Regional Brain Fusion: Graph Convolutional Network for Alzheimer's Disease Prediction and Analysis

Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical sympt...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 16; p. 886365
Main Authors Li, Wenchao, Zhao, Jiaqi, Shen, Chenyu, Zhang, Jingwen, Hu, Ji, Xiao, Mang, Zhang, Jiyong, Chen, Minghan
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 29.04.2022
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2022.886365

Cover

Loading…
Abstract Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this article, we built a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and amyloid positron emission tomography (PET). Based on some existing research results, we applied statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on the left and right hemispheres. In the light of advances in graph convolutional networks for graph classifications and summarized characteristics of brain networks and AD pathologies, we proposed a regional brain fusion-graph convolutional network (RBF-GCN), which is constructed with an RBF framework mainly, including three sub-modules, namely, hemispheric network generation module, multichannel GCN module, and feature fusion module. In the multichannel GCN module, the improved GCN by our proposed adaptive native node attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit but also achieved competitive results in multiple sets of AD stages' classification tasks using hundreds of experiments over the ADNI clinical dataset.
AbstractList Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this article, we built a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and amyloid positron emission tomography (PET). Based on some existing research results, we applied statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on the left and right hemispheres. In the light of advances in graph convolutional networks for graph classifications and summarized characteristics of brain networks and AD pathologies, we proposed a regional brain fusion-graph convolutional network (RBF-GCN), which is constructed with an RBF framework mainly, including three sub-modules, namely, hemispheric network generation module, multichannel GCN module, and feature fusion module. In the multichannel GCN module, the improved GCN by our proposed adaptive native node attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit but also achieved competitive results in multiple sets of AD stages' classification tasks using hundreds of experiments over the ADNI clinical dataset.
Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this article, we built a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and amyloid positron emission tomography (PET). Based on some existing research results, we applied statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on the left and right hemispheres. In the light of advances in graph convolutional networks for graph classifications and summarized characteristics of brain networks and AD pathologies, we proposed a regional brain fusion-graph convolutional network (RBF-GCN), which is constructed with an RBF framework mainly, including three sub-modules, namely, hemispheric network generation module, multichannel GCN module, and feature fusion module. In the multichannel GCN module, the improved GCN by our proposed adaptive native node attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit but also achieved competitive results in multiple sets of AD stages' classification tasks using hundreds of experiments over the ADNI clinical dataset.Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this article, we built a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and amyloid positron emission tomography (PET). Based on some existing research results, we applied statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on the left and right hemispheres. In the light of advances in graph convolutional networks for graph classifications and summarized characteristics of brain networks and AD pathologies, we proposed a regional brain fusion-graph convolutional network (RBF-GCN), which is constructed with an RBF framework mainly, including three sub-modules, namely, hemispheric network generation module, multichannel GCN module, and feature fusion module. In the multichannel GCN module, the improved GCN by our proposed adaptive native node attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit but also achieved competitive results in multiple sets of AD stages' classification tasks using hundreds of experiments over the ADNI clinical dataset.
Alzheimer's disease (AD) has raised extensive concern in health care and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this paper, we build a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural MRI (magnetic resonance imaging), DWI (diffusion-weighted imaging), and amyloid PET (positron emission tomography). Based on some existing research results, we apply statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on left and right hemisphere. In the light of advances in graph convolutional networks for graph classifications, and summarized characteristics of brain networks and AD pathologies, we propose a Regional Brain Fusion-Graph Convolutional Network (RBF-GCN), which is constructed with an RBF framework mainly including three sub-modules: hemispheric network generation module, multi-channel GCN module, and feature fusion module. In the multi-channel GCN module, the improved GCN by our proposed Adaptive Native Node Attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit, but also achieved competitive results in multiple sets of AD stages classification tasks using hundreds of experiments over the ADNI clinical dataset.
Author Hu, Ji
Xiao, Mang
Zhang, Jiyong
Li, Wenchao
Zhao, Jiaqi
Shen, Chenyu
Chen, Minghan
Zhang, Jingwen
AuthorAffiliation 1 Intelligent Information Processing Laboratory, Hangzhou Dianzi University , Hangzhou , China
2 Research Center for Healthcare Data Science, Zhejiang Lab , Hangzhou , China
4 Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , China
3 Department of Computer Science, Wake Forest University , Winston-Salem, NC , United States
AuthorAffiliation_xml – name: 1 Intelligent Information Processing Laboratory, Hangzhou Dianzi University , Hangzhou , China
– name: 2 Research Center for Healthcare Data Science, Zhejiang Lab , Hangzhou , China
– name: 3 Department of Computer Science, Wake Forest University , Winston-Salem, NC , United States
– name: 4 Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , China
Author_xml – sequence: 1
  givenname: Wenchao
  surname: Li
  fullname: Li, Wenchao
– sequence: 2
  givenname: Jiaqi
  surname: Zhao
  fullname: Zhao, Jiaqi
– sequence: 3
  givenname: Chenyu
  surname: Shen
  fullname: Shen, Chenyu
– sequence: 4
  givenname: Jingwen
  surname: Zhang
  fullname: Zhang, Jingwen
– sequence: 5
  givenname: Ji
  surname: Hu
  fullname: Hu, Ji
– sequence: 6
  givenname: Mang
  surname: Xiao
  fullname: Xiao, Mang
– sequence: 7
  givenname: Jiyong
  surname: Zhang
  fullname: Zhang, Jiyong
– sequence: 8
  givenname: Minghan
  surname: Chen
  fullname: Chen, Minghan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35571869$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvEzEUhS1URB_wA9igkVjAJsHvsVkghUBLpQoQgrXleO4kDhM72DNF5dfj6bSorcTKr--ce-V7jtFBiAEQek7wnDGl37TBh3ZOMaVzpSST4hE6IlLSmSBaHtzZH6LjnLcYSypF_QQdMiFqoqQ-QqtvsPYx2K56n6wP1emQy_FtdZbsflMtY7iM3dBPxGfof8f0s2pjqhbdnw34HaRXufrgM9gM1dcEjXcjXNnQVIuiuco-P0WPW9tleHaznqAfpx-_Lz_NLr6cnS8XFzPHNetnrAFMLOXUateAZVQ2uuZgKbXCiVaRWijWapAWY41BAseCNQQcYEwd5-wEnU--TbRbs09-Z9OVidab64uY1sam3rsOjHC1ZCvXMgyYE-oUd8Qpq9pSVWkQxevd5LUfVjtoHIQ-2e6e6f2X4DdmHS-NJhjXmBaD1zcGKf4aIPdm57ODrrMB4pANlVIQzLlUBX35AN3GIZXPGykhtRRMkkK9uNvRv1ZuR1mAegJcijknaI3zvR2nURr0nSHYjKEx16ExY2jMFJqiJA-Ut-b_1_wF04zGBQ
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105162
crossref_primary_10_1016_j_cie_2024_110625
crossref_primary_10_1016_j_compbiomed_2024_108740
crossref_primary_10_3390_brainsci15010017
crossref_primary_10_1007_s00521_024_10775_1
crossref_primary_10_1371_journal_pone_0315809
crossref_primary_10_3389_fphar_2022_1011740
crossref_primary_10_1016_j_brainresbull_2023_110777
crossref_primary_10_1016_j_ymeth_2024_06_003
crossref_primary_10_1002_alz_13441
crossref_primary_10_3390_diagnostics12112632
crossref_primary_10_1038_s41598_024_72321_2
crossref_primary_10_3390_s23041914
Cites_doi 10.1007/s00429-015-1132-6
10.1093/brain/awm319
10.1371/journal.pone.0032441
10.1016/j.jalz.2011.03.003
10.1016/j.neuroimage.2004.05.007
10.1093/braincomms/fcab272
10.1007/BF00389496
10.1145/3344998
10.1371/journal.pone.0064925
10.1016/j.neucom.2020.01.015
10.1016/j.mri.2016.05.001
10.1093/brain/awu132
10.3389/fnagi.2017.00261
10.1109/42.563663
10.1109/TCBB.2016.2635144
10.1093/brain/awy229
10.1016/j.neuroimage.2007.09.073
10.1016/j.nicl.2016.01.002
10.1093/brain/awv236
10.1016/j.neuroimage.2010.06.013
10.1109/ACCESS.2019.2936215
10.1016/j.neuroimage.2010.06.010
10.1016/j.neuroimage.2012.09.015
10.1093/cercor/bhq058
10.1016/j.neurobiolaging.2014.04.037
10.1093/brain/aww027
10.1016/j.neurobiolaging.2014.05.037
10.1002/acn3.339
10.1097/MNM.0000000000000953
10.1093/cercor/bhy311
10.1016/j.neuroscience.2014.02.017
10.3389/fnins.2017.00173
10.1089/brain.2020.0905
10.1007/s11682-019-00247-9
10.1016/j.patrec.2019.11.015
10.1109/ISBI.2017.7950559
10.7554/eLife.50830.sa2
10.1088/1674-1056/27/8/088702
10.1002/hbm.22524
10.1016/j.jalz.2019.01.010
10.1016/j.neuroimage.2011.05.025
10.1016/j.neuroimage.2019.05.052
10.1093/brain/awx347
10.1007/s00259-019-04595-y
10.1109/ISBI.2019.8759531
10.1016/j.neuroimage.2010.10.026
10.1371/journal.pcbi.1003956
10.1038/s41467-020-15701-2
10.1016/j.neuroimage.2014.11.055
10.1007/s12652-021-02967-7
ContentType Journal Article
Copyright Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen. 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen
Copyright_xml – notice: Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen. 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2022.886365
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_5c763bcf30e0412c84c1c8a8f32689e5
PMC9100702
35571869
10_3389_fninf_2022_886365
Genre Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG072947
GroupedDBID ---
29H
2WC
53G
5GY
5VS
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CITATION
CS3
DIK
E3Z
F5P
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
88I
C1A
CCPQU
DWQXO
GNUQQ
IPNFZ
NPM
PHGZT
RIG
3V.
7XB
8FK
COVID
PHGZM
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c493t-3de01a242a9cdea326d974ea22a5c5f817583f9e6a0090e6e4053d1ece002c443
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 01:08:37 EDT 2025
Thu Aug 21 13:46:15 EDT 2025
Thu Sep 04 17:50:38 EDT 2025
Mon Jun 30 09:45:22 EDT 2025
Thu Apr 03 07:05:59 EDT 2025
Thu Apr 24 23:12:43 EDT 2025
Tue Jul 01 01:13:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords regional brain fusion-graph convolutional network (RBF-GCN)
adaptive native node attribute (ANNA)
Alzheimer's disease
brain network
amyloid-PET
Language English
License Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-3de01a242a9cdea326d974ea22a5c5f817583f9e6a0090e6e4053d1ece002c443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Mingxia Liu, University of North Carolina at Chapel Hill, United States
Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
Reviewed by: Hongtao Xie, University of Science and Technology of China, China; Geng Chen, Northwestern Polytechnical University, China
OpenAccessLink https://www.proquest.com/docview/2656965361?pq-origsite=%requestingapplication%
PMID 35571869
PQID 2656965361
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_5c763bcf30e0412c84c1c8a8f32689e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9100702
proquest_miscellaneous_2665104468
proquest_journals_2656965361
pubmed_primary_35571869
crossref_citationtrail_10_3389_fninf_2022_886365
crossref_primary_10_3389_fninf_2022_886365
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-29
PublicationDateYYYYMMDD 2022-04-29
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2022
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References B65
B22
Ma (B35) 2019; 7
Raj (B45) 2021; 11
Ossenkoppele (B42) 2016; 139
Rajapakse (B46) 1997; 16
Prasad (B44) 2015; 36
Song (B52) 2019
Lee (B32) 2019
Zheng (B69) 2017
Niepert (B38) 2016
Pereira (B43) 2019; 8
Kaiser (B26) 2011; 57
Kondor (B31) 2016
Araque Caballero (B3) 2018; 141
Yang (B64) 2017; 9
Braak (B6) 2015; 138
Kingma (B28) 2014
O'Dwyer (B41) 2012; 7
Brendel (B7) 2015; 108
Destrieux (B14) 2010; 53
B37
Ranjan (B47) 2020
Crossley (B12) 2014; 137
Son (B51) 2020; 47
Messaritaki (B36) 2019; 199
Vandenberghe (B58) 2013; 64
Saad (B48) 2022; 13
B8
Du (B15) 2020; 129
Glorot (B20) 2010
Amlien (B2) 2014; 276
Bischof (B5) 2016; 3
Tanveer (B56) 2020; 16
Caeyenberghs (B9) 2014; 35
Cuingnet (B13) 2011; 56
Dyrba (B16) 2013; 8
Zhang (B68) 2018; 27
Iturria-Medina (B25) 2014; 10
Veale (B59) 2021; 3
Baratloo (B4) 2015
Nusbaum (B40) 2017; 11
Siglidis (B50) 2020; 21
Gonzalez-Escamilla (B21) 2021; 15
Kipf (B29) 2017
Yan (B63) 2019; 40
Cope (B11) 2018; 141
Liu (B33) 2016; 15
Vogel (B61) 2020; 11
B10
Fornito (B17) 2016
B54
Gao (B18) 2019
(B1) 2019; 15
Giannakopoulos (B19) 1994; 88
Sperling (B53) 2011; 7
Lu (B34) 2020; 387
Huang (B23) 2019
Nir (B39) 2015; 36
Kim (B27) 2019; 29
Schouten (B49) 2016; 11
Tang (B55) 2016; 34
Iturria-Medina (B24) 2011; 21
Ying (B66) 2018
Yu (B67) 2016; 221
Tohka (B57) 2004; 23
Klöppel (B30) 2008; 131
Vemuri (B60) 2008; 39
Wee (B62) 2011; 54
References_xml – volume: 221
  start-page: 3787
  year: 2016
  ident: B67
  article-title: Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-015-1132-6
– volume: 131
  start-page: 681
  year: 2008
  ident: B30
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 7
  start-page: e32441
  year: 2012
  ident: B41
  article-title: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0032441
– start-page: 4805
  volume-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems
  year: 2018
  ident: B66
  article-title: Hierarchical graph representation learning with differentiable pooling
– volume: 7
  start-page: 280
  year: 2011
  ident: B53
  article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dementia
  doi: 10.1016/j.jalz.2011.03.003
– volume: 23
  start-page: 84
  year: 2004
  ident: B57
  article-title: Fast and robust parameter estimation for statistical partial volume models in brain MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.05.007
– volume: 3
  start-page: fcab272
  year: 2021
  ident: B59
  article-title: Loss and dispersion of superficial white matter in Alzheimer's disease: a diffusion MRI study
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcab272
– volume: 88
  start-page: 440
  year: 1994
  ident: B19
  article-title: Alzheimer's disease with asymmetric atrophy of the cerebral hemispheres: morphometric analysis of four cases
  publication-title: Acta Neuropathol.
  doi: 10.1007/BF00389496
– volume: 16
  start-page: 1
  year: 2020
  ident: B56
  article-title: Machine learning techniques for the diagnosis of Alzheimer's disease: a review
  publication-title: ACM Transact. Multimedia Comp. Commun. Appl.
  doi: 10.1145/3344998
– volume: 8
  start-page: e64925
  year: 2013
  ident: B16
  article-title: Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0064925
– volume: 387
  start-page: 309
  year: 2020
  ident: B34
  article-title: Global-local fusion network for face super-resolution
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.015
– volume: 34
  start-page: 1087
  year: 2016
  ident: B55
  article-title: Shape and diffusion tensor imaging based integrative analysis of the hippocampus and the amygdala in Alzheimer's disease
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2016.05.001
– volume: 137
  start-page: 2382
  year: 2014
  ident: B12
  article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders
  publication-title: Brain
  doi: 10.1093/brain/awu132
– volume: 9
  start-page: 261
  year: 2017
  ident: B64
  article-title: The abnormality of topological asymmetry between hemispheric brain white matter networks in Alzheimer's disease and mild cognitive impairment
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2017.00261
– volume: 16
  start-page: 176
  year: 1997
  ident: B46
  article-title: Statistical approach to segmentation of single-channel cerebral MR images
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/42.563663
– volume: 15
  start-page: 624
  year: 2016
  ident: B33
  article-title: Classification of Alzheimer's disease using whole brain hierarchical network
  publication-title: IEEE/ACM Transact. Comp. Biol. Bioinformat.
  doi: 10.1109/TCBB.2016.2635144
– ident: B54
– volume: 141
  start-page: 3065
  year: 2018
  ident: B3
  article-title: White matter diffusion alterations precede symptom onset in autosomal dominant Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awy229
– volume: 39
  start-page: 1186
  year: 2008
  ident: B60
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.09.073
– start-page: 249
  volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics: JMLR Workshop and Conference Proceedings
  year: 2010
  ident: B20
  article-title: Understanding the difficulty of training deep feedforward neural networks
– volume: 11
  start-page: 46
  year: 2016
  ident: B49
  article-title: Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2016.01.002
– volume: 138
  start-page: 2814
  year: 2015
  ident: B6
  article-title: The preclinical phase of the pathological process underlying sporadic Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awv236
– volume: 56
  start-page: 766
  year: 2011
  ident: B13
  article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.013
– volume: 7
  start-page: 121685
  year: 2019
  ident: B35
  article-title: Multi-layers feature fusion of convolutional neural network for scene classification of remote sensing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936215
– ident: B65
– volume: 53
  start-page: 1
  year: 2010
  ident: B14
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 64
  start-page: 517
  year: 2013
  ident: B58
  article-title: Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.015
– volume: 21
  start-page: 56
  year: 2011
  ident: B24
  article-title: Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhq058
– volume: 36
  start-page: S121
  year: 2015
  ident: B44
  article-title: Brain connectivity and novel network measures for Alzheimer's disease classification
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.04.037
– volume-title: The 5th International Conference on Learning Representations
  year: 2017
  ident: B29
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 139
  start-page: 1551
  year: 2016
  ident: B42
  article-title: Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/aww027
– volume: 36
  start-page: S132
  year: 2015
  ident: B39
  article-title: Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.05.037
– volume: 3
  start-page: 934
  year: 2016
  ident: B5
  article-title: Impact of tau and amyloid burden on glucose metabolism in Alzheimer's disease
  publication-title: Ann. Clin. Transl. Neurol.
  doi: 10.1002/acn3.339
– volume: 40
  start-page: 242
  year: 2019
  ident: B63
  article-title: Classification of amyloid PET images using novel features for early diagnosis of Alzheimer's disease and mild cognitive impairment conversion
  publication-title: Nucl. Med. Commun.
  doi: 10.1097/MNM.0000000000000953
– year: 2015
  ident: B4
  article-title: Part 1: simple definition and calculation of accuracy, sensitivity and specificity
– year: 2014
  ident: B28
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv [Preprint]
– ident: B10
– volume-title: Fundamentals of Brain Network Analysis.
  year: 2016
  ident: B17
– start-page: 5470
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2020
  ident: B47
  article-title: Asap: adaptive structure aware pooling for learning hierarchical graph representations
– volume: 29
  start-page: 4291
  year: 2019
  ident: B27
  article-title: Comparison of amyloid β and tau spread models in Alzheimer's Disease
  publication-title: Cerebr Cortex
  doi: 10.1093/cercor/bhy311
– start-page: 2990
  volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems
  year: 2016
  ident: B31
  article-title: The multiscale laplacian graph kernel
– start-page: 2014
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: B38
  article-title: Learning convolutional neural networks for graphs
– volume: 276
  start-page: 206
  year: 2014
  ident: B2
  article-title: Diffusion tensor imaging of white matter degeneration in Alzheimer's disease and mild cognitive impairment
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2014.02.017
– volume: 11
  start-page: 173
  year: 2017
  ident: B40
  article-title: Hemispheric differences in white matter microstructure between two profiles of children with high intelligence quotient vs. controls: a tract-based spatial statistics study
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00173
– volume: 11
  start-page: 799
  year: 2021
  ident: B45
  article-title: Graph models of pathology spread in Alzheimer's disease: an alternative to conventional graph theoretic analysis
  publication-title: Brain Connect
  doi: 10.1089/brain.2020.0905
– volume: 15
  start-page: 190
  year: 2021
  ident: B21
  article-title: Metabolic and amyloid PET network reorganization in Alzheimer's disease: differential patterns and partial volume effects
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-019-00247-9
– volume: 21
  start-page: 1
  year: 2020
  ident: B50
  article-title: GraKeL: a graph kernel library in python
  publication-title: J. Mach. Learn. Res.
– volume: 129
  start-page: 108
  year: 2020
  ident: B15
  article-title: Selective feature connection mechanism: concatenating multi-layer CNN features with a feature selector
  publication-title: Patt. Recogn. Lett.
  doi: 10.1016/j.patrec.2019.11.015
– start-page: 456
  volume-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)
  year: 2017
  ident: B69
  article-title: Improving MRI-based diagnosis of Alzheimer's disease via an ensemble privileged information learning algorithm
  doi: 10.1109/ISBI.2017.7950559
– volume: 8
  start-page: e50830
  year: 2019
  ident: B43
  article-title: Amyloid and tau accumulate across distinct spatial networks and are differentially associated with brain connectivity
  publication-title: Elife
  doi: 10.7554/eLife.50830.sa2
– volume: 27
  start-page: 088702
  year: 2018
  ident: B68
  article-title: Individual identification using multi-metric of DTI in Alzheimer's disease and mild cognitive impairment
  publication-title: Chinese Phys. B
  doi: 10.1088/1674-1056/27/8/088702
– volume: 35
  start-page: 4944
  year: 2014
  ident: B9
  article-title: Hemispheric lateralization of topological organization in structural brain networks
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22524
– ident: B37
– volume: 15
  start-page: 321
  year: 2019
  ident: B1
  article-title: 2019 Alzheimer's disease facts and figures
  publication-title: Alzheimers Dementia
  doi: 10.1016/j.jalz.2019.01.010
– ident: B8
– volume: 57
  start-page: 892
  year: 2011
  ident: B26
  article-title: A tutorial in connectome analysis: topological and spatial features of brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.05.025
– volume: 199
  start-page: 495
  year: 2019
  ident: B36
  article-title: Optimization of graph construction can significantly increase the power of structural brain network studies
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.052
– volume: 141
  start-page: 550
  year: 2018
  ident: B11
  article-title: Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy
  publication-title: Brain
  doi: 10.1093/brain/awx347
– volume: 47
  start-page: 332
  year: 2020
  ident: B51
  article-title: The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-019-04595-y
– start-page: 414
  volume-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
  year: 2019
  ident: B52
  article-title: Graph convolutional neural networks for Alzheimer's disease classification
  doi: 10.1109/ISBI.2019.8759531
– start-page: 6480
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2019
  ident: B23
  article-title: Attpool: Towards hierarchical feature representation in graph convolutional networks via attention mechanism
– volume: 54
  start-page: 1812
  year: 2011
  ident: B62
  article-title: Enriched white matter connectivity networks for accurate identification of MCI patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.026
– start-page: 2083
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: B18
  article-title: Graph u-nets
– ident: B22
– volume: 10
  start-page: e1003956
  year: 2014
  ident: B25
  article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003956
– volume: 11
  start-page: 1
  year: 2020
  ident: B61
  article-title: Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15701-2
– start-page: 3734
  volume-title: International Conference on Machine Learning
  year: 2019
  ident: B32
  article-title: Self-attention graph pooling
– volume: 108
  start-page: 450
  year: 2015
  ident: B7
  article-title: Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.11.055
– volume: 13
  start-page: 2025
  year: 2022
  ident: B48
  article-title: COVID-19 classification using deep feature concatenation technique
  publication-title: J. Ambient Intell. Human. Comp.
  doi: 10.1007/s12652-021-02967-7
SSID ssj0062657
Score 2.3728032
Snippet Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the...
Alzheimer's disease (AD) has raised extensive concern in health care and academia as one of the most prevalent health threats to the elderly. Due to the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 886365
SubjectTerms adaptive native node attribute (ANNA)
Algorithms
Alzheimer's disease
Amyloid
amyloid-PET
Biomarkers
Brain
brain network
Datasets
Health care
Hemispheric laterality
Machine learning
Magnetic resonance imaging
Medical imaging
Medical treatment
Methods
Neurodegenerative diseases
Neuroimaging
Neuroscience
Neurosciences
Pathology
Positron emission tomography
regional brain fusion-graph convolutional network (RBF-GCN)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB6kT76IWn-srRJBFISle5tsbuPbtXoWwSJioW8hyc7aQpuT612h_vXOJHvHnYi--Lo7C9nMTOabzPANwKvGGYoDri696rpSGfa5KnTluHXKB8ITOk1r-Hyij0_Vp7PmbGPUF_eEZXrgvHEHTSAP8KGXFTI1VGhVGIXWtT3hjtZgYi-lmLdKpvIZTCi9GecaJqVg5qCPpC5KBuuaDENLjiQbUSiR9f8JYf7eKLkReab34d4AGcUkL_UB3MH4EHYnkdLlq1vxWqQmznQ7vgv-K35Pl3vikGc_iOmSb8PeiY_MSy2OZvFmMDWSOMkd4IJgq5hc_jzHiyucv7kW73PNRnyZcxGHhYWLnVjRlzyC0-mHb0fH5TBGoQzKyEUpO6xIG6p2JnToaN86SiLQ1bVrQtO3BCBa2RvUjvBWhRoJw8luhAHptAxKycewE2cRn4JgfOiRScKMV16NXGikr8jl0ff0oSygWm2rDQPHOI-6uLSUa7AmbNKEZU3YrIkC3q4_-ZEJNv4mfMi6WgsyN3Z6QBZjB4ux_7KYAvZXmraDw15bMhhtdCP1qICX69fkalw_cRFnS5bRdIJR_twW8CQbxnolBNvGPN2rgPGWyWwtdftNvDhPdN6GG1Wq-tn_-Lc9uMvbxeWu2uzDzmK-xOeEmhb-RXKQX40MFew
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEF_0-sUvotZH2ioriIIQmsvu5rJ-kbvaswgepVjot7CPSVtok3qPgv71zmw2Z0-kX5PZsNl57G8ezDD2ThmN94DJUyu9T6UmncucT0elkdYhnijCtIbvs-LoVH47U2cx4LaIZZW9TQyG2reOYuT7OS7ShRLF8PPNz5SmRlF2NY7QeMi20ASXasC2Joez45PeFiNaV6Mul4mumN6vG2QbOoV5jgJSCLpR7txGoWn__5DmvwWTd26g6RP2OEJHPu54_ZQ9gOYZ2x436DZf_-LveSjmDFHybWZP4DwE-fiEZkDw6YqiYp_4V-pPzQ_a5jaKHFLMukpwjvCVj69-X8DlNcw_LPiXLnfDj-eUzCFibhrP-zYmz9np9PDHwVEaxymkTmqxTIWHDLkic6OdB4O4zaMzASbPjXKqLhFIlKLWUBjEXRkUgFhO-CE4QKvppBQv2KBpG3jFOOFEC9QsTFtp5dA4JWyGqg-2xoUiYVl_rJWLvcZp5MVVhT4HcaIKnKiIE1XHiYR9XC-56Rpt3Ec8IV6tCalHdnjQzs-rqHKVcmg7ratFBtRUzJXSDV1pyhr_vNSAH9nrOV1FxV1Uf8UsYW_Xr1HlKI9iGmhXRFOgJUM_ukzYy04w1jtB-DaiKV8JG22IzMZWN980lxehrbemgpUs37l_W7vsER0EJbRyvccGy_kKXiMuWto3Ufj_AA-eDx8
  priority: 102
  providerName: ProQuest
Title Regional Brain Fusion: Graph Convolutional Network for Alzheimer's Disease Prediction and Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/35571869
https://www.proquest.com/docview/2656965361
https://www.proquest.com/docview/2665104468
https://pubmed.ncbi.nlm.nih.gov/PMC9100702
https://doaj.org/article/5c763bcf30e0412c84c1c8a8f32689e5
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9q--KLqPUjWo8VREGIJtnNXlYQuau9FqFHKR7cW9jdTNrCNafpnVj_emc2H3hyCL4ELjsJuZ2Znd_sLL9h7FVqNMYBk4RWFkUoNflc5IpwmBlpHeIJ5bs1nE7VyUx-mafzHda1t2on8GZrakf9pGb14t3P77ef0OE_UsaJ8fZ9WeEwpnpJgmpXQqV32B4GJkVGfir7ogJCd0_8GSuF-RdaXlPk3P6KjTDl2fy3QdC_T1L-EZom99m9FlPyUWMED9gOVA_Z_qjCfPr6lr_m_pSn3z7fZ_YcLvzuHx9Tcwg-WdN22Qd-TMTV_HBZ_WhtESWmzRFxjriWjxa_LuHqGuo3N_xzU9ThZzVVeUiYm6rgHb_JIzabHH09PAnbPguhk1qsQlFAhOqSidGuAIOArsAsA0ySmNSlZYYIIxOlBmUQkEWgAEGeKGJwgMupk1I8ZrvVsoKnjBOAtEAsYtpKK2PjUmEjXBPAlvigCFjUTWvuWhJy6oWxyDEZIU3kXhM5aSJvNBGwt_0j3xoGjn8Jj0lXvSCRZ_sby_oib30xTx0uqtaVIgJiG3OZdLHLTFbiP8804EsOOk3nnUHmaDxKq1SoOGAv-2H0RSqwmAqWa5JRuMRhgp0F7EljGP2XIK4bUvuvgA03TGbjUzdHqqtLz_et6SRLlDz7n4l4zu7SL6p7JfqA7a7qNbxA-LSyA7Y3PpqenQ_89gNej-fxwDvKb9lpG0I
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rTxQxEJ8gfNAvRsXHAmpNfCQmG_ba7t7WxJg74DwELoRAwrfSdrtAAnt4Dw3-Uf6Nzuzj5IzhG19vp5te5_WbzuwMwNvYKPQDhodWZlkoFelc5LKwnRppHeKJpJzWsDdI-kfy23F8vAC_m29hqKyysYmloc6Gju7I1zkuUkksktaXq-8hTY2i7GozQqMSix1__RNDtvHn7U3k7zvOe1uHG_2wnioQOqnEJBSZj3BzkhvlMm8QvmSIqb3h3MQuzlP0p6nIlU8Mwo_IJx4hjcha3nk0Hk5Kge-9B0sIMxRq0VJ3a7B_0Nh-jA7idpU7xdBPrecFigkGoZyjQCaCPNgN71cOCfgfsv23QPOGx-s9goc1VGWdSrYew4IvnsByp8Aw_fKavWdl8Wh5K78M9sCflpeKrEszJ1hvSrdwn9hX6ofNNobFj1rEkWJQVZ4zhMusc_HrzJ9f-tGHMdusckVsf0TJIyJmpshY0zblKRzdyUE_g8ViWPgXwAiXWk_NyZSVVraMi4WN0NR4m-NCEUDUHKt2dW9zGrFxoTHGIU7okhOaOKErTgTwcbbkqmrscRtxl3g1I6Se3OUPw9GprlVcxw5ttXW5iDw1MXOpdC2XmjTHf54qjy9Zazita0Mx1n_FOoA3s8eo4pS3MYUfTokmQcuJcXsawPNKMGY7QbjYpqliAbTnRGZuq_NPivOzso24ogKZiK_cvq3XcL9_uLerd7cHO6vwgA6FkmlcrcHiZDT1LxGTTeyrWhEYnNy17v0BxzVLrA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3raxNBEB9qCuIXUevjtOoKPkA4ctnde6wgkjSNrdUQioV-O3f39tpCe1fzUOqf5l_nzD1iI9Jv_ZqbPTY7r9_szM0AvAy1Qj-guW9klvlSkc4FNvPjREtjEU9E1bSGL-No50B-OgwP1-B3-y0MlVW2NrEy1Flp6Y68y3GRikIR9bp5UxYxGY4-nH_3aYIUZVrbcRq1iOy5i58Yvs3e7w6R1684H21_3drxmwkDvpVKzH2RuQA3KrlWNnMaoUyG-NppznVowzxB35qIXLlIIxQJXOQQ3ois56xDQ2KlFPjeG7Aeo1dMOrA-2B5P9ls_gJFCGNd5VAwDVTcvUGQwIOUchTMS5M0uecJqYMD_UO6_xZqXvN_oDtxuYCvr13J2F9ZccQ82-gWG7GcX7DWrCkmrG_oNMPvuqLpgZAOaP8FGC7qRe8c-Um9stlUWPxpxR4pxXYXOEDqz_umvY3dy5qZvZmxY543YZEqJJCJmushY20LlPhxcy0E_gE5RFu4RMMKoxlGjMmWkkT1tQ2ECNDvO5LhQeBC0x5raps85jds4TTHeIU6kFSdS4kRac8KDt8sl53WTj6uIB8SrJSH1565-KKdHaaPuaWjRbhubi8BRQzObSNuziU5y_OeJcviSzZbTaWM0ZulfEffgxfIxqjvlcHThygXRRGhFMYZPPHhYC8ZyJwgdY5ow5kG8IjIrW119UpwcVy3FFRXLBPzx1dt6DjdR59LPu-O9J3CLzoTyalxtQmc-XbinCM_m5lmjBwy-Xbfq_QHwSE_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+Brain+Fusion%3A+Graph+Convolutional+Network+for+Alzheimer%27s+Disease+Prediction+and+Analysis&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Li%2C+Wenchao&rft.au=Zhao%2C+Jiaqi&rft.au=Shen%2C+Chenyu&rft.au=Zhang%2C+Jingwen&rft.date=2022-04-29&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=16&rft_id=info:doi/10.3389%2Ffninf.2022.886365&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fninf_2022_886365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon