Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains
Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied...
Saved in:
Published in | Microbial cell factories Vol. 16; no. 1; pp. 63 - 16 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
19.04.2017
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases.
We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies.
This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels. |
---|---|
AbstractList | Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases.BACKGROUNDEfficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases.We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies.RESULTSWe isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies.This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels.CONCLUSIONSThis study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels. Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels. Abstract Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. Results We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. Conclusions This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels. Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The Trichoderma species of cellulolytic fungi have strong cellulose-degrading capability, and their cellulase systems have been extensively studied. Currently, a major limitation of Trichoderma strains is their low production of β-glucosidases. Results We isolated two Trichoderma hamatum strains YYH13 and YYH16 with drastically different cellulose degrading efficiencies. YYH13 has higher cellobiose-hydrolyzing efficiency. To understand mechanisms underlying such differences, we sequenced the genomes of YYH13 and YYH16, which are essentially identical (38.93 and 38.92 Mb, respectively) and are similar to that of the T. hamatum strain GD12. Using GeneMark-ES, we annotated 11,316 and 11,755 protein-coding genes in YYH13 and YYH16, respectively. Comparative analysis identified 13 functionally important genes in YYH13 under positive selection. Through examining orthologous relationships, we identified 172,655, and 320 genome-specific genes in YYH13, YYH16, and GD12, respectively. We found 15 protease families that show differences between YYH13 and YYH16. Enzymatic tests showed that exoglucanase, endoglucanase, and β-glucosidase activities were higher in YYH13 than YYH16. Additionally, YYH13 contains 10 families of carbohydrate-active enzymes, including GH1, GH3, GH18, GH35, and GH55 families of chitinases, glucosidases, galactosidases, and glucanases, which are subject to stronger positive selection pressure. Furthermore, we found that the β-glucosidase gene (YYH1311079) and pGEX-KG/YYH1311079 bacterial expression vector may provide valuable insight for designing β-glucosidase with higher cellobiose-hydrolyzing efficiencies. Conclusions This study suggests that the YYH13 strain of T. hamatum has the potential to serve as a model organism for producing cellulase because of its strong ability to efficiently degrade cellulosic biomass. The genome sequences of YYH13 and YYH16 represents a valuable resource for studying efficient production of biofuels. |
ArticleNumber | 63 |
Author | Su, Yi Chu, Jeffrey S. C. Chen, Nansheng Liu, Bo Hu, Yao Chen, Lei Xiong, Xingyao Cheng, Peng Hong, Yahui Su, Shengying Yi, Xinxin |
Author_xml | – sequence: 1 givenname: Peng surname: Cheng fullname: Cheng, Peng – sequence: 2 givenname: Bo surname: Liu fullname: Liu, Bo – sequence: 3 givenname: Yi surname: Su fullname: Su, Yi – sequence: 4 givenname: Yao surname: Hu fullname: Hu, Yao – sequence: 5 givenname: Yahui surname: Hong fullname: Hong, Yahui – sequence: 6 givenname: Xinxin surname: Yi fullname: Yi, Xinxin – sequence: 7 givenname: Lei surname: Chen fullname: Chen, Lei – sequence: 8 givenname: Shengying surname: Su fullname: Su, Shengying – sequence: 9 givenname: Jeffrey S. C. surname: Chu fullname: Chu, Jeffrey S. C. – sequence: 10 givenname: Nansheng surname: Chen fullname: Chen, Nansheng – sequence: 11 givenname: Xingyao surname: Xiong fullname: Xiong, Xingyao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28420406$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQQC1URD_gB3BBkbhwCXhiO7YvSKiCUqkSl3K2Jo6z8SqJi-1ttf8ep1uqtgdOHtlvnmbGc0qOlrA4Qt4D_Qyg2i8JGs14TUHWtFW0bl6RE-BS1I0S-uhJfExOU9rSAirJ3pDjRvGGctqekP7CLWH2NlV-SX4z5jXIoer9MLjollxZN02h8yG5atz3MUz75FOFNvtbn71b-Srfheo6ejuG3sUZqxFnzLu5Sjli8b4lrwecknv3cJ6R3z--X5__rK9-XVyef7uqLdcs13ygrJEcUMlWKbRtg1oPg-IMKO1l29pW9tw12IGQTPTMAQWOYEFw0Q2anZHLg7cPuDU30c8Y9yagN_cXIW4Mxuzt5EyHHdfYNUMHmlulFAimEXgntZACaHF9Pbhudt3seltGEXF6Jn3-svjRbMKtKR4h9Sr49CCI4c_OpWxmn9Zh4uLCLhlQSpeemGIF_fgC3YZdXMqoCqWFYqK9F354WtFjKf8-swBwAGwMKUU3PCJAzbow5rAwpuyBWRfGNCVHvsixPmP2YW3KT__J_Avw9cUt |
CitedBy_id | crossref_primary_10_3390_microorganisms9081680 crossref_primary_10_3389_ffunb_2022_1002161 crossref_primary_10_1016_j_enzmictec_2023_110318 crossref_primary_10_1016_j_procbio_2017_08_005 crossref_primary_10_3390_jof9100994 |
Cites_doi | 10.1128/JB.73.2.269-278.1957 10.1021/jf001001d 10.1093/nar/gkr987 10.1146/annurev-phyto-082712-102353 10.1111/j.1432-1033.1992.tb17161.x 10.1074/jbc.M114.587766 10.1007/s13225-013-0273-2 10.1093/nar/30.7.1575 10.1016/j.ab.2005.01.052 10.1186/1479-7364-4-4-271 10.1128/genomeA.00647-15 10.1016/S0960-8524(00)00150-4 10.1007/BF01027817 10.1007/s00253-005-1904-7 10.1002/bit.20286 10.1093/oxfordjournals.jbchem.a022343 10.1111/j.1462-2920.2004.00574.x 10.1093/nar/gkp931 10.1186/s13068-015-0202-6 10.2478/jppr-2013-0002 10.1089/ind.2013.0016 10.1038/nature04300 10.1186/gb-2011-12-4-r40 10.1534/genetics.105.044057 10.7717/peerj.2023 10.1093/bioinformatics/btm071 10.1016/0003-2697(84)90843-1 10.1186/s13568-014-0090-3 10.1023/A:1008753629207 10.1002/pmic.201200063 10.1038/nbt1403 10.1016/j.biortech.2005.10.025 10.4155/bfs.10.1 10.1111/j.1574-6968.2012.02665.x 10.1093/nar/gkt1178 10.1038/nrmicro2637 10.1093/bioinformatics/btr342 10.1007/BF00128668 10.1002/bit.20783 10.1042/bj2900205 10.1007/s13353-012-0093-1 10.1093/nar/gkt953 10.1016/j.fgb.2012.02.004 10.1016/j.nbt.2009.09.008 10.3389/fpls.2013.00258 10.1186/1754-6834-6-127 10.1186/1471-2091-11-32 |
ContentType | Journal Article |
Copyright | Copyright BioMed Central 2017 The Author(s) 2017 |
Copyright_xml | – notice: Copyright BioMed Central 2017 – notice: The Author(s) 2017 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T7 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12934-017-0680-2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1475-2859 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_bab49ab2fb194c8881539a14b7957510 PMC5395790 28420406 10_1186_s12934_017_0680_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 2015NK3005 – fundername: ; grantid: 31570372 – fundername: ; grantid: 15B112 – fundername: ; grantid: 15KFXM13 – fundername: ; grantid: 2016JJ3074 – fundername: ; grantid: kh1601179 |
GroupedDBID | --- 0R~ 123 29M 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SCM SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M -58 -5G -A0 -BR 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF FRP NPM 7QL 7T7 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-4f032741a87688ac62a99ff843100d766c67d4e2ab15735d3e1014a1c1545bf93 |
IEDL.DBID | M48 |
ISSN | 1475-2859 |
IngestDate | Wed Aug 27 01:20:32 EDT 2025 Thu Aug 21 14:13:23 EDT 2025 Tue Aug 05 09:17:10 EDT 2025 Fri Jul 25 19:20:08 EDT 2025 Wed Feb 19 02:13:57 EST 2025 Tue Jul 01 02:30:20 EDT 2025 Thu Apr 24 22:53:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Comparative genomics β-Glucosidase Genetic diversity Cellobiose Trichoderma hamatum |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-4f032741a87688ac62a99ff843100d766c67d4e2ab15735d3e1014a1c1545bf93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12934-017-0680-2 |
PMID | 28420406 |
PQID | 1895835690 |
PQPubID | 42699 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bab49ab2fb194c8881539a14b7957510 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5395790 proquest_miscellaneous_1889766383 proquest_journals_1895835690 pubmed_primary_28420406 crossref_primary_10_1186_s12934_017_0680_2 crossref_citationtrail_10_1186_s12934_017_0680_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-19 |
PublicationDateYYYYMMDD | 2017-04-19 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Microbial cell factories |
PublicationTitleAlternate | Microb Cell Fact |
PublicationYear | 2017 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | A Levasseur (680_CR27) 2010; 11 R Bischof (680_CR42) 2013; 6 D Martinez (680_CR24) 2008; 26 RY Sun (680_CR25) 2012; 53 D Kattner (680_CR18) 1990; 161 CP Kubicek (680_CR22) 2011; 12 Y Yanbin (680_CR54) 2012; 40 SP George (680_CR45) 2001; 77 SA El-Hassan (680_CR19) 2013; 53 G Parra (680_CR26) 2007; 23 J Besemer (680_CR53) 2001; 29 R James (680_CR40) 2010; 67 HJ Bussink (680_CR6) 1992; 208 PK Mukherjee (680_CR10) 2013; 51 PT Sanatan (680_CR3) 2013; 14 Y Baba (680_CR5) 2015; 5 HJ Shin (680_CR46) 1996; 18 S Takashima (680_CR49) 1999; 125 IS Druzhinina (680_CR52) 2012; 49 SR Patil (680_CR7) 2006; 97 KC And (680_CR44) 1996; 34 YC Chuang (680_CR16) 2015; 8 CR Thornton (680_CR41) 2004; 6 H Toyama (680_CR20) 2013; 52 C Lange (680_CR31) 2016; 4 L Hantsch (680_CR43) 2014; 66 ND Rawlings (680_CR37) 2012; 40 J He (680_CR4) 2010; 10 Z Xiao (680_CR47) 2004; 88 AJ Enright (680_CR57) 2002; 30 LDS Castro (680_CR1) 2014; 7 SM Beitel (680_CR13) 2013; 9 V Seidl (680_CR12) 2010; 1 VL Do (680_CR33) 2012; 12 M Kanauchi (680_CR34) 2001; 49 IS Druzhinina (680_CR11) 2012; 337 T Fang (680_CR2) 2009; 27 Z Xiao (680_CR48) 2005; 342 MV Deshpande (680_CR50) 1984; 138 A Berlin (680_CR28) 2006; 93 Y Elad (680_CR35) 1999; 105 R Baroncelli (680_CR23) 2015; 3 G Ostlund (680_CR55) 2010; 38 M Mandels (680_CR9) 1957; 73 ND Rawlings (680_CR32) 2014; 42 ML Polizeli (680_CR8) 2005; 67 L Vincent (680_CR38) 2014; 42 IS Druzhinina (680_CR39) 2011; 9 SJB Duff (680_CR15) 1985; 7 R She (680_CR56) 2011; 27 P Cheng (680_CR17) 2015; 17 DJ Studholme (680_CR21) 2013; 4 M Machida (680_CR29) 2005; 438 ND Rawlings (680_CR36) 1993; 290 S Karkehabadi (680_CR14) 2014; 289 Y Li (680_CR51) 2010; 4 VH Ambro (680_CR30) 2005; 171 20511140 - Hum Genomics. 2010 Apr;4(4):271-7 11272024 - Bioresour Technol. 2001 Apr;77(2):171-5 27190719 - PeerJ. 2016 May 12;4:e2023 24229392 - BMC Biochem. 2013 Nov 14;14:32 20490603 - Cell Mol Life Sci. 2010 Oct;67(20):3389-405 21501500 - Genome Biol. 2011;12(4):R40 25729429 - Biotechnol Biofuels. 2015 Feb 25;8:30 10101286 - J Biochem. 1999 Apr;125(4):728-36 26067977 - Genome Announc. 2015 Jun 11;3(3):null 15965245 - Genetics. 2005 Dec;171(4):1455-61 25642400 - AMB Express. 2015 Jan 24;5(1):3 1511691 - Eur J Biochem. 1992 Aug 15;208(1):83-90 11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 24016404 - Biotechnol Biofuels. 2013 Sep 09;6(1):127 6430117 - Anal Biochem. 1984 May 1;138(2):481-7 15958198 - Anal Biochem. 2005 Jul 1;342(1):176-8 22528042 - J Appl Genet. 2012 Aug;53(3):343-54 22745025 - Proteomics. 2012 Aug;12(17):2716-28 25164811 - J Biol Chem. 2014 Nov 7;289(45):31624-37 21653517 - Bioinformatics. 2011 Aug 1;27(15):2141-3 22645317 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 24157837 - Nucleic Acids Res. 2014 Jan;42(Database issue):D503-9 15008811 - Environ Microbiol. 2004 Apr;6(4):323-34 16345088 - Biotechnol Bioeng. 2006 Apr 5;93(5):880-6 11410670 - Nucleic Acids Res. 2001 Jun 15;29(12):2607-18 23908658 - Front Plant Sci. 2013 Jul 30;4:258 24655731 - Biotechnol Biofuels. 2014 Mar 21;7(1):41 16337373 - Bioresour Technol. 2006 Dec;97(18):2340-4 11262045 - J Agric Food Chem. 2001 Feb;49(2):883-7 24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 23915132 - Annu Rev Phytopathol. 2013;51:105-29 19892828 - Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203 17332020 - Bioinformatics. 2007 May 1;23(9):1061-7 20735824 - BMC Biochem. 2010 Aug 24;11:32 22924408 - FEMS Microbiol Lett. 2012 Dec;337(1):1-9 21861877 - Microb Cell Fact. 2011 Aug 23;10:68 16372010 - Nature. 2005 Dec 22;438(7071):1157-61 15459905 - Biotechnol Bioeng. 2004 Dec 30;88(7):832-7 15012533 - Annu Rev Phytopathol. 1996;34:29-50 18454138 - Nat Biotechnol. 2008 May;26(5):553-60 19800041 - N Biotechnol. 2010 Feb 28;27(1):25-32 15944805 - Appl Microbiol Biotechnol. 2005 Jun;67(5):577-91 22086950 - Nucleic Acids Res. 2012 Jan;40(Database issue):D343-50 13416182 - J Bacteriol. 1957 Feb;73(2):269-78 8439290 - Biochem J. 1993 Feb 15;290 ( Pt 1):205-18 22405896 - Fungal Genet Biol. 2012 May;49(5):358-68 21921934 - Nat Rev Microbiol. 2011 Sep 16;9(10):749-59 |
References_xml | – volume: 73 start-page: 269 year: 1957 ident: 680_CR9 publication-title: J Bacteriol doi: 10.1128/JB.73.2.269-278.1957 – volume: 49 start-page: 883 issue: 2 year: 2001 ident: 680_CR34 publication-title: J Agric Food Chem doi: 10.1021/jf001001d – volume: 40 start-page: 343 year: 2012 ident: 680_CR37 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkr987 – volume: 51 start-page: 105 issue: 1 year: 2013 ident: 680_CR10 publication-title: Annu Rev Phytopathol doi: 10.1146/annurev-phyto-082712-102353 – volume: 40 start-page: 445 year: 2012 ident: 680_CR54 publication-title: Nucleic Acids Res – volume: 208 start-page: 83 issue: 1 year: 1992 ident: 680_CR6 publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1992.tb17161.x – volume: 289 start-page: 31624 issue: 45 year: 2014 ident: 680_CR14 publication-title: J Biol Chem doi: 10.1074/jbc.M114.587766 – volume: 66 start-page: 1 issue: 1 year: 2014 ident: 680_CR43 publication-title: Fungal Divers doi: 10.1007/s13225-013-0273-2 – volume: 30 start-page: 1575 issue: 7 year: 2002 ident: 680_CR57 publication-title: Nucleic Acids Res doi: 10.1093/nar/30.7.1575 – volume: 10 start-page: 68 issue: 47 year: 2010 ident: 680_CR4 publication-title: Microb Cell Fact – volume: 342 start-page: 176 issue: 1 year: 2005 ident: 680_CR48 publication-title: Anal Biochem doi: 10.1016/j.ab.2005.01.052 – volume: 29 start-page: 2607 issue: 12 year: 2001 ident: 680_CR53 publication-title: Am Bank – volume: 4 start-page: 271 issue: 4 year: 2010 ident: 680_CR51 publication-title: Hum Genom doi: 10.1186/1479-7364-4-4-271 – volume: 3 start-page: 1 issue: 3 year: 2015 ident: 680_CR23 publication-title: Genome Announc doi: 10.1128/genomeA.00647-15 – volume: 77 start-page: 171 issue: 2 year: 2001 ident: 680_CR45 publication-title: Bioresour Technol doi: 10.1016/S0960-8524(00)00150-4 – volume: 7 start-page: 185 year: 1985 ident: 680_CR15 publication-title: Biotechnol Lett doi: 10.1007/BF01027817 – volume: 67 start-page: 577 issue: 5 year: 2005 ident: 680_CR8 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-005-1904-7 – volume: 88 start-page: 832 issue: 7 year: 2004 ident: 680_CR47 publication-title: Biotechnol Bioeng doi: 10.1002/bit.20286 – volume: 125 start-page: 728 issue: 4 year: 1999 ident: 680_CR49 publication-title: J Biochem doi: 10.1093/oxfordjournals.jbchem.a022343 – volume: 6 start-page: 323 issue: 4 year: 2004 ident: 680_CR41 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2004.00574.x – volume: 38 start-page: 196 year: 2010 ident: 680_CR55 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp931 – volume: 14 start-page: 1 issue: 22 year: 2013 ident: 680_CR3 publication-title: BMC Biochem – volume: 8 start-page: 1 issue: 1 year: 2015 ident: 680_CR16 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-015-0202-6 – volume: 34 start-page: 29 issue: 34 year: 1996 ident: 680_CR44 publication-title: Annu Rev Phytopathol – volume: 53 start-page: 12 issue: 1 year: 2013 ident: 680_CR19 publication-title: J Plant Prot Res doi: 10.2478/jppr-2013-0002 – volume: 9 start-page: 103 year: 2013 ident: 680_CR13 publication-title: Ind Biotechnol doi: 10.1089/ind.2013.0016 – volume: 52 start-page: 934 issue: 5 year: 2013 ident: 680_CR20 publication-title: Manag Decis – volume: 438 start-page: 1157 issue: 7071 year: 2005 ident: 680_CR29 publication-title: Nature doi: 10.1038/nature04300 – volume: 12 start-page: 81 issue: 4 year: 2011 ident: 680_CR22 publication-title: Genome Biol doi: 10.1186/gb-2011-12-4-r40 – volume: 17 start-page: 987 issue: 6 year: 2015 ident: 680_CR17 publication-title: Int J Agric Biol – volume: 171 start-page: 1455 issue: 4 year: 2005 ident: 680_CR30 publication-title: Genetics doi: 10.1534/genetics.105.044057 – volume: 67 start-page: 3389 issue: 67 year: 2010 ident: 680_CR40 publication-title: Cell Mol Life Sci – volume: 4 start-page: e2023 issue: 5 year: 2016 ident: 680_CR31 publication-title: PeerJ doi: 10.7717/peerj.2023 – volume: 161 start-page: 1 year: 1990 ident: 680_CR18 publication-title: Allgemeine Forst Und Jagdzeitung – volume: 23 start-page: 1061 issue: 9 year: 2007 ident: 680_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm071 – volume: 138 start-page: 481 issue: 2 year: 1984 ident: 680_CR50 publication-title: Anal Biochem doi: 10.1016/0003-2697(84)90843-1 – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 680_CR5 publication-title: AMB Express doi: 10.1186/s13568-014-0090-3 – volume: 105 start-page: 177 issue: 105 year: 1999 ident: 680_CR35 publication-title: Eur J Plant Pathol doi: 10.1023/A:1008753629207 – volume: 12 start-page: 2716 issue: 17 year: 2012 ident: 680_CR33 publication-title: Proteomics doi: 10.1002/pmic.201200063 – volume: 26 start-page: 553 issue: 5 year: 2008 ident: 680_CR24 publication-title: Nat Biotechnol doi: 10.1038/nbt1403 – volume: 97 start-page: 2340 issue: 18 year: 2006 ident: 680_CR7 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2005.10.025 – volume: 1 start-page: 343 issue: 2 year: 2010 ident: 680_CR12 publication-title: Biofuels doi: 10.4155/bfs.10.1 – volume: 337 start-page: 1 issue: 1 year: 2012 ident: 680_CR11 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2012.02665.x – volume: 42 start-page: 490 year: 2014 ident: 680_CR38 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1178 – volume: 9 start-page: 749 issue: 10 year: 2011 ident: 680_CR39 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2637 – volume: 27 start-page: 2141 issue: 15 year: 2011 ident: 680_CR56 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr342 – volume: 7 start-page: 196 issue: 1 year: 2014 ident: 680_CR1 publication-title: Biotechnol Biofuels – volume: 18 start-page: 143 issue: 2 year: 1996 ident: 680_CR46 publication-title: Biotechnol Lett doi: 10.1007/BF00128668 – volume: 93 start-page: 880 issue: 5 year: 2006 ident: 680_CR28 publication-title: Biotechnol Bioeng doi: 10.1002/bit.20783 – volume: 290 start-page: 205 year: 1993 ident: 680_CR36 publication-title: Biochem J doi: 10.1042/bj2900205 – volume: 53 start-page: 343 issue: 3 year: 2012 ident: 680_CR25 publication-title: J Appl Genet doi: 10.1007/s13353-012-0093-1 – volume: 42 start-page: 503 issue: Database Issue year: 2014 ident: 680_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt953 – volume: 49 start-page: 358 issue: 5 year: 2012 ident: 680_CR52 publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2012.02.004 – volume: 27 start-page: 25 issue: 1 year: 2009 ident: 680_CR2 publication-title: New Biotechnol doi: 10.1016/j.nbt.2009.09.008 – volume: 4 start-page: 258 year: 2013 ident: 680_CR21 publication-title: Front Plant Sci doi: 10.3389/fpls.2013.00258 – volume: 6 start-page: 1 issue: 1 year: 2013 ident: 680_CR42 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-6-127 – volume: 11 start-page: 1 issue: 1 year: 2010 ident: 680_CR27 publication-title: BMC Biochem doi: 10.1186/1471-2091-11-32 – reference: 22405896 - Fungal Genet Biol. 2012 May;49(5):358-68 – reference: 25642400 - AMB Express. 2015 Jan 24;5(1):3 – reference: 10101286 - J Biochem. 1999 Apr;125(4):728-36 – reference: 16345088 - Biotechnol Bioeng. 2006 Apr 5;93(5):880-6 – reference: 19892828 - Nucleic Acids Res. 2010 Jan;38(Database issue):D196-203 – reference: 11272024 - Bioresour Technol. 2001 Apr;77(2):171-5 – reference: 16337373 - Bioresour Technol. 2006 Dec;97(18):2340-4 – reference: 11262045 - J Agric Food Chem. 2001 Feb;49(2):883-7 – reference: 13416182 - J Bacteriol. 1957 Feb;73(2):269-78 – reference: 20735824 - BMC Biochem. 2010 Aug 24;11:32 – reference: 23908658 - Front Plant Sci. 2013 Jul 30;4:258 – reference: 22924408 - FEMS Microbiol Lett. 2012 Dec;337(1):1-9 – reference: 16372010 - Nature. 2005 Dec 22;438(7071):1157-61 – reference: 20490603 - Cell Mol Life Sci. 2010 Oct;67(20):3389-405 – reference: 19800041 - N Biotechnol. 2010 Feb 28;27(1):25-32 – reference: 24270786 - Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5 – reference: 21861877 - Microb Cell Fact. 2011 Aug 23;10:68 – reference: 27190719 - PeerJ. 2016 May 12;4:e2023 – reference: 25729429 - Biotechnol Biofuels. 2015 Feb 25;8:30 – reference: 11917018 - Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 – reference: 22645317 - Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 – reference: 21653517 - Bioinformatics. 2011 Aug 1;27(15):2141-3 – reference: 6430117 - Anal Biochem. 1984 May 1;138(2):481-7 – reference: 25164811 - J Biol Chem. 2014 Nov 7;289(45):31624-37 – reference: 15008811 - Environ Microbiol. 2004 Apr;6(4):323-34 – reference: 23915132 - Annu Rev Phytopathol. 2013;51:105-29 – reference: 18454138 - Nat Biotechnol. 2008 May;26(5):553-60 – reference: 15965245 - Genetics. 2005 Dec;171(4):1455-61 – reference: 24229392 - BMC Biochem. 2013 Nov 14;14:32 – reference: 22745025 - Proteomics. 2012 Aug;12(17):2716-28 – reference: 24655731 - Biotechnol Biofuels. 2014 Mar 21;7(1):41 – reference: 15459905 - Biotechnol Bioeng. 2004 Dec 30;88(7):832-7 – reference: 15944805 - Appl Microbiol Biotechnol. 2005 Jun;67(5):577-91 – reference: 1511691 - Eur J Biochem. 1992 Aug 15;208(1):83-90 – reference: 20511140 - Hum Genomics. 2010 Apr;4(4):271-7 – reference: 11410670 - Nucleic Acids Res. 2001 Jun 15;29(12):2607-18 – reference: 24157837 - Nucleic Acids Res. 2014 Jan;42(Database issue):D503-9 – reference: 8439290 - Biochem J. 1993 Feb 15;290 ( Pt 1):205-18 – reference: 22086950 - Nucleic Acids Res. 2012 Jan;40(Database issue):D343-50 – reference: 17332020 - Bioinformatics. 2007 May 1;23(9):1061-7 – reference: 15958198 - Anal Biochem. 2005 Jul 1;342(1):176-8 – reference: 22528042 - J Appl Genet. 2012 Aug;53(3):343-54 – reference: 21501500 - Genome Biol. 2011;12(4):R40 – reference: 24016404 - Biotechnol Biofuels. 2013 Sep 09;6(1):127 – reference: 26067977 - Genome Announc. 2015 Jun 11;3(3):null – reference: 21921934 - Nat Rev Microbiol. 2011 Sep 16;9(10):749-59 – reference: 15012533 - Annu Rev Phytopathol. 1996;34:29-50 |
SSID | ssj0017873 |
Score | 2.1885588 |
Snippet | Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic wastes. The... Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with lignocellulosic... Abstract Background Efficient biomass bioconversion is a promising solution to alternative energy resources and environmental issues associated with... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 63 |
SubjectTerms | Acids Agricultural production Alternative energy sources beta-Glucosidase - genetics beta-Glucosidase - metabolism Bioconversion Biodiesel fuels Biofuels Biomass Biomass energy production Carbohydrates Cellobiose Cellobiose - metabolism Cellulase Cellulase - biosynthesis Cellulase - genetics Cellulase - metabolism Cellulolytic fungi Cellulose Cellulose - metabolism Chitinase Comparative analysis Comparative genomics Endoglucanase Energy resources Energy sources Enzymes Ethanol Fermentation Fungi Gene sequencing Genes Genetic diversity Genetic Variation Genome, Fungal Genomes Genomics Glucosidase Hydrolysis Hypotheses Lactose Lignocellulose Microorganisms Morphology Peptide Hydrolases - genetics Peptide Hydrolases - metabolism Positive selection Sequence Analysis, DNA Strains (organisms) Studies Trichoderma - enzymology Trichoderma - genetics Trichoderma - metabolism Trichoderma hamatum β-Glucosidase |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejp-4w1u4r6wce7DQwjWPHsY9taVcG26mF3owd27zCmowmb2P_fSUn7_HeGN1ltxArxrFkS7Lknwj5WPOgpOOKSS4Dk6GsmZYxMZG8M45753P5tq_f1NWN_HJb326U-sKcsAkeeJq4E6CWxvkqeXC3W_DXYIlCJ9I3BkMG2VsHnbdypub4AYihmGOYXKuTAbUaZltgqpcuWbWlhTJY_98szD8TJTc0z-VL8mI2GenpNNQ98ix2--T5BpDgKxI-x3y9eKB33YDuNj6MPV2VPxkpHtAj4tIQ6eJ3eOgzEgnFWw0_M6Yq0NPxV0-vYV9cYH20e0cXDszZ5T0dch2J4TW5uby4Pr9ic_0E1kojRiZTKRCdxsGOp7VrVeWMSUlLPNQPjVKtaoKMlfO8bkQdRMTCvY63aFb5ZMQbstP1XXxHaIhlaF3lmsij5Kl0wahaJMNTIyP0X5ByNZ-2ncHFcWzfbXYytLITCyywwCILbFWQT-tPfkzIGk8RnyGT1oQIip1fgKjYWVTsv0SlIIcrFtt5pQ6Wa1ODFaoMNH9YN8MaQ764LvZLpNFgtcFOJQrydpKI9UhAvVewEaqCNFuysjXU7ZbubpFxvOscIy3f_49_OyC7VRZvybg5JDvjwzIegbk0-uO8Mh4BrH0S2g priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAyjtQkJE4IVmNY8exT6itKBUSnFppb5Ed22wlmpRNFsS_Z8brDV2EeouSSTTKjOfhGX9DyLuaeyUtV0xy6Zn0Zc20DJGJ6Kyx3FmXxrd9-arOLuTnRb3IG25jbqvc2sRkqP3Q4R75IdemhmgBkrkP1z8YTo3C6moeoXGX3EPoMtTqZjEnXByUUeRKJtfqcETfhj0X2PClS1bt-KIE2f-_OPPfdskb_ud0nzzMgSM92kj6EbkT-sfkwQ04wSfEfwrpkPFIL_sRk268mAa6HYIyUdymR9ylMdDlb78aEh4JxbMNPxOyKtDT6ddAz8E6LnFK2pWlSwtB7fqKjmmaxPiUXJx-PD85Y3mKAuukEROTsRSIUWPB7mltO1VZY2LUErf2faNUpxovQ2UdrxtRexFwfK_lHQZXLhrxjOz1Qx9eEOpD6Ttb2SbwIHksrTeqFtHw2MgA3y9Iuf2fbZchxpG3721KNbRqNyJoQQQtiqCtCvJ-fuV6g69xG_ExCmkmRGjsdGNYfWvzSgPv76SxroqOG9lBgg82HbROusZgjaksyMFWxG1er2P7V7sK8nZ-DCsN5WL7MKyRRkPsBvZKFOT5RiNmTsDJV2AOVUGaHV3ZYXX3SX-5TGjedaqUli9vZ-sVuV8lxZWMmwOyN63W4TWEQ5N7k3T-D7GxCxo priority: 102 providerName: ProQuest |
Title | Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28420406 https://www.proquest.com/docview/1895835690 https://www.proquest.com/docview/1889766383 https://pubmed.ncbi.nlm.nih.gov/PMC5395790 https://doaj.org/article/bab49ab2fb194c8881539a14b7957510 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9MwGLbGdoED4pvAqIzECckQJ44dHxBiaGNC2oTQKvUW2bG9TtoSaFJg_573dZOyoooTtyi2I8fvp7-eh5BXBXdSGC6Z4MIx4dKClcIHlgdrtOHW2EjfdnIqj6fi86yY7ZCR3moYwG7r1A75pKaLyze_vl-_B4N_Fw2-lG87jFl4lgIPcpUpA4-8B4FJIaHBifizqQC6mQ8bm1ubbYSmiOC_Le38-_TkjXB0dI_cHfJI-mEl-PtkxzcPyJ0b6IIPifvk453jjl40Hc7B8aFv6ciJ0lNctUcYps7T-bVbtBGehOJVhx8RaBXq0_5nS8_AWc6RNO3K0LmBHHd5RbtILtE9ItOjw7OPx2wgVWC10HnPREhzhKwx4AbL0tQyM1qHUApc6XdKyloqJ3xmLC9UXrjcI5uv4TXmWjbo_DHZbdrGPyXU-dTVJjPKcy94SI3TssiD5kEJD99PSDqOZ1UPiOPYt8sqzjxKWa1EUIEIKhRBlSXk9brJtxXcxr8qH6CQ1hURKTu-aBfn1WB4kAxYoY3NguVa1DDfBxcPSiis0rjllCZkfxRxNWpfxUtdQGoqNRS_XBeD4aFcTOPbJdYpIZUD95Un5MlKI9Y9gZifgXeUCVEburLR1c2S5mIewb2LuHGaPvsf__ac3M6iegvG9T7Z7RdL_wJyqN5OyC01UxOyd3B4-uXrJK5ETKK1_AYcYR4c |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiHcDBYwEF6SoceI49gEhXmVLH6ettLdgxzZbiSZlk6Xqn-I3MuMkSxeh3nqLNrORlfk8_iZjf0PIq5xZwTUTMWfcxtwmeSy583HmjVaaGW1C-7bDIzE55l9n-WyD_B7PwuC2yjEmhkBtmwq_ke8wqXJgC5DMvTv7GWPXKKyuji00eljsu4tzSNnat3ufwL-v03T38_TjJB66CsQVV1kXc59kqNmiIQ5IqSuRaqW8lxw_ddtCiEoUlrtUG5YXWW4zh-1sNauQbBiP4ksQ8m-gOSZ7xWyV4DEAfzZUTpkUOy2upbjHAzeYySRO19a-0CLgf7z23-2Zl9a73bvkzkBU6fseWffIhqvvk9uX5AsfEPvFhUPNLT2pW0zy8aJr6Nh0paNYFkCdp9bR-YVdNEH_hOJZil9ByRXsaXfe0ClE4zl2ZTvVdK6BRC9PaRu6V7QPyfG1vN9HZLNuardFqHWJrXSqC8ccZz7RVok884r5gjt4fkSS8X2W1SBpjmP7UYbURoqyd0EJLijRBWUakTerv5z1eh5XGX9AJ60MUYo7_NAsvpfDzAa2YbjSJvWGKV5JKWENAZRzUyisaSUR2R5dXA7xoS3_ojkiL1e3YWajX3TtmiXaSOCKEB-ziDzuEbEaCZCKFMKviEixhpW1oa7fqU_mQT08D5XZ5MnVw3pBbk6mhwflwd7R_lNyKw0g5jFT22SzWyzdM6BinXke8E_Jt-uecH8A7ldF2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomics+insights+into+different+cellobiose+hydrolysis+activities+in+two+Trichoderma+hamatum+strains&rft.jtitle=Microbial+cell+factories&rft.au=Peng+Cheng&rft.au=Bo+Liu&rft.au=Yi+Su&rft.au=Yao+Hu&rft.date=2017-04-19&rft.pub=BMC&rft.eissn=1475-2859&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs12934-017-0680-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bab49ab2fb194c8881539a14b7957510 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-2859&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-2859&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-2859&client=summon |