MS-MDA: Multisource Marginal Distribution Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition
As an essential element for the diagnosis and rehabilitation of psychiatric disorders, the electroencephalogram (EEG) based emotion recognition has achieved significant progress due to its high precision and reliability. However, one obstacle to practicality lies in the variability between subjects...
Saved in:
Published in | Frontiers in neuroscience Vol. 15; p. 778488 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
07.12.2021
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As an essential element for the diagnosis and rehabilitation of psychiatric disorders, the electroencephalogram (EEG) based emotion recognition has achieved significant progress due to its high precision and reliability. However, one obstacle to practicality lies in the variability between subjects and sessions. Although several studies have adopted domain adaptation (DA) approaches to tackle this problem, most of them treat multiple EEG data from different subjects and sessions together as a single source domain for transfer, which either fails to satisfy the assumption of domain adaptation that the source has a certain marginal distribution, or increases the difficulty of adaptation. We therefore propose the multi-source marginal distribution adaptation (MS-MDA) for EEG emotion recognition, which takes both domain-invariant and domain-specific features into consideration. First, we assume that different EEG data share the same low-level features, then we construct independent branches for multiple EEG data source domains to adopt one-to-one domain adaptation and extract domain-specific features. Finally, the inference is made by multiple branches. We evaluate our method on SEED and SEED-IV for recognizing three and four emotions, respectively. Experimental results show that the MS-MDA outperforms the comparison methods and state-of-the-art models in cross-session and cross-subject transfer scenarios in our settings. Codes at
https://github.com/VoiceBeer/MS-MDA
. |
---|---|
AbstractList | As an essential element for the diagnosis and rehabilitation of psychiatric disorders, the electroencephalogram (EEG) based emotion recognition has achieved significant progress due to its high precision and reliability. However, one obstacle to practicality lies in the variability between subjects and sessions. Although several studies have adopted domain adaptation (DA) approaches to tackle this problem, most of them treat multiple EEG data from different subjects and sessions together as a single source domain for transfer, which either fails to satisfy the assumption of domain adaptation that the source has a certain marginal distribution, or increases the difficulty of adaptation. We therefore propose the multi-source marginal distribution adaptation (MS-MDA) for EEG emotion recognition, which takes both domain-invariant and domain-specific features into consideration. First, we assume that different EEG data share the same low-level features, then we construct independent branches for multiple EEG data source domains to adopt one-to-one domain adaptation and extract domain-specific features. Finally, the inference is made by multiple branches. We evaluate our method on SEED and SEED-IV for recognizing three and four emotions, respectively. Experimental results show that the MS-MDA outperforms the comparison methods and state-of-the-art models in cross-session and cross-subject transfer scenarios in our settings. Codes at
https://github.com/VoiceBeer/MS-MDA
. As an essential element for the diagnosis and rehabilitation of psychiatric disorders, the electroencephalogram (EEG) based emotion recognition has achieved significant progress due to its high precision and reliability. However, one obstacle to practicality lies in the variability between subjects and sessions. Although several studies have adopted domain adaptation (DA) approaches to tackle this problem, most of them treat multiple EEG data from different subjects and sessions together as a single source domain for transfer, which either fails to satisfy the assumption of domain adaptation that the source has a certain marginal distribution, or increases the difficulty of adaptation. We therefore propose the multi-source marginal distribution adaptation (MS-MDA) for EEG emotion recognition, which takes both domain-invariant and domain-specific features into consideration. First, we assume that different EEG data share the same low-level features, then we construct independent branches for multiple EEG data source domains to adopt one-to-one domain adaptation and extract domain-specific features. Finally, the inference is made by multiple branches. We evaluate our method on SEED and SEED-IV for recognizing three and four emotions, respectively. Experimental results show that the MS-MDA outperforms the comparison methods and state-of-the-art models in cross-session and cross-subject transfer scenarios in our settings. Codes at https://github.com/VoiceBeer/MS-MDA. As an essential element for the diagnosis and rehabilitation of psychiatric disorders, the electroencephalogram (EEG) based emotion recognition has achieved significant progress due to its high precision and reliability. However, one obstacle to practicality lies in the variability between subjects and sessions. Although several studies have adopted domain adaptation (DA) approaches to tackle this problem, most of them treat multiple EEG data from different subjects and sessions together as a single source domain for transfer, which either fails to satisfy the assumption of domain adaptation that the source has a certain marginal distribution, or increases the difficulty of adaptation. We therefore propose the multi-source marginal distribution adaptation (MS-MDA) for EEG emotion recognition, which takes both domain-invariant and domain-specific features into consideration. First, we assume that different EEG data share the same low-level features, then we construct independent branches for multiple EEG data source domains to adopt one-to-one domain adaptation and extract domain-specific features. Finally, the inference is made by multiple branches. We evaluate our method on SEED and SEED-IV for recognizing three and four emotions, respectively. Experimental results show that the MS-MDA outperforms the comparison methods and state-of-the-art models in cross-session and cross-subject transfer scenarios in our settings. Codes at https://github.com/VoiceBeer/MS-MDA.As an essential element for the diagnosis and rehabilitation of psychiatric disorders, the electroencephalogram (EEG) based emotion recognition has achieved significant progress due to its high precision and reliability. However, one obstacle to practicality lies in the variability between subjects and sessions. Although several studies have adopted domain adaptation (DA) approaches to tackle this problem, most of them treat multiple EEG data from different subjects and sessions together as a single source domain for transfer, which either fails to satisfy the assumption of domain adaptation that the source has a certain marginal distribution, or increases the difficulty of adaptation. We therefore propose the multi-source marginal distribution adaptation (MS-MDA) for EEG emotion recognition, which takes both domain-invariant and domain-specific features into consideration. First, we assume that different EEG data share the same low-level features, then we construct independent branches for multiple EEG data source domains to adopt one-to-one domain adaptation and extract domain-specific features. Finally, the inference is made by multiple branches. We evaluate our method on SEED and SEED-IV for recognizing three and four emotions, respectively. Experimental results show that the MS-MDA outperforms the comparison methods and state-of-the-art models in cross-session and cross-subject transfer scenarios in our settings. Codes at https://github.com/VoiceBeer/MS-MDA. |
Author | He, Huiguang Li, Zhunan Jin, Ming Li, Jinpeng Chen, Hao Fan, Cunhang |
AuthorAffiliation | 1 HwaMei Hospital, University of Chinese Academy , Ningbo , China 2 Center for Pattern Recognition and Intelligent Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences , Ningbo , China 4 Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences , Beijing , China 3 Anhui Province Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University , Hefei , China |
AuthorAffiliation_xml | – name: 4 Research Center for Brain-inspired Intelligence and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences , Beijing , China – name: 1 HwaMei Hospital, University of Chinese Academy , Ningbo , China – name: 3 Anhui Province Key Laboratory of Multimodal Cognitive Computation, School of Computer Science and Technology, Anhui University , Hefei , China – name: 2 Center for Pattern Recognition and Intelligent Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences , Ningbo , China |
Author_xml | – sequence: 1 givenname: Hao surname: Chen fullname: Chen, Hao – sequence: 2 givenname: Ming surname: Jin fullname: Jin, Ming – sequence: 3 givenname: Zhunan surname: Li fullname: Li, Zhunan – sequence: 4 givenname: Cunhang surname: Fan fullname: Fan, Cunhang – sequence: 5 givenname: Jinpeng surname: Li fullname: Li, Jinpeng – sequence: 6 givenname: Huiguang surname: He fullname: He, Huiguang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34949983$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktrGzEUhYeS0jzaH9BNGeimm3H1lqaLgnGcB8QUmha6E3qNKzOWHGmm0H9fjZ2EJIuudLn3u4crzjmtjkIMrqreQzDDWLSfu-BDniGA4IxzQYR4VZ1AxlBDKP519KQ-rk5z3gDAkCDoTXWMSUvaVuCTare6bVbn8y_1auwHn-OYjKtXKq19UH197vOQvB4HH0M9t2o3qH3ZxVQvUsy5uR31xpmhVsE-dFzOE7NcXtbLbdzz352J6-Cn-m31ulN9du_u37Pq58Xyx-Kqufl2eb2Y3zSGtHhoiOgUUBoY1gLiHILcagi17YQ2CjhOFdeUIMuFoIhaUEatBRbDFlPGiMFn1fVB10a1kbvktyr9lVF5uW_EtJYqDd70TmrCFMMAc-wsoW3RR9g4rSkX0DogitbXg9Zu1FtnjQtDUv0z0eeT4H_LdfwjBRNCEFgEPt0LpHg3ujzIrc_G9b0KLo5ZIgYJwoC2oKAfX6CbYkoxY6IAJwxRiAr14elFj6c8GFsAeADMZEpy3SMCgZzCI_fhkVN45CE8ZYe_2DH-YHj5lO__s_kPXV3LeQ |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109394 crossref_primary_10_1016_j_engappai_2023_106205 crossref_primary_10_1016_j_inffus_2023_102156 crossref_primary_10_3389_fnhum_2024_1464431 crossref_primary_10_1109_TNNLS_2023_3243339 crossref_primary_10_1109_TCSS_2024_3412074 crossref_primary_10_1109_TCDS_2024_3432752 crossref_primary_10_1088_1741_2552_ad2710 crossref_primary_10_1016_j_jneumeth_2024_110276 crossref_primary_10_1016_j_knosys_2025_113018 crossref_primary_10_1016_j_neucom_2024_129315 crossref_primary_10_1063_5_0231511 crossref_primary_10_3389_fnhum_2023_1280241 crossref_primary_10_1007_s11517_023_02956_2 crossref_primary_10_1109_TAFFC_2024_3433470 crossref_primary_10_1016_j_knosys_2023_111199 crossref_primary_10_1007_s11571_023_10004_w crossref_primary_10_1109_TIM_2024_3398103 crossref_primary_10_1007_s11571_024_10193_y crossref_primary_10_1109_TAFFC_2024_3371540 crossref_primary_10_1007_s11571_024_10092_2 crossref_primary_10_1016_j_bspc_2025_107536 crossref_primary_10_1155_2024_7499554 crossref_primary_10_1155_int_9618884 crossref_primary_10_1109_JBHI_2023_3311338 crossref_primary_10_3390_electronics13010186 crossref_primary_10_1016_j_bspc_2023_104741 crossref_primary_10_1016_j_neunet_2024_106624 crossref_primary_10_1109_TIM_2023_3302938 crossref_primary_10_3389_fnins_2023_1213099 crossref_primary_10_1109_ACCESS_2025_3536549 crossref_primary_10_1109_TIM_2023_3277985 crossref_primary_10_1016_j_measurement_2024_116046 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_3390_brainsci14030271 crossref_primary_10_1007_s11517_024_03032_z crossref_primary_10_1016_j_neunet_2024_106742 crossref_primary_10_3390_lubricants12050175 crossref_primary_10_1109_TNSRE_2022_3207494 crossref_primary_10_1016_j_eswa_2024_126028 crossref_primary_10_1109_ACCESS_2024_3349552 crossref_primary_10_1016_j_bspc_2024_106953 crossref_primary_10_1007_s00521_024_10821_y crossref_primary_10_1016_j_jvcir_2025_104415 crossref_primary_10_1109_TAFFC_2023_3282704 crossref_primary_10_1109_TAFFC_2024_3394436 crossref_primary_10_1109_TAFFC_2024_3357656 crossref_primary_10_3389_fnins_2024_1293962 crossref_primary_10_1016_j_brainresbull_2024_110901 crossref_primary_10_1016_j_engappai_2025_110004 crossref_primary_10_3389_fnhum_2023_1132254 crossref_primary_10_1016_j_inffus_2023_102129 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_1016_j_eswa_2024_125452 crossref_primary_10_1016_j_knosys_2023_111011 crossref_primary_10_1109_ACCESS_2024_3458833 crossref_primary_10_1109_TETCI_2024_3406422 crossref_primary_10_1109_TAFFC_2023_3288118 crossref_primary_10_1109_JBHI_2022_3210158 crossref_primary_10_1016_j_knosys_2024_112669 crossref_primary_10_1109_TNSRE_2024_3415364 crossref_primary_10_1109_TAFFC_2024_3433613 crossref_primary_10_1145_3654664 crossref_primary_10_1016_j_bspc_2023_105138 crossref_primary_10_1016_j_bspc_2024_107337 crossref_primary_10_1016_j_bspc_2024_107019 crossref_primary_10_1016_j_compbiomed_2024_108857 crossref_primary_10_1109_TAFFC_2024_3395359 crossref_primary_10_1088_1741_2552_ace07d crossref_primary_10_1007_s11760_024_03533_2 crossref_primary_10_3389_fphys_2023_1196919 crossref_primary_10_1016_j_bspc_2023_104998 crossref_primary_10_1109_TAFFC_2023_3305982 crossref_primary_10_1016_j_bspc_2024_106912 crossref_primary_10_1080_10255842_2024_2417212 crossref_primary_10_1016_j_bspc_2024_106716 crossref_primary_10_1016_j_jneumeth_2023_109978 crossref_primary_10_1016_j_knosys_2022_108819 crossref_primary_10_3389_fpsyg_2021_809459 |
Cites_doi | 10.1109/SMC.2019.8914645 10.1609/aaai.v35i1.16169 10.1109/TNSRE.2020.3043426 10.1109/NER.2013.6695876 10.1109/T-AFFC.2011.15 10.1088/1741-2552/aaf3f6 10.1109/BIBM49941.2020.9312984 10.1007/978-3-030-04221-9_36 10.3389/fpsyg.2017.01454 10.1126/science.1076358 10.1016/j.neucom.2019.05.108 10.1109/TAFFC.2015.2436926 10.1080/02699930903407948 10.1145/3343031.3350871 10.1109/TNN.2010.2091281 10.1109/TAMD.2015.2431497 10.1109/TKDE.2009.191 10.1109/TCYB.2018.2797176 10.3390/s17051014 10.1162/tacl_a_00097 10.1016/j.compbiomed.2016.10.019 10.1016/j.patcog.2020.107626 10.1109/TNSRE.2021.3059429 10.1109/TNSRE.2015.2466079 10.1093/bioinformatics/btl242 10.1007/s10916-019-1345-y 10.1109/TCDS.2019.2949306 10.1111/j.1469-8986.2006.00456.x 10.1080/02699930143000239 10.1016/j.cmpb.2012.10.008 10.1080/13607860410001669750 10.1109/TCYB.2019.2904052 10.1145/1970392.1970395 10.1037/0003-066X.48.4.384 10.3389/fncom.2017.00064 10.1109/ICOT.2017.8336126 10.1159/000381950 10.1016/S1352-2310(97)00447-0 10.1109/TSMCC.2012.2226444 10.1016/B978-0-12-801851-4.00001-X |
ContentType | Journal Article |
Copyright | Copyright © 2021 Chen, Jin, Li, Fan, Li and He. 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2021 Chen, Jin, Li, Fan, Li and He. 2021 Chen, Jin, Li, Fan, Li and He |
Copyright_xml | – notice: Copyright © 2021 Chen, Jin, Li, Fan, Li and He. – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2021 Chen, Jin, Li, Fan, Li and He. 2021 Chen, Jin, Li, Fan, Li and He |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2021.778488 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_b46a630373ed459ca023cebb5781de08 PMC8688841 34949983 10_3389_fnins_2021_778488 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D C1A IAO IEA IHR ISR M~E NPM 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c493t-48fa0ab0c6904ee217db11bdf8bca0e75a7b542d788525d01bd9d0d31935664c3 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:31:21 EDT 2025 Thu Aug 21 18:29:52 EDT 2025 Thu Jul 10 19:25:32 EDT 2025 Fri Jul 25 11:53:32 EDT 2025 Thu Jan 02 22:55:45 EST 2025 Tue Jul 01 01:39:30 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | transfer learning domain adaptation emotion recognition EEG brain-computer interface |
Language | English |
License | Copyright © 2021 Chen, Jin, Li, Fan, Li and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-48fa0ab0c6904ee217db11bdf8bca0e75a7b542d788525d01bd9d0d31935664c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience Reviewed by: Huan Liu, Jiangsu University, China; Linling Li, Shenzhen University, China Edited by: Yudan Ren, Northwest University, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2021.778488 |
PMID | 34949983 |
PQID | 2607462512 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b46a630373ed459ca023cebb5781de08 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8688841 proquest_miscellaneous_2614230590 proquest_journals_2607462512 pubmed_primary_34949983 crossref_primary_10_3389_fnins_2021_778488 crossref_citationtrail_10_3389_fnins_2021_778488 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-07 |
PublicationDateYYYYMMDD | 2021-12-07 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationTitleAlternate | Front Neurosci |
PublicationYear | 2021 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Barrett (B3) 2001; 15 Zhang (B46) 2020; 29 Li (B26) 2020 Jeon (B17) 2017 Lin (B29) 2017; 11 Chai (B9) 2016; 79 Li (B25) 2018 Zhu (B51) 2019 Frisoli (B14) 2012; 42 Jiang (B18) 2021; 29 Borgwardt (B5) 2006; 22 Candès (B7) 2011; 58 Yin (B45) 2016; 4 Chai (B8) 2017; 17 Duan (B11) 2013 Ay (B2) 2019; 43 Kingma (B22) 2014 Li (B27); 12 Nair (B33) 2010 Dolan (B10) 2002; 298 Ma (B32) 2019 Zhao (B47) 2021 Xu (B44) 2015 Zheng (B50) 2016 Hosseinifard (B16) 2013; 109 Joormann (B21) 2010; 24 Ekman (B12) 1993; 48 Sanei (B36) 2013 Jiao (B19) 2020; 408 Fahimi (B13) 2019; 16 Van der Maaten (B42) 2008; 9 Zheng (B49) 2015; 7 Pan (B34) 2010; 22 Zheng (B48) 2018; 49 Birbaumer (B4) 2006; 43 Tao (B39) 2020 Lee (B24) 2019 Bucks (B6) 2004; 8 Long (B31) 2015 Soleymani (B37) 2015; 7 Sun (B38) 2016 Wang (B43) 2021; 110 Acharya (B1) 2015; 73 Pan (B35) 2009; 22 Gardner (B15) 1998; 32 Koelstra (B23) 2011; 3 Li (B28); 50 Liu (B30) 2015; 24 Tyng (B40) 2017; 8 Jin (B20) 2017 Tzeng (B41) 2014 |
References_xml | – start-page: 4409 volume-title: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC) year: 2019 ident: B24 article-title: Towards an eeg-based intuitive bci communication system using imagined speech and visual imagery doi: 10.1109/SMC.2019.8914645 – volume-title: Proceedings of the 35th AAAI Conference on Artificial Intelligence year: 2021 ident: B47 article-title: Plug-and-play domain adaptation for cross-subject eeg-based emotion recognition doi: 10.1609/aaai.v35i1.16169 – volume: 29 start-page: 215 year: 2020 ident: B46 article-title: Brain functional networks based on resting-state eeg data for major depressive disorder analysis and classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2020.3043426 – start-page: 81 volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) year: 2013 ident: B11 article-title: Differential entropy feature for eeg-based emotion classification doi: 10.1109/NER.2013.6695876 – volume: 3 start-page: 18 year: 2011 ident: B23 article-title: Deap: a database for emotion analysis; using physiological signals publication-title: IEEE Trans. Affect. Comput doi: 10.1109/T-AFFC.2011.15 – volume: 16 start-page: 026007 year: 2019 ident: B13 article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for eeg-based bci publication-title: J. Neural Eng doi: 10.1088/1741-2552/aaf3f6 – start-page: 5989 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33 year: 2019 ident: B51 article-title: Aligning domain-specific distribution and classifier for cross-domain classification from multiple sources – start-page: 2618 volume-title: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2020 ident: B26 article-title: Foit: fast online instance transfer for improved eeg emotion recognition doi: 10.1109/BIBM49941.2020.9312984 – start-page: 403 volume-title: International Conference on Neural Information Processing year: 2018 ident: B25 article-title: Cross-subject emotion recognition using deep adaptation networks doi: 10.1007/978-3-030-04221-9_36 – volume: 8 start-page: 1454 year: 2017 ident: B40 article-title: The influences of emotion on learning and memory publication-title: Front. Psychol doi: 10.3389/fpsyg.2017.01454 – volume: 298 start-page: 1191 year: 2002 ident: B10 article-title: Emotion, cognition, and behavior publication-title: Science doi: 10.1126/science.1076358 – start-page: 2732 volume-title: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence year: 2016 ident: B50 article-title: Personalizing eeg-based affective models with transfer learning – year: 2015 ident: B44 article-title: Empirical evaluation of rectified activations in convolutional network publication-title: arXiv preprint – year: 2014 ident: B22 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint – start-page: 443 volume-title: European Conference on Computer Vision year: 2016 ident: B38 article-title: Deep coral: correlation alignment for deep domain adaptation – start-page: 97 volume-title: International Conference on Machine Learning year: 2015 ident: B31 article-title: Learning transferable features with deep adaptation networks – volume: 408 start-page: 100 year: 2020 ident: B19 article-title: Driver sleepiness detection from eeg and eog signals using gan and lstm networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.05.108 – volume: 7 start-page: 17 year: 2015 ident: B37 article-title: Analysis of eeg signals and facial expressions for continuous emotion detection publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2015.2436926 – volume: 24 start-page: 281 year: 2010 ident: B21 article-title: Emotion regulation in depression: relation to cognitive inhibition publication-title: Cogn. Emot doi: 10.1080/02699930903407948 – start-page: 176 volume-title: Proceedings of the 27th ACM International Conference on Multimedia year: 2019 ident: B32 article-title: Emotion recognition using multimodal residual lstm network doi: 10.1145/3343031.3350871 – volume: 22 start-page: 199 year: 2010 ident: B34 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Netw doi: 10.1109/TNN.2010.2091281 – volume: 7 start-page: 162 year: 2015 ident: B49 article-title: Investigating critical frequency bands and channels for eeg-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev doi: 10.1109/TAMD.2015.2431497 – volume: 22 start-page: 1345 year: 2009 ident: B35 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 9 start-page: 2579 year: 2008 ident: B42 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res – volume: 49 start-page: 1110 year: 2018 ident: B48 article-title: Emotionmeter: a multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern doi: 10.1109/TCYB.2018.2797176 – volume: 17 start-page: 1014 year: 2017 ident: B8 article-title: A fast, efficient domain adaptation technique for cross-domain electroencephalography (eeg)-based emotion recognition publication-title: Sensors doi: 10.3390/s17051014 – volume: 4 start-page: 259 year: 2016 ident: B45 article-title: Abcnn: attention-based convolutional neural network for modeling sentence pairs publication-title: Trans. Assoc. Comput. Linguist doi: 10.1162/tacl_a_00097 – volume: 79 start-page: 205 year: 2016 ident: B9 article-title: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary eeg-based emotion recognition publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2016.10.019 – volume: 110 start-page: 107626 year: 2021 ident: B43 article-title: A prototype-based spd matrix network for domain adaptation eeg emotion recognition publication-title: Pattern Recognit doi: 10.1016/j.patcog.2020.107626 – volume: 29 start-page: 566 year: 2021 ident: B18 article-title: Enhancing eeg-based classification of depression patients using spatial information publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2021.3059429 – volume: 24 start-page: 169 year: 2015 ident: B30 article-title: A boosting-based spatial-spectral model for stroke patients' eeg analysis in rehabilitation training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2015.2466079 – volume: 22 start-page: e49 year: 2006 ident: B5 article-title: Integrating structured biological data by kernel maximum mean discrepancy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl242 – volume: 43 start-page: 1 year: 2019 ident: B2 article-title: Automated depression detection using deep representation and sequence learning with eeg signals publication-title: J. Med. Syst doi: 10.1007/s10916-019-1345-y – volume: 12 start-page: 344 ident: B27 article-title: Domain adaptation for eeg emotion recognition based on latent representation similarity publication-title: IEEE Trans. Cogn. Dev. Syst doi: 10.1109/TCDS.2019.2949306 – volume: 43 start-page: 517 year: 2006 ident: B4 article-title: Breaking the silence: brain-computer interfaces (bci) for communication and motor control publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2006.00456.x – year: 2014 ident: B41 article-title: Deep domain confusion: maximizing for domain invariance publication-title: arXiv preprint – volume-title: EEG Signal Processing year: 2013 ident: B36 – volume: 15 start-page: 713 year: 2001 ident: B3 article-title: Knowing what you're feeling and knowing what to do about it: mapping the relation between emotion differentiation and emotion regulation publication-title: Cogn. Emot doi: 10.1080/02699930143000239 – volume: 109 start-page: 339 year: 2013 ident: B16 article-title: Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from eeg signal publication-title: Comput. Methods Programs Biomed doi: 10.1016/j.cmpb.2012.10.008 – volume: 8 start-page: 222 year: 2004 ident: B6 article-title: Emotion processing in alzheimer's disease publication-title: Aging Mental Health doi: 10.1080/13607860410001669750 – volume: 50 start-page: 3281 ident: B28 article-title: Multisource transfer learning for cross-subject eeg emotion recognition publication-title: IEEE Trans. Cybern doi: 10.1109/TCYB.2019.2904052 – volume: 58 start-page: 1 year: 2011 ident: B7 article-title: Robust principal component analysis? publication-title: J. ACM doi: 10.1145/1970392.1970395 – volume: 48 start-page: 384 year: 1993 ident: B12 article-title: Facial expression and emotion publication-title: Am. Psychol doi: 10.1037/0003-066X.48.4.384 – volume: 11 start-page: 64 year: 2017 ident: B29 article-title: Improving cross-day eeg-based emotion classification using robust principal component analysis publication-title: Front. Comput. Neurosci doi: 10.3389/fncom.2017.00064 – start-page: 222 volume-title: 2017 International Conference on Orange Technologies (ICOT) year: 2017 ident: B20 article-title: Eeg-based emotion recognition using domain adaptation network doi: 10.1109/ICOT.2017.8336126 – volume: 73 start-page: 329 year: 2015 ident: B1 article-title: Computer-aided diagnosis of depression using eeg signals publication-title: Eur. Neurol doi: 10.1159/000381950 – start-page: 1 volume-title: 2020 International Joint Conference on Neural Networks (IJCNN) year: 2020 ident: B39 article-title: Emotion recognition under sleep deprivation using a multimodal residual lstm network – volume: 32 start-page: 2627 year: 1998 ident: B15 article-title: Artificial neural networks (the multilayer perceptron)—review of applications in the atmospheric sciences publication-title: Atmos. Environ doi: 10.1016/S1352-2310(97)00447-0 – volume-title: ICML year: 2010 ident: B33 article-title: Rectified linear units improve restricted boltzmann machines – volume: 42 start-page: 1169 year: 2012 ident: B14 article-title: A new gaze-bci-driven control of an upper limb exoskeleton for rehabilitation in real-world tasks publication-title: IEEE Trans. Syst. Man Cybern. C doi: 10.1109/TSMCC.2012.2226444 – start-page: 3 volume-title: Emotions and Affect in Human Factors and Human-Computer Interaction year: 2017 ident: B17 article-title: Emotions and affect in human factors and human-computer interaction: taxonomy, theories, approaches, and methods doi: 10.1016/B978-0-12-801851-4.00001-X |
SSID | ssj0062842 |
Score | 2.6218529 |
Snippet | As an essential element for the diagnosis and rehabilitation of psychiatric disorders, the electroencephalogram (EEG) based emotion recognition has achieved... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 778488 |
SubjectTerms | Adaptation Alzheimer's disease Brain research brain-computer interface Classification domain adaptation EEG Electroencephalography emotion recognition Emotional regulation Emotions Experiments Machine learning Mental disorders Methods Neuroscience Rehabilitation transfer learning |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnnpBQHkESmUkxAHJNImd2OG2bbdUSMsBqNRb5FdEpeJdoe2h_74zdrLtIgQXrraTOJ6xPeMZfx_A29A6b_VQcWut52iBK26EcryurKi9Etp5iuguvrRn5_LzRXNxj-qLcsIyPHAeuEMrW9PiOqtE8LLpnMFNxgVrUdMqH_I1X9zzJmcqr8EtLrp1jmGiC9YdDvEyEjZ3XX1QSstEs3K3CyWw_j9ZmL8nSt7beU4fwcPRZGSz3NXH8CDEJ7A3i-gu_7xh71hK4kyn43uwWnzji5PZR5Yu1uaTeUZktkR-xU4IJXckuGIzb1Y5Ds_QcGXH1FGO6wgdzDAT_VSSgTvYfP6JzTPnD_s6ZR0t41M4P51_Pz7jI6kCd7ITay71YEpjS4dusQwBPRJvq8r6QVsc26Aao2wjUUxaN3XjS6zqfOlxpgq0_KQTz2AnLmN4ASwII6WRDh1bixUNvkBLUZamC0NXmqaAchrk3o2I40R8cdWj50Fy6ZNcepJLn-VSwPvNI6sMt_G3xkckuU1DQspOBag__ag__b_0p4D9Se79OH3xIy3RsJDpV8CbTTVOPIqmmBiW19SmQlOU7u4W8DyryaYnGfNHiwLUlgJtdXW7Jl7-SODeutVay-rl__i3V7BLw5Wyb9Q-7Kx_XYfXaEOt7UGaLrelYByL priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZge-GCCuURKMhIiAOSqRM7scMFbduUCmkrVKjUW-TXlkqQbMv2wL9nxnECi1CvseM4Hs94Xv6GkNehct7qZc6stZ6BBq6YEcqxIrei8Epo5zGiuzipjs_kp_PyPDncfqa0ylEmRkHte4c-8j3Qu5Ws8DT-sLpiWDUKo6uphMZdsgUiWOsZ2dpvTj6fjrK4AuEb450V3g0C5XyIa4JZVu8tu8sO8bqL_J1SWsbSK39Opgjg_z-t89_kyb9Oo6Ntcj-pkXQ-0P0BuRO6h2Rn3oEJ_eMXfUNjYmf0mO-Q1eILWxzO39N42Xbw1lMscIsFseghIuemold07s1qiM1TUGbpAU6UgWxBZw01nR-fDGAetGk-0maoA0RPx0ykvntEzo6arwfHLBVaYE7WYs2kXhpuLHdgKssQwErxNs-tX2rrDA-qNMqWEkindVmUnkNT7bkH7hWgDUonHpNZ13fhKaFBGCmNdGDsWmgoYQAtBeemDsuamzIjfFzk1iUUciyG8b0FawTp0ka6tEiXdqBLRt5Or6wGCI7bOu8j5aaOiJ4dH_TXF21ixtbKylRwdisRvCxr-MdCuGAtSK_cBw6D7I50bxNLw0emDZiRV1MzMCNGWEwX-hvsk4N6ivd5M_Jk2CbTTAYcIC0yojY20MZUN1u6y28R8FtXWmuZP7t9Ws_JPVyImGujdslsfX0TXoDGtLYvE1v8BorhFz0 priority: 102 providerName: ProQuest |
Title | MS-MDA: Multisource Marginal Distribution Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34949983 https://www.proquest.com/docview/2607462512 https://www.proquest.com/docview/2614230590 https://pubmed.ncbi.nlm.nih.gov/PMC8688841 https://doaj.org/article/b46a630373ed459ca023cebb5781de08 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3_a9QwFA9zA9kvos4vnfOIIP4gdKZN2qSCyG3rNoQbMj2430rSpDrYeud5A_ff-17SFk9Of-kPTRrSvPfyviWfR8hrl9fWqCaJjTE2BgtcxprLOk4Tw1MruaotZnQnF_n5VHyaZbMt0pe36hbw50bXDutJTZfXh79-3H0Egf-AHifo23dNe9Ui8naaHEqpgCPvkR1QTBILGkzEkFTIYSf2yc8cLwqBpR6SnJuH2CX3A3CL4msaywP7b7JG_z5U-YeWOn1IHnTmJR0HfnhEtlz7mOyNW3Ctb-7oG-oPfPpI-h5ZTL7Ek5Pxe-ov4YYoPsXCt1goi54gom5XDIuOrV6EnD0FI5ce40Rj2HMwiEN1a_s3AeSDluUZLUN9IHrZn1Cat0_I9LT8enwedwUY4loUfBUL1WimDavBhRbOgfdiTZIY2yhTa-ZkpqXJBJBUqSzNLIOmwjILUs3BShQ1f0q223nrnhPquBZCixqcYAMNGQygBGdMF64pmM4iwvpFruoOnRyLZFxX4KUgiSpPogpJVAUSReTt8MkiQHP8r_MRUm7oiKja_sV8-a3qhLQyItc56HTJnRVZAf-Y8toZA7taYh2DQQ56ulc9p1bgEEqRo5kYkVdDMwgpZl506-a32CcBsxXv-UbkWWCTYSY9m0VErjHQ2lTXW9qr7x4IXOVKKZHs_3PMF2QX18Afv5EHZHu1vHUvwYhamRHZOSovPl-OfBACnmezZOTF5TfPmR1N |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCBgfhQFGAh6QwpzYiR0khLq1o2NrhcYm7S3zV7dJkJbRCe2f4m_kzk4KRWhve41d18mdz7_zne9HyEtfWGfUJE2MMS4BBC4TzaVNstTwzEmurMOI7mhcDA_Fp6P8aIX8au_CYFplaxODoXZTi2fkG4C7pShwN_4w-54gaxRGV1sKjagWu_7yJ7hsP97v9EG-r7Jse3CwNUwaVoHEipLPE6EmmmnDLPiFwnuA5M6kqXETZaxmXuZamlzAPJXKs9wxaCodc6CqHKCPsBzGvUFWBS9Y1iGrm4Px5_3W9hdg7EN8tcC7SOAMxDgquIHlxqQ-q7E-eJa-lVKJQPXyZycMhAH_Q7n_Jmv-tftt3yG3G9hKe1HP7pIVX98ja70aXPZvl_Q1DYmk4YR-jcxGX5JRv_eOhsu9MTpAkVAXCbhoHyv1NiRbtOf0LOYCUADPdAsnmoAtw8MhqmvXPonFQ-hg8JEOIu8Q3W8zn6b1fXJ4LSJ4QDr1tPaPCPVcC6GFBefaQEMOAyjBGdOln5RM513C2o9c2abqOZJvfK3A-0G5VEEuFcqlinLpkjeLn8xiyY-rOm-i5BYdsVp3eDA9P6maxV8ZUegCsILk3om8hHfMuPXGgLVMnWcwyHor96oxIfAnC4XvkheLZlj8GNHRtZ9eYJ8U4DDeH-6Sh1FNFjOJdYcU7xK5pEBLU11uqc9OQ4FxVSilRPr46mk9JzeHB6O9am9nvPuE3MKPEvJ85DrpzM8v_FNAa3PzrFkilBxf96r8DQ3-VCQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDA-MgYYCXhACk1iJ3aQEOrWlo3RahpM2lvwV9gkSMvohPav8ddxZyeFIrS3vcau6-TO59_5zvcj5JkrjNWyTmOttY0BgYtYMWHiLNUss4JJYzGiO5kWu0f8_XF-vEZ-dXdhMK2ys4neUNuZwTPyPuBuwQvcjft1mxZxMBy_nX-PkUEKI60dnUZQkX138RPctx9v9oYg6-dZNh592tmNW4aB2PCSLWIua5UonRjwEblzAM-tTlNta6mNSpzIldA5hzlLmWe5TaCptIkFtWUAg7hhMO41si7QK-qR9e3R9OCw2wcKMPw-1lrgvSRwDEJMFVzCsl83pw3WCs_SV0JI7mlf_uyKnjzgf4j338TNv3bC8S1ys4WwdBB07jZZc80dsjFowH3_dkFfUJ9U6k_rN8h88jGeDAevqb_oGyIFFMl1kYyLDrFqb0u4RQdWzUNeAAUgTXdwojHYNTwooqqx3ZNQSISORu_oKHAQ0cMuC2rW3CVHVyKCe6TXzBr3gFDHFOeKG3C0NTTkMIDkLElU6eoyUXlEku4jV6atgI5EHF8r8IRQLpWXS4VyqYJcIvJy-ZN5KP9xWedtlNyyI1bu9g9mZ1-q1hBUmheqANwgmLM8L-EdM2ac1mA5U-sSGGSrk3vVmhP4k6XyR-TpshkMAUZ3VONm59gnBWiMd4kjcj-oyXImoQaRZBERKwq0MtXVlub0xBcbl4WUkqebl0_rCbkOq7H6sDfdf0hu4DfxKT9ii_QWZ-fuEQC3hX7crhBKPl_1ovwNz7tYWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MS-MDA%3A+Multisource+Marginal+Distribution+Adaptation+for+Cross-Subject+and+Cross-Session+EEG+Emotion+Recognition&rft.jtitle=Frontiers+in+neuroscience&rft.au=Chen%2C+Hao&rft.au=Jin%2C+Ming&rft.au=Li%2C+Zhunan&rft.au=Fan%2C+Cunhang&rft.date=2021-12-07&rft.issn=1662-4548&rft.volume=15&rft.spage=778488&rft_id=info:doi/10.3389%2Ffnins.2021.778488&rft_id=info%3Apmid%2F34949983&rft.externalDocID=34949983 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |