/jama.2016.17216
10.1016/S0893-6080(98)00116-6
10.2147/OPTH.S41731
10.1109/TBME.2014.2372011
10.1109/ICCV.2017.74
10.1109/CVPR.2009.5206848
ContentType Journal Article
Copyright Springer Science+Business Media B.V., part of Springer Nature 2018
International Ophthalmology is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media B.V., part of Springer Nature 2018
– notice: International Ophthalmology is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7QL
7T7
7TK
7U9
7X7
7XB
88E
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
C1K
CCPQU
FR3
FYUFA
GHDGH
H94
K9.
M0S
M1P
M7N
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1007/s10792-018-0940-0
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1573-2630
EndPage 1275
ExternalDocumentID 29744763
10_1007_s10792_018_0940_0
Genre Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-~C
.86
.VR
06C
06D
0R~
0VY
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40E
5GY
5VS
67Z
6NX
7X7
88E
8AO
8FI
8FJ
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
I09
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LLZTM
M1P
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R89
R9I
ROL
RPX
RRX
RSV
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
VC2
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z82
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~EX
-Y2
.GJ
1SB
2.D
28-
2P1
2VQ
3O-
53G
5QI
AANXM
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACSTC
ACUDM
ADHKG
ADKPE
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
EN4
GRRUI
H13
HZ~
IHE
KOW
N2Q
NDZJH
O9-
OVD
PHGZM
PHGZT
R4E
RHV
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SDE
T16
TEORI
UZXMN
VFIZW
3V.
NPM
7QL
7T7
7TK
7U9
7XB
8FD
8FK
ABRTQ
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c493t-5cc7630fc544687feea9d12b6e9de030143bcc86b7b0a8e88ba7e3704569fd4a3
IEDL.DBID U2A
ISSN 0165-5701
1573-2630
IngestDate Fri Jul 11 02:25:16 EDT 2025
Sat Jul 26 02:22:39 EDT 2025
Wed Feb 19 02:36:36 EST 2025
Thu Apr 24 23:07:08 EDT 2025
Tue Jul 01 03:22:24 EDT 2025
Fri Feb 21 02:40:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Ultra-wide-field scanning laser ophthalmoscope
Pattern recognition
Telemedicine
Neural networks
Age-related macular degeneration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-5cc7630fc544687feea9d12b6e9de030143bcc86b7b0a8e88ba7e3704569fd4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7958-2511
PMID 29744763
PQID 2036574313
PQPubID 37279
PageCount 7
ParticipantIDs proquest_miscellaneous_2037053207
proquest_journals_2036574313
pubmed_primary_29744763
crossref_primary_10_1007_s10792_018_0940_0
crossref_citationtrail_10_1007_s10792_018_0940_0
springer_journals_10_1007_s10792_018_0940_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle The International Journal of Clinical Ophthalmology and Visual Sciences
PublicationTitle International ophthalmology
PublicationTitleAbbrev Int Ophthalmol
PublicationTitleAlternate Int Ophthalmol
PublicationYear 2019
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Yasuda, Kiyohara, Hata, Arakawa, Yonemoto, Doi, Iida, Ishibashi (CR2) 2009; 116
Ohsugi, Tabuchi, Enno, Ishitobi (CR20) 2017; 7
CR19
Lim, Mitchell, Seddon, Holz, Wong (CR1) 2012; 379
Litjens, Sánchez, Timofeeva, Hermsen, Nagtegaal, Kovacs, Hulsbergen-van de Kaa, Bult, van Ginneken, van der Laak (CR15) 2016; 6
CR30
Gerding (CR31) 2016; 233
Rofagha, Bhisitkul, Boyer, Sadda, Zhang (CR6) 2013; 120
Qian (CR24) 1999; 12
Rosenfeld, Brown, Heier, Boyer, Kaiser, Chung, Kim (CR3) 2006; 355
Liu, Liu, Cai, Che, Pujol, Kikinis, Feng, Fulham (CR14) 2015; 62
Schisterman, Faraggi, Reiser, Hu (CR26) 2008; 27
Maguire, Martin, Ying, Jaffe, Daniel, Grunwald, Toth, Ferris, Fine (CR5) 2016; 123
Gordois, Cutler, Pezzullo, Gordon, Cruess, Winyard, Hamilton, Chua (CR32) 2012; 7
Nagiel, Lalane, Sadda, Schwartz (CR9) 2016; 36
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR23) 2014; 15
Witmer, Parlitsis, Patel, Kiss (CR8) 2013; 7
Soliman, Silva, Aiello, Sun (CR11) 2012; 27
Gulshan, Peng, Coram, Stumpe, Wu, Narayanaswamy, Venugopalan, Widner, Madams, Cuadros, Kim, Raman, Nelson, Mega, Webster (CR16) 2016; 316
Burlina, Pacheco, Joshi, Freund, Bressler (CR18) 2017; 82
Brown, Michels, Kaiser, Heier, Sy, Ianchulev (CR4) 2009; 116
CR29
Pinaya, Gadelha, Doyle, Noto, Zugman, Cordeiro, Jackowski, Bressan, Sato (CR17) 2016; 6
CR28
CR27
CR25
CR22
CR21
Rasmussen, Bloch, Fuchs, Hansen, Larsen, Lacour, Lund-Andersen, Sander (CR7) 2013; 120
LeCun, Bengio, Hinton (CR13) 2015; 521
Witmer, Cho, Favarone, Chan, D’Amico, Kiss (CR12) 2012; 26
Ghasemi Falavarjani, Tsui, Sadda (CR10) 2017; S0042–6989
A Nagiel (940_CR9) 2016; 36
H Gerding (940_CR31) 2016; 233
MT Witmer (940_CR12) 2012; 26
LS Lim (940_CR1) 2012; 379
S Rofagha (940_CR6) 2013; 120
AZ Soliman (940_CR11) 2012; 27
940_CR19
S Liu (940_CR14) 2015; 62
N Qian (940_CR24) 1999; 12
K Ghasemi Falavarjani (940_CR10) 2017; S0042–6989
V Gulshan (940_CR16) 2016; 316
940_CR21
Y LeCun (940_CR13) 2015; 521
940_CR22
940_CR27
940_CR28
940_CR25
H Ohsugi (940_CR20) 2017; 7
MG Maguire (940_CR5) 2016; 123
MT Witmer (940_CR8) 2013; 7
N Srivastava (940_CR23) 2014; 15
EF Schisterman (940_CR26) 2008; 27
PJ Rosenfeld (940_CR3) 2006; 355
DM Brown (940_CR4) 2009; 116
940_CR29
WH Pinaya (940_CR17) 2016; 6
G Litjens (940_CR15) 2016; 6
A Gordois (940_CR32) 2012; 7
A Rasmussen (940_CR7) 2013; 120
940_CR30
M Yasuda (940_CR2) 2009; 116
P Burlina (940_CR18) 2017; 82
References_xml – volume: 7
  start-page: 9425
  year: 2017
  ident: CR20
  article-title: Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09891-x
– volume: 27
  start-page: 297
  issue: 2
  year: 2008
  end-page: 315
  ident: CR26
  article-title: Youden index and the optimal threshold for markers with mass at zero
  publication-title: Stat Med
  doi: 10.1002/sim.2993
– ident: CR22
– volume: 82
  start-page: 80
  year: 2017
  end-page: 86
  ident: CR18
  article-title: Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.01.018
– volume: S0042–6989
  start-page: 30118
  issue: 17
  year: 2017
  end-page: 30119
  ident: CR10
  article-title: Ultra-wide-field imaging in diabetic retinopathy
  publication-title: Vis Res
– ident: CR30
– volume: 6
  start-page: 38897
  year: 2016
  ident: CR17
  article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia
  publication-title: Sci Rep
  doi: 10.1038/srep38897
– ident: CR29
– volume: 379
  start-page: 1728
  year: 2012
  end-page: 1738
  ident: CR1
  article-title: Age-related macular degeneration
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60282-7
– volume: 123
  start-page: 1751
  issue: 8
  year: 2016
  end-page: 1761
  ident: CR5
  article-title: Five-year outcomes with anti-vascular endothelial growth factor treatment of neovascular age-related macular degeneration
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.03.045
– volume: 36
  start-page: 660
  year: 2016
  end-page: 678
  ident: CR9
  article-title: Ultra-widefield fundus imaging: a review of clinical applications and future trends
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000937
– ident: CR25
– ident: CR27
– volume: 355
  start-page: 1419
  year: 2006
  end-page: 1431
  ident: CR3
  article-title: Ranibizumab for neovascular age-related macular degeneration
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa054481
– ident: CR21
– volume: 26
  start-page: 1209
  issue: 9
  year: 2012
  end-page: 1216
  ident: CR12
  article-title: Ultra-wide-field autofluorescence imaging in non-traumatic rhegmatogenous retinal detachment
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2012.122
– ident: CR19
– volume: 120
  start-page: 2630
  year: 2013
  end-page: 2636
  ident: CR7
  article-title: A 4-year longitudinal study of 555 patients treated with ranibizumab for neovascular age-related macular degeneration
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.05.018
– volume: 233
  start-page: 471
  year: 2016
  end-page: 474
  ident: CR31
  article-title: Long-term results of intravitreal Anti-VEGF injections in wet AMD: a meta-analysis
  publication-title: Klin Monbl Augenheilkd
  doi: 10.1055/s-0041-111835
– volume: 120
  start-page: 2292
  issue: 11
  year: 2013
  end-page: 2299
  ident: CR6
  article-title: Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: a multicenter cohort study (SEVEN-UP)
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.03.046
– volume: 116
  start-page: 57
  year: 2009
  end-page: 65
  ident: CR4
  article-title: Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2008.10.018
– volume: 7
  start-page: 465
  issue: 5
  year: 2012
  end-page: 481
  ident: CR32
  article-title: An estimation of the worldwide economic and health burden of visual impairment
  publication-title: Glob Public Health
  doi: 10.1080/17441692.2011.634815
– volume: 27
  start-page: 221
  issue: 5–6
  year: 2012
  end-page: 227
  ident: CR11
  article-title: Ultra-wide field retinal imaging in detection, classification, and management of diabetic retinopathy
  publication-title: Semin Ophthalmol
  doi: 10.3109/08820538.2012.708812
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR13
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 116
  start-page: 2135
  year: 2009
  end-page: 2140
  ident: CR2
  article-title: Nine-year incidence and risk factors for age-related macular degeneration in a defined Japanese population the Hisayama study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.04.017
– volume: 6
  start-page: 26286
  year: 2016
  ident: CR15
  article-title: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
  publication-title: Sci Rep
  doi: 10.1038/srep26286
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR16
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  end-page: 151
  ident: CR24
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00116-6
– ident: CR28
– volume: 7
  start-page: 389
  year: 2013
  end-page: 394
  ident: CR8
  article-title: Comparison of ultra-widefield fluorescein angiography with the Heidelberg Sp ectralis( ) noncontact ultra-widefield module versus the Optos( ) Optomap( )
  publication-title: Clin Ophthalmol
  doi: 10.2147/OPTH.S41731
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR23
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– volume: 62
  start-page: 1132
  year: 2015
  end-page: 1140
  ident: CR14
  article-title: Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2372011
– volume: 26
  start-page: 1209
  issue: 9
  year: 2012
  ident: 940_CR12
  publication-title: Eye (Lond)
  doi: 10.1038/eye.2012.122
– volume: 116
  start-page: 2135
  year: 2009
  ident: 940_CR2
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2009.04.017
– volume: 36
  start-page: 660
  year: 2016
  ident: 940_CR9
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000937
– volume: 316
  start-page: 2402
  year: 2016
  ident: 940_CR16
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 7
  start-page: 389
  year: 2013
  ident: 940_CR8
  publication-title: Clin Ophthalmol
  doi: 10.2147/OPTH.S41731
– ident: 940_CR30
– volume: 27
  start-page: 221
  issue: 5–6
  year: 2012
  ident: 940_CR11
  publication-title: Semin Ophthalmol
  doi: 10.3109/08820538.2012.708812
– volume: 6
  start-page: 26286
  year: 2016
  ident: 940_CR15
  publication-title: Sci Rep
  doi: 10.1038/srep26286
– volume: 12
  start-page: 145
  issue: 1
  year: 1999
  ident: 940_CR24
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 120
  start-page: 2630
  year: 2013
  ident: 940_CR7
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.05.018
– volume: 82
  start-page: 80
  year: 2017
  ident: 940_CR18
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.01.018
– ident: 940_CR22
– volume: 355
  start-page: 1419
  year: 2006
  ident: 940_CR3
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa054481
– volume: 62
  start-page: 1132
  year: 2015
  ident: 940_CR14
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2372011
– volume: 116
  start-page: 57
  year: 2009
  ident: 940_CR4
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2008.10.018
– ident: 940_CR29
– volume: 7
  start-page: 9425
  year: 2017
  ident: 940_CR20
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-09891-x
– volume: 7
  start-page: 465
  issue: 5
  year: 2012
  ident: 940_CR32
  publication-title: Glob Public Health
  doi: 10.1080/17441692.2011.634815
– volume: 15
  start-page: 1929
  year: 2014
  ident: 940_CR23
  publication-title: J Mach Learn Res
– volume: 233
  start-page: 471
  year: 2016
  ident: 940_CR31
  publication-title: Klin Monbl Augenheilkd
  doi: 10.1055/s-0041-111835
– volume: S0042–6989
  start-page: 30118
  issue: 17
  year: 2017
  ident: 940_CR10
  publication-title: Vis Res
– ident: 940_CR19
– ident: 940_CR27
  doi: 10.1109/ICCV.2017.74
– volume: 6
  start-page: 38897
  year: 2016
  ident: 940_CR17
  publication-title: Sci Rep
  doi: 10.1038/srep38897
– volume: 521
  start-page: 436
  year: 2015
  ident: 940_CR13
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 379
  start-page: 1728
  year: 2012
  ident: 940_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60282-7
– volume: 27
  start-page: 297
  issue: 2
  year: 2008
  ident: 940_CR26
  publication-title: Stat Med
  doi: 10.1002/sim.2993
– ident: 940_CR21
– volume: 123
  start-page: 1751
  issue: 8
  year: 2016
  ident: 940_CR5
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2016.03.045
– ident: 940_CR25
– ident: 940_CR28
  doi: 10.1109/CVPR.2009.5206848
– volume: 120
  start-page: 2292
  issue: 11
  year: 2013
  ident: 940_CR6
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.03.046
SSID ssj0009796
Score 2.4545274
Snippet Purpose To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with...
To predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with Optos,...
PurposeTo predict exudative age-related macular degeneration (AMD), we combined a deep convolutional neural network (DCNN), a machine-learning algorithm, with...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1269
SubjectTerms Accuracy
Age
Age related diseases
Artificial neural networks
Deep learning
Diagnostic systems
Exudation
Learning algorithms
Machine learning
Macular degeneration
Medical imaging
Medical personnel
Medicine
Medicine & Public Health
Neural networks
Ophthalmology
Original Paper
Sensitivity
Telemedicine
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtCqWX0He3TYsKPbURtS3Lkk8lhIZQSE8N7M3oMU4Km_V21ybkn_TndkaWdwmhuVoaWWhGo0-aF2OfwFWIamUmnM2tKGXrhFVWC-yss7ZQMiiKdz77WZ2elz_map4e3DbJrXLSiVFRh87TG_lXMpgpOu7kt9UfQVWjyLqaSmg8ZI8odRm5dOm53iXd1bE-F0XsCKWzfLJqjqFzmvwuczL-k4fj7XPpDti8YyiN58_JU7afgCM_Gjn9jD2A5XP2-CyZxl-wv0feD2vrb3jX8mHRr624_h1ARBc1jsdXGDa8W132l3Zx1VEwyo1A4ExcDjwArHgqIHFxyC2_ij6WIKZvvN8-wR9yxLlIQdYHakGFJGJEDI6DZOTWiq0XMZ01cf0lOz_5_uv4VKSyC8KXteyF8h6VTtZ6hVdFo1sAW4e8cBXUAeIVTDrvTeW0y6wBY5zVIDVhw7oNpZWv2N6yW8IbxoOE3NStQTVRlgGUcQXUrbM1BBOqIpuxbFr0xqec5FQaY9HssikTnxrkU0N8apDk85ZkNSbkuK_zwcTJJu3NTbOTpBn7uG3GXUWmEruEboh9dKyZoWfs9SgB278VeAUrcYVm7MskErvB_zuVt_dP5R17glCsHp3QDthevx7gPcKd3n2IMv0P0RT9bA
  priority: 102
  providerName: ProQuest
Title Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration
URI https://link.springer.com/article/10.1007/s10792-018-0940-0
https://www.ncbi.nlm.nih.gov/pubmed/29744763
https://www.proquest.com/docview/2036574313
https://www.proquest.com/docview/2037053207
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9tAEF6aBEpfSu-6TcwW-tRmQddqpUc72AktMaXU4D6JPUZJwLGMLVHyT_JzM7OW7JakhT4taGdWYmePbzQXYx_BpIhq40AYHWqRxKURWmolkFgFZSRjJyne-XySnk2TLzM5a-O41523e2eS9Cf1b8FuijwlQzLXk0_iHjuQpLrjIp5Gg12mXeWLclGYjpAqCDtT5kND_HkZ3UOY96yj_tIZP2NPW7TIBxvxPmePYPGCPT5v7eEv2e3A2mal7Q2vSt7M65UWv64cCO-XxvHOcs2aV8vL-lLPryuKQLkRiJZJtI47gCVvq0ZcHHPNr71jJYjuGa-3_92POYJb5CCTA_XgKSR8GAyOg2zky4q9Fz6HNYn6FZuORz9OzkRba0HYJI9rIa3FkyYorUT9MFMlgM5dGJkUcgde74qNtVlqlAl0BllmtIJYESDMS5fo-DXbX1QLeMu4iyHM8jLDsyFJHMjMRJCXRufgMpdGQY8F3aQXtk1ETvUw5sUuhTLJqUA5FSSnAlk-bVmWmywc_yI-7CRZtBtyXZC9VRJainvsw7YbtxLZR_QCqsbTKF8oQ_XYm80K2L4tQr0rwRnqsc_dktgN_tdPefdf1O_ZE4Rj-cYR7ZDt16sGjhDy1KbP9tRM9dnBYDwcTqg9_fl1hO1wNPn2ve83wB38Df-K
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSCbgg3gQKLBJcoCtsr521DwgVaJXSJkKolXoz-3KLlMYhsVXlT_gKvpGZtZ0IVfTWq3dnvdqZncfOC-C10wPUakXAtQoVj0WhuUqU5DhZBkWUCJtQvvNoPBgex19PkpMN-NPlwlBYZccTPaO2paE38vfkMEtI3ImPs1-cukaRd7VrodGQxYFbXqDJtviw_wXx-yaK9naPPg9521WAmzgTFU-MwTsVFCZBSyiVhXMqs2GkBy6zzlsYQhuTDrTUgUpdmmolnZCk-mSFjZXAdW_AZizQlOnB5qfd8bfv6zK_0ncEoxwhnsgg7PyoTbKepEjPkMINKKbyX0l4Sb295Jr1Em_vLtxpVVW209DWPdhw0_twc9Q64x_A7x1j6rkyS1YWrJ5Uc8UvflrHfVAcQ4Fp6wUrZ2fVmZqcl5T-suSoqhNdWWadm7G2ZcXpNlPs3Ed1Ot59Y9Xq0X-boWaNEOTvoBFkgdzn4OA6CEaBtDh66gtoE509hONrQckj6E3LqXsCzAoXplmRImOKY-uSVEcuK7TKnE3tIAr6EHSHnpu2Cjo145jk6_rNhKcc8ZQTnnIEebsCmTUlQK6avNVhMm-5wSJf024fXq2G8R6Tc0ZNXVn7OdJ36ZB9eNxQwOpvERp9MZ5QH951JLFe_L9beXr1Vl7CreHR6DA_3B8fPIPbqAhmTQjcFvSqee2eo7JV6RcthTP4cd2X6i-97Txe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkSouiDcLBYwEF6jVJI7j5IBQRVm1lFYcqLS34MekRdpult2sqv0n_BZ-HTNOsitU0Vuv8SOW5-Gx55sZxt6AzdCqlZGwJjYilZUVRhktsLOOqkRJryje-fgkOzhNv4zUaIP96WNhCFbZ68SgqH3t6I18lxxmio47uVt1sIhv-8OP01-CKkiRp7Uvp9GyyBEsL_H6Nv9wuI-0fpskw8_fPx2IrsKAcGkhG6GcQ_mKKqfwVpTrCsAUPk5sBoWHcNuQ1rk8s9pGJoc8t0aD1GQGFZVPjcR5b7HbWqqYZEyP9Drhrw61wShaSCgdxb1HtQ3b04T5jAl4QOjKf8_EK4buFSdtOPuG99jdzmjley2X3WcbMHnAto47t_xD9nvPucXMuCWvK74YNzMjLn96EAEex_Ho9Is5r6fnzbkZX9QUCLMUaLQTh3nuAaa8K15xtsMNvwj4ThD9N96snv93ONrYOII8H9SCylCEaBycB4cRpBZbz0IqbeK4R-z0RgjymG1O6gk8ZdxLiPOiylFFpakHldsEisqaAnzusyQasKjf9NJ1-dCpLMe4XGdyJjqVSKeS6FTikHerIdM2Gch1nbd7SpadXpiXay4esNerZpRoctOYCdSL0EeHeh16wJ60HLD6W4LXvxR3aMDe9yyxnvy_S3l2_VJesS0UpfLr4cnRc3YHLcKixcJts81mtoAXaHU19mVgb85-3LQ8_QUCjD8u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+ultra-wide-field+fundus+ophthalmoscopy-assisted+deep+learning%2C+a+machine-learning+technology%2C+for+detecting+age-related+macular+degeneration&rft.jtitle=International+ophthalmology&rft.au=Matsuba%2C+Shinji&rft.au=Tabuchi%2C+Hitoshi&rft.au=Ohsugi%2C+Hideharu&rft.au=Enno%2C+Hiroki&rft.date=2019-06-01&rft.eissn=1573-2630&rft.volume=39&rft.issue=6&rft.spage=1269&rft_id=info:doi/10.1007%2Fs10792-018-0940-0&rft_id=info%3Apmid%2F29744763&rft.externalDocID=29744763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-5701&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-5701&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-5701&client=summon