Absence of Nonlinear Coupling Between Electric Vestibular Stimulation and Evoked Forces During Standing Balance
The vestibular system encodes motion and orientation of the head in space and is essential for negotiating in and interacting with the world. Recently, random waveform electric vestibular stimulation has become an increasingly common means of probing the vestibular system. However, many of the metho...
Saved in:
Published in | Frontiers in human neuroscience Vol. 15; p. 631782 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
25.03.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The vestibular system encodes motion and orientation of the head in space and is essential for negotiating in and interacting with the world. Recently, random waveform electric vestibular stimulation has become an increasingly common means of probing the vestibular system. However, many of the methods used to analyze the behavioral response to this type of stimulation assume a linear relationship between frequencies in the stimulus and its associated response. Here we examine this stimulus-response frequency linearity to determine the validity of this assumption. Forty-five university-aged subjects stood on a force-plate for 4 min while receiving vestibular stimulation. To determine the linearity of the stimulus-response relationship we calculated the cross-frequency power coupling between a 0 and 25 Hz bandwidth limited white noise stimulus and induced postural responses, as measured using the horizontal forces acting at the feet. Ultimately, we found that, on average, the postural response to a random stimulus is linear across stimulation frequencies. This result supports the use of analysis methods that depend on the assumption of stimulus-response frequency linearity, such as coherence and gain, which are commonly used to analyze the body’s response to random waveform electric stimuli. |
---|---|
AbstractList | The vestibular system encodes motion and orientation of the head in space and is essential for negotiating in and interacting with the world. Recently, random waveform electric vestibular stimulation has become an increasingly common means of probing the vestibular system. However, many of the methods used to analyze the behavioral response to this type of stimulation assume a linear relationship between frequencies in the stimulus and its associated response. Here we examine this stimulus-response frequency linearity to determine the validity of this assumption. Forty-five university-aged subjects stood on a force-plate for four minutes while receiving vestibular stimulation. To determine the linearity of the stimulus-response relationship we calculated the cross-frequency power coupling between a 0-25 Hz bandwidth limited white noise stimulus and induced postural responses, as measured using the horizontal forces acting at the feet. Ultimately, we found that, on average, the postural response to a random stimulus is linear across stimulation frequencies. This result supports the use of analysis methods that depend on the assumption of stimulus-response frequency linearity, such as coherence and gain, which are commonly used to analyze the body’s response to random waveform electric stimuli. The vestibular system encodes motion and orientation of the head in space and is essential for negotiating in and interacting with the world. Recently, random waveform electric vestibular stimulation has become an increasingly common means of probing the vestibular system. However, many of the methods used to analyze the behavioral response to this type of stimulation assume a linear relationship between frequencies in the stimulus and its associated response. Here we examine this stimulus-response frequency linearity to determine the validity of this assumption. Forty-five university-aged subjects stood on a force-plate for 4 min while receiving vestibular stimulation. To determine the linearity of the stimulus-response relationship we calculated the cross-frequency power coupling between a 0 and 25 Hz bandwidth limited white noise stimulus and induced postural responses, as measured using the horizontal forces acting at the feet. Ultimately, we found that, on average, the postural response to a random stimulus is linear across stimulation frequencies. This result supports the use of analysis methods that depend on the assumption of stimulus-response frequency linearity, such as coherence and gain, which are commonly used to analyze the body's response to random waveform electric stimuli. The vestibular system encodes motion and orientation of the head in space and is essential for negotiating in and interacting with the world. Recently, random waveform electric vestibular stimulation has become an increasingly common means of probing the vestibular system. However, many of the methods used to analyze the behavioral response to this type of stimulation assume a linear relationship between frequencies in the stimulus and its associated response. Here we examine this stimulus-response frequency linearity to determine the validity of this assumption. Forty-five university-aged subjects stood on a force-plate for 4 min while receiving vestibular stimulation. To determine the linearity of the stimulus-response relationship we calculated the cross-frequency power coupling between a 0 and 25 Hz bandwidth limited white noise stimulus and induced postural responses, as measured using the horizontal forces acting at the feet. Ultimately, we found that, on average, the postural response to a random stimulus is linear across stimulation frequencies. This result supports the use of analysis methods that depend on the assumption of stimulus-response frequency linearity, such as coherence and gain, which are commonly used to analyze the body's response to random waveform electric stimuli.The vestibular system encodes motion and orientation of the head in space and is essential for negotiating in and interacting with the world. Recently, random waveform electric vestibular stimulation has become an increasingly common means of probing the vestibular system. However, many of the methods used to analyze the behavioral response to this type of stimulation assume a linear relationship between frequencies in the stimulus and its associated response. Here we examine this stimulus-response frequency linearity to determine the validity of this assumption. Forty-five university-aged subjects stood on a force-plate for 4 min while receiving vestibular stimulation. To determine the linearity of the stimulus-response relationship we calculated the cross-frequency power coupling between a 0 and 25 Hz bandwidth limited white noise stimulus and induced postural responses, as measured using the horizontal forces acting at the feet. Ultimately, we found that, on average, the postural response to a random stimulus is linear across stimulation frequencies. This result supports the use of analysis methods that depend on the assumption of stimulus-response frequency linearity, such as coherence and gain, which are commonly used to analyze the body's response to random waveform electric stimuli. |
Author | Dakin, Christopher J. Pearson, Nicole J. Todd, Makina K. Forbes, Patrick A. Hannan, Kelci B. |
AuthorAffiliation | 2 Department of Neuroscience, Erasmus MC, University Medical Center , Rotterdam , Netherlands 1 Department of Kinesiology and Health Sciences, Utah State University , Logan, UT , United States |
AuthorAffiliation_xml | – name: 1 Department of Kinesiology and Health Sciences, Utah State University , Logan, UT , United States – name: 2 Department of Neuroscience, Erasmus MC, University Medical Center , Rotterdam , Netherlands |
Author_xml | – sequence: 1 givenname: Kelci B. surname: Hannan fullname: Hannan, Kelci B. – sequence: 2 givenname: Makina K. surname: Todd fullname: Todd, Makina K. – sequence: 3 givenname: Nicole J. surname: Pearson fullname: Pearson, Nicole J. – sequence: 4 givenname: Patrick A. surname: Forbes fullname: Forbes, Patrick A. – sequence: 5 givenname: Christopher J. surname: Dakin fullname: Dakin, Christopher J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33867958$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1vEzEQhleoiH7AD-CCVuLCJcHe9ecFqYQUKlVwKHC1vPY4ddjYrXe3iH_PJGlRW4mTR553Ho_nnePqIOUEVfWaknnbKv0-pKtpM29IQ-eipVI1z6ojKkQz41TQgwfxYXU8DGtCRCM4fVEdYrWQmqujKp92AyQHdQ7115z6mMCWepGnawxX9UcYfwOketmDG0t09U8YxthNPYoux7jBYIw51Tb5enmbf4Gvz3JxMNSfprIFXI6Y2pFsb_Gdl9XzYPsBXt2dJ9WPs-X3xZfZxbfP54vTi5ljuh1nTCvJZGiJ154qpTvGgPPGK9UpHYhgPBDu8NOdBNBBOQm-CdSzjljrHLQn1fme67Ndm-sSN7b8MdlGs7vIZWVsGaPrwUjJoNONl0hhrBVaBAFSutYzQqENyPqwZ11P3Qa8gzQW2z-CPs6keGVW-dYowgRrGwS8uwOUfDPhBM0mDg56nAjkaTANp5xIggai9O0T6TpPJeGoUEU4Wq0IR9Wbhx39a-XeVxTIvcCVPAwFgnFx3FmFDcbeULLVarPbILPdILPfIKykTyrv4f-v-QuhiMsJ |
CitedBy_id | crossref_primary_10_1007_s00221_024_06918_4 crossref_primary_10_1007_s00421_022_05043_w crossref_primary_10_1007_s00221_024_06979_5 |
Cites_doi | 10.1201/9780429246593 10.3389/fnint.2014.00094 10.1111/j.1748-1716.1983.tb07212.x 10.1016/0079-6107(89)90004-7 10.1007/s00221-006-0528-1 10.1007/s00221-005-0329-y 10.7554/eLife.36123 10.1137/141000671 10.1113/jphysiol.2009.171256 10.1113/JP278642 10.1152/japplphysiol.00621.2011 10.1016/j.tins.2015.09.001 10.1038/s41467-019-09738-1 10.1152/japplphysiol.00008.2004 10.1016/j.jneumeth.2006.02.013 10.1113/jphysiol.1997.sp022051 10.1152/jn.00558.2001 10.1007/s00221-011-2549-7 10.1113/jphysiol.2011.209163 10.1007/s00221-011-2633-z 10.1016/0006-8993(82)90990-8 10.1038/s41598-019-57400-z 10.1523/JNEUROSCI.3841-14.2015 10.1113/JP275645 10.1371/journal.pone.0084385 10.1016/j.brainresbull.2004.07.008 10.1007/BF00230477 10.1113/jphysiol.2002.030767 10.1113/jphysiol.2003.045971 10.1113/jphysiol.2007.133264 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Hannan, Todd, Pearson, Forbes and Dakin. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Hannan, Todd, Pearson, Forbes and Dakin. 2021 Hannan, Todd, Pearson, Forbes and Dakin |
Copyright_xml | – notice: Copyright © 2021 Hannan, Todd, Pearson, Forbes and Dakin. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Hannan, Todd, Pearson, Forbes and Dakin. 2021 Hannan, Todd, Pearson, Forbes and Dakin |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2021.631782 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Openly Available Collection - DOAJ |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_774eb92d78c7443696f6e77c3d401e3f PMC8046432 33867958 10_3389_fnhum_2021_631782 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM PQGLB RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-498747f30d9d1889b44e552d88b89f0645f05c631b7ee9f8c7ed2f1d4b0aacce3 |
IEDL.DBID | BENPR |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:23:23 EDT 2025 Thu Aug 21 18:03:11 EDT 2025 Fri Jul 11 01:59:39 EDT 2025 Fri Jul 25 11:42:20 EDT 2025 Mon Jul 21 06:02:29 EDT 2025 Tue Jul 01 03:44:34 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | coupling linearity cross-frequency coupling electric vestibular stimulation random waveform galvanic vestibular stimulation vestibular |
Language | English |
License | Copyright © 2021 Hannan, Todd, Pearson, Forbes and Dakin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-498747f30d9d1889b44e552d88b89f0645f05c631b7ee9f8c7ed2f1d4b0aacce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Tim Kiemel, University of Maryland, United States This article was submitted to Sensory Neuroscience, a section of the journal Frontiers in Human Neuroscience Reviewed by: Lorenz Assländer, University of Konstanz, Germany; Mark Vlutters, University of Twente, Netherlands |
OpenAccessLink | https://www.proquest.com/docview/2505021805?pq-origsite=%requestingapplication% |
PMID | 33867958 |
PQID | 2505021805 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_774eb92d78c7443696f6e77c3d401e3f pubmedcentral_primary_oai_pubmedcentral_nih_gov_8046432 proquest_miscellaneous_2515070782 proquest_journals_2505021805 pubmed_primary_33867958 crossref_citationtrail_10_3389_fnhum_2021_631782 crossref_primary_10_3389_fnhum_2021_631782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-25 |
PublicationDateYYYYMMDD | 2021-03-25 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2021 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Day (B6) 1997; 500 Blouin (B2) 2011; 111 Efron (B8) 1994 Hyafil (B13) 2015; 38 Mackenzie (B19) 2018; 596 Bezanson (B1) 2017; 59 Dietrich (B7) 2020; 10 Lund (B17) 1983; 117 Kwan (B16) 2019; 10 Goldberg (B12) 1982; 252 Wardman (B29) 2003; 551 Dakin (B5) 2007; 583 Khosravi-Hashemi (B14) 2019; 597 Reynolds (B23) 2011; 589 Tisserand (B27) 2018; 7 Forbes (B10) 2014; 9 Dakin (B4) 2011; 209 Mulavara (B22) 2011; 210 Britton (B3) 1993; 94 Mian (B20) 2009; 587 Moore (B21) 2006; 174 Fitzpatrick (B9) 2004; 96 Forbes (B11) 2015; 8 Schneider (B26) 2002; 87 Wardman (B28) 2004; 547 Schneider (B25) 2015; 35 Zhan (B30) 2006; 156 Kim (B15) 2004; 64 Rosenberg (B24) 1989; 53 MacDougall (B18) 2006; 172 |
References_xml | – year: 1994 ident: B8 publication-title: An introduction to the bootstrap. Monographs on Statistics and Applied Probability 57. doi: 10.1201/9780429246593 – volume: 8 year: 2015 ident: B11 article-title: Task, muscle and frequency dependent vestibular control of posture. publication-title: Front. Integr. Neurosci. doi: 10.3389/fnint.2014.00094 – volume: 117 start-page: 307 year: 1983 ident: B17 article-title: Effects of different head positions on postural sway in man induced by a reproducible vestibular error signal. publication-title: Acta. Physiol. Scand. doi: 10.1111/j.1748-1716.1983.tb07212.x – volume: 53 start-page: 1 year: 1989 ident: B24 article-title: The fourier approach to the identification of functional coupling between neuronal spike trains. publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/0079-6107(89)90004-7 – volume: 174 start-page: 647 year: 2006 ident: B21 article-title: Modeling locomotor dysfunction following spaceflight with galvanic vestibular stimulation. publication-title: Exp. Brain Res. doi: 10.1007/s00221-006-0528-1 – volume: 172 start-page: 208 year: 2006 ident: B18 article-title: Modeling postural instability with galvanic vestibular stimulation. publication-title: Exp. Brain Res. doi: 10.1007/s00221-005-0329-y – volume: 7 year: 2018 ident: B27 article-title: Down regulation of vestibular balance stabilizing mechanisms to enable transition between motor states. publication-title: eLife doi: 10.7554/eLife.36123 – volume: 59 start-page: 65 year: 2017 ident: B1 article-title: Julia: A fresh approach to numerical computing. publication-title: SIAM Rev. doi: 10.1137/141000671 – volume: 587 start-page: 2869 year: 2009 ident: B20 article-title: Determining the direction of vestibular-evoked balance responses using stochastic vestibular stimulation. publication-title: J. Physiol. doi: 10.1113/jphysiol.2009.171256 – volume: 597 start-page: 5231 year: 2019 ident: B14 article-title: Virtual signals of head rotation induce gravity-dependent inferences of linear acceleration. publication-title: J. Physiol. doi: 10.1113/JP278642 – volume: 111 start-page: 1484 year: 2011 ident: B2 article-title: Extracting phase-dependent human vestibular reflexes during locomotion using both time and frequency correlation approaches. publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00621.2011 – volume: 38 start-page: 725 year: 2015 ident: B13 article-title: Neural cross-frequency coupling: connecting architectures, mechanisms and functions. publication-title: Trends Neurosci. doi: 10.1016/j.tins.2015.09.001 – volume: 10 start-page: 1 year: 2019 ident: B16 article-title: Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. publication-title: Nat. Comm. doi: 10.1038/s41467-019-09738-1 – volume: 96 start-page: 2301 year: 2004 ident: B9 article-title: Probing the human vestibular system with galvanic stimulation. publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00008.2004 – volume: 156 start-page: 322 year: 2006 ident: B30 article-title: Detecting time-dependent coherence between non-stationary electrophysiological signals – a combined statistical and time-frequency approach. publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2006.02.013 – volume: 500 start-page: 661 year: 1997 ident: B6 article-title: Human body-segment tilts induced by galvanic stimulation: a vestibularly driven balance protection mechanism. publication-title: J. Physiol. doi: 10.1113/jphysiol.1997.sp022051 – volume: 87 start-page: 2064 year: 2002 ident: B26 article-title: Comparison of human ocular torsion patterns during natural and galvanic vestibular stimulation. publication-title: J. Neurophysiol. doi: 10.1152/jn.00558.2001 – volume: 209 start-page: 345 year: 2011 ident: B4 article-title: Short and medium latency responses evoked by electrical vestibular stimulation are a composite of all stimulation frequencies. publication-title: Exp. Brain Res. doi: 10.1007/s00221-011-2549-7 – volume: 589 start-page: 3943 year: 2011 ident: B23 article-title: Vertical torque response to vestibular stimulation in standing humans. publication-title: J. Physiol. doi: 10.1113/jphysiol.2011.209163 – volume: 210 start-page: 303 year: 2011 ident: B22 article-title: Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. publication-title: Exp. Brain Res. doi: 10.1007/s00221-011-2633-z – volume: 252 start-page: 156 year: 1982 ident: B12 article-title: Responses of vestibular-nerve afferents in the squirrel monkey to externally applied galvanic currents. publication-title: Brain Res. doi: 10.1016/0006-8993(82)90990-8 – volume: 10 year: 2020 ident: B7 article-title: Head motion predictability explains activity-dependent suppression of vestibular balance control. publication-title: Sci. Rep. doi: 10.1038/s41598-019-57400-z – volume: 35 start-page: 5522 year: 2015 ident: B25 article-title: The increased sensitivity of irregular peripheral canal and otolith afferents optimizes their encoding of natural stimuli. publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3841-14.2015 – volume: 596 start-page: 2173 year: 2018 ident: B19 article-title: Differential effects of vision upon the accuracy and precision of vestibular-evoked balance responses. publication-title: J. Physiol. doi: 10.1113/JP275645 – volume: 9 year: 2014 ident: B10 article-title: Electrical vestibular stimuli to enhance vestibulo-motor output and improve subject comfort. publication-title: PLoS One doi: 10.1371/journal.pone.0084385 – volume: 64 start-page: 265 year: 2004 ident: B15 article-title: Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetized guinea pig. publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2004.07.008 – volume: 94 start-page: 143 year: 1993 ident: B3 article-title: Postural electromyographic response in the arm and leg following galvanic vestibular stimulation. publication-title: Exp. Brain Res. doi: 10.1007/BF00230477 – volume: 547 start-page: 292 year: 2004 ident: B28 article-title: Position and velocity responses to galvanic vestibular stimulation in human subjects during standing. publication-title: J. Physiol. doi: 10.1113/jphysiol.2002.030767 – volume: 551 start-page: 1033 year: 2003 ident: B29 article-title: Effects of galvanic vestibular stimulation on human posture and perception while standing. publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.045971 – volume: 583 start-page: 1117 year: 2007 ident: B5 article-title: Frequency response of human vestibular reflexes characterized by stochastic stimuli. publication-title: J. Physiol. doi: 10.1113/jphysiol.2007.133264 |
SSID | ssj0062651 |
Score | 2.3021502 |
Snippet | The vestibular system encodes motion and orientation of the head in space and is essential for negotiating in and interacting with the world. Recently, random... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 631782 |
SubjectTerms | Balance Bandwidths Confidence intervals coupling electric vestibular stimulation galvanic vestibular stimulation Headspace linearity Neuroscience Noise Posture Questionnaires random waveform Research methodology vestibular Vestibular system Wavelet transforms |
SummonAdditionalLinks | – databaseName: Openly Available Collection - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQtAUCBRkJcUAKTRzbsY-7ZVcVEr2Uot6s-EVX0KTa7iLx75mxs6suQnDpNXakyTw8M_HMN4S85d5pK5Uodct8yVVXlUp2vgRvHpjvpGAcm5M_n8nTC_7pUlzeGfWFNWEZHjgz7hjCk2A1861yLec4fS7K0Lau8ZAZhCbi6Qs-b5NM5TMYonRR5ztMSMH0ceyv1th2zuoPEhymYjteKIH1_y3C_LNQ8o7nmT8mj8aQkU4yqU_Ig9Dvk4NJD-ny9S_6jqYizvR3_IAME3uLtkqHSM8yCka3pCfDGhtvv9FprsqiszT8ZuHoVwTZsFiKSs9Xi-txlhftek9nP4fvwdP5sISjhH5M7Yz0fGyDoVMsiXThkFzMZ19OTstxpkLpuG5WJdcKEojYVF77WiltOQ9CMK-UVToieF2shAMm2TYEHYHpwbNYe26rrnMuNE_JXj_04TmhkMI6r6QNVYi8rp12PkoJsvc8SMh9C1JteGzcCDiOcy9-GEg8UCwmicWgWEwWS0Heb1-5yWgb_9o8RcFtNyJQdnoA6mNG9TH_U5-CHG3EbkbrvTUYFmLsU4mCvNkug93hZUrXh2GNezCUrhIdz7KWbCkBemWrhSpIu6M_O6TurvSLq4TtrfCquWEv7uPbXpKHyC6smGPiiOytluvwCkKolX2drOU3YaobhQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDI8QvOxl2mAf3WDKpGkPk8r6kaTJwzTdsTuhSfDCbuKtar7gBLSj3KHx32OnvWo3nXhtE8mN7diu7Z8J-cSsUVpIHqsiszGTVRJLUdkYrLnLbCV4xrA5-eRUHM_Yz3N-vkVW4636A7zbGNrhPKlZe3349_bhOyj8N4w4wd5-9fXlEpvKs_RQgDmUcCPvgGEqUE9P2JBUANedp11ic_O2NdMUEPw3uZ3_V0_-Y46mL8jz3o-ko47xL8mWq3fJ3qiGGPrmgX6mobIz_DLfI81I36EC08bT0w4ao2rpUbPEbtwLOu5KtegkTMSZG_obkTc01qfSs8X8ph_wRava0sl9c-UsnTYt3C_0R-hxpGd9bwwdY52kca_IbDr5dXQc94MWYsNUvoiZkhBV-DyxyqZSKs2Y4zyzUmqpPCLa-YQbOCRdOKe8NIWzmU8t00lVGePy12S7bmr3llCIa42VQrvEeZamRhnrhQCBsMwJCIgjkqzOuDQ9CjkOw7guIRpBtpSBLSWypezYEpEvw5Y_HQTHU4vHyLhhIaJnhwdNe1H2yliCy-u0ymwBX8IYTjT0whWFyS1Emy73Edlfsb1cSWSJviI6RAmPyMfhNSgjZliq2jVLXIP-dRLoeNNJyUAJ0CsKxWVEijX5WSN1_U09vwyA3xLzz3n27mmy3pNneBBYIJfxfbK9aJfuADymhf4Q9OARmisXTA priority: 102 providerName: Scholars Portal |
Title | Absence of Nonlinear Coupling Between Electric Vestibular Stimulation and Evoked Forces During Standing Balance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33867958 https://www.proquest.com/docview/2505021805 https://www.proquest.com/docview/2515070782 https://pubmed.ncbi.nlm.nih.gov/PMC8046432 https://doaj.org/article/774eb92d78c7443696f6e77c3d401e3f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3JbtQw1IL2wgVRyhJaKiMhDkihiWM79gnNlBkqpI4QpWhuUeKlHZUmZRYk_p73HM_AINRLDrEjvfj57Rshr7k1upFKpLpkNuWqzlIla5uCNHfM1lIwjsXJZxN5esE_TcU0OtwWMa1yzRMDo7adQR_5MYpqlEeZeH_7I8WpURhdjSM07pNdYMEKjK_d4Wjy-cuaF4O2LvI-lgmmmD727dUKy89Z_k6C4FRsSxqFpv3_0zT_TZj8SwKNH5GHUXWkgx7Xe-Seax-T_UELZvPNL_qGhmTO4CXfJ92gWSDN0s7TSd8No57Tk26FBbiXdNhnZ9FRGIIzM_QbNttoMCWVni9nN3GmF61bS0c_u2tn6bibA0uhH0JZIz2P5TB0iKmRxj0hF-PR15PTNM5WSA3XxTLlWoEh4YvMapsrpRvOnRDMKtUo7bGJnc-EgUNqSue0V6Z0lvnc8iara2Nc8ZTstF3rnhMKpqyxSjYuc57nudHGeinhDljuJNjACcnWZ1yZ2Hgc5198r8AAQbRUAS0VoqXq0ZKQt5tPbvuuG3dtHiLiNhuxYXZ40c0vq0h_FWi5rtHMlvAnnOMQQy9dWZrCgoHpCp-QwzXaq0jFi-rPnUvIq80y0B8GVerWdSvcgyp1FuB41t-SDSQAryy1UAkpt-7PFqjbK-3sKvT4VhhyLtiLu8E6IA_wIDAnjolDsrOcr9xLUJKWzVGkhKPgZIDnx2kOzzOufgMD_heA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9gAXBJTHQgEjAQek0MRxHPuA0G67qy1tV4i2qLeQ-NGuoEnZB6h_it_IjJMsLEK99Ro70cQznpnPngchL7nRqhAyCVTKTMBlHgZS5CYAa26ZyUXCOCYnH4zF6Jh_OElO1sivNhcGwypbnegVtak0npFvoalGexQm7y--B9g1Cm9X2xYatVjs2cufANlm73Z3gL-vGBsOjrZHQdNVINBcxfOAA8rmqYtDo0wkpSo4t0nCjJSFVA7Lt7kw0SKOitRa5aROrWEuMrwI81xrG8N3b5B1HgOU6ZD1_mD88VOr-wEdJFF9dwrQT2258myB6e4segsfTCVbsX6-ScD_PNt_AzT_snjDO-R246rSXi1bd8maLe-RjV4JMP38kr6mPnjUn8pvkKpXzFBH0MrRcV19I5_S7WqBCb-ntF9Hg9GBb7oz0fQzFvcoMASWHs4n500PMZqXhg5-VF-tocNqCiqM7vg0SnrYpN_QPoZianufHF_Lqj8gnbIq7SNCATprI0VhQ-t4FGmljRMCZM5wKwBzd0nYrnGmm0Ln2G_jWwaAB9mSebZkyJasZkuXvFm-clFX-bhqch8Zt5yIBbr9g2p6mjX7PQOv2haKmRT-hHNsmuiETVMdGwC0NnZdstmyPWu0xiz7I-Nd8mI5DPsdL3Hy0lYLnIMufOjpeFhLyZISoFekKpFdkq7IzwqpqyPl5MzXFJd4xR2zx1eT9ZzcHB0d7Gf7u-O9J-QWLgrG47Fkk3Tm04V9Cg7avHjW7ApKvlz3RvwNTG1SDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVEJcEFCWQIFBAg5IJvZ4PMsBoaRJ1FKIKkpRb8aepY2gdskC6l_j1_Gel0AQ6q1Xe2w9z1s_z1sIec6t0blQSaAlswFXWRgokdkAvLljNhMJ41ic_GEido_4u-PkeIP8amthMK2ytYmVobalwX_kPXTV6I_CpOebtIiD4fjt-fcAJ0jhSWs7TqMWkX138RPg2_zN3hB4_YKx8ejTzm7QTBgIDNfxIuCAuLn0cWi1jZTSOecuSZhVKlfaYys3HyZGxFEundNeGeks85HleZhlxrgY3nuNbEpARWGHbA5Gk4OPrR8ApJBE9TkqwEDd88XpEkvfWfQaXigVW_OE1cCA_0W5_yZr_uX9xrfIzSZspf1azm6TDVfcIVv9AiD72QV9SatE0uoP_RYp-_kc7QUtPZ3UnTiyGd0pl1j8e0IHdWYYHVUDeKaGfsZGHzmmw9LDxfSsmSdGs8LS0Y_yq7N0XM7AnNFhVVJJD5tSHDrAtEzj7pKjK9n1e6RTlIV7QCjAaGOVyF3oPI8io431QoD8We4E4O8uCds9Tk3T9Bxnb3xLAfwgW9KKLSmyJa3Z0iWvVo-c1x0_Lls8QMatFmKz7upCOTtJG91PIcJ2uWZWwpdwjgMUvXBSmtgCuHWx75Ltlu1pY0Hm6R9575Jnq9ug-3igkxWuXOIaDOfDio77tZSsKAF6hdSJ6hK5Jj9rpK7fKaanVX9xhcfdMXt4OVlPyXVQwPT93mT_EbmBe4KpeSzZJp3FbOkeQ6y2yJ80SkHJl6vWw9_MOlZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Absence+of+Nonlinear+Coupling+Between+Electric+Vestibular+Stimulation+and+Evoked+Forces+During+Standing+Balance&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Hannan%2C+Kelci+B&rft.au=Todd%2C+Makina+K&rft.au=Pearson%2C+Nicole+J&rft.au=bes%2C+Patrick+A&rft.date=2021-03-25&rft.pub=Frontiers+Research+Foundation&rft.eissn=1662-5161&rft_id=info:doi/10.3389%2Ffnhum.2021.631782&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |