Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains

Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied...

Full description

Saved in:
Bibliographic Details
Published inMicrobial cell factories Vol. 16; no. 1; pp. 63 - 16
Main Authors Cheng, Peng, Liu, Bo, Su, Yi, Hu, Yao, Hong, Yahui, Yi, Xinxin, Chen, Lei, Su, Shengying, Chu, Jeffrey S. C., Chen, Nansheng, Xiong, Xingyao
Format Journal Article
LanguageEnglish
Published England BioMed Central 19.04.2017
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels.
AbstractList Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases.BACKGROUNDEfficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases.We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies.RESULTSWe isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies.This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels.CONCLUSIONSThis study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels.
Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels.
Abstract Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. Results We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. Conclusions This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels.
Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. Results We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. Conclusions This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels.
ArticleNumber 63
Author Su, Yi
Chu, Jeffrey S. C.
Chen, Nansheng
Liu, Bo
Hu, Yao
Chen, Lei
Xiong, Xingyao
Cheng, Peng
Hong, Yahui
Su, Shengying
Yi, Xinxin
Author_xml – sequence: 1
  givenname: Peng
  surname: Cheng
  fullname: Cheng, Peng
– sequence: 2
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
– sequence: 3
  givenname: Yi
  surname: Su
  fullname: Su, Yi
– sequence: 4
  givenname: Yao
  surname: Hu
  fullname: Hu, Yao
– sequence: 5
  givenname: Yahui
  surname: Hong
  fullname: Hong, Yahui
– sequence: 6
  givenname: Xinxin
  surname: Yi
  fullname: Yi, Xinxin
– sequence: 7
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
– sequence: 8
  givenname: Shengying
  surname: Su
  fullname: Su, Shengying
– sequence: 9
  givenname: Jeffrey S. C.
  surname: Chu
  fullname: Chu, Jeffrey S. C.
– sequence: 10
  givenname: Nansheng
  surname: Chen
  fullname: Chen, Nansheng
– sequence: 11
  givenname: Xingyao
  surname: Xiong
  fullname: Xiong, Xingyao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28420406$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQQC1URD_gB3BBkbhwCXhiO7YvSKiCUqkSl3K2Jo6z8SqJi-1ttf8ep1uqtgdOHtlvnmbGc0qOlrA4Qt4D_Qyg2i8JGs14TUHWtFW0bl6RE-BS1I0S-uhJfExOU9rSAirJ3pDjRvGGctqekP7CLWH2NlV-SX4z5jXIoer9MLjollxZN02h8yG5atz3MUz75FOFNvtbn71b-Srfheo6ejuG3sUZqxFnzLu5Sjli8b4lrwecknv3cJ6R3z--X5__rK9-XVyef7uqLdcs13ygrJEcUMlWKbRtg1oPg-IMKO1l29pW9tw12IGQTPTMAQWOYEFw0Q2anZHLg7cPuDU30c8Y9yagN_cXIW4Mxuzt5EyHHdfYNUMHmlulFAimEXgntZACaHF9Pbhudt3seltGEXF6Jn3-svjRbMKtKR4h9Sr49CCI4c_OpWxmn9Zh4uLCLhlQSpeemGIF_fgC3YZdXMqoCqWFYqK9F354WtFjKf8-swBwAGwMKUU3PCJAzbow5rAwpuyBWRfGNCVHvsixPmP2YW3KT__J_Avw9cUt
CitedBy_id crossref_primary_10_3390_microorganisms9081680
crossref_primary_10_3389_ffunb_2022_1002161
crossref_primary_10_1016_j_enzmictec_2023_110318
crossref_primary_10_1016_j_procbio_2017_08_005
crossref_primary_10_3390_jof9100994
Cites_doi 10.1128/JB.73.2.269-278.1957
10.1021/jf001001d
10.1093/nar/gkr987
10.1146/annurev-phyto-082712-102353
10.1111/j.1432-1033.1992.tb17161.x
10.1074/jbc.M114.587766
10.1007/s13225-013-0273-2
10.1093/nar/30.7.1575
10.1016/j.ab.2005.01.052
10.1186/1479-7364-4-4-271
10.1128/genomeA.00647-15
10.1016/S0960-8524(00)00150-4
10.1007/BF01027817
10.1007/s00253-005-1904-7
10.1002/bit.20286
10.1093/oxfordjournals.jbchem.a022343
10.1111/j.1462-2920.2004.00574.x
10.1093/nar/gkp931
10.1186/s13068-015-0202-6
10.2478/jppr-2013-0002
10.1089/ind.2013.0016
10.1038/nature04300
10.1186/gb-2011-12-4-r40
10.1534/genetics.105.044057
10.7717/peerj.2023
10.1093/bioinformatics/btm071
10.1016/0003-2697(84)90843-1
10.1186/s13568-014-0090-3
10.1023/A:1008753629207
10.1002/pmic.201200063
10.1038/nbt1403
10.1016/j.biortech.2005.10.025
10.4155/bfs.10.1
10.1111/j.1574-6968.2012.02665.x
10.1093/nar/gkt1178
10.1038/nrmicro2637
10.1093/bioinformatics/btr342
10.1007/BF00128668
10.1002/bit.20783
10.1042/bj2900205
10.1007/s13353-012-0093-1
10.1093/nar/gkt953
10.1016/j.fgb.2012.02.004
10.1016/j.nbt.2009.09.008
10.3389/fpls.2013.00258
10.1186/1754-6834-6-127
10.1186/1471-2091-11-32
ContentType Journal Article
Copyright Copyright BioMed Central 2017
The Author(s) 2017
Copyright_xml – notice: Copyright BioMed Central 2017
– notice: The Author(s) 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7T7
7U9
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12934-017-0680-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1475-2859
EndPage 16
ExternalDocumentID oai_doaj_org_article_bab49ab2fb194c8881539a14b7957510
PMC5395790
28420406
10_1186_s12934_017_0680_2
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2015NK3005
– fundername: ;
  grantid: 31570372
– fundername: ;
  grantid: 15B112
– fundername: ;
  grantid: 15KFXM13
– fundername: ;
  grantid: 2016JJ3074
– fundername: ;
  grantid: kh1601179
GroupedDBID ---
0R~
123
29M
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SCM
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
-58
-5G
-A0
-BR
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
FRP
NPM
7QL
7T7
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c493t-4f032741a87688ac62a99ff843100d766c67d4e2ab15735d3e1014a1c1545bf93
IEDL.DBID M48
ISSN 1475-2859
IngestDate Wed Aug 27 01:20:32 EDT 2025
Thu Aug 21 14:13:23 EDT 2025
Tue Aug 05 09:17:10 EDT 2025
Fri Jul 25 19:20:08 EDT 2025
Wed Feb 19 02:13:57 EST 2025
Tue Jul 01 02:30:20 EDT 2025
Thu Apr 24 22:53:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Comparative genomics
β-Glucosidase
Genetic diversity
Cellobiose
Trichoderma hamatum
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-4f032741a87688ac62a99ff843100d766c67d4e2ab15735d3e1014a1c1545bf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12934-017-0680-2
PMID 28420406
PQID 1895835690
PQPubID 42699
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_bab49ab2fb194c8881539a14b7957510
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5395790
proquest_miscellaneous_1889766383
proquest_journals_1895835690
pubmed_primary_28420406
crossref_primary_10_1186_s12934_017_0680_2
crossref_citationtrail_10_1186_s12934_017_0680_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-19
PublicationDateYYYYMMDD 2017-04-19
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Microbial cell factories
PublicationTitleAlternate Microb Cell Fact
PublicationYear 2017
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References A Levasseur (680_CR27) 2010; 11
R Bischof (680_CR42) 2013; 6
D Martinez (680_CR24) 2008; 26
RY Sun (680_CR25) 2012; 53
D Kattner (680_CR18) 1990; 161
CP Kubicek (680_CR22) 2011; 12
Y Yanbin (680_CR54) 2012; 40
SP George (680_CR45) 2001; 77
SA El-Hassan (680_CR19) 2013; 53
G Parra (680_CR26) 2007; 23
J Besemer (680_CR53) 2001; 29
R James (680_CR40) 2010; 67
HJ Bussink (680_CR6) 1992; 208
PK Mukherjee (680_CR10) 2013; 51
PT Sanatan (680_CR3) 2013; 14
Y Baba (680_CR5) 2015; 5
HJ Shin (680_CR46) 1996; 18
S Takashima (680_CR49) 1999; 125
IS Druzhinina (680_CR52) 2012; 49
SR Patil (680_CR7) 2006; 97
KC And (680_CR44) 1996; 34
YC Chuang (680_CR16) 2015; 8
CR Thornton (680_CR41) 2004; 6
H Toyama (680_CR20) 2013; 52
C Lange (680_CR31) 2016; 4
L Hantsch (680_CR43) 2014; 66
ND Rawlings (680_CR37) 2012; 40
J He (680_CR4) 2010; 10
Z Xiao (680_CR47) 2004; 88
AJ Enright (680_CR57) 2002; 30
LDS Castro (680_CR1) 2014; 7
SM Beitel (680_CR13) 2013; 9
V Seidl (680_CR12) 2010; 1
VL Do (680_CR33) 2012; 12
M Kanauchi (680_CR34) 2001; 49
IS Druzhinina (680_CR11) 2012; 337
T Fang (680_CR2) 2009; 27
Z Xiao (680_CR48) 2005; 342
MV Deshpande (680_CR50) 1984; 138
A Berlin (680_CR28) 2006; 93
Y Elad (680_CR35) 1999; 105
R Baroncelli (680_CR23) 2015; 3
G Ostlund (680_CR55) 2010; 38
M Mandels (680_CR9) 1957; 73
ND Rawlings (680_CR32) 2014; 42
ML Polizeli (680_CR8) 2005; 67
L Vincent (680_CR38) 2014; 42
IS Druzhinina (680_CR39) 2011; 9
SJB Duff (680_CR15) 1985; 7
R She (680_CR56) 2011; 27
P Cheng (680_CR17) 2015; 17
DJ Studholme (680_CR21) 2013; 4
M Machida (680_CR29) 2005; 438
ND Rawlings (680_CR36) 1993; 290
S Karkehabadi (680_CR14) 2014; 289
Y Li (680_CR51) 2010; 4
VH Ambro (680_CR30) 2005; 171
20511140 - Hum Genomics. 2010 Apr;4(4):271-7
11272024 - Bioresour Technol. 2001 Apr;77(2):171-5
27190719 - PeerJ. 2016 May 12;4:e2023
24229392 - BMC Biochem. 2013 Nov 14;14:32
20490603 - Cell Mol Life Sci. 2010 Oct;67(20):3389-405
21501500 - Genome Biol. 2011;12(4):R40
25729429 - Biotechnol Biofuels. 2015 Feb 25;8:30
10101286 - J Biochem. 1999 Apr;125(4):728-36
26067977 - Genome Announc. 2015 Jun 11;3(3):null
15965245 - Genetics. 2005 Dec;171(4):1455-61
25642400 - AMB Express. 2015 Jan 24;5(1):3
1511691 - Eur J Biochem. 1992 Aug 15;208(1):83-90
11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84
24016404 - Biotechnol Biofuels. 2013 Sep 09;6(1):127
6430117 - Anal Biochem. 1984 May 1;138(2):481-7
15958198 - Anal Biochem. 2005 Jul 1;342(1):176-8
22528042 - J Appl Genet. 2012 Aug;53(3):343-54
22745025 - Proteomics. 2012 Aug;12(17):2716-28
25164811 - J Biol Chem. 2014 Nov 7;289(45):31624-37
21653517 - Bioinformatics. 2011 Aug 1;27(15):2141-3
22645317 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51
24157837 - Nucleic Acids Res. 2014 Jan;42(Database issue):D503-9
15008811 - Environ Microbiol. 2004 Apr;6(4):323-34
16345088 - Biotechnol Bioeng. 2006 Apr 5;93(5):880-6
11410670 - Nucleic Acids Res. 2001 Jun 15;29(12):2607-18
23908658 - Front Plant Sci. 2013 Jul 30;4:258
24655731 - Biotechnol Biofuels. 2014 Mar 21;7(1):41
16337373 - Bioresour Technol. 2006 Dec;97(18):2340-4
11262045 - J Agric Food Chem. 2001 Feb;49(2):883-7
24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
23915132 - Annu Rev Phytopathol. 2013;51:105-29
19892828 - Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203
17332020 - Bioinformatics. 2007 May 1;23(9):1061-7
20735824 - BMC Biochem. 2010 Aug 24;11:32
22924408 - FEMS Microbiol Lett. 2012 Dec;337(1):1-9
21861877 - Microb Cell Fact. 2011 Aug 23;10:68
16372010 - Nature. 2005 Dec 22;438(7071):1157-61
15459905 - Biotechnol Bioeng. 2004 Dec 30;88(7):832-7
15012533 - Annu Rev Phytopathol. 1996;34:29-50
18454138 - Nat Biotechnol. 2008 May;26(5):553-60
19800041 - N Biotechnol. 2010 Feb 28;27(1):25-32
15944805 - Appl Microbiol Biotechnol. 2005 Jun;67(5):577-91
22086950 - Nucleic Acids Res. 2012 Jan;40(Database issue):D343-50
13416182 - J Bacteriol. 1957 Feb;73(2):269-78
8439290 - Biochem J. 1993 Feb 15;290 ( Pt 1):205-18
22405896 - Fungal Genet Biol. 2012 May;49(5):358-68
21921934 - Nat Rev Microbiol. 2011 Sep 16;9(10):749-59
References_xml – volume: 73
  start-page: 269
  year: 1957
  ident: 680_CR9
  publication-title: J Bacteriol
  doi: 10.1128/JB.73.2.269-278.1957
– volume: 49
  start-page: 883
  issue: 2
  year: 2001
  ident: 680_CR34
  publication-title: J Agric Food Chem
  doi: 10.1021/jf001001d
– volume: 40
  start-page: 343
  year: 2012
  ident: 680_CR37
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr987
– volume: 51
  start-page: 105
  issue: 1
  year: 2013
  ident: 680_CR10
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev-phyto-082712-102353
– volume: 40
  start-page: 445
  year: 2012
  ident: 680_CR54
  publication-title: Nucleic Acids Res
– volume: 208
  start-page: 83
  issue: 1
  year: 1992
  ident: 680_CR6
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1992.tb17161.x
– volume: 289
  start-page: 31624
  issue: 45
  year: 2014
  ident: 680_CR14
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.587766
– volume: 66
  start-page: 1
  issue: 1
  year: 2014
  ident: 680_CR43
  publication-title: Fungal Divers
  doi: 10.1007/s13225-013-0273-2
– volume: 30
  start-page: 1575
  issue: 7
  year: 2002
  ident: 680_CR57
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/30.7.1575
– volume: 10
  start-page: 68
  issue: 47
  year: 2010
  ident: 680_CR4
  publication-title: Microb Cell Fact
– volume: 342
  start-page: 176
  issue: 1
  year: 2005
  ident: 680_CR48
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2005.01.052
– volume: 29
  start-page: 2607
  issue: 12
  year: 2001
  ident: 680_CR53
  publication-title: Am Bank
– volume: 4
  start-page: 271
  issue: 4
  year: 2010
  ident: 680_CR51
  publication-title: Hum Genom
  doi: 10.1186/1479-7364-4-4-271
– volume: 3
  start-page: 1
  issue: 3
  year: 2015
  ident: 680_CR23
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00647-15
– volume: 77
  start-page: 171
  issue: 2
  year: 2001
  ident: 680_CR45
  publication-title: Bioresour Technol
  doi: 10.1016/S0960-8524(00)00150-4
– volume: 7
  start-page: 185
  year: 1985
  ident: 680_CR15
  publication-title: Biotechnol Lett
  doi: 10.1007/BF01027817
– volume: 67
  start-page: 577
  issue: 5
  year: 2005
  ident: 680_CR8
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-005-1904-7
– volume: 88
  start-page: 832
  issue: 7
  year: 2004
  ident: 680_CR47
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.20286
– volume: 125
  start-page: 728
  issue: 4
  year: 1999
  ident: 680_CR49
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a022343
– volume: 6
  start-page: 323
  issue: 4
  year: 2004
  ident: 680_CR41
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2004.00574.x
– volume: 38
  start-page: 196
  year: 2010
  ident: 680_CR55
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp931
– volume: 14
  start-page: 1
  issue: 22
  year: 2013
  ident: 680_CR3
  publication-title: BMC Biochem
– volume: 8
  start-page: 1
  issue: 1
  year: 2015
  ident: 680_CR16
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-015-0202-6
– volume: 34
  start-page: 29
  issue: 34
  year: 1996
  ident: 680_CR44
  publication-title: Annu Rev Phytopathol
– volume: 53
  start-page: 12
  issue: 1
  year: 2013
  ident: 680_CR19
  publication-title: J Plant Prot Res
  doi: 10.2478/jppr-2013-0002
– volume: 9
  start-page: 103
  year: 2013
  ident: 680_CR13
  publication-title: Ind Biotechnol
  doi: 10.1089/ind.2013.0016
– volume: 52
  start-page: 934
  issue: 5
  year: 2013
  ident: 680_CR20
  publication-title: Manag Decis
– volume: 438
  start-page: 1157
  issue: 7071
  year: 2005
  ident: 680_CR29
  publication-title: Nature
  doi: 10.1038/nature04300
– volume: 12
  start-page: 81
  issue: 4
  year: 2011
  ident: 680_CR22
  publication-title: Genome Biol
  doi: 10.1186/gb-2011-12-4-r40
– volume: 17
  start-page: 987
  issue: 6
  year: 2015
  ident: 680_CR17
  publication-title: Int J Agric Biol
– volume: 171
  start-page: 1455
  issue: 4
  year: 2005
  ident: 680_CR30
  publication-title: Genetics
  doi: 10.1534/genetics.105.044057
– volume: 67
  start-page: 3389
  issue: 67
  year: 2010
  ident: 680_CR40
  publication-title: Cell Mol Life Sci
– volume: 4
  start-page: e2023
  issue: 5
  year: 2016
  ident: 680_CR31
  publication-title: PeerJ
  doi: 10.7717/peerj.2023
– volume: 161
  start-page: 1
  year: 1990
  ident: 680_CR18
  publication-title: Allgemeine Forst Und Jagdzeitung
– volume: 23
  start-page: 1061
  issue: 9
  year: 2007
  ident: 680_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm071
– volume: 138
  start-page: 481
  issue: 2
  year: 1984
  ident: 680_CR50
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(84)90843-1
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 680_CR5
  publication-title: AMB Express
  doi: 10.1186/s13568-014-0090-3
– volume: 105
  start-page: 177
  issue: 105
  year: 1999
  ident: 680_CR35
  publication-title: Eur J Plant Pathol
  doi: 10.1023/A:1008753629207
– volume: 12
  start-page: 2716
  issue: 17
  year: 2012
  ident: 680_CR33
  publication-title: Proteomics
  doi: 10.1002/pmic.201200063
– volume: 26
  start-page: 553
  issue: 5
  year: 2008
  ident: 680_CR24
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1403
– volume: 97
  start-page: 2340
  issue: 18
  year: 2006
  ident: 680_CR7
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2005.10.025
– volume: 1
  start-page: 343
  issue: 2
  year: 2010
  ident: 680_CR12
  publication-title: Biofuels
  doi: 10.4155/bfs.10.1
– volume: 337
  start-page: 1
  issue: 1
  year: 2012
  ident: 680_CR11
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2012.02665.x
– volume: 42
  start-page: 490
  year: 2014
  ident: 680_CR38
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1178
– volume: 9
  start-page: 749
  issue: 10
  year: 2011
  ident: 680_CR39
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2637
– volume: 27
  start-page: 2141
  issue: 15
  year: 2011
  ident: 680_CR56
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr342
– volume: 7
  start-page: 196
  issue: 1
  year: 2014
  ident: 680_CR1
  publication-title: Biotechnol Biofuels
– volume: 18
  start-page: 143
  issue: 2
  year: 1996
  ident: 680_CR46
  publication-title: Biotechnol Lett
  doi: 10.1007/BF00128668
– volume: 93
  start-page: 880
  issue: 5
  year: 2006
  ident: 680_CR28
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.20783
– volume: 290
  start-page: 205
  year: 1993
  ident: 680_CR36
  publication-title: Biochem J
  doi: 10.1042/bj2900205
– volume: 53
  start-page: 343
  issue: 3
  year: 2012
  ident: 680_CR25
  publication-title: J Appl Genet
  doi: 10.1007/s13353-012-0093-1
– volume: 42
  start-page: 503
  issue: Database Issue
  year: 2014
  ident: 680_CR32
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt953
– volume: 49
  start-page: 358
  issue: 5
  year: 2012
  ident: 680_CR52
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2012.02.004
– volume: 27
  start-page: 25
  issue: 1
  year: 2009
  ident: 680_CR2
  publication-title: New Biotechnol
  doi: 10.1016/j.nbt.2009.09.008
– volume: 4
  start-page: 258
  year: 2013
  ident: 680_CR21
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2013.00258
– volume: 6
  start-page: 1
  issue: 1
  year: 2013
  ident: 680_CR42
  publication-title: Biotechnol Biofuels
  doi: 10.1186/1754-6834-6-127
– volume: 11
  start-page: 1
  issue: 1
  year: 2010
  ident: 680_CR27
  publication-title: BMC Biochem
  doi: 10.1186/1471-2091-11-32
– reference: 22405896 - Fungal Genet Biol. 2012 May;49(5):358-68
– reference: 25642400 - AMB Express. 2015 Jan 24;5(1):3
– reference: 10101286 - J Biochem. 1999 Apr;125(4):728-36
– reference: 16345088 - Biotechnol Bioeng. 2006 Apr 5;93(5):880-6
– reference: 19892828 - Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203
– reference: 11272024 - Bioresour Technol. 2001 Apr;77(2):171-5
– reference: 16337373 - Bioresour Technol. 2006 Dec;97(18):2340-4
– reference: 11262045 - J Agric Food Chem. 2001 Feb;49(2):883-7
– reference: 13416182 - J Bacteriol. 1957 Feb;73(2):269-78
– reference: 20735824 - BMC Biochem. 2010 Aug 24;11:32
– reference: 23908658 - Front Plant Sci. 2013 Jul 30;4:258
– reference: 22924408 - FEMS Microbiol Lett. 2012 Dec;337(1):1-9
– reference: 16372010 - Nature. 2005 Dec 22;438(7071):1157-61
– reference: 20490603 - Cell Mol Life Sci. 2010 Oct;67(20):3389-405
– reference: 19800041 - N Biotechnol. 2010 Feb 28;27(1):25-32
– reference: 24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5
– reference: 21861877 - Microb Cell Fact. 2011 Aug 23;10:68
– reference: 27190719 - PeerJ. 2016 May 12;4:e2023
– reference: 25729429 - Biotechnol Biofuels. 2015 Feb 25;8:30
– reference: 11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84
– reference: 22645317 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51
– reference: 21653517 - Bioinformatics. 2011 Aug 1;27(15):2141-3
– reference: 6430117 - Anal Biochem. 1984 May 1;138(2):481-7
– reference: 25164811 - J Biol Chem. 2014 Nov 7;289(45):31624-37
– reference: 15008811 - Environ Microbiol. 2004 Apr;6(4):323-34
– reference: 23915132 - Annu Rev Phytopathol. 2013;51:105-29
– reference: 18454138 - Nat Biotechnol. 2008 May;26(5):553-60
– reference: 15965245 - Genetics. 2005 Dec;171(4):1455-61
– reference: 24229392 - BMC Biochem. 2013 Nov 14;14:32
– reference: 22745025 - Proteomics. 2012 Aug;12(17):2716-28
– reference: 24655731 - Biotechnol Biofuels. 2014 Mar 21;7(1):41
– reference: 15459905 - Biotechnol Bioeng. 2004 Dec 30;88(7):832-7
– reference: 15944805 - Appl Microbiol Biotechnol. 2005 Jun;67(5):577-91
– reference: 1511691 - Eur J Biochem. 1992 Aug 15;208(1):83-90
– reference: 20511140 - Hum Genomics. 2010 Apr;4(4):271-7
– reference: 11410670 - Nucleic Acids Res. 2001 Jun 15;29(12):2607-18
– reference: 24157837 - Nucleic Acids Res. 2014 Jan;42(Database issue):D503-9
– reference: 8439290 - Biochem J. 1993 Feb 15;290 ( Pt 1):205-18
– reference: 22086950 - Nucleic Acids Res. 2012 Jan;40(Database issue):D343-50
– reference: 17332020 - Bioinformatics. 2007 May 1;23(9):1061-7
– reference: 15958198 - Anal Biochem. 2005 Jul 1;342(1):176-8
– reference: 22528042 - J Appl Genet. 2012 Aug;53(3):343-54
– reference: 21501500 - Genome Biol. 2011;12(4):R40
– reference: 24016404 - Biotechnol Biofuels. 2013 Sep 09;6(1):127
– reference: 26067977 - Genome Announc. 2015 Jun 11;3(3):null
– reference: 21921934 - Nat Rev Microbiol. 2011 Sep 16;9(10):749-59
– reference: 15012533 - Annu Rev Phytopathol. 1996;34:29-50
SSID ssj0017873
Score 2.1885588
Snippet Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The...
Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic...
Abstract Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 63
SubjectTerms Acids
Agricultural production
Alternative energy sources
beta-Glucosidase - genetics
beta-Glucosidase - metabolism
Bioconversion
Biodiesel fuels
Biofuels
Biomass
Biomass energy production
Carbohydrates
Cellobiose
Cellobiose - metabolism
Cellulase
Cellulase - biosynthesis
Cellulase - genetics
Cellulase - metabolism
Cellulolytic fungi
Cellulose
Cellulose - metabolism
Chitinase
Comparative analysis
Comparative genomics
Endoglucanase
Energy resources
Energy sources
Enzymes
Ethanol
Fermentation
Fungi
Gene sequencing
Genes
Genetic diversity
Genetic Variation
Genome, Fungal
Genomes
Genomics
Glucosidase
Hydrolysis
Hypotheses
Lactose
Lignocellulose
Microorganisms
Morphology
Peptide Hydrolases - genetics
Peptide Hydrolases - metabolism
Positive selection
Sequence Analysis, DNA
Strains (organisms)
Studies
Trichoderma - enzymology
Trichoderma - genetics
Trichoderma - metabolism
Trichoderma hamatum
β-Glucosidase
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejp-4w1u4r6wce7DQwjWPHsY9taVcG26mF3owd27zCmowmb2P_fSUn7_HeGN1ltxArxrFkS7Lknwj5WPOgpOOKSS4Dk6GsmZYxMZG8M45753P5tq_f1NWN_HJb326U-sKcsAkeeJq4E6CWxvkqeXC3W_DXYIlCJ9I3BkMG2VsHnbdypub4AYihmGOYXKuTAbUaZltgqpcuWbWlhTJY_98szD8TJTc0z-VL8mI2GenpNNQ98ix2--T5BpDgKxI-x3y9eKB33YDuNj6MPV2VPxkpHtAj4tIQ6eJ3eOgzEgnFWw0_M6Yq0NPxV0-vYV9cYH20e0cXDszZ5T0dch2J4TW5uby4Pr9ic_0E1kojRiZTKRCdxsGOp7VrVeWMSUlLPNQPjVKtaoKMlfO8bkQdRMTCvY63aFb5ZMQbstP1XXxHaIhlaF3lmsij5Kl0wahaJMNTIyP0X5ByNZ-2ncHFcWzfbXYytLITCyywwCILbFWQT-tPfkzIGk8RnyGT1oQIip1fgKjYWVTsv0SlIIcrFtt5pQ6Wa1ODFaoMNH9YN8MaQ764LvZLpNFgtcFOJQrydpKI9UhAvVewEaqCNFuysjXU7ZbubpFxvOscIy3f_49_OyC7VRZvybg5JDvjwzIegbk0-uO8Mh4BrH0S2g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAyjtQkJE4IVmNY8exT6itKBUSnFppb5Ed22wlmpRNFsS_Z8brDV2EeouSSTTKjOfhGX9DyLuaeyUtV0xy6Zn0Zc20DJGJ6Kyx3FmXxrd9-arOLuTnRb3IG25jbqvc2sRkqP3Q4R75IdemhmgBkrkP1z8YTo3C6moeoXGX3EPoMtTqZjEnXByUUeRKJtfqcETfhj0X2PClS1bt-KIE2f-_OPPfdskb_ud0nzzMgSM92kj6EbkT-sfkwQ04wSfEfwrpkPFIL_sRk268mAa6HYIyUdymR9ylMdDlb78aEh4JxbMNPxOyKtDT6ddAz8E6LnFK2pWlSwtB7fqKjmmaxPiUXJx-PD85Y3mKAuukEROTsRSIUWPB7mltO1VZY2LUErf2faNUpxovQ2UdrxtRexFwfK_lHQZXLhrxjOz1Qx9eEOpD6Ttb2SbwIHksrTeqFtHw2MgA3y9Iuf2fbZchxpG3721KNbRqNyJoQQQtiqCtCvJ-fuV6g69xG_ExCmkmRGjsdGNYfWvzSgPv76SxroqOG9lBgg82HbROusZgjaksyMFWxG1er2P7V7sK8nZ-DCsN5WL7MKyRRkPsBvZKFOT5RiNmTsDJV2AOVUGaHV3ZYXX3SX-5TGjedaqUli9vZ-sVuV8lxZWMmwOyN63W4TWEQ5N7k3T-D7GxCxo
  priority: 102
  providerName: ProQuest
Title Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains
URI https://www.ncbi.nlm.nih.gov/pubmed/28420406
https://www.proquest.com/docview/1895835690
https://www.proquest.com/docview/1889766383
https://pubmed.ncbi.nlm.nih.gov/PMC5395790
https://doaj.org/article/bab49ab2fb194c8881539a14b7957510
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLbGdoED4pvAqIzECckQJ44dHxBiaGNC2oTQKvUW2bG9TtoSaFJg_573dZOyoooTtyi2I8fvp7-eh5BXBXdSGC6Z4MIx4dKClcIHlgdrtOHW2EjfdnIqj6fi86yY7ZCR3moYwG7r1A75pKaLyze_vl-_B4N_Fw2-lG87jFl4lgIPcpUpA4-8B4FJIaHBifizqQC6mQ8bm1ubbYSmiOC_Le38-_TkjXB0dI_cHfJI-mEl-PtkxzcPyJ0b6IIPifvk453jjl40Hc7B8aFv6ciJ0lNctUcYps7T-bVbtBGehOJVhx8RaBXq0_5nS8_AWc6RNO3K0LmBHHd5RbtILtE9ItOjw7OPx2wgVWC10HnPREhzhKwx4AbL0tQyM1qHUApc6XdKyloqJ3xmLC9UXrjcI5uv4TXmWjbo_DHZbdrGPyXU-dTVJjPKcy94SI3TssiD5kEJD99PSDqOZ1UPiOPYt8sqzjxKWa1EUIEIKhRBlSXk9brJtxXcxr8qH6CQ1hURKTu-aBfn1WB4kAxYoY3NguVa1DDfBxcPSiis0rjllCZkfxRxNWpfxUtdQGoqNRS_XBeD4aFcTOPbJdYpIZUD95Un5MlKI9Y9gZifgXeUCVEburLR1c2S5mIewb2LuHGaPvsf__ac3M6iegvG9T7Z7RdL_wJyqN5OyC01UxOyd3B4-uXrJK5ETKK1_AYcYR4c
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHcDBYwEF6SoceI49gEhXmVLH6ettLdgxzZbiSZlk6Xqn-I3MuMkSxeh3nqLNrORlfk8_iZjf0PIq5xZwTUTMWfcxtwmeSy583HmjVaaGW1C-7bDIzE55l9n-WyD_B7PwuC2yjEmhkBtmwq_ke8wqXJgC5DMvTv7GWPXKKyuji00eljsu4tzSNnat3ufwL-v03T38_TjJB66CsQVV1kXc59kqNmiIQ5IqSuRaqW8lxw_ddtCiEoUlrtUG5YXWW4zh-1sNauQbBiP4ksQ8m-gOSZ7xWyV4DEAfzZUTpkUOy2upbjHAzeYySRO19a-0CLgf7z23-2Zl9a73bvkzkBU6fseWffIhqvvk9uX5AsfEPvFhUPNLT2pW0zy8aJr6Nh0paNYFkCdp9bR-YVdNEH_hOJZil9ByRXsaXfe0ClE4zl2ZTvVdK6BRC9PaRu6V7QPyfG1vN9HZLNuardFqHWJrXSqC8ccZz7RVok884r5gjt4fkSS8X2W1SBpjmP7UYbURoqyd0EJLijRBWUakTerv5z1eh5XGX9AJ60MUYo7_NAsvpfDzAa2YbjSJvWGKV5JKWENAZRzUyisaSUR2R5dXA7xoS3_ojkiL1e3YWajX3TtmiXaSOCKEB-ziDzuEbEaCZCKFMKviEixhpW1oa7fqU_mQT08D5XZ5MnVw3pBbk6mhwflwd7R_lNyKw0g5jFT22SzWyzdM6BinXke8E_Jt-uecH8A7ldF2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomics+insights+into+different+cellobiose+hydrolysis+activities+in+two+Trichoderma+hamatum+strains&rft.jtitle=Microbial+cell+factories&rft.au=Peng+Cheng&rft.au=Bo+Liu&rft.au=Yi+Su&rft.au=Yao+Hu&rft.date=2017-04-19&rft.pub=BMC&rft.eissn=1475-2859&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs12934-017-0680-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bab49ab2fb194c8881539a14b7957510
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon