Engineering glucose oxidase for bioelectrochemical applications
There is still a growing interest in developing glucose sensors using glucose oxidase. Since 2012, over 1000 papers are published every year, while efficient commercial sensors exist on the market. Among those glucose sensors, few have been thought and well-engineered and do not solve the problems a...
Saved in:
Published in | Bioelectrochemistry (Amsterdam, Netherlands) Vol. 128; pp. 218 - 240 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier BV
01.08.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There is still a growing interest in developing glucose sensors using glucose oxidase. Since 2012, over 1000 papers are published every year, while efficient commercial sensors exist on the market. Among those glucose sensors, few have been thought and well-engineered and do not solve the problems associated with glucose oxidase; among which the O
sensitivity of the enzyme or the competition between O
and redox mediators for GOx's electrons. Enzyme engineering has been employed to solve those issues but screening GOx in homogeneous solution with O
as an electron acceptor is not suitable. Very few reports describe the specific reengineering of GOx for electrochemical applications and are the subject of this review. It starts with a brief presentation of glucose oxidase and presents the recent progress in glucose oxidase reengineering by highlighting the kind of engineering/mutations performed to increase its electron transfer rate to electrode surfaces and, to decrease its O
sensitivity. In addition, the review highlights the need to develop new screening methods involving electrochemical probing, essential to develop the next generation of glucose sensors; specific to glucose, O
independent, biocompatible and stable over 2 weeks. |
---|---|
AbstractList | There is still a growing interest in developing glucose sensors using glucose oxidase. Since 2012, over 1000 papers are published every year, while efficient commercial sensors exist on the market. Among those glucose sensors, few have been thought and well-engineered and do not solve the problems associated with glucose oxidase; among which the O2 sensitivity of the enzyme or the competition between O2 and redox mediators for GOx's electrons. Enzyme engineering has been employed to solve those issues but screening GOx in homogeneous solution with O2 as an electron acceptor is not suitable. Very few reports describe the specific reengineering of GOx for electrochemical applications and are the subject of this review. It starts with a brief presentation of glucose oxidase and presents the recent progress in glucose oxidase reengineering by highlighting the kind of engineering/mutations performed to increase its electron transfer rate to electrode surfaces and, to decrease its O2 sensitivity. In addition, the review highlights the need to develop new screening methods involving electrochemical probing, essential to develop the next generation of glucose sensors; specific to glucose, O2 independent, biocompatible and stable over 2 weeks.There is still a growing interest in developing glucose sensors using glucose oxidase. Since 2012, over 1000 papers are published every year, while efficient commercial sensors exist on the market. Among those glucose sensors, few have been thought and well-engineered and do not solve the problems associated with glucose oxidase; among which the O2 sensitivity of the enzyme or the competition between O2 and redox mediators for GOx's electrons. Enzyme engineering has been employed to solve those issues but screening GOx in homogeneous solution with O2 as an electron acceptor is not suitable. Very few reports describe the specific reengineering of GOx for electrochemical applications and are the subject of this review. It starts with a brief presentation of glucose oxidase and presents the recent progress in glucose oxidase reengineering by highlighting the kind of engineering/mutations performed to increase its electron transfer rate to electrode surfaces and, to decrease its O2 sensitivity. In addition, the review highlights the need to develop new screening methods involving electrochemical probing, essential to develop the next generation of glucose sensors; specific to glucose, O2 independent, biocompatible and stable over 2 weeks. There is still a growing interest in developing glucose sensors using glucose oxidase. Since 2012, over 1000 papers are published every year, while efficient commercial sensors exist on the market. Among those glucose sensors, few have been thought and well-engineered and do not solve the problems associated with glucose oxidase; among which the O2 sensitivity of the enzyme or the competition between O2 and redox mediators for GOx's electrons. Enzyme engineering has been employed to solve those issues but screening GOx in homogeneous solution with O2 as an electron acceptor is not suitable. Very few reports describe the specific reengineering of GOx for electrochemical applications and are the subject of this review. It starts with a brief presentation of glucose oxidase and presents the recent progress in glucose oxidase reengineering by highlighting the kind of engineering/mutations performed to increase its electron transfer rate to electrode surfaces and, to decrease its O2 sensitivity. In addition, the review highlights the need to develop new screening methods involving electrochemical probing, essential to develop the next generation of glucose sensors; specific to glucose, O2 independent, biocompatible and stable over 2 weeks. There is still a growing interest in developing glucose sensors using glucose oxidase. Since 2012, over 1000 papers are published every year, while efficient commercial sensors exist on the market. Among those glucose sensors, few have been thought and well-engineered and do not solve the problems associated with glucose oxidase; among which the O 2 sensitivity of the enzyme or the competition between O 2 and redox mediators for GOx's electrons. Enzyme engineering has been employed to solve those issues but screening GOx in homogeneous solution with O 2 as an electron acceptor is not suitable. Very few reports describe the specific reengineering of GOx for electrochemical applications and are the subject of this review. It starts with a brief presentation of glucose oxidase and presents the recent progress in glucose oxidase reengineering by highlighting the kind of engineering/mutations performed to increase its electron transfer rate to electrode surfaces and, to decrease its O 2 sensitivity. In addition, the review highlights the need to develop new screening methods involving electrochemical probing, essential to develop the next generation of glucose sensors; specific to glucose, O 2 independent, biocompatible and stable over 2 weeks. There is still a growing interest in developing glucose sensors using glucose oxidase. Since 2012, over 1000 papers are published every year, while efficient commercial sensors exist on the market. Among those glucose sensors, few have been thought and well-engineered and do not solve the problems associated with glucose oxidase; among which the O sensitivity of the enzyme or the competition between O and redox mediators for GOx's electrons. Enzyme engineering has been employed to solve those issues but screening GOx in homogeneous solution with O as an electron acceptor is not suitable. Very few reports describe the specific reengineering of GOx for electrochemical applications and are the subject of this review. It starts with a brief presentation of glucose oxidase and presents the recent progress in glucose oxidase reengineering by highlighting the kind of engineering/mutations performed to increase its electron transfer rate to electrode surfaces and, to decrease its O sensitivity. In addition, the review highlights the need to develop new screening methods involving electrochemical probing, essential to develop the next generation of glucose sensors; specific to glucose, O independent, biocompatible and stable over 2 weeks. |
Author | Mano, Nicolas |
Author_xml | – sequence: 1 givenname: Nicolas surname: Mano fullname: Mano, Nicolas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31030174$$D View this record in MEDLINE/PubMed https://hal.science/hal-02121438$$DView record in HAL |
BookMark | eNqFkU9v1DAQxS1URP_AV0CRuMAh6Uxsx84FVFWFIq3EpZW4WV5nduuVN17sBMG3x8tuQeqlpxmNfvOeZt45OxnjSIxVCA0CdpebZukjBXIPtG1awL4B0QDKF-wMtdK17NrvJ6WXnaol78UpO895AwAalXzFTjkCB1TijH26Gdd-JEp-XFfrMLuYqYq__GBLXcVUHY2mFPdm3tlQ2d0ulGbyccyv2cuVDZneHOsFu_98c3d9Wy--ffl6fbWonej5VEu7XGoCGtqhB-RSy4FbQRyoHyT2dhDguLZKOWq5pM7ZrhdCKCe05Yo4v2AfDroPNphd8lubfptovbm9Wpj9DFpsUXD9Ewv7_sDuUvwxU57M1mdHIdiR4pxN22KnlNStLui7J-gmzmkslxSqEyglgizU2yM1L7c0_PN_fGMBPh4Al2LOiVbG-envg6ZkfTAIZp-b2Zj_uZl9bgaEKbkVAf1E4NHj2dU_H2agHw |
CitedBy_id | crossref_primary_10_1016_j_pep_2020_105717 crossref_primary_10_1021_acsmacrolett_1c00687 crossref_primary_10_3389_fchem_2021_723186 crossref_primary_10_1016_j_mattod_2020_11_015 crossref_primary_10_1016_j_aca_2023_342068 crossref_primary_10_1021_acs_iecr_1c04210 crossref_primary_10_1016_j_bios_2022_114348 crossref_primary_10_1016_j_tibs_2024_07_006 crossref_primary_10_1021_acs_chemrev_0c00472 crossref_primary_10_1016_j_biotechadv_2020_107634 crossref_primary_10_1007_s40820_023_01045_1 crossref_primary_10_3390_life11050380 crossref_primary_10_3390_molecules27123836 crossref_primary_10_1016_j_jpowsour_2024_235989 crossref_primary_10_3390_chemosensors10080298 crossref_primary_10_1007_s40242_025_4243_5 crossref_primary_10_1007_s41061_020_00312_8 crossref_primary_10_1016_j_snb_2021_130914 crossref_primary_10_18596_jotcsa_1088587 crossref_primary_10_1038_s41598_019_51882_7 crossref_primary_10_1109_JERM_2020_2998325 crossref_primary_10_1016_j_microc_2024_111192 crossref_primary_10_1016_j_ijoes_2023_100447 crossref_primary_10_1021_jacs_2c06579 crossref_primary_10_1039_D0CS00304B crossref_primary_10_1016_j_diamond_2024_111423 crossref_primary_10_1016_S1957_2557_21_00180_2 crossref_primary_10_1016_j_cej_2024_158054 crossref_primary_10_1002_aenm_202401255 crossref_primary_10_3390_ijms23179841 crossref_primary_10_1016_j_nanoen_2021_106817 crossref_primary_10_1039_D1RA07467A crossref_primary_10_1016_j_bios_2020_112805 crossref_primary_10_1016_j_bioelechem_2020_107460 crossref_primary_10_1038_s41598_022_14957_6 crossref_primary_10_1080_07388551_2022_2057275 crossref_primary_10_1016_j_bios_2021_113956 crossref_primary_10_1002_smll_202411435 crossref_primary_10_1007_s11356_024_33678_z crossref_primary_10_1016_j_cej_2021_132148 crossref_primary_10_1002_ange_202113784 crossref_primary_10_1016_j_bios_2021_113355 crossref_primary_10_3390_catal11040497 crossref_primary_10_1002_aelm_202200065 crossref_primary_10_3389_fmicb_2024_1439481 crossref_primary_10_1007_s00253_023_12931_4 crossref_primary_10_1038_s41929_019_0381_9 crossref_primary_10_1016_j_fmre_2024_04_009 crossref_primary_10_1016_j_chemosphere_2020_126648 crossref_primary_10_1016_j_sbsr_2022_100525 crossref_primary_10_1007_s10854_024_13885_7 crossref_primary_10_1021_acs_analchem_3c00758 crossref_primary_10_1021_acsabm_3c01215 crossref_primary_10_1002_celc_202200418 crossref_primary_10_1007_s43393_021_00057_5 crossref_primary_10_1016_j_snb_2021_130898 crossref_primary_10_1016_j_apsusc_2021_149720 crossref_primary_10_1016_j_bej_2022_108646 crossref_primary_10_3390_bioengineering8110188 crossref_primary_10_1002_bmm2_12047 crossref_primary_10_1002_adfm_202200922 crossref_primary_10_1016_j_cjsc_2023_100133 crossref_primary_10_1002_admi_202200310 crossref_primary_10_1007_s00604_019_4075_4 crossref_primary_10_1016_j_talanta_2022_124033 crossref_primary_10_1186_s40643_020_00311_z crossref_primary_10_1016_j_bios_2024_116138 crossref_primary_10_3390_app12062782 crossref_primary_10_1002_slct_202003536 crossref_primary_10_1016_j_bios_2020_112909 crossref_primary_10_1002_anie_202113784 crossref_primary_10_1039_D4TA06947A crossref_primary_10_7717_peerj_9010 crossref_primary_10_3390_nano11081893 crossref_primary_10_1016_j_enzmictec_2020_109671 crossref_primary_10_1016_j_snr_2022_100113 crossref_primary_10_3390_mi12070805 crossref_primary_10_1016_j_jelechem_2019_113444 crossref_primary_10_1149_1945_7111_ace7fa crossref_primary_10_1080_10826068_2020_1719515 crossref_primary_10_1002_cphc_202400033 crossref_primary_10_1002_biot_202300199 crossref_primary_10_1016_j_jelechem_2023_117500 crossref_primary_10_3390_catal10091072 |
Cites_doi | 10.1016/j.pep.2007.05.006 10.1007/s00253-013-4925-7 10.1039/c3cp44617d 10.3390/ijms131114149 10.1016/S0021-9258(18)97448-X 10.1016/0014-5793(89)81061-0 10.1007/s00604-016-2049-3 10.1016/j.chembiol.2014.01.010 10.1021/acscatal.7b01575 10.1177/193229681100500507 10.1016/j.bios.2016.08.053 10.1038/157801a0 10.1002/bit.26785 10.2174/1386207311107010055 10.1021/bi00801a006 10.1016/0021-9673(90)85049-2 10.1016/S0021-9258(18)72307-7 10.1128/JB.44.4.469-477.1942 10.1002/cphc.201000178 10.1016/S0022-0728(00)00165-0 10.1016/0167-4838(83)90340-0 10.1021/ar9002015 10.1016/S0168-1656(00)00266-2 10.1016/S0021-9258(18)72411-3 10.1039/b801786g 10.1042/bj0500331 10.1002/anie.200902191 10.1007/s12010-011-9366-0 10.1016/j.elecom.2009.11.027 10.1007/s00253-008-1407-4 10.1023/A:1008020124326 10.1016/j.bios.2006.09.018 10.1016/j.foodchem.2018.12.099 10.1002/biot.200600185 10.1039/b408411j 10.1016/0304-4173(85)90014-X 10.1021/bi200388g 10.1016/0006-291X(85)91821-2 10.1039/C4RA08107B 10.1002/(SICI)1520-6327(199909)42:1<99::AID-ARCH10>3.0.CO;2-B 10.1016/j.jcat.2018.09.005 10.1021/ja047050e 10.1038/srep13498 10.1371/journal.pone.0144289 10.1016/j.coelec.2018.05.010 10.1021/ja025503e 10.1016/j.biotechadv.2009.04.003 10.1016/j.copbio.2003.09.008 10.1139/m90-131 10.1016/j.coelec.2018.05.004 10.1039/c004951d 10.1093/oxfordjournals.jbchem.a128747 10.1016/S0021-9258(18)83415-9 10.1016/0014-5793(95)00418-9 10.1042/bj3470553 10.1023/B:ABIM.0000018918.34739.ae 10.1021/ja029510e 10.1016/j.coelec.2018.06.003 10.1126/science.1080664 10.1006/jmbi.1993.1015 10.1016/S0956-5663(02)00051-9 10.1038/150634a0 10.1016/j.jinsphys.2010.07.012 10.1139/o89-072 10.1021/ja2071237 10.2116/analsci.1.455 10.1021/ac000151k 10.1007/s12033-013-9709-x 10.1002/yea.320090609 10.2174/187220807780809472 10.3390/electronics6030065 10.1007/BF00169352 10.1016/j.electacta.2019.02.039 10.1016/S0141-0229(97)00024-0 10.1016/0003-9861(60)90495-1 10.1002/elan.201700785 10.1021/bi990044o 10.1146/annurev-food-030216-025713 10.1016/j.jbiotec.2010.10.077 10.1016/0014-5793(95)00789-C 10.1016/j.pep.2006.09.013 10.1039/C4CC01670J 10.1021/ja9608611 10.1002/cphc.201300044 10.1134/S000368380603015X 10.1016/0956-5663(95)96964-Z 10.3389/fmicb.2017.01032 10.1021/j100188a007 10.1016/j.coelec.2017.06.007 10.1021/bi020054g 10.1002/jlac.19445550111 10.1023/A:1024512316571 10.1016/j.tibs.2006.03.003 10.1021/ac0486746 10.1016/S0022-0728(00)00150-9 10.1007/s10529-011-0787-1 10.1016/0168-1656(92)90117-R 10.1021/bi300227d 10.1016/j.apcbee.2012.06.023 10.1016/j.biocel.2004.10.014 10.1046/j.1432-1327.1999.00696.x 10.1111/j.1472-765X.2004.01470.x 10.1002/elan.201600096 10.1016/S0141-0229(96)00004-X 10.1111/lam.12202 10.1021/ar00173a002 10.1016/S0021-9258(19)39664-4 10.1016/S0021-9673(01)85007-X 10.1046/j.1432-1327.1998.2520090.x 10.1128/JB.166.1.269-274.1986 10.1021/bi801918u 10.1021/cr068069y 10.1016/S0021-9258(18)72293-X 10.1016/0022-2836(92)90992-S 10.1016/j.tibs.2017.02.005 10.1111/j.1745-4549.1989.tb00099.x 10.1007/BF02872583 10.1016/0141-0229(95)91708-7 10.1039/c2ra01211a 10.1023/B:MCBI.0000026056.75937.98 10.1021/j100168a046 10.1007/s002530050963 10.1074/jbc.M802321200 10.3390/ijms19020425 10.3923/jm.2007.294.298 10.1016/S0021-9258(17)31664-2 10.1016/j.electacta.2015.04.072 10.1021/ac501289x 10.1002/elan.201200482 10.1149/2.0691704jes 10.1016/j.coelec.2018.07.013 10.1002/elan.200980017 10.1016/S0021-9258(18)65906-X 10.1016/j.bios.2005.11.018 10.1016/j.electacta.2013.09.018 10.1042/bj0420221 10.1042/bj0390024 10.1007/s00216-013-6827-z 10.1023/B:ABIM.0000010346.47923.6c 10.1128/AEM.64.4.1405-1411.1998 10.1016/j.bioelechem.2009.03.006 10.1016/j.bios.2013.06.029 10.1016/S0021-9258(18)64155-9 10.1016/j.tibs.2012.06.005 10.1073/pnas.252644599 10.1016/j.coelec.2018.06.006 10.1016/j.bios.2009.07.015 10.1021/ac2020883 10.1016/0167-4838(91)90140-U 10.1016/j.cbpa.2006.09.018 10.1021/bi00865a018 10.1016/0005-2728(92)90192-5 10.1016/j.foodchem.2005.07.043 10.1007/s00253-002-1208-0 10.1016/j.coelec.2018.05.021 10.1016/S1369-703X(02)00120-1 10.1021/ja012680r 10.1016/j.jelechem.2017.06.021 10.1016/j.enzmictec.2006.03.005 10.1016/S0021-9258(18)91224-X 10.1016/0006-3002(60)91406-2 10.1016/S0022-2836(03)00054-8 10.1021/acs.chemrev.7b00220 10.1002/jctb.4753 10.1016/j.bios.2015.06.029 10.1016/j.bios.2016.04.083 10.1111/j.1432-1033.1993.tb18088.x 10.1074/jbc.M808202200 10.1016/j.jbiosc.2018.07.002 10.1177/193229680900300438 10.1111/j.1365-2672.2004.02423.x 10.5803/jsfm.22.10 10.1016/0956-5663(92)87013-F 10.1039/C8NA00177D 10.1002/celc.201700646 10.1007/BF00327024 10.1007/s007750000172 10.1016/S0968-0004(99)01533-9 10.1002/jlac.19395410107 10.1038/376672a0 10.1016/j.euprot.2018.09.001 10.1016/S0021-9258(17)34643-4 10.1021/bi962492r 10.1007/s002530051011 10.1021/ja307390x 10.1063/1.1742723 10.1021/bi020080e 10.1016/S0022-2836(05)80179-2 10.1021/bi00892a018 10.1021/acscatal.7b00738 10.1038/nbt0603-631 10.1073/pnas.0903809106 10.1002/celc.201600357 10.3168/jds.2011-4582 10.1371/journal.pone.0037924 10.1021/bi001933a 10.1021/ar6000507 10.1006/pmpp.1998.0168 10.1002/celc.201801091 10.1016/j.bioelechem.2015.04.005 10.1016/0956-5663(94)80050-2 10.1126/science.97.2512.186 10.1016/S1570-9639(03)00090-6 10.1021/j100168a047 10.1007/s10529-010-0267-z 10.1016/S0021-9258(18)62246-X 10.1021/ac00020a014 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Elsevier B.V. All rights reserved. Copyright Elsevier BV Aug 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2019 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Aug 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7QO 7TK 8FD FR3 P64 7X8 1XC VOOES |
DOI | 10.1016/j.bioelechem.2019.04.015 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1878-562X |
EndPage | 240 |
ExternalDocumentID | oai_HAL_hal_02121438v1 31030174 10_1016_j_bioelechem_2019_04_015 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO AAYXX ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AFZHZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSH SSK SSU SSZ T5K XPP ZMT ~G- AACTN NPM 7QO 7TK 8FD EFKBS FR3 P64 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c493t-5abb8e0ed2d9013585d3a4e30e9d519ad40c38a77ce235e6ca694447c48a37e33 |
ISSN | 1567-5394 1878-562X |
IngestDate | Fri May 09 12:18:14 EDT 2025 Tue Aug 05 09:58:45 EDT 2025 Wed Aug 13 03:00:04 EDT 2025 Thu Apr 03 07:00:59 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Tue Jul 01 01:26:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Glucose Oxidase O sensitivity Electrochemical applications Mediated electron transfer Biosensors Enzyme engineering enzyme engineering electrochemical applications biosensors mediated electron transfer O 2 sensitivity |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c493t-5abb8e0ed2d9013585d3a4e30e9d519ad40c38a77ce235e6ca694447c48a37e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7084-9323 |
OpenAccessLink | https://hal.science/hal-02121438 |
PMID | 31030174 |
PQID | 2264155105 |
PQPubID | 2045276 |
PageCount | 23 |
ParticipantIDs | hal_primary_oai_HAL_hal_02121438v1 proquest_miscellaneous_2216775828 proquest_journals_2264155105 pubmed_primary_31030174 crossref_citationtrail_10_1016_j_bioelechem_2019_04_015 crossref_primary_10_1016_j_bioelechem_2019_04_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | Bioelectrochemistry (Amsterdam, Netherlands) |
PublicationTitleAlternate | Bioelectrochemistry |
PublicationYear | 2019 |
Publisher | Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier BV – name: Elsevier |
References | Kelley (10.1016/j.bioelechem.2019.04.015_bb0410) 1986; 166 Kovačević (10.1016/j.bioelechem.2019.04.015_bb0485) 2014; 56 Stankovich (10.1016/j.bioelechem.2019.04.015_bb0670) 1978; 253 Prabhakar (10.1016/j.bioelechem.2019.04.015_bb0720) 2003; 1647 Luong (10.1016/j.bioelechem.2019.04.015_bb0875) 2017; 184 Willner (10.1016/j.bioelechem.2019.04.015_bb0845) 2007; 22 Ramasamy (10.1016/j.bioelechem.2019.04.015_bb0405) 1985; 131 Eichenseer (10.1016/j.bioelechem.2019.04.015_bb0225) 1999; 42 Orville (10.1016/j.bioelechem.2019.04.015_bb1040) 2009; 48 Malel (10.1016/j.bioelechem.2019.04.015_bb0815) 2019; 6 Gao (10.1016/j.bioelechem.2019.04.015_bb0920) 2009; 25 Bean (10.1016/j.bioelechem.2019.04.015_bb0245) 1961; 236 Trifonov (10.1016/j.bioelechem.2019.04.015_bb0810) 2019; 1 Horaguchi (10.1016/j.bioelechem.2019.04.015_bb1025) 2012; 13 Van Bruggen (10.1016/j.bioelechem.2019.04.015_bb0190) 1943; 148 Zayats (10.1016/j.bioelechem.2019.04.015_bb0835) 2002; 124 Bocola (10.1016/j.bioelechem.2019.04.015_bb1055) 2018 Belyad (10.1016/j.bioelechem.2019.04.015_bb0495) 2018; 19 Rogers (10.1016/j.bioelechem.2019.04.015_bb0605) 1971; 10 Piano (10.1016/j.bioelechem.2019.04.015_bb1110) 2017; 42 Leech (10.1016/j.bioelechem.2019.04.015_bb0065) 2012; 84 Zhu (10.1016/j.bioelechem.2019.04.015_bb0935) 2007; 2 Mao (10.1016/j.bioelechem.2019.04.015_bb0950) 2003; 125 Massey (10.1016/j.bioelechem.2019.04.015_bb0715) 1994; 269 Kriaa (10.1016/j.bioelechem.2019.04.015_bb0270) 2016; 91 Bean (10.1016/j.bioelechem.2019.04.015_bb0240) 1956; 218 Kommoju (10.1016/j.bioelechem.2019.04.015_bb0550) 2011; 50 Marcus (10.1016/j.bioelechem.2019.04.015_bb0785) 1985; 811 Reyes-De-Corcuera (10.1016/j.bioelechem.2019.04.015_bb0035) 2018; 9 Keilin (10.1016/j.bioelechem.2019.04.015_bb0220) 1952; 50 Bhatti (10.1016/j.bioelechem.2019.04.015_bb0335) 2009; 47 Jithendar (10.1016/j.bioelechem.2019.04.015_bb0590) 2015; 6 Leskovac (10.1016/j.bioelechem.2019.04.015_bb0680) 2005; 37 Yoshida (10.1016/j.bioelechem.2019.04.015_bb1070) 2015; 5 Mano (10.1016/j.bioelechem.2019.04.015_bb0080) 2018; 118 Kohen (10.1016/j.bioelechem.2019.04.015_bb0750) 1997; 36 Yarnitzky (10.1016/j.bioelechem.2019.04.015_bb0990) 2000; 491 Pankratov (10.1016/j.bioelechem.2019.04.015_bb0800) 2014; 4 Shin (10.1016/j.bioelechem.2019.04.015_bb0415) 1993; 215 Segel (10.1016/j.bioelechem.2019.04.015_bb0645) 1993 Roth (10.1016/j.bioelechem.2019.04.015_bb0700) 2003; 100 Kojima (10.1016/j.bioelechem.2019.04.015_bb1030) 2014 Tongbu (10.1016/j.bioelechem.2019.04.015_bb0610) 1996; 19 Demim (10.1016/j.bioelechem.2019.04.015_bb0640) 2009; 76 Tu (10.1016/j.bioelechem.2019.04.015_bb0145) 2019; 281 Mattevi (10.1016/j.bioelechem.2019.04.015_bb0685) 2006; 31 Sode (10.1016/j.bioelechem.2019.04.015_bb1065) 2017; 87 Kalisz (10.1016/j.bioelechem.2019.04.015_bb0565) 1991; 1080 Sukhacheva (10.1016/j.bioelechem.2019.04.015_bb0360) 2004; 40 Kim (10.1016/j.bioelechem.2019.04.015_bb1015) 2012; 34 Kavanagh (10.1016/j.bioelechem.2019.04.015_bb1125) 2013; 15 Holland (10.1016/j.bioelechem.2019.04.015_bb0855) 2012; 133 Marín-Navarro (10.1016/j.bioelechem.2019.04.015_bb0150) 2015; 10 Witt (10.1016/j.bioelechem.2019.04.015_bb0510) 1998; 64 Wong (10.1016/j.bioelechem.2019.04.015_bb0005) 2008; 78 Adams (10.1016/j.bioelechem.2019.04.015_bb0580) 1960; 91 Zhu (10.1016/j.bioelechem.2019.04.015_bb0450) 2006; 21 Franke (10.1016/j.bioelechem.2019.04.015_bb0165) 1944; 555 Bennett (10.1016/j.bioelechem.2019.04.015_bb1095) 2019; 302 Kleppe (10.1016/j.bioelechem.2019.04.015_bb0595) 1966; 5 Mano (10.1016/j.bioelechem.2019.04.015_bb0960) 2005; 77 Pinczewska (10.1016/j.bioelechem.2019.04.015_bb1105) 2012; 124 Falk (10.1016/j.bioelechem.2019.04.015_bb0070) 2013; 14 Muller (10.1016/j.bioelechem.2019.04.015_bb0155) 1928; 199 Eryomin (10.1016/j.bioelechem.2019.04.015_bb0365) 2006; 42 Frederick (10.1016/j.bioelechem.2019.04.015_bb0260) 1990; 265 Cosnier (10.1016/j.bioelechem.2019.04.015_bb0085) 2018; 12 Courjean (10.1016/j.bioelechem.2019.04.015_bb1000) 2012; 2 Bonet (10.1016/j.bioelechem.2019.04.015_bb0020) 2006; 99 Witt (10.1016/j.bioelechem.2019.04.015_bb0630) 2000; 347 Caruana (10.1016/j.bioelechem.2019.04.015_bb0770) 2010; 6 Seymour (10.1016/j.bioelechem.2019.04.015_bb0755) 2002; 41 Sode (10.1016/j.bioelechem.2019.04.015_bb1075) 1995; 364 Wilson (10.1016/j.bioelechem.2019.04.015_bb0110) 2016; 82 Malherbe (10.1016/j.bioelechem.2019.04.015_bb0445) 2003; 61 Klinman (10.1016/j.bioelechem.2019.04.015_bb0695) 2001; 6 Radivoje (10.1016/j.bioelechem.2019.04.015_bb0120) 2011; 14 Arango Gutierrez (10.1016/j.bioelechem.2019.04.015_bb0930) 2018; 115 Hatzinikolaou (10.1016/j.bioelechem.2019.04.015_bb0505) 1996; 46 Mano (10.1016/j.bioelechem.2019.04.015_bb0910) 2004 Holland (10.1016/j.bioelechem.2019.04.015_bb0860) 2012; 7 Fleming (10.1016/j.bioelechem.2019.04.015_bb0180) 1929; 10 Kim (10.1016/j.bioelechem.2019.04.015_bb0340) 2005; 22 Gorniak (10.1016/j.bioelechem.2019.04.015_bb0330) 1974; 22 Birkinshaw (10.1016/j.bioelechem.2019.04.015_bb0205) 1943; 148 Garzillo (10.1016/j.bioelechem.2019.04.015_bb0375) 1995; 22 Yamashita (10.1016/j.bioelechem.2019.04.015_bb1060) 2018; 12 Meng (10.1016/j.bioelechem.2019.04.015_bb0490) 2014; 58 Swoboda (10.1016/j.bioelechem.2019.04.015_bb0255) 1965; 240 Kalisz (10.1016/j.bioelechem.2019.04.015_bb0865) 1989 Kim (10.1016/j.bioelechem.2019.04.015_bb1010) 2010; 32 Bao (10.1016/j.bioelechem.2019.04.015_bb0600) 2003; 13 Swoboda (10.1016/j.bioelechem.2019.04.015_bb0655) 1965; 240 Ikeda (10.1016/j.bioelechem.2019.04.015_bb0980) 1985; 1 Courjean (10.1016/j.bioelechem.2019.04.015_bb0515) 2010; 11 Cappon (10.1016/j.bioelechem.2019.04.015_bb1130) 2017; 6 Yamaguchi (10.1016/j.bioelechem.2019.04.015_bb0475) 2007; 55 Munk (10.1016/j.bioelechem.2019.04.015_bb0250) 1963; 8 Suraniti (10.1016/j.bioelechem.2019.04.015_bb0520) 2013; 25 Vogt (10.1016/j.bioelechem.2019.04.015_bb0105) 2014; 86 Leferink (10.1016/j.bioelechem.2019.04.015_bb0740) 2009; 284 Eriksson (10.1016/j.bioelechem.2019.04.015_bb0320) 1987; 397 Arango Gutierrez (10.1016/j.bioelechem.2019.04.015_bb1050) 2013; 50 Kalisz (10.1016/j.bioelechem.2019.04.015_bb0300) 1990; 521 German (10.1016/j.bioelechem.2019.04.015_bb0805) 2015; 169 Pishko (10.1016/j.bioelechem.2019.04.015_bb0985) 1991; 63 Liu (10.1016/j.bioelechem.2019.04.015_bb0400) 1998; 53 Wohlfahrt (10.1016/j.bioelechem.2019.04.015_bb0545) 1999; 55 Kalisz (10.1016/j.bioelechem.2019.04.015_bb0575) 1990; 213 Kalisz (10.1016/j.bioelechem.2019.04.015_bb0305) 1997; 47 Ning (10.1016/j.bioelechem.2019.04.015_bb0135) 2018; 19 Whittington (10.1016/j.bioelechem.2019.04.015_bb0430) 1990; 18 Hatzinikolaou (10.1016/j.bioelechem.2019.04.015_bb0525) 1995; 17 Courjean (10.1016/j.bioelechem.2019.04.015_bb0315) 2011; 151 Riklin (10.1016/j.bioelechem.2019.04.015_bb0825) 1995; 376 Roberts (10.1016/j.bioelechem.2019.04.015_bb0185) 1943; 147 Xiao (10.1016/j.bioelechem.2019.04.015_bb0850) 2003; 299 Ferri (10.1016/j.bioelechem.2019.04.015_bb0095) 2011; 5 Lario (10.1016/j.bioelechem.2019.04.015_bb1020) 2003; 326 Keilin (10.1016/j.bioelechem.2019.04.015_bb0210) 1946; 157 Hecht (10.1016/j.bioelechem.2019.04.015_bb0265) 1993; 229 Simpson (10.1016/j.bioelechem.2019.04.015_bb0285) 2007; 51 Piubelli (10.1016/j.bioelechem.2019.04.015_bb0735) 2008; 283 Coulthard (10.1016/j.bioelechem.2019.04.015_bb0170) 1942; 150 Klinman (10.1016/j.bioelechem.2019.04.015_bb0710) 2007; 40 Kocholaty (10.1016/j.bioelechem.2019.04.015_bb0195) 1942; 44 Tremey (10.1016/j.bioelechem.2019.04.015_bb1045) 2017; 4 Afshar (10.1016/j.bioelechem.2019.04.015_bb0235) 2010; 56 Weibel (10.1016/j.bioelechem.2019.04.015_bb0665) 1971; 246 Guo (10.1016/j.bioelechem.2019.04.015_bb0480) 2009 Semashko (10.1016/j.bioelechem.2019.04.015_bb0350) 2003; 39 Heller (10.1016/j.bioelechem.2019.04.015_bb0905) 2006; 10 Wohlfahrt (10.1016/j.bioelechem.2019.04.015_bb0675) 2004; 260 Rando (10.1016/j.bioelechem.2019.04.015_bb0290) 1997; 48 Kusai (10.1016/j.bioelechem.2019.04.015_bb0295) 1960; 40 Franke (10.1016/j.bioelechem.2019.04.015_bb0160) 1939; 541 Prévoteau (10.1016/j.bioelechem.2019.04.015_bb0880) 2010; 12 Bobrowski (10.1016/j.bioelechem.2019.04.015_bb0055) 2018; 10 Petrović (10.1016/j.bioelechem.2019.04.015_bb0130) 2017; 7 Akhtar (10.1016/j.bioelechem.2019.04.015_bb0620) 2002; 41 Bollella (10.1016/j.bioelechem.2019.04.015_bb0060) 2018; 10 Ohashi (10.1016/j.bioelechem.2019.04.015_bb0230) 1999; 265 Petruccioli (10.1016/j.bioelechem.2019.04.015_bb0380) 1997; 21 Wong (10.1016/j.bioelechem.2019.04.015_bb0760) 2003; 14 Gregg (10.1016/j.bioelechem.2019.04.015_bb0895) 1991; 95 Eryomin (10.1016/j.bioelechem.2019.04.015_bb0355) 2004; 40 Leiter (10.1016/j.bioelechem.2019.04.015_bb0325) 2004; 97 Manivannan (10.1016/j.bioelechem.2019.04.015_bb0345) 2007; 2 Ramanavicius (10.1016/j.bioelechem.2019.04.015_bb0820) 2017; 164 Ruff (10.1016/j.bioelechem.2019.04.015_bb0915) 2017; 5 Plumeré (10.1016/j.bioelechem.2019.04.015_bb0970) 2012; 84 Heller (10.1016/j.bioelechem.2019.04.015_bb0045) 2009; 43 Bankar (10.1016/j.bioelechem.2019.04.015_bb0010) 2009; 27 Dubey (10.1016/j.bioelechem.2019.04.015_bb0015) 2017; 8 Gregg (10.1016/j.bioelechem.2019.04.015_bb0890) 1991; 95 Tremey (10.1016/j.bioelechem.2019.04.015_bb1005) 2014; 50 Roth (10.1016/j.bioelechem.2019.04.015_bb0705) 2004; 126 Ostafe (10.1016/j.bioelechem.2019.04.015_bb0125) 2014; 21 Bright (10.1016/j.bioelechem.2019.04.015_bb0660) 1969; 244 Su (10.1016/j.bioelechem.2019.04.015_bb0690) 1999; 38 Takegawa (10.1016/j.bioelechem.2019.04.015_bb0570) 1989; 67 Kriechbaum (10.1016/j.bioelechem.2019.04.015_bb0500) 1989; 255 Arbain (10.1016/j.bioelechem.2019.04.015_bb0280) 2012; 2 Meyer (10.1016/j.bioelechem.2019.04.015_bb0625) 1998; 12 Deng (10.1016/j.bioelechem.2019.04.015_bb0730) 2018; 367 Fraser (10.1016/j.bioelechem.2019.04.015_bb0870) 1992; 1099 Coulthard (10.1016/j.bioelechem.2019.04.015_bb0175) 1945; 39 Mano (10.1016/j.bioelechem.2019.04.015_bb0775) 2008 Keilin (10.1016/j.bioelechem.2019.04.015_bb0215) 1948; 42 Savas (10.1016/j.bioelechem.2019.04.015_bb0040) 2007; 1 Shweta (10.1016/j.bioelechem.2019.04.015_bb0275) 2013; 2 Pulci (10.1016/j.bioelechem.2019.04.015_bb0385) 2004; 38 Baron (10.1016/j.bioelechem.2019.04.015_bb0745) 2009; 106 Marcus (10.1016/j.bioelechem.2019 |
References_xml | – volume: 55 start-page: 273 year: 2007 ident: 10.1016/j.bioelechem.2019.04.015_bb0475 article-title: Secretory and continuous expression of Aspergillus niger glucose oxidase gene in Pichia pastoris publication-title: Prot. Exp. Purif. doi: 10.1016/j.pep.2007.05.006 – volume: 97 start-page: 5177 year: 2013 ident: 10.1016/j.bioelechem.2019.04.015_bb0540 article-title: Flavoprotein oxidases: Classification and applications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-4925-7 – volume: 15 start-page: 4859 year: 2013 ident: 10.1016/j.bioelechem.2019.04.015_bb1125 article-title: Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp44617d – volume: 13 start-page: 14149 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb1025 article-title: Construction of mutant glucose oxidases with increased dye-mediated dehydrogenase activity publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms131114149 – volume: 240 start-page: 2209 year: 1965 ident: 10.1016/j.bioelechem.2019.04.015_bb0655 article-title: The relationship between molecular conformation and the binding of flavin adenine dinucleotide in glucose oxidase publication-title: J. Biol. Chem doi: 10.1016/S0021-9258(18)97448-X – volume: 255 start-page: 63 year: 1989 ident: 10.1016/j.bioelechem.2019.04.015_bb0500 article-title: Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRRL-3 publication-title: FEBS Lett. doi: 10.1016/0014-5793(89)81061-0 – volume: 184 start-page: 369 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb0875 article-title: Achievement and assessment of direct electron transfer of glucose oxidase in electrochemical biosensing using carbon nanotubes, graphene, and their nanocomposites publication-title: Microchim. Acta doi: 10.1007/s00604-016-2049-3 – volume: 21 start-page: 414 year: 2014 ident: 10.1016/j.bioelechem.2019.04.015_bb0125 article-title: Ultra-high-throughput screening method for the directed evolution of glucose oxidase publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2014.01.010 – volume: 7 start-page: 6188 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb0130 article-title: Shuffling active site substate populations affects catalytic activity: the case of glucose oxidase publication-title: ACS Catalysis doi: 10.1021/acscatal.7b01575 – volume: 5 start-page: 1068 year: 2011 ident: 10.1016/j.bioelechem.2019.04.015_bb0095 article-title: Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes publication-title: J. Diabetes. Sci. Technol. doi: 10.1177/193229681100500507 – volume: 87 start-page: 305 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb1065 article-title: Novel fungal FAD glucose dehydrogenase derived from Aspergillus niger for glucose enzyme sensor strips publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.08.053 – volume: 157 start-page: 801 year: 1946 ident: 10.1016/j.bioelechem.2019.04.015_bb0210 article-title: Prosthetic group of glucose oxidase (Notatin) publication-title: Nature doi: 10.1038/157801a0 – volume: 115 start-page: 2405 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0930 article-title: How to engineer glucose oxidase for mediated electron transfer publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26785 – volume: 14 start-page: 55 year: 2011 ident: 10.1016/j.bioelechem.2019.04.015_bb0120 article-title: Ultrahigh throughput screening system for directed glucose oxidase evolution in yeast cells publication-title: Comb. Chem. High Throughput Screen. doi: 10.2174/1386207311107010055 – volume: 10 start-page: 4630 year: 1971 ident: 10.1016/j.bioelechem.2019.04.015_bb0605 article-title: Interaction of halides ions with Aspergillus niger Glucose oxidase publication-title: Biochemistry doi: 10.1021/bi00801a006 – volume: 521 start-page: 245 year: 1990 ident: 10.1016/j.bioelechem.2019.04.015_bb0300 article-title: Purification of the glycoprotein glucose oxidase from Penicillium amagasakiense by high-performance liquid chromatography publication-title: J. Chromat. doi: 10.1016/0021-9673(90)85049-2 – volume: 148 start-page: 459 year: 1943 ident: 10.1016/j.bioelechem.2019.04.015_bb0205 article-title: Notatin: an antibacterial glucose aero-dehydrogenase from Penicillium notatum Westling publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)72307-7 – volume: 44 start-page: 469 year: 1942 ident: 10.1016/j.bioelechem.2019.04.015_bb0195 article-title: Cultural characteristics of Penicillium Notatum in relation to the production of antibacterial substance publication-title: J. Bacteriol. doi: 10.1128/JB.44.4.469-477.1942 – year: 1989 ident: 10.1016/j.bioelechem.2019.04.015_bb0865 – volume: 11 start-page: 2795 year: 2010 ident: 10.1016/j.bioelechem.2019.04.015_bb0515 article-title: Effect of degree of glycosylation on charge of glucose oxidase and redox hydrogel catalytic efficiency publication-title: ChemPhysChem doi: 10.1002/cphc.201000178 – volume: 491 start-page: 154 year: 2000 ident: 10.1016/j.bioelechem.2019.04.015_bb0990 article-title: Design and construction of a potentiostat for a chemical metal-walled reactor publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00165-0 – volume: 744 start-page: 57 year: 1983 ident: 10.1016/j.bioelechem.2019.04.015_bb0370 article-title: Oxidation of glucose oxidase from Penicillium vitale by one- and two-electron acceptors publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(83)90340-0 – volume: 43 start-page: 963 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0045 article-title: Electrochemistry in diabetes management publication-title: Acc. Chem. Res. doi: 10.1021/ar9002015 – volume: 81 start-page: 35 year: 2000 ident: 10.1016/j.bioelechem.2019.04.015_bb0440 article-title: Expression of glucose oxidase by using recombinant yeast publication-title: J. Biotechnol. doi: 10.1016/S0168-1656(00)00266-2 – volume: 147 start-page: 47 year: 1943 ident: 10.1016/j.bioelechem.2019.04.015_bb0185 article-title: Penicillin B: an antibacterial substance from Penicillium notatum publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)72411-3 – volume: 55 start-page: 969 year: 1999 ident: 10.1016/j.bioelechem.2019.04.015_bb0545 article-title: 1.8 and 1.9 Ã resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes publication-title: Acta Crystal – start-page: 2221 year: 2008 ident: 10.1016/j.bioelechem.2019.04.015_bb0775 article-title: A 280 microW cm-2 biofuel cell operating at low glucose concentration publication-title: Chem Commun (Camb) doi: 10.1039/b801786g – volume: 50 start-page: 331 year: 1952 ident: 10.1016/j.bioelechem.2019.04.015_bb0220 article-title: Specificity of glucose oxidase (notatin) publication-title: Biochem. J. doi: 10.1042/bj0500331 – volume: 48 start-page: 5897 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0560 article-title: Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200902191 – volume: 165 start-page: 1448 year: 2011 ident: 10.1016/j.bioelechem.2019.04.015_bb0940 article-title: Electrochemical oxidation of glucose using mutant glucose oxidase from directed protein evolution for biosensor and biofuel cell applications publication-title: Appl. Biochem. Biotech. doi: 10.1007/s12010-011-9366-0 – volume: 12 start-page: 213 year: 2010 ident: 10.1016/j.bioelechem.2019.04.015_bb0880 article-title: Deglycosylation of glucose oxidase to improve biosensors and biofuel cells publication-title: Electrochem. Comm. doi: 10.1016/j.elecom.2009.11.027 – volume: 78 start-page: 927 year: 2008 ident: 10.1016/j.bioelechem.2019.04.015_bb0005 article-title: Glucose oxidase: natural occurrence, function, properties and industrial applications publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-008-1407-4 – volume: 12 start-page: 425 year: 1998 ident: 10.1016/j.bioelechem.2019.04.015_bb0625 article-title: Aspects of the mechanism of catalysis of glucose oxidase: a docking, molecular mechanics and quantum chemical study publication-title: J. Comput.-Aided Mol. Des. doi: 10.1023/A:1008020124326 – volume: 22 start-page: 1841 year: 2007 ident: 10.1016/j.bioelechem.2019.04.015_bb0845 article-title: Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2006.09.018 – volume: 281 start-page: 163 year: 2019 ident: 10.1016/j.bioelechem.2019.04.015_bb0145 article-title: Improving the thermostability and catalytic efficiency of glucose oxidase from Aspergillus niger by molecular evolution publication-title: Food Chem. doi: 10.1016/j.foodchem.2018.12.099 – volume: 2 start-page: 241 year: 2007 ident: 10.1016/j.bioelechem.2019.04.015_bb0935 article-title: Directed evolution of glucose oxidase from Aspergillus niger for ferrocenemethanol mediated electron transfer publication-title: Biotechnol. J. doi: 10.1002/biot.200600185 – start-page: 2116 year: 2004 ident: 10.1016/j.bioelechem.2019.04.015_bb0910 article-title: Electro-oxidation of glucose at an increased current density at a reducing potential publication-title: Chem Commun (Camb) doi: 10.1039/b408411j – volume: 811 start-page: 265 year: 1985 ident: 10.1016/j.bioelechem.2019.04.015_bb0785 article-title: Electron transfers in chemistry and biology publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4173(85)90014-X – volume: 50 start-page: 5521 year: 2011 ident: 10.1016/j.bioelechem.2019.04.015_bb0550 article-title: Probing oxygen activation sites in two flavoprotein oxidases using chloride as an oxygen surrogate publication-title: Biochem. J. doi: 10.1021/bi200388g – volume: 131 start-page: 436 year: 1985 ident: 10.1016/j.bioelechem.2019.04.015_bb0405 article-title: Lack of lignin degradation by glucose oxidase-negative mutants of Phanerochaete chrysosporium publication-title: Biochem. Biophy. Res. Comm. doi: 10.1016/0006-291X(85)91821-2 – volume: 4 start-page: 38164 year: 2014 ident: 10.1016/j.bioelechem.2019.04.015_bb0800 article-title: The influence of nanoparticles on enzymatic bioelectrocatalysis publication-title: RSC Adv. doi: 10.1039/C4RA08107B – volume: 42 start-page: 99 year: 1999 ident: 10.1016/j.bioelechem.2019.04.015_bb0225 article-title: Salivary glucose oxidase: multifunctional roles for Helicoverpa zea publication-title: Arch. Ins. Biochem. Physiol. doi: 10.1002/(SICI)1520-6327(199909)42:1<99::AID-ARCH10>3.0.CO;2-B – volume: 367 start-page: 150 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0730 article-title: The remote arginine promoting the dehydrogenation of glucose in glucose oxidase via a proton-coupled double-electron transfer mechanism publication-title: J. Catal. doi: 10.1016/j.jcat.2018.09.005 – volume: 126 start-page: 15120 year: 2004 ident: 10.1016/j.bioelechem.2019.04.015_bb0705 article-title: Oxygen isotope effects on electron transfer to O2 probed using chemically modified flavins bound to glucose oxidase publication-title: J. Am. Chem. Soc. doi: 10.1021/ja047050e – volume: 5 year: 2015 ident: 10.1016/j.bioelechem.2019.04.015_bb1070 article-title: Structural analysis of fungus-derived FAD glucose dehydrogenase publication-title: Sci. Rep. doi: 10.1038/srep13498 – volume: 10 start-page: e0144289 year: 2015 ident: 10.1016/j.bioelechem.2019.04.015_bb0150 article-title: Identification and structural analysis of amino acid substitutions that increase the stability and activity of Aspergillus niger glucose oxidase publication-title: PloS One doi: 10.1371/journal.pone.0144289 – volume: 12 start-page: 156 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0090 article-title: Self-powered bioelectrochemical devices publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.05.010 – volume: 124 start-page: 2120 year: 2002 ident: 10.1016/j.bioelechem.2019.04.015_bb0835 article-title: Electrical contacting of glucose oxidase by surface-reconstitution of the apo-protein on a relay-boronic acid-FAD cofactor monolayer publication-title: J. Am. Chem. Soc. doi: 10.1021/ja025503e – volume: 27 start-page: 489 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0010 article-title: Glucose oxidase—an overview publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2009.04.003 – volume: 14 start-page: 590 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb0760 article-title: Protein engineering in bioelectrocatalysis publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2003.09.008 – volume: 36 start-page: 760 year: 1990 ident: 10.1016/j.bioelechem.2019.04.015_bb0420 article-title: Glucose oxidase as the antifungal principle of talaron from Talaromyces flavus publication-title: Can. J. Microbiol. doi: 10.1139/m90-131 – volume: 10 start-page: 112 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0055 article-title: Long-term implantable glucose biosensors publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.05.004 – volume: 6 start-page: 1 year: 2010 ident: 10.1016/j.bioelechem.2019.04.015_bb0770 article-title: Biosensors and biofuel cells with engineered proteins publication-title: Mol. BioSyst. doi: 10.1039/c004951d – volume: 63 start-page: 51 year: 1968 ident: 10.1016/j.bioelechem.2019.04.015_bb0555 article-title: Comparative studies on the glucose oxidases of Aspergillus niger and penicillium amagasakiense publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a128747 – volume: 244 start-page: 3625 year: 1969 ident: 10.1016/j.bioelechem.2019.04.015_bb0660 article-title: The pH dependence of the individual steps in the glucose oxidase reaction publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)83415-9 – volume: 364 start-page: 325 year: 1995 ident: 10.1016/j.bioelechem.2019.04.015_bb1075 article-title: Thermostable chimeric PQQ glucose dehydrogenase publication-title: FEBS Lett doi: 10.1016/0014-5793(95)00418-9 – volume: 347 start-page: 553 year: 2000 ident: 10.1016/j.bioelechem.2019.04.015_bb0630 article-title: Conserved arginine-516 of Penicillium amagasakiense glucose oxidase is essential for the efficient binding of glucose publication-title: Biochem. J. doi: 10.1042/bj3470553 – volume: 40 start-page: 151 year: 2004 ident: 10.1016/j.bioelechem.2019.04.015_bb0355 article-title: Quartz sand as an adsorbent for purification of extracellular glucose oxidase from Penicillium funiculosum 46.1 publication-title: Appl. Biochem. Microbiol. doi: 10.1023/B:ABIM.0000018918.34739.ae – volume: 125 start-page: 4951 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb0950 article-title: Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "Wiring" hydrogels publication-title: J. Am. Chem. Soc. doi: 10.1021/ja029510e – volume: 10 start-page: 157 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0060 article-title: Enzyme based amperometric biosensors publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.06.003 – volume: 299 start-page: 1877 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb0850 article-title: Plugging into enzymes: nanowiring of redox enzymes by a gold particles publication-title: Science doi: 10.1126/science.1080664 – volume: 240 start-page: 2209 year: 1965 ident: 10.1016/j.bioelechem.2019.04.015_bb0255 article-title: Purification and properties of the glucose oxidase from Aspergillus niger publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)97448-X – volume: 229 start-page: 153 year: 1993 ident: 10.1016/j.bioelechem.2019.04.015_bb0265 article-title: Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 Ã resolution publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1015 – volume: 17 start-page: 851 year: 2002 ident: 10.1016/j.bioelechem.2019.04.015_bb0470 article-title: Genetic modification of glucose oxidase for improving performance of an amperometric glucose biosensor publication-title: Biosens. Bioelectron. doi: 10.1016/S0956-5663(02)00051-9 – volume: 150 start-page: 634 year: 1942 ident: 10.1016/j.bioelechem.2019.04.015_bb0170 article-title: Notatin: an Anti-bacterial Glucose-aerodehydrogenase from Penicillium notatum Westling publication-title: Nature doi: 10.1038/150634a0 – volume: 56 start-page: 1798 year: 2010 ident: 10.1016/j.bioelechem.2019.04.015_bb0235 article-title: Diet-specific salivary gene expression and glucose oxidase activity in Spodoptera exigua (Lepidoptera: Noctuidae) larvae publication-title: J. Ins. Physiol. doi: 10.1016/j.jinsphys.2010.07.012 – volume: 67 start-page: 460 year: 1989 ident: 10.1016/j.bioelechem.2019.04.015_bb0570 article-title: Effect of deglycosylation of N-linked sugar chains on glucose oxidase from Aspergillus niger publication-title: Biochem. Cell Biol. doi: 10.1139/o89-072 – volume: 133 start-page: 19262 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb0855 article-title: Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2071237 – start-page: 1 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0480 article-title: Cloning and heterologous expression of glucose oxidase gene from Aspergillus niger Z-25 in Pichia pastoris publication-title: Appl. Biochem. Biotech. – volume: 1 start-page: 455 year: 1985 ident: 10.1016/j.bioelechem.2019.04.015_bb0980 article-title: Glucose oxidase-immobilized benzoquinone-mixed carbon paste electrode with pre-minigrid publication-title: Anal. Sci. doi: 10.2116/analsci.1.455 – volume: 72 start-page: 4689 year: 2000 ident: 10.1016/j.bioelechem.2019.04.015_bb1090 article-title: Extended-range glucose sensor employing engineered glucose dehydrogenases publication-title: Anal. Chem. doi: 10.1021/ac000151k – volume: 56 start-page: 305 year: 2014 ident: 10.1016/j.bioelechem.2019.04.015_bb0485 article-title: Cloning, heterologous expression, purification and characterization of M12 Mutant of Aspergillus niger glucose oxidase in yeast Pichia pastoris KM71H publication-title: Mol. Biotech. doi: 10.1007/s12033-013-9709-x – volume: 9 start-page: 625 year: 1993 ident: 10.1016/j.bioelechem.2019.04.015_bb0425 article-title: Expression of the glucose oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations publication-title: Yeast doi: 10.1002/yea.320090609 – volume: 1 start-page: 167 year: 2007 ident: 10.1016/j.bioelechem.2019.04.015_bb0040 article-title: Gluconic acid production publication-title: Recent Patents Biotechnol. doi: 10.2174/187220807780809472 – volume: 6 start-page: 65 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb1130 article-title: Wearable continuous glucose monitoring sensors: a revolution in diabetes treatment publication-title: Electronics doi: 10.3390/electronics6030065 – volume: 34 start-page: 794 year: 1991 ident: 10.1016/j.bioelechem.2019.04.015_bb0395 article-title: Simultaneous production of glucose oxidase and catalase by Alternaria alternata publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00169352 – volume: 302 start-page: 270 year: 2019 ident: 10.1016/j.bioelechem.2019.04.015_bb1095 article-title: Effect of individual plasma components on the performance of a glucose enzyme electrode based on redox polymer mediation of a flavin adenine dinucleotide-dependent glucose dehydrogenase publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2019.02.039 – volume: 47 start-page: 331 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0335 article-title: Characterization of glucose oxidase from Penicillium notatum publication-title: Food Technol. Biotechnol. – volume: 21 start-page: 458 year: 1997 ident: 10.1016/j.bioelechem.2019.04.015_bb0380 article-title: Glucose oxidase overproduction by the mutant strain M-80.10 of Penicillium variabile in a benchtop fermenter publication-title: Enz. Microb. Tech. doi: 10.1016/S0141-0229(97)00024-0 – year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0790 – volume: 91 start-page: 230 year: 1960 ident: 10.1016/j.bioelechem.2019.04.015_bb0580 article-title: Specificity of glucose oxidase publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(60)90495-1 – volume: 30 start-page: 1311 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0975 article-title: An O2 tolerant polymer/glucose oxidase based bioanode as basis for a self-powered glucose sensor publication-title: Electroanalysis doi: 10.1002/elan.201700785 – volume: 38 start-page: 8572 year: 1999 ident: 10.1016/j.bioelechem.2019.04.015_bb0690 article-title: Nature of oxygen activation in glucose oxidase from Aspergillus niger: The importance of electrostatic stabilization in superoxide formation publication-title: Biochemistry doi: 10.1021/bi990044o – volume: 9 start-page: 293 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0035 article-title: Stability and stabilization of enzyme biosensors: the key to successful application and commercialization publication-title: Ann. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-030216-025713 – volume: 151 start-page: 122 year: 2011 ident: 10.1016/j.bioelechem.2019.04.015_bb0315 article-title: Recombinant glucose oxidase from Penicillium amagasakiense for efficient bioelectrochemical applications in physiological conditions publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2010.10.077 – volume: 370 start-page: 41 year: 1995 ident: 10.1016/j.bioelechem.2019.04.015_bb0460 article-title: Glycoprotein biosynthesis in Saccharomyces cerevisiae: ngd29, an N-glycosylation mutant allelic to och1 having a defect in the initiation of outer chain formation publication-title: FEBS Lett. doi: 10.1016/0014-5793(95)00789-C – volume: 51 start-page: 260 year: 2007 ident: 10.1016/j.bioelechem.2019.04.015_bb0285 article-title: Isolation, purification and characterization of a novel glucose oxidase from Penicillium sp. CBS 120262 optimally active at neutral pH publication-title: Prot. Exp. Purif. doi: 10.1016/j.pep.2006.09.013 – volume: 50 start-page: 5912 year: 2014 ident: 10.1016/j.bioelechem.2019.04.015_bb1005 article-title: Switching an O2 sensitive glucose oxidase bioelectrode into an almost insensitive by cofactor redesign publication-title: Chem. Commun. doi: 10.1039/C4CC01670J – volume: 118 start-page: 10321 year: 1996 ident: 10.1016/j.bioelechem.2019.04.015_bb0830 article-title: Electrical wiring of glucose oxidase by reconstitution of fad-modified monolayers assembled onto Au-electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9608611 – volume: 14 start-page: 2045 year: 2013 ident: 10.1016/j.bioelechem.2019.04.015_bb0070 article-title: Biofuel cells for biomedical applications: colonizing the animal kingdom publication-title: ChemPhysChem doi: 10.1002/cphc.201300044 – volume: 42 start-page: 304 year: 2006 ident: 10.1016/j.bioelechem.2019.04.015_bb0365 article-title: Isolation and characterization of extracellular glucose oxidase from Penicillium adametzii LF F-2044.1 publication-title: Appl. Biochem. Microbiol. doi: 10.1134/S000368380603015X – volume: 10 start-page: 735 year: 1995 ident: 10.1016/j.bioelechem.2019.04.015_bb0635 article-title: The design of enzyme sensors based on the enzyme structure publication-title: Biosens. Bioelectron. doi: 10.1016/0956-5663(95)96964-Z – volume: 8 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb0015 article-title: Improvement strategies, cost effective production, and potential applications of fungal glucose oxidase (GOD): current updates publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01032 – volume: 96 start-page: 3579 year: 1992 ident: 10.1016/j.bioelechem.2019.04.015_bb0900 article-title: Electrical connection of enzyme redox centers to electrodes publication-title: J Phys. Chem.B doi: 10.1021/j100188a007 – volume: 5 start-page: 66 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb0915 article-title: Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2017.06.007 – volume: 41 start-page: 8747 year: 2002 ident: 10.1016/j.bioelechem.2019.04.015_bb0755 article-title: Comparison of rates and kinetic isotope effects using PEG-modified variants and glycoforms of glucose oxidase: the relationship of modification of the protein envelope to C-H activation and tunneling publication-title: Biochemistry doi: 10.1021/bi020054g – volume: 555 start-page: 111 year: 1944 ident: 10.1016/j.bioelechem.2019.04.015_bb0165 article-title: Zur Kenntnis der sog. Glucose-oxydase. III publication-title: Just. Lieb. Annal. Chem. doi: 10.1002/jlac.19445550111 – volume: 39 start-page: 368 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb0350 article-title: Extracellular glucose oxidase of Penicillium funiculosum 46.1 publication-title: Appl. Biochem. Microbiol. doi: 10.1023/A:1024512316571 – volume: 31 start-page: 276 year: 2006 ident: 10.1016/j.bioelechem.2019.04.015_bb0685 article-title: To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes publication-title: Tr. Biochem. Sci. doi: 10.1016/j.tibs.2006.03.003 – volume: 77 start-page: 729 year: 2005 ident: 10.1016/j.bioelechem.2019.04.015_bb0960 article-title: Detection of glucose at 2 f. concentration publication-title: Anal. Chem. doi: 10.1021/ac0486746 – volume: 491 start-page: 160 year: 2000 ident: 10.1016/j.bioelechem.2019.04.015_bb0995 article-title: Part II. Potentiodynamic on-line monitoring of the concentration of glucose in metal-walled bioreactors publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00150-9 – volume: 34 start-page: 491 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb1015 article-title: Construction of engineered fructosyl peptidyl oxidase for enzyme sensor applications under normal atmospheric conditions publication-title: Biotechnol. Lett. doi: 10.1007/s10529-011-0787-1 – volume: 6 start-page: 1666 year: 2015 ident: 10.1016/j.bioelechem.2019.04.015_bb0590 article-title: Research journal of pharmaceutical, biological and chemical sciences purification, characterization, thermostability and shelf life studies of glucose oxidase from Aspergillus niger PIL7 publication-title: Res. J. Pharm. Biol. Chem. Sci. – volume: 24 start-page: 141 year: 1992 ident: 10.1016/j.bioelechem.2019.04.015_bb0435 article-title: A new production method for glucose oxidase publication-title: J. Biotechnol. doi: 10.1016/0168-1656(92)90117-R – volume: 51 start-page: 2662 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb0725 article-title: Oxygen activation in flavoprotein oxidases: the importance of being positive publication-title: Biochemistry doi: 10.1021/bi300227d – volume: 10 start-page: 226 year: 1929 ident: 10.1016/j.bioelechem.2019.04.015_bb0180 article-title: On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzæ publication-title: Br. J. Exp. Pathol. – volume: 2 start-page: 125 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb0280 article-title: Effects of selected medium components for production of glucose oxidase by a local isolate Aspergillus Terreus UniMAP AA-1 publication-title: APCBEE Proc. doi: 10.1016/j.apcbee.2012.06.023 – volume: 37 start-page: 731 year: 2005 ident: 10.1016/j.bioelechem.2019.04.015_bb0680 article-title: Glucose oxidase from Aspergillus niger: The mechanism of action with molecular oxygen, quinones, and one-electron acceptors publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2004.10.014 – volume: 265 start-page: 127 year: 1999 ident: 10.1016/j.bioelechem.2019.04.015_bb0230 article-title: Expression of amylase and glucose oxidase in the hypopharyngeal gland with an age-dependent role change of the worker honeybee (Apismellifera L.) publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1999.00696.x – volume: 38 start-page: 233 year: 2004 ident: 10.1016/j.bioelechem.2019.04.015_bb0385 article-title: The glucose oxidase of Penicillium variabile P16: gene cloning, sequencing and expression publication-title: Lett. Appl. Microbiol. doi: 10.1111/j.1472-765X.2004.01470.x – volume: 28 start-page: 1290 year: 2016 ident: 10.1016/j.bioelechem.2019.04.015_bb0925 article-title: Transparent and capacitive bioanode based on specifically engineered glucose oxidase publication-title: Electroanalysis doi: 10.1002/elan.201600096 – volume: 19 start-page: 339 year: 1996 ident: 10.1016/j.bioelechem.2019.04.015_bb0610 article-title: The production of glucose oxidase using the waste myceliums of Aspergillus niger and the effects of metal ions on the activity of glucose oxidase publication-title: Enz. Microb.Technol. doi: 10.1016/S0141-0229(96)00004-X – volume: 58 start-page: 393 year: 2014 ident: 10.1016/j.bioelechem.2019.04.015_bb0490 article-title: Production and characterization of recombinant glucose oxidase from Aspergillus niger expressed in Pichia pastoris publication-title: Lett. Appl. Microbiol. doi: 10.1111/lam.12202 – volume: 23 start-page: 128 year: 1990 ident: 10.1016/j.bioelechem.2019.04.015_bb0885 article-title: Electrical wiring of redox enzymes publication-title: Acc. Chem. Res. doi: 10.1021/ar00173a002 – volume: 265 start-page: 3793 year: 1990 ident: 10.1016/j.bioelechem.2019.04.015_bb0260 article-title: Glucose oxidase from Aspergillus niger. Cloning, gene sequence, secretion from Saccharomyces cerevisiae and kinetic analysis of a yeast-derived enzyme publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39664-4 – volume: 397 start-page: 239 year: 1987 ident: 10.1016/j.bioelechem.2019.04.015_bb0320 article-title: Application of high-performance chromatographic and electrophoretic methods to the purification and characterization of glucose oxidase and catalase from penicillium chrysogenum publication-title: J. Chrom. A doi: 10.1016/S0021-9673(01)85007-X – volume: 252 start-page: 90 year: 1998 ident: 10.1016/j.bioelechem.2019.04.015_bb0310 article-title: Glucose oxidase from Penicillium amagasakiense. Primary structure and comparison with other glucose-methanol-choline (GMC) oxidoreductases publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.1998.2520090.x – volume: 166 start-page: 269 year: 1986 ident: 10.1016/j.bioelechem.2019.04.015_bb0410 article-title: Purification and characterization of glucose oxidase from ligninolytic cultures of Phanerochaete chrysosporium publication-title: J. Bacteriol. doi: 10.1128/JB.166.1.269-274.1986 – volume: 48 start-page: 720 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb1040 article-title: Crystallographic, spectroscopic, and computational analysis of a flavin C4a−oxygen adduct in choline oxidase publication-title: Biochemistry doi: 10.1021/bi801918u – volume: 108 start-page: 2482 year: 2008 ident: 10.1016/j.bioelechem.2019.04.015_bb0050 article-title: Electrochemical glucose sensors and their applications in diabetes management publication-title: Chem. Rev. doi: 10.1021/cr068069y – volume: 148 start-page: 365 year: 1943 ident: 10.1016/j.bioelechem.2019.04.015_bb0190 article-title: Penicillin B : preparation, purification, and mode of action publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)72293-X – volume: 223 start-page: 811 year: 1992 ident: 10.1016/j.bioelechem.2019.04.015_bb0530 article-title: GMC oxidoreductases: A newly defined family of homologous proteins with diverse catalytic activities publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)90992-S – volume: 42 start-page: 457 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb1110 article-title: Flavins as covalent catalysts: new mechanisms emerge publication-title: Tr. Biochem. Sci. doi: 10.1016/j.tibs.2017.02.005 – volume: 13 start-page: 175 year: 1989 ident: 10.1016/j.bioelechem.2019.04.015_bb0030 article-title: Reduction of nonenzymatic browing in potato chips and french fries with glucose oxidase publication-title: J. Food Process. Preserv. doi: 10.1111/j.1745-4549.1989.tb00099.x – volume: 8 start-page: 203 year: 1963 ident: 10.1016/j.bioelechem.2019.04.015_bb0250 article-title: Glucose oxidase of Aspergillus niger publication-title: Folia Microbiol. doi: 10.1007/BF02872583 – volume: 17 start-page: 530 year: 1995 ident: 10.1016/j.bioelechem.2019.04.015_bb0525 article-title: Factors regulating production of glucose oxidase by Aspergillus niger publication-title: Enz. Microb.Technol. doi: 10.1016/0141-0229(95)91708-7 – volume: 2 start-page: 2700 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb1000 article-title: A two-step synthesis of 7,8-dichloro-riboflavin with high yield publication-title: RSC Adv. doi: 10.1039/c2ra01211a – volume: 260 start-page: 69 year: 2004 ident: 10.1016/j.bioelechem.2019.04.015_bb0675 article-title: The chemical mechanism of action of glucose oxidase from Aspergillus niger publication-title: Mol. Cell. Biochem. doi: 10.1023/B:MCBI.0000026056.75937.98 – volume: 95 start-page: 5970 year: 1991 ident: 10.1016/j.bioelechem.2019.04.015_bb0890 article-title: Redox polymer films containing enzymes. 1. A redox-conducting epoxy cement : synthesis, characterisation, and electrocatalytic oxidation of hydroquinone publication-title: J. Phys. Chem. doi: 10.1021/j100168a046 – volume: 47 start-page: 502 year: 1997 ident: 10.1016/j.bioelechem.2019.04.015_bb0305 article-title: Structural and biochemical properties of glycosylated and deglycosylated glucose oxidase from Penicilium amagasakiense publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530050963 – volume: 283 start-page: 24738 year: 2008 ident: 10.1016/j.bioelechem.2019.04.015_bb0735 article-title: On the oxygen reactivity of flavoprotein oxidases: an oxygen access tunnel and gate in brevibacterium sterolicum cholesterol oxidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802321200 – volume: 19 start-page: 425 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0135 article-title: Enhanced thermostability of glucose oxidase through computer-aided molecular design publication-title: Int. J. Mol. Sc. doi: 10.3390/ijms19020425 – year: 1997 ident: 10.1016/j.bioelechem.2019.04.015_bb0455 – volume: 2 start-page: 294 year: 2007 ident: 10.1016/j.bioelechem.2019.04.015_bb0345 article-title: Effect of medium composition on glucose oxidase production by Penicillium fellutanum isolated from Mangrove rhizosphere soil publication-title: Res. J. Microbiol. doi: 10.3923/jm.2007.294.298 – volume: 269 start-page: 22459 year: 1994 ident: 10.1016/j.bioelechem.2019.04.015_bb0715 article-title: Activation of molecular oxygen by flavins and flavoproteins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)31664-2 – volume: 169 start-page: 326 year: 2015 ident: 10.1016/j.bioelechem.2019.04.015_bb0805 article-title: The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.04.072 – volume: 86 start-page: 7530 year: 2014 ident: 10.1016/j.bioelechem.2019.04.015_bb0105 article-title: Determination of the pH dependent redox potential of glucose oxidase by spectroelectrochemistry publication-title: Anal. Chem. doi: 10.1021/ac501289x – volume: 25 start-page: 606 year: 2013 ident: 10.1016/j.bioelechem.2019.04.015_bb0520 article-title: Uncovering and redesigning a key amino acid of glucose oxidase for improved biotechnological applications publication-title: Electroanalysis doi: 10.1002/elan.201200482 – volume: 164 start-page: G45 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb0820 article-title: Evaluation of electron transfer in electrochemical system based on immobilized gold nanoparticles and glucose oxidase publication-title: J. Electrochem. Soc. doi: 10.1149/2.0691704jes – volume: 12 start-page: 92 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb1060 article-title: Direct electron transfer (DET) mechanism of FAD dependent dehydrogenase complexes ∼from the elucidation of intra- and inter-molecular electron transfer pathway to the construction of engineered DET enzyme complexes∼ publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.07.013 – volume: 22 start-page: 765 year: 2010 ident: 10.1016/j.bioelechem.2019.04.015_bb0765 article-title: Protein engineering – an option for enzymatic biofuel cell design publication-title: Electroanalysis doi: 10.1002/elan.200980017 – volume: 218 start-page: 425 year: 1956 ident: 10.1016/j.bioelechem.2019.04.015_bb0240 article-title: Carbohydrate oxidase from a red alga, Iridophycus flaccidum publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)65906-X – volume: 21 start-page: 2046 year: 2006 ident: 10.1016/j.bioelechem.2019.04.015_bb0450 article-title: Making glucose oxidase fit for biofuel cell applications by directed protein evolution publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2005.11.018 – volume: 126 start-page: 158 year: 2014 ident: 10.1016/j.bioelechem.2019.04.015_bb1035 article-title: Engineering glucose oxidase to minimize the influence of oxygen on sensor response publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.09.018 – volume: 42 start-page: 221 year: 1948 ident: 10.1016/j.bioelechem.2019.04.015_bb0215 article-title: Properties of glucose oxidase (notatin) publication-title: Biochem. J. doi: 10.1042/bj0420221 – volume: 39 start-page: 24 year: 1945 ident: 10.1016/j.bioelechem.2019.04.015_bb0175 article-title: Notatin: an anti-bacterial glucose-aerodehydrogenase from Penicillium notatum Westling and Penicillium resticulosum sp. nov publication-title: Biochem. J. doi: 10.1042/bj0390024 – volume: 405 start-page: 3731 year: 2013 ident: 10.1016/j.bioelechem.2019.04.015_bb0965 article-title: Interferences from oxygen reduction reactions in bioelectroanalytical measurements: the case study of nitrate and nitrite biosensors publication-title: Anal. Bioanal. Chem doi: 10.1007/s00216-013-6827-z – volume: 40 start-page: 25 year: 2004 ident: 10.1016/j.bioelechem.2019.04.015_bb0360 article-title: Production of Penicillium funiculosum 433 glucose oxidase and its properties publication-title: Appl. Biochem. Microbiol. doi: 10.1023/B:ABIM.0000010346.47923.6c – start-page: 9926536 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb1055 – volume: 64 start-page: 1405 year: 1998 ident: 10.1016/j.bioelechem.2019.04.015_bb0510 article-title: Structural and kinetic properties of nonglycosylated recombinant Penicillium amagasakiense glucose oxidase expressed in Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.4.1405-1411.1998 – volume: 76 start-page: 19 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0640 article-title: Breaking the barrier to fast electron transfer publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2009.03.006 – volume: 50 start-page: 84 year: 2013 ident: 10.1016/j.bioelechem.2019.04.015_bb1050 article-title: Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.06.029 – volume: 236 start-page: 1235 year: 1961 ident: 10.1016/j.bioelechem.2019.04.015_bb0245 article-title: Carbohydrate metabolism of citrus fruits: II. oxidation of sugars by an anerohydrogenase from young orange fruits publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)64155-9 – volume: 199 start-page: 136 year: 1928 ident: 10.1016/j.bioelechem.2019.04.015_bb0155 article-title: Oxidation von glukose mit extratkten aus Aspergillus niger publication-title: Biochem. Z. – volume: 46 start-page: 371 year: 1996 ident: 10.1016/j.bioelechem.2019.04.015_bb0505 article-title: A new glucose oxidase from Aspergillus niger: characterization and regulation studies of enzyme and gene publication-title: Appl. Microbiol. Biotechnol. – volume: 37 start-page: 373 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb1120 article-title: The enigmatic reaction of flavins with oxygen publication-title: Tr. Biochem. Sci. doi: 10.1016/j.tibs.2012.06.005 – volume: 100 start-page: 62 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb0700 article-title: Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.252644599 – volume: 12 start-page: 148 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0085 article-title: Beyond the hype surrounding biofuel cells: what's the future of enzymatic fuel cells? publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.06.006 – volume: 25 start-page: 356 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0920 article-title: An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2009.07.015 – volume: 84 start-page: 2141 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb0970 article-title: Enzyme-catalyzed O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor publication-title: Anal. Chem. doi: 10.1021/ac2020883 – volume: 1080 start-page: 138 year: 1991 ident: 10.1016/j.bioelechem.2019.04.015_bb0565 article-title: Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(91)90140-U – volume: 10 start-page: 664 year: 2006 ident: 10.1016/j.bioelechem.2019.04.015_bb0905 article-title: Electron-conducting redox hydrogels: design, characteristics and synthesis publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2006.09.018 – year: 2014 ident: 10.1016/j.bioelechem.2019.04.015_bb1030 – volume: 5 start-page: 139 year: 1966 ident: 10.1016/j.bioelechem.2019.04.015_bb0595 article-title: The effect of hydrogen peroxide on glucose oxidase from Aspergillus niger publication-title: Biochemistry doi: 10.1021/bi00865a018 – volume: 1099 start-page: 91 year: 1992 ident: 10.1016/j.bioelechem.2019.04.015_bb0870 article-title: Mediation of glycoslated and partially-deglycosylated glucose oxidase of Aspergillus niger by a ferrocene-derivatised detergent publication-title: Biochim. Biophys. Acta. doi: 10.1016/0005-2728(92)90192-5 – volume: 99 start-page: 408 year: 2006 ident: 10.1016/j.bioelechem.2019.04.015_bb0020 article-title: Glucose oxidase effect on dough rheology and bread quality: A study from macroscopic to molecular level publication-title: Food Chem. doi: 10.1016/j.foodchem.2005.07.043 – volume: 61 start-page: 502 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb0445 article-title: Expression of the Aspergillus niger glucose oxidase gene in Saccharomyces cerevisiae and its potential applications in wine production publication-title: Appl. Microbiol. Biotech. doi: 10.1007/s00253-002-1208-0 – volume: 22 start-page: 351 year: 1974 ident: 10.1016/j.bioelechem.2019.04.015_bb0330 article-title: Isolation and characterization of glcuose oxidase from mycelium and nutrient of Penicillium notatum cultures publication-title: Biochem. J. – volume: 12 start-page: 113 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0795 article-title: Gold nanoparticles in bioelectrocatalysis – the role of nanoparticle size publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2018.05.021 – volume: 13 start-page: 69 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb0600 article-title: Competitive inhibition by hydrogen peroxide produced in glucose oxidation catalyzed by glucose oxidase publication-title: Biochem. Eng. J. doi: 10.1016/S1369-703X(02)00120-1 – volume: 124 start-page: 6487 year: 2002 ident: 10.1016/j.bioelechem.2019.04.015_bb0840 article-title: Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems publication-title: J. Am. Chem. Soc. doi: 10.1021/ja012680r – volume: 819 start-page: 26 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0115 article-title: There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.06.021 – volume: 39 start-page: 1230 year: 2006 ident: 10.1016/j.bioelechem.2019.04.015_bb0390 article-title: Expression of Penicillium variabile P16 glucose oxidase gene in Pichia pastoris and characterization of the recombinant enzyme publication-title: Enz. Microb. Tech. doi: 10.1016/j.enzmictec.2006.03.005 – volume: 239 start-page: 3927 year: 1964 ident: 10.1016/j.bioelechem.2019.04.015_bb0650 article-title: Kinetics and mechanism of action of glucose oxidase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)91224-X – volume: 40 start-page: 555 year: 1960 ident: 10.1016/j.bioelechem.2019.04.015_bb0295 article-title: Crystallization of glucose oxidase from Penicillium amagasakiense publication-title: Biochim. Biophys. Acta doi: 10.1016/0006-3002(60)91406-2 – volume: 326 start-page: 1635 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb1020 article-title: Sub-atomic resolution crystal structure of cholesterol oxidase: what atomic resolution crystallography reveals about enzyme mechanism and the role of the FAD cofactor in redox activity publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(03)00054-8 – volume: 118 start-page: 2392 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0080 article-title: O2 reduction in enzymatic biofuel cells publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00220 – volume: 91 start-page: 1540 year: 2016 ident: 10.1016/j.bioelechem.2019.04.015_bb0270 article-title: Producing Aspergillus tubingensis CTM507 Glucose oxidase by Solid state fermentation versus submerged fermentation: process optimization and enzyme stability by an intermediary metabolite in relation with diauxic growth publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4753 – volume: 76 start-page: 91 year: 2016 ident: 10.1016/j.bioelechem.2019.04.015_bb0075 article-title: Enzymatic biofuel cells: 30 years of critical advancements publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.06.029 – year: 1993 ident: 10.1016/j.bioelechem.2019.04.015_bb0645 – volume: 82 start-page: vii year: 2016 ident: 10.1016/j.bioelechem.2019.04.015_bb0110 article-title: Native glucose oxidase does not undergo direct electron transfer publication-title: Biosens. Bioelectron doi: 10.1016/j.bios.2016.04.083 – volume: 215 start-page: 747 year: 1993 ident: 10.1016/j.bioelechem.2019.04.015_bb0415 article-title: Purification and characterisation of d-glucose oxidase from white-rot fungus Pleurotus ostreatus publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1993.tb18088.x – volume: 284 start-page: 4392 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0740 article-title: Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808202200 – volume: 127 start-page: 30 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0140 article-title: Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase publication-title: J. Biosc. Bioeng. doi: 10.1016/j.jbiosc.2018.07.002 – volume: 3 start-page: 903 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0945 article-title: Factors affecting blood glucose monitoring: sources of errors in measurement publication-title: J. Diabet. Sc.Technol. doi: 10.1177/193229680900300438 – volume: 97 start-page: 1201 year: 2004 ident: 10.1016/j.bioelechem.2019.04.015_bb0325 article-title: Penicillium chrysogenum glucose oxidase – a study on its antifungal effects publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2004.02423.x – volume: 22 start-page: 10 year: 2005 ident: 10.1016/j.bioelechem.2019.04.015_bb0340 article-title: Purification of glucose oxidase and catalase produced by the apple blue mold, Penicillium expansum O-385-10, and their characteristics including the browning of apple fruit publication-title: Jpn. J. Food Microbiol. doi: 10.5803/jsfm.22.10 – volume: 7 start-page: 165 year: 1992 ident: 10.1016/j.bioelechem.2019.04.015_bb0100 article-title: Glucose oxidase: an ideal enzyme publication-title: Biosens. Bioelectron. doi: 10.1016/0956-5663(92)87013-F – volume: 1 start-page: 347 year: 2019 ident: 10.1016/j.bioelechem.2019.04.015_bb0810 article-title: Enzymatic self-wiring in nanopores and its application in direct electron transfer biofuel cells publication-title: Nanoscale Adv. doi: 10.1039/C8NA00177D – volume: 4 start-page: 2520 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb1045 article-title: Designing an O2-insensitive glucose oxidase for improved electrochemical applications publication-title: ChemElectroChem doi: 10.1002/celc.201700646 – volume: 18 start-page: 531 year: 1990 ident: 10.1016/j.bioelechem.2019.04.015_bb0430 article-title: Expression of the Aspergillus niger glucose oxidase gene in A. niger, A. nidulans and Saccharomyces cerevisiae publication-title: Curr. Gen. doi: 10.1007/BF00327024 – volume: 6 start-page: 1 year: 2001 ident: 10.1016/j.bioelechem.2019.04.015_bb0695 article-title: Life as aerobes: are there simple rules for activation of dioxygen by enzymes? publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s007750000172 – volume: 25 start-page: 126 year: 2000 ident: 10.1016/j.bioelechem.2019.04.015_bb0535 article-title: Flavoenzymes: diverse catalysts with recurrent features publication-title: Tr. Biochem. Sci. doi: 10.1016/S0968-0004(99)01533-9 – volume: 541 start-page: 117 year: 1939 ident: 10.1016/j.bioelechem.2019.04.015_bb0160 article-title: Zur Kenntnis der sog. Glucose-oxydase. II publication-title: Just. Lieb. Annal. Chem. doi: 10.1002/jlac.19395410107 – volume: 376 start-page: 672 year: 1995 ident: 10.1016/j.bioelechem.2019.04.015_bb0825 article-title: Improving enzyme–electrode contacts by redox modification of cofactors publication-title: Nature doi: 10.1038/376672a0 – volume: 19 start-page: 1 year: 2018 ident: 10.1016/j.bioelechem.2019.04.015_bb0495 article-title: Expression, characterization and one step purification of heterologous glucose oxidase gene from Aspergillus niger ATCC 9029 in Pichia pastoris publication-title: EuPA Open Proteomics doi: 10.1016/j.euprot.2018.09.001 – volume: 253 start-page: 4971 year: 1978 ident: 10.1016/j.bioelechem.2019.04.015_bb0670 article-title: Determination of glucose oxidase oxidation-reduction potentials and the oxygen reactivity of fully reduced and semiquinoid forms publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)34643-4 – volume: 36 start-page: 2603 year: 1997 ident: 10.1016/j.bioelechem.2019.04.015_bb0750 article-title: Effects of protein glycosylation on catalysis: changes in hydrogen tunneling and enthalpy of activation in the glucose oxidase reaction publication-title: Biochemistry doi: 10.1021/bi962492r – volume: 48 start-page: 34 year: 1997 ident: 10.1016/j.bioelechem.2019.04.015_bb0290 article-title: Production, purification and characterization of glucose oxidase from a newly isolated strain of Penicillium pinophilum publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051011 – volume: 124 start-page: 18022 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb1105 article-title: High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307390x – volume: 24 start-page: 966 year: 1956 ident: 10.1016/j.bioelechem.2019.04.015_bb0780 article-title: On the theory of oxidation-reduction reactions involving electron transfer publication-title: J. Chem. Phys. doi: 10.1063/1.1742723 – volume: 22 start-page: 169 year: 1995 ident: 10.1016/j.bioelechem.2019.04.015_bb0375 article-title: Production, purification and characterization of glucose oxidase from Penicillium variabile P16 publication-title: Biotech. Appl. Biochem. – volume: 41 start-page: 7142 year: 2002 ident: 10.1016/j.bioelechem.2019.04.015_bb0620 article-title: Divalent cation induced changes in structural propertie sof the dimeric enzyme glucose oxidase: duel effect of dimer stabilization and dissociaion with loss of cooperative interactions in enzyme monomer publication-title: Biochemistry doi: 10.1021/bi020080e – volume: 213 start-page: 207 year: 1990 ident: 10.1016/j.bioelechem.2019.04.015_bb0575 article-title: Crystallization and preliminary X-ray diffraction studies of a deglycosylated glucose oxidase from Aspergillus niger publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80179-2 – volume: 3 start-page: 578 year: 1964 ident: 10.1016/j.bioelechem.2019.04.015_bb0585 article-title: The oxidation of glucose and related compounds by glucose oxidase from Aspergillus niger publication-title: Biochemistry doi: 10.1021/bi00892a018 – start-page: 4408 year: 2017 ident: 10.1016/j.bioelechem.2019.04.015_bb1085 article-title: A high power buckypaper biofuel cell: exploiting 1,10-phenanthroline-5,6-dione with FAD-dependent dehydrogenase for catalytically-powerful glucose oxidation publication-title: ACS Catalysis doi: 10.1021/acscatal.7b00738 – volume: 21 start-page: 631 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb1115 article-title: Plugging metal connectors into enzymes publication-title: Nat. Biotechnol. doi: 10.1038/nbt0603-631 – volume: 106 start-page: 10603 year: 2009 ident: 10.1016/j.bioelechem.2019.04.015_bb0745 article-title: Multiple pathways guide oxygen diffusion into flavoenzyme active sites publication-title: PNAS doi: 10.1073/pnas.0903809106 – volume: 3 start-page: 1884 year: 2016 ident: 10.1016/j.bioelechem.2019.04.015_bb0955 article-title: Facilitated electron hopping in nanolayer oxygen-insensitive glucose biosensor for application in a complex matrix publication-title: ChemElectroChem doi: 10.1002/celc.201600357 – volume: 95 start-page: 2261 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb0025 article-title: Probiotic yogurts manufactured with increased glucose oxidase levels: Postacidification, proteolytic patterns, survival of probiotic microorganisms, production of organic acid and aroma compounds publication-title: J. Dairy Sci. doi: 10.3168/jds.2011-4582 – volume: 7 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb0860 article-title: Rational redesign of glucose oxidase for improved catalytic function and stability publication-title: PLOS ONE doi: 10.1371/journal.pone.0037924 – start-page: 1945 year: 2001 ident: 10.1016/j.bioelechem.2019.04.015_bb0615 article-title: Monovalent cation-Induced conformational chnage in glucose oxidase leading to a stabilization of the enzyme publication-title: Biochemistry doi: 10.1021/bi001933a – volume: 84 start-page: 223 year: 2012 ident: 10.1016/j.bioelechem.2019.04.015_bb0065 article-title: Enzymatic fuel cells: recent progress Electrochim publication-title: Acta. – volume: 17 start-page: 400 year: 2001 ident: 10.1016/j.bioelechem.2019.04.015_bb0465 article-title: Cloning and expression of Aspergillus niger glucose oxidase gene in methylotrophic yeast publication-title: Chin. J. biotechnol. – volume: 40 start-page: 325 year: 2007 ident: 10.1016/j.bioelechem.2019.04.015_bb0710 article-title: How do enzymes activates oxygen without inactivating themselves publication-title: Acc. Chem. Res. doi: 10.1021/ar6000507 – volume: 53 start-page: 123 year: 1998 ident: 10.1016/j.bioelechem.2019.04.015_bb0400 article-title: Purification and characterization of glucose oxidase of Botrytis cinerea publication-title: Physiol. Mol. Plant Path. doi: 10.1006/pmpp.1998.0168 – volume: 6 start-page: 147 year: 2019 ident: 10.1016/j.bioelechem.2019.04.015_bb0815 article-title: Direct electron transfer between glucose oxidase and gold nanoparticles; when size matters publication-title: ChemElectroChem doi: 10.1002/celc.201801091 – volume: 106 start-page: 56 year: 2015 ident: 10.1016/j.bioelechem.2019.04.015_bb1080 article-title: Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2015.04.005 – volume: 9 start-page: 577 year: 1994 ident: 10.1016/j.bioelechem.2019.04.015_bb1100 article-title: Monitoring the activity of glucose oxidase during the cultivation of Aspergillus niger using novel amperometric sensor with 1, 1′-dimethylferricinium as a mediator publication-title: Biosens. Bioelectron. doi: 10.1016/0956-5663(94)80050-2 – volume: 97 start-page: 186 year: 1943 ident: 10.1016/j.bioelechem.2019.04.015_bb0200 article-title: Purification and properties of the second antibacterial substance produced by Penicillium notatum publication-title: Science doi: 10.1126/science.97.2512.186 – volume: 1647 start-page: 173 year: 2003 ident: 10.1016/j.bioelechem.2019.04.015_bb0720 article-title: A theoretical study of dioxygen activation by glucose oxidase and copper amine oxidase publication-title: Biochim. Biophys. Acta. doi: 10.1016/S1570-9639(03)00090-6 – volume: 95 start-page: 5976 year: 1991 ident: 10.1016/j.bioelechem.2019.04.015_bb0895 article-title: Redox polymer films containing enzymes. 2. glucose oxidase containing enzymes electrodes publication-title: J. Phys. Chem. doi: 10.1021/j100168a047 – volume: 32 start-page: 1123 year: 2010 ident: 10.1016/j.bioelechem.2019.04.015_bb1010 article-title: Engineering of dye-mediated dehydrogenase property of fructosyl amino acid oxidases by site-directed mutagenesis studies of its putative proton relay system publication-title: Biotechnol. Lett. doi: 10.1007/s10529-010-0267-z – volume: 2 start-page: 153 year: 2013 ident: 10.1016/j.bioelechem.2019.04.015_bb0275 article-title: Isolation and charecterization of Glucose Oxidase (GOD) from Aspergillus flavus and Penicillium sp publication-title: Int. J. Curr. Microbiol. Appl. Sci. – volume: 246 start-page: 2734 year: 1971 ident: 10.1016/j.bioelechem.2019.04.015_bb0665 article-title: The glucose oxidase mechanism: interpretation of the pH dependence publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)62246-X – volume: 63 start-page: 2268 year: 1991 ident: 10.1016/j.bioelechem.2019.04.015_bb0985 article-title: Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels publication-title: Anal. Chem. doi: 10.1021/ac00020a014 |
SSID | ssj0008175 |
Score | 2.5327263 |
SecondaryResourceType | review_article |
Snippet | There is still a growing interest in developing glucose sensors using glucose oxidase. Since 2012, over 1000 papers are published every year, while efficient... |
SourceID | hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 218 |
SubjectTerms | Biocompatibility Catalysis Chemical Sciences Electrochemistry Electron transfer Enzymes Glucose Glucose oxidase Mutation Reengineering Screening Sensitivity Sensors |
Title | Engineering glucose oxidase for bioelectrochemical applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31030174 https://www.proquest.com/docview/2264155105 https://www.proquest.com/docview/2216775828 https://hal.science/hal-02121438 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD5inYC9TLBxKRsoIMQL6pTUbmI_oVCBKrQhhDapb5GTuNommkyQIdiv3zm-pAl00uAlimzHaf2d2J99bgCvlchxnRSkGlxQCrNcjlSoKB9xQY4-eczMgf7R53h2wj_NJ_NVqkPjXdLkB8XVWr-S_0EVyxBX8pL9B2TbTrEA7xFfvCLCeL0Vxp1ggm-97Xn966zElcmaYZ7VLs1N0cYF6CisewrdflNKAUfkM11SIIXSSc3KObhzgHCkTPZuK1Oqd4xAnkvCHyNoO_UJ3E8iG5r35kbnue1nN7F21rUHAOcH7l_hzySbOWliyFpnzQ4YF0uDhslvFtkMPX9EvPZVG7A5RvI_HsBmOv16-KVdYQVyHmeVZW311r94C-75rnqsY-OUbF5v2lAYYnH8ALbdjiBILbwP4Y6udmA3rVRTL38HbwJjo2uUHztw972_uz_1MO3Cu44cBE4OAicHAcpB8LccBF05eAQnHz8cT2cjlxhjVHDJmtFE5bnQoS7HJdI5hju-kimuWahliYxclTwsmFBJUugxm-i4ULHknCcFF4olmrHHMKjqSj-FQMRsEUXJgqt4wXkscxEiwZSinMQyUkoOIfEDlxUuajwlL_mWefPA82w1-hmNfhbyDEd_CFH75IWNnHKLZ14hNm1zCn0-Sw8zKqNUBMjtxc9oCPseusx9jD8y8gcn9h9iHy_basSB9F-q0vUltYniJCE98RCeWMjbV3lBeXZjzR5srb6bfRg03y_1cySkTf7Cyec1BqSJOQ |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+glucose+oxidase+for+bioelectrochemical+applications&rft.jtitle=Bioelectrochemistry+%28Amsterdam%2C+Netherlands%29&rft.au=Mano%2C+Nicolas&rft.date=2019-08-01&rft.eissn=1878-562X&rft.volume=128&rft.spage=218&rft_id=info:doi/10.1016%2Fj.bioelechem.2019.04.015&rft_id=info%3Apmid%2F31030174&rft.externalDocID=31030174 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-5394&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-5394&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-5394&client=summon |