Regional Brain Fusion: Graph Convolutional Network for Alzheimer's Disease Prediction and Analysis
Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical sympt...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 16; p. 886365 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
29.04.2022
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5196 1662-5196 |
DOI | 10.3389/fninf.2022.886365 |
Cover
Loading…
Abstract | Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this article, we built a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and amyloid positron emission tomography (PET). Based on some existing research results, we applied statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on the left and right hemispheres. In the light of advances in graph convolutional networks for graph classifications and summarized characteristics of brain networks and AD pathologies, we proposed a regional brain fusion-graph convolutional network (RBF-GCN), which is constructed with an RBF framework mainly, including three sub-modules, namely, hemispheric network generation module, multichannel GCN module, and feature fusion module. In the multichannel GCN module, the improved GCN by our proposed adaptive native node attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit but also achieved competitive results in multiple sets of AD stages' classification tasks using hundreds of experiments over the ADNI clinical dataset. |
---|---|
AbstractList | Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this article, we built a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and amyloid positron emission tomography (PET). Based on some existing research results, we applied statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on the left and right hemispheres. In the light of advances in graph convolutional networks for graph classifications and summarized characteristics of brain networks and AD pathologies, we proposed a regional brain fusion-graph convolutional network (RBF-GCN), which is constructed with an RBF framework mainly, including three sub-modules, namely, hemispheric network generation module, multichannel GCN module, and feature fusion module. In the multichannel GCN module, the improved GCN by our proposed adaptive native node attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit but also achieved competitive results in multiple sets of AD stages' classification tasks using hundreds of experiments over the ADNI clinical dataset. Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this article, we built a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and amyloid positron emission tomography (PET). Based on some existing research results, we applied statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on the left and right hemispheres. In the light of advances in graph convolutional networks for graph classifications and summarized characteristics of brain networks and AD pathologies, we proposed a regional brain fusion-graph convolutional network (RBF-GCN), which is constructed with an RBF framework mainly, including three sub-modules, namely, hemispheric network generation module, multichannel GCN module, and feature fusion module. In the multichannel GCN module, the improved GCN by our proposed adaptive native node attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit but also achieved competitive results in multiple sets of AD stages' classification tasks using hundreds of experiments over the ADNI clinical dataset.Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this article, we built a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and amyloid positron emission tomography (PET). Based on some existing research results, we applied statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on the left and right hemispheres. In the light of advances in graph convolutional networks for graph classifications and summarized characteristics of brain networks and AD pathologies, we proposed a regional brain fusion-graph convolutional network (RBF-GCN), which is constructed with an RBF framework mainly, including three sub-modules, namely, hemispheric network generation module, multichannel GCN module, and feature fusion module. In the multichannel GCN module, the improved GCN by our proposed adaptive native node attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit but also achieved competitive results in multiple sets of AD stages' classification tasks using hundreds of experiments over the ADNI clinical dataset. Alzheimer's disease (AD) has raised extensive concern in health care and academia as one of the most prevalent health threats to the elderly. Due to the irreversible nature of AD, early and accurate diagnoses are significant for effective prevention and treatment. However, diverse clinical symptoms and limited neuroimaging accuracy make diagnoses challenging. In this paper, we build a brain network for each subject, which assembles several commonly used neuroimaging data simply and reasonably, including structural MRI (magnetic resonance imaging), DWI (diffusion-weighted imaging), and amyloid PET (positron emission tomography). Based on some existing research results, we apply statistical methods to analyze (i) the distinct affinity of AD burden on each brain region, (ii) the topological lateralization between left and right hemispheric sub-networks, and (iii) the asymmetry of the AD attacks on left and right hemisphere. In the light of advances in graph convolutional networks for graph classifications, and summarized characteristics of brain networks and AD pathologies, we propose a Regional Brain Fusion-Graph Convolutional Network (RBF-GCN), which is constructed with an RBF framework mainly including three sub-modules: hemispheric network generation module, multi-channel GCN module, and feature fusion module. In the multi-channel GCN module, the improved GCN by our proposed Adaptive Native Node Attribute (ANNA) unit embeds within each channel independently. We not only fully verified the effectiveness of the RBF framework and ANNA unit, but also achieved competitive results in multiple sets of AD stages classification tasks using hundreds of experiments over the ADNI clinical dataset. |
Author | Hu, Ji Xiao, Mang Zhang, Jiyong Li, Wenchao Zhao, Jiaqi Shen, Chenyu Chen, Minghan Zhang, Jingwen |
AuthorAffiliation | 1 Intelligent Information Processing Laboratory, Hangzhou Dianzi University , Hangzhou , China 2 Research Center for Healthcare Data Science, Zhejiang Lab , Hangzhou , China 4 Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , China 3 Department of Computer Science, Wake Forest University , Winston-Salem, NC , United States |
AuthorAffiliation_xml | – name: 1 Intelligent Information Processing Laboratory, Hangzhou Dianzi University , Hangzhou , China – name: 2 Research Center for Healthcare Data Science, Zhejiang Lab , Hangzhou , China – name: 3 Department of Computer Science, Wake Forest University , Winston-Salem, NC , United States – name: 4 Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University , Hangzhou , China |
Author_xml | – sequence: 1 givenname: Wenchao surname: Li fullname: Li, Wenchao – sequence: 2 givenname: Jiaqi surname: Zhao fullname: Zhao, Jiaqi – sequence: 3 givenname: Chenyu surname: Shen fullname: Shen, Chenyu – sequence: 4 givenname: Jingwen surname: Zhang fullname: Zhang, Jingwen – sequence: 5 givenname: Ji surname: Hu fullname: Hu, Ji – sequence: 6 givenname: Mang surname: Xiao fullname: Xiao, Mang – sequence: 7 givenname: Jiyong surname: Zhang fullname: Zhang, Jiyong – sequence: 8 givenname: Minghan surname: Chen fullname: Chen, Minghan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35571869$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktvEzEUhS1URB_wA9igkVjAJsHvsVkghUBLpQoQgrXleO4kDhM72DNF5dfj6bSorcTKr--ce-V7jtFBiAEQek7wnDGl37TBh3ZOMaVzpSST4hE6IlLSmSBaHtzZH6LjnLcYSypF_QQdMiFqoqQ-QqtvsPYx2K56n6wP1emQy_FtdZbsflMtY7iM3dBPxGfof8f0s2pjqhbdnw34HaRXufrgM9gM1dcEjXcjXNnQVIuiuco-P0WPW9tleHaznqAfpx-_Lz_NLr6cnS8XFzPHNetnrAFMLOXUateAZVQ2uuZgKbXCiVaRWijWapAWY41BAseCNQQcYEwd5-wEnU--TbRbs09-Z9OVidab64uY1sam3rsOjHC1ZCvXMgyYE-oUd8Qpq9pSVWkQxevd5LUfVjtoHIQ-2e6e6f2X4DdmHS-NJhjXmBaD1zcGKf4aIPdm57ODrrMB4pANlVIQzLlUBX35AN3GIZXPGykhtRRMkkK9uNvRv1ZuR1mAegJcijknaI3zvR2nURr0nSHYjKEx16ExY2jMFJqiJA-Ut-b_1_wF04zGBQ |
CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105162 crossref_primary_10_1016_j_cie_2024_110625 crossref_primary_10_1016_j_compbiomed_2024_108740 crossref_primary_10_3390_brainsci15010017 crossref_primary_10_1007_s00521_024_10775_1 crossref_primary_10_1371_journal_pone_0315809 crossref_primary_10_3389_fphar_2022_1011740 crossref_primary_10_1016_j_brainresbull_2023_110777 crossref_primary_10_1016_j_ymeth_2024_06_003 crossref_primary_10_1002_alz_13441 crossref_primary_10_3390_diagnostics12112632 crossref_primary_10_1038_s41598_024_72321_2 crossref_primary_10_3390_s23041914 |
Cites_doi | 10.1007/s00429-015-1132-6 10.1093/brain/awm319 10.1371/journal.pone.0032441 10.1016/j.jalz.2011.03.003 10.1016/j.neuroimage.2004.05.007 10.1093/braincomms/fcab272 10.1007/BF00389496 10.1145/3344998 10.1371/journal.pone.0064925 10.1016/j.neucom.2020.01.015 10.1016/j.mri.2016.05.001 10.1093/brain/awu132 10.3389/fnagi.2017.00261 10.1109/42.563663 10.1109/TCBB.2016.2635144 10.1093/brain/awy229 10.1016/j.neuroimage.2007.09.073 10.1016/j.nicl.2016.01.002 10.1093/brain/awv236 10.1016/j.neuroimage.2010.06.013 10.1109/ACCESS.2019.2936215 10.1016/j.neuroimage.2010.06.010 10.1016/j.neuroimage.2012.09.015 10.1093/cercor/bhq058 10.1016/j.neurobiolaging.2014.04.037 10.1093/brain/aww027 10.1016/j.neurobiolaging.2014.05.037 10.1002/acn3.339 10.1097/MNM.0000000000000953 10.1093/cercor/bhy311 10.1016/j.neuroscience.2014.02.017 10.3389/fnins.2017.00173 10.1089/brain.2020.0905 10.1007/s11682-019-00247-9 10.1016/j.patrec.2019.11.015 10.1109/ISBI.2017.7950559 10.7554/eLife.50830.sa2 10.1088/1674-1056/27/8/088702 10.1002/hbm.22524 10.1016/j.jalz.2019.01.010 10.1016/j.neuroimage.2011.05.025 10.1016/j.neuroimage.2019.05.052 10.1093/brain/awx347 10.1007/s00259-019-04595-y 10.1109/ISBI.2019.8759531 10.1016/j.neuroimage.2010.10.026 10.1371/journal.pcbi.1003956 10.1038/s41467-020-15701-2 10.1016/j.neuroimage.2014.11.055 10.1007/s12652-021-02967-7 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen. 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen |
Copyright_xml | – notice: Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen. 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fninf.2022.886365 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5196 |
ExternalDocumentID | oai_doaj_org_article_5c763bcf30e0412c84c1c8a8f32689e5 PMC9100702 35571869 10_3389_fninf_2022_886365 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG072947 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CITATION CS3 DIK E3Z F5P GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PIMPY PQQKQ PROAC RNS RPM TR2 88I C1A CCPQU DWQXO GNUQQ IPNFZ NPM PHGZT RIG 3V. 7XB 8FK COVID PHGZM PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c493t-3de01a242a9cdea326d974ea22a5c5f817583f9e6a0090e6e4053d1ece002c443 |
IEDL.DBID | M48 |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 01:08:37 EDT 2025 Thu Aug 21 13:46:15 EDT 2025 Thu Sep 04 17:50:38 EDT 2025 Mon Jun 30 09:45:22 EDT 2025 Thu Apr 03 07:05:59 EDT 2025 Thu Apr 24 23:12:43 EDT 2025 Tue Jul 01 01:13:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | regional brain fusion-graph convolutional network (RBF-GCN) adaptive native node attribute (ANNA) Alzheimer's disease brain network amyloid-PET |
Language | English |
License | Copyright © 2022 Li, Zhao, Shen, Zhang, Hu, Xiao, Zhang and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-3de01a242a9cdea326d974ea22a5c5f817583f9e6a0090e6e4053d1ece002c443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Mingxia Liu, University of North Carolina at Chapel Hill, United States Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf Reviewed by: Hongtao Xie, University of Science and Technology of China, China; Geng Chen, Northwestern Polytechnical University, China |
OpenAccessLink | https://www.proquest.com/docview/2656965361?pq-origsite=%requestingapplication% |
PMID | 35571869 |
PQID | 2656965361 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5c763bcf30e0412c84c1c8a8f32689e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9100702 proquest_miscellaneous_2665104468 proquest_journals_2656965361 pubmed_primary_35571869 crossref_citationtrail_10_3389_fninf_2022_886365 crossref_primary_10_3389_fninf_2022_886365 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-29 |
PublicationDateYYYYMMDD | 2022-04-29 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2022 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | B65 B22 Ma (B35) 2019; 7 Raj (B45) 2021; 11 Ossenkoppele (B42) 2016; 139 Rajapakse (B46) 1997; 16 Prasad (B44) 2015; 36 Song (B52) 2019 Lee (B32) 2019 Zheng (B69) 2017 Niepert (B38) 2016 Pereira (B43) 2019; 8 Kaiser (B26) 2011; 57 Kondor (B31) 2016 Araque Caballero (B3) 2018; 141 Yang (B64) 2017; 9 Braak (B6) 2015; 138 Kingma (B28) 2014 O'Dwyer (B41) 2012; 7 Brendel (B7) 2015; 108 Destrieux (B14) 2010; 53 B37 Ranjan (B47) 2020 Crossley (B12) 2014; 137 Son (B51) 2020; 47 Messaritaki (B36) 2019; 199 Vandenberghe (B58) 2013; 64 Saad (B48) 2022; 13 B8 Du (B15) 2020; 129 Glorot (B20) 2010 Amlien (B2) 2014; 276 Bischof (B5) 2016; 3 Tanveer (B56) 2020; 16 Caeyenberghs (B9) 2014; 35 Cuingnet (B13) 2011; 56 Dyrba (B16) 2013; 8 Zhang (B68) 2018; 27 Iturria-Medina (B25) 2014; 10 Veale (B59) 2021; 3 Baratloo (B4) 2015 Nusbaum (B40) 2017; 11 Siglidis (B50) 2020; 21 Gonzalez-Escamilla (B21) 2021; 15 Kipf (B29) 2017 Yan (B63) 2019; 40 Cope (B11) 2018; 141 Liu (B33) 2016; 15 Vogel (B61) 2020; 11 B10 Fornito (B17) 2016 B54 Gao (B18) 2019 (B1) 2019; 15 Giannakopoulos (B19) 1994; 88 Sperling (B53) 2011; 7 Lu (B34) 2020; 387 Huang (B23) 2019 Nir (B39) 2015; 36 Kim (B27) 2019; 29 Schouten (B49) 2016; 11 Tang (B55) 2016; 34 Iturria-Medina (B24) 2011; 21 Ying (B66) 2018 Yu (B67) 2016; 221 Tohka (B57) 2004; 23 Klöppel (B30) 2008; 131 Vemuri (B60) 2008; 39 Wee (B62) 2011; 54 |
References_xml | – volume: 221 start-page: 3787 year: 2016 ident: B67 article-title: Graph-guided joint prediction of class label and clinical scores for the Alzheimer's disease publication-title: Brain Struct. Funct. doi: 10.1007/s00429-015-1132-6 – volume: 131 start-page: 681 year: 2008 ident: B30 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 7 start-page: e32441 year: 2012 ident: B41 article-title: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment publication-title: PLoS ONE doi: 10.1371/journal.pone.0032441 – start-page: 4805 volume-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems year: 2018 ident: B66 article-title: Hierarchical graph representation learning with differentiable pooling – volume: 7 start-page: 280 year: 2011 ident: B53 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dementia doi: 10.1016/j.jalz.2011.03.003 – volume: 23 start-page: 84 year: 2004 ident: B57 article-title: Fast and robust parameter estimation for statistical partial volume models in brain MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.05.007 – volume: 3 start-page: fcab272 year: 2021 ident: B59 article-title: Loss and dispersion of superficial white matter in Alzheimer's disease: a diffusion MRI study publication-title: Brain Commun doi: 10.1093/braincomms/fcab272 – volume: 88 start-page: 440 year: 1994 ident: B19 article-title: Alzheimer's disease with asymmetric atrophy of the cerebral hemispheres: morphometric analysis of four cases publication-title: Acta Neuropathol. doi: 10.1007/BF00389496 – volume: 16 start-page: 1 year: 2020 ident: B56 article-title: Machine learning techniques for the diagnosis of Alzheimer's disease: a review publication-title: ACM Transact. Multimedia Comp. Commun. Appl. doi: 10.1145/3344998 – volume: 8 start-page: e64925 year: 2013 ident: B16 article-title: Robust automated detection of microstructural white matter degeneration in Alzheimer's disease using machine learning classification of multicenter DTI data publication-title: PLoS ONE doi: 10.1371/journal.pone.0064925 – volume: 387 start-page: 309 year: 2020 ident: B34 article-title: Global-local fusion network for face super-resolution publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.015 – volume: 34 start-page: 1087 year: 2016 ident: B55 article-title: Shape and diffusion tensor imaging based integrative analysis of the hippocampus and the amygdala in Alzheimer's disease publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2016.05.001 – volume: 137 start-page: 2382 year: 2014 ident: B12 article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders publication-title: Brain doi: 10.1093/brain/awu132 – volume: 9 start-page: 261 year: 2017 ident: B64 article-title: The abnormality of topological asymmetry between hemispheric brain white matter networks in Alzheimer's disease and mild cognitive impairment publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2017.00261 – volume: 16 start-page: 176 year: 1997 ident: B46 article-title: Statistical approach to segmentation of single-channel cerebral MR images publication-title: IEEE Trans. Med. Imag. doi: 10.1109/42.563663 – volume: 15 start-page: 624 year: 2016 ident: B33 article-title: Classification of Alzheimer's disease using whole brain hierarchical network publication-title: IEEE/ACM Transact. Comp. Biol. Bioinformat. doi: 10.1109/TCBB.2016.2635144 – ident: B54 – volume: 141 start-page: 3065 year: 2018 ident: B3 article-title: White matter diffusion alterations precede symptom onset in autosomal dominant Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awy229 – volume: 39 start-page: 1186 year: 2008 ident: B60 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.09.073 – start-page: 249 volume-title: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics: JMLR Workshop and Conference Proceedings year: 2010 ident: B20 article-title: Understanding the difficulty of training deep feedforward neural networks – volume: 11 start-page: 46 year: 2016 ident: B49 article-title: Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2016.01.002 – volume: 138 start-page: 2814 year: 2015 ident: B6 article-title: The preclinical phase of the pathological process underlying sporadic Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awv236 – volume: 56 start-page: 766 year: 2011 ident: B13 article-title: Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.013 – volume: 7 start-page: 121685 year: 2019 ident: B35 article-title: Multi-layers feature fusion of convolutional neural network for scene classification of remote sensing publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2936215 – ident: B65 – volume: 53 start-page: 1 year: 2010 ident: B14 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 64 start-page: 517 year: 2013 ident: B58 article-title: Binary classification of 18F-flutemetamol PET using machine learning: comparison with visual reads and structural MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.015 – volume: 21 start-page: 56 year: 2011 ident: B24 article-title: Brain hemispheric structural efficiency and interconnectivity rightward asymmetry in human and nonhuman primates publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhq058 – volume: 36 start-page: S121 year: 2015 ident: B44 article-title: Brain connectivity and novel network measures for Alzheimer's disease classification publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.04.037 – volume-title: The 5th International Conference on Learning Representations year: 2017 ident: B29 article-title: Semi-supervised classification with graph convolutional networks – volume: 139 start-page: 1551 year: 2016 ident: B42 article-title: Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/aww027 – volume: 36 start-page: S132 year: 2015 ident: B39 article-title: Diffusion weighted imaging-based maximum density path analysis and classification of Alzheimer's disease publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.05.037 – volume: 3 start-page: 934 year: 2016 ident: B5 article-title: Impact of tau and amyloid burden on glucose metabolism in Alzheimer's disease publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.339 – volume: 40 start-page: 242 year: 2019 ident: B63 article-title: Classification of amyloid PET images using novel features for early diagnosis of Alzheimer's disease and mild cognitive impairment conversion publication-title: Nucl. Med. Commun. doi: 10.1097/MNM.0000000000000953 – year: 2015 ident: B4 article-title: Part 1: simple definition and calculation of accuracy, sensitivity and specificity – year: 2014 ident: B28 article-title: Adam: a method for stochastic optimization publication-title: arXiv [Preprint] – ident: B10 – volume-title: Fundamentals of Brain Network Analysis. year: 2016 ident: B17 – start-page: 5470 volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2020 ident: B47 article-title: Asap: adaptive structure aware pooling for learning hierarchical graph representations – volume: 29 start-page: 4291 year: 2019 ident: B27 article-title: Comparison of amyloid β and tau spread models in Alzheimer's Disease publication-title: Cerebr Cortex doi: 10.1093/cercor/bhy311 – start-page: 2990 volume-title: Proceedings of the 30th International Conference on Neural Information Processing Systems year: 2016 ident: B31 article-title: The multiscale laplacian graph kernel – start-page: 2014 volume-title: International Conference on Machine Learning year: 2016 ident: B38 article-title: Learning convolutional neural networks for graphs – volume: 276 start-page: 206 year: 2014 ident: B2 article-title: Diffusion tensor imaging of white matter degeneration in Alzheimer's disease and mild cognitive impairment publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.02.017 – volume: 11 start-page: 173 year: 2017 ident: B40 article-title: Hemispheric differences in white matter microstructure between two profiles of children with high intelligence quotient vs. controls: a tract-based spatial statistics study publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00173 – volume: 11 start-page: 799 year: 2021 ident: B45 article-title: Graph models of pathology spread in Alzheimer's disease: an alternative to conventional graph theoretic analysis publication-title: Brain Connect doi: 10.1089/brain.2020.0905 – volume: 15 start-page: 190 year: 2021 ident: B21 article-title: Metabolic and amyloid PET network reorganization in Alzheimer's disease: differential patterns and partial volume effects publication-title: Brain Imaging Behav. doi: 10.1007/s11682-019-00247-9 – volume: 21 start-page: 1 year: 2020 ident: B50 article-title: GraKeL: a graph kernel library in python publication-title: J. Mach. Learn. Res. – volume: 129 start-page: 108 year: 2020 ident: B15 article-title: Selective feature connection mechanism: concatenating multi-layer CNN features with a feature selector publication-title: Patt. Recogn. Lett. doi: 10.1016/j.patrec.2019.11.015 – start-page: 456 volume-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) year: 2017 ident: B69 article-title: Improving MRI-based diagnosis of Alzheimer's disease via an ensemble privileged information learning algorithm doi: 10.1109/ISBI.2017.7950559 – volume: 8 start-page: e50830 year: 2019 ident: B43 article-title: Amyloid and tau accumulate across distinct spatial networks and are differentially associated with brain connectivity publication-title: Elife doi: 10.7554/eLife.50830.sa2 – volume: 27 start-page: 088702 year: 2018 ident: B68 article-title: Individual identification using multi-metric of DTI in Alzheimer's disease and mild cognitive impairment publication-title: Chinese Phys. B doi: 10.1088/1674-1056/27/8/088702 – volume: 35 start-page: 4944 year: 2014 ident: B9 article-title: Hemispheric lateralization of topological organization in structural brain networks publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22524 – ident: B37 – volume: 15 start-page: 321 year: 2019 ident: B1 article-title: 2019 Alzheimer's disease facts and figures publication-title: Alzheimers Dementia doi: 10.1016/j.jalz.2019.01.010 – ident: B8 – volume: 57 start-page: 892 year: 2011 ident: B26 article-title: A tutorial in connectome analysis: topological and spatial features of brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.05.025 – volume: 199 start-page: 495 year: 2019 ident: B36 article-title: Optimization of graph construction can significantly increase the power of structural brain network studies publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.052 – volume: 141 start-page: 550 year: 2018 ident: B11 article-title: Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy publication-title: Brain doi: 10.1093/brain/awx347 – volume: 47 start-page: 332 year: 2020 ident: B51 article-title: The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-019-04595-y – start-page: 414 volume-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) year: 2019 ident: B52 article-title: Graph convolutional neural networks for Alzheimer's disease classification doi: 10.1109/ISBI.2019.8759531 – start-page: 6480 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2019 ident: B23 article-title: Attpool: Towards hierarchical feature representation in graph convolutional networks via attention mechanism – volume: 54 start-page: 1812 year: 2011 ident: B62 article-title: Enriched white matter connectivity networks for accurate identification of MCI patients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.026 – start-page: 2083 volume-title: International Conference on Machine Learning year: 2019 ident: B18 article-title: Graph u-nets – ident: B22 – volume: 10 start-page: e1003956 year: 2014 ident: B25 article-title: Epidemic spreading model to characterize misfolded proteins propagation in aging and associated neurodegenerative disorders publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003956 – volume: 11 start-page: 1 year: 2020 ident: B61 article-title: Spread of pathological tau proteins through communicating neurons in human Alzheimer's disease publication-title: Nat. Commun. doi: 10.1038/s41467-020-15701-2 – start-page: 3734 volume-title: International Conference on Machine Learning year: 2019 ident: B32 article-title: Self-attention graph pooling – volume: 108 start-page: 450 year: 2015 ident: B7 article-title: Improved longitudinal [18F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.11.055 – volume: 13 start-page: 2025 year: 2022 ident: B48 article-title: COVID-19 classification using deep feature concatenation technique publication-title: J. Ambient Intell. Human. Comp. doi: 10.1007/s12652-021-02967-7 |
SSID | ssj0062657 |
Score | 2.3728032 |
Snippet | Alzheimer's disease (AD) has raised extensive concern in healthcare and academia as one of the most prevalent health threats to the elderly. Due to the... Alzheimer's disease (AD) has raised extensive concern in health care and academia as one of the most prevalent health threats to the elderly. Due to the... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 886365 |
SubjectTerms | adaptive native node attribute (ANNA) Algorithms Alzheimer's disease Amyloid amyloid-PET Biomarkers Brain brain network Datasets Health care Hemispheric laterality Machine learning Magnetic resonance imaging Medical imaging Medical treatment Methods Neurodegenerative diseases Neuroimaging Neuroscience Neurosciences Pathology Positron emission tomography regional brain fusion-graph convolutional network (RBF-GCN) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB6kT76IWn-srRJBFISle5tsbuPbtXoWwSJioW8hyc7aQpuT612h_vXOJHvHnYi--Lo7C9nMTOabzPANwKvGGYoDri696rpSGfa5KnTluHXKB8ITOk1r-Hyij0_Vp7PmbGPUF_eEZXrgvHEHTSAP8KGXFTI1VGhVGIXWtT3hjtZgYi-lmLdKpvIZTCi9GecaJqVg5qCPpC5KBuuaDENLjiQbUSiR9f8JYf7eKLkReab34d4AGcUkL_UB3MH4EHYnkdLlq1vxWqQmznQ7vgv-K35Pl3vikGc_iOmSb8PeiY_MSy2OZvFmMDWSOMkd4IJgq5hc_jzHiyucv7kW73PNRnyZcxGHhYWLnVjRlzyC0-mHb0fH5TBGoQzKyEUpO6xIG6p2JnToaN86SiLQ1bVrQtO3BCBa2RvUjvBWhRoJw8luhAHptAxKycewE2cRn4JgfOiRScKMV16NXGikr8jl0ff0oSygWm2rDQPHOI-6uLSUa7AmbNKEZU3YrIkC3q4_-ZEJNv4mfMi6WgsyN3Z6QBZjB4ux_7KYAvZXmraDw15bMhhtdCP1qICX69fkalw_cRFnS5bRdIJR_twW8CQbxnolBNvGPN2rgPGWyWwtdftNvDhPdN6GG1Wq-tn_-Lc9uMvbxeWu2uzDzmK-xOeEmhb-RXKQX40MFew priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEF_0-sUvotZH2ioriIIQmsvu5rJ-kbvaswgepVjot7CPSVtok3qPgv71zmw2Z0-kX5PZsNl57G8ezDD2ThmN94DJUyu9T6UmncucT0elkdYhnijCtIbvs-LoVH47U2cx4LaIZZW9TQyG2reOYuT7OS7ShRLF8PPNz5SmRlF2NY7QeMi20ASXasC2Joez45PeFiNaV6Mul4mumN6vG2QbOoV5jgJSCLpR7txGoWn__5DmvwWTd26g6RP2OEJHPu54_ZQ9gOYZ2x436DZf_-LveSjmDFHybWZP4DwE-fiEZkDw6YqiYp_4V-pPzQ_a5jaKHFLMukpwjvCVj69-X8DlNcw_LPiXLnfDj-eUzCFibhrP-zYmz9np9PDHwVEaxymkTmqxTIWHDLkic6OdB4O4zaMzASbPjXKqLhFIlKLWUBjEXRkUgFhO-CE4QKvppBQv2KBpG3jFOOFEC9QsTFtp5dA4JWyGqg-2xoUiYVl_rJWLvcZp5MVVhT4HcaIKnKiIE1XHiYR9XC-56Rpt3Ec8IV6tCalHdnjQzs-rqHKVcmg7ratFBtRUzJXSDV1pyhr_vNSAH9nrOV1FxV1Uf8UsYW_Xr1HlKI9iGmhXRFOgJUM_ukzYy04w1jtB-DaiKV8JG22IzMZWN980lxehrbemgpUs37l_W7vsER0EJbRyvccGy_kKXiMuWto3Ufj_AA-eDx8 priority: 102 providerName: ProQuest |
Title | Regional Brain Fusion: Graph Convolutional Network for Alzheimer's Disease Prediction and Analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35571869 https://www.proquest.com/docview/2656965361 https://www.proquest.com/docview/2665104468 https://pubmed.ncbi.nlm.nih.gov/PMC9100702 https://doaj.org/article/5c763bcf30e0412c84c1c8a8f32689e5 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9q--KLqPUjWo8VREGIJtnNXlYQuau9FqFHKR7cW9jdTNrCNafpnVj_emc2H3hyCL4ELjsJuZ2Znd_sLL9h7FVqNMYBk4RWFkUoNflc5IpwmBlpHeIJ5bs1nE7VyUx-mafzHda1t2on8GZrakf9pGb14t3P77ef0OE_UsaJ8fZ9WeEwpnpJgmpXQqV32B4GJkVGfir7ogJCd0_8GSuF-RdaXlPk3P6KjTDl2fy3QdC_T1L-EZom99m9FlPyUWMED9gOVA_Z_qjCfPr6lr_m_pSn3z7fZ_YcLvzuHx9Tcwg-WdN22Qd-TMTV_HBZ_WhtESWmzRFxjriWjxa_LuHqGuo3N_xzU9ThZzVVeUiYm6rgHb_JIzabHH09PAnbPguhk1qsQlFAhOqSidGuAIOArsAsA0ySmNSlZYYIIxOlBmUQkEWgAEGeKGJwgMupk1I8ZrvVsoKnjBOAtEAsYtpKK2PjUmEjXBPAlvigCFjUTWvuWhJy6oWxyDEZIU3kXhM5aSJvNBGwt_0j3xoGjn8Jj0lXvSCRZ_sby_oib30xTx0uqtaVIgJiG3OZdLHLTFbiP8804EsOOk3nnUHmaDxKq1SoOGAv-2H0RSqwmAqWa5JRuMRhgp0F7EljGP2XIK4bUvuvgA03TGbjUzdHqqtLz_et6SRLlDz7n4l4zu7SL6p7JfqA7a7qNbxA-LSyA7Y3PpqenQ_89gNej-fxwDvKb9lpG0I |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3rTxQxEJ8gfNAvRsXHAmpNfCQmG_ba7t7WxJg74DwELoRAwrfSdrtAAnt4Dw3-Uf6Nzuzj5IzhG19vp5te5_WbzuwMwNvYKPQDhodWZlkoFelc5LKwnRppHeKJpJzWsDdI-kfy23F8vAC_m29hqKyysYmloc6Gju7I1zkuUkksktaXq-8hTY2i7GozQqMSix1__RNDtvHn7U3k7zvOe1uHG_2wnioQOqnEJBSZj3BzkhvlMm8QvmSIqb3h3MQuzlP0p6nIlU8Mwo_IJx4hjcha3nk0Hk5Kge-9B0sIMxRq0VJ3a7B_0Nh-jA7idpU7xdBPrecFigkGoZyjQCaCPNgN71cOCfgfsv23QPOGx-s9goc1VGWdSrYew4IvnsByp8Aw_fKavWdl8Wh5K78M9sCflpeKrEszJ1hvSrdwn9hX6ofNNobFj1rEkWJQVZ4zhMusc_HrzJ9f-tGHMdusckVsf0TJIyJmpshY0zblKRzdyUE_g8ViWPgXwAiXWk_NyZSVVraMi4WN0NR4m-NCEUDUHKt2dW9zGrFxoTHGIU7okhOaOKErTgTwcbbkqmrscRtxl3g1I6Se3OUPw9GprlVcxw5ttXW5iDw1MXOpdC2XmjTHf54qjy9Zazita0Mx1n_FOoA3s8eo4pS3MYUfTokmQcuJcXsawPNKMGY7QbjYpqliAbTnRGZuq_NPivOzso24ogKZiK_cvq3XcL9_uLerd7cHO6vwgA6FkmlcrcHiZDT1LxGTTeyrWhEYnNy17v0BxzVLrA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3raxNBEB9qCuIXUevjtOoKPkA4ctnde6wgkjSNrdUQioV-O3f39tpCe1fzUOqf5l_nzD1iI9Jv_ZqbPTY7r9_szM0AvAy1Qj-guW9klvlSkc4FNvPjREtjEU9E1bSGL-No50B-OgwP1-B3-y0MlVW2NrEy1Flp6Y68y3GRikIR9bp5UxYxGY4-nH_3aYIUZVrbcRq1iOy5i58Yvs3e7w6R1684H21_3drxmwkDvpVKzH2RuQA3KrlWNnMaoUyG-NppznVowzxB35qIXLlIIxQJXOQQ3ois56xDQ2KlFPjeG7Aeo1dMOrA-2B5P9ls_gJFCGNd5VAwDVTcvUGQwIOUchTMS5M0uecJqYMD_UO6_xZqXvN_oDtxuYCvr13J2F9ZccQ82-gWG7GcX7DWrCkmrG_oNMPvuqLpgZAOaP8FGC7qRe8c-Um9stlUWPxpxR4pxXYXOEDqz_umvY3dy5qZvZmxY543YZEqJJCJmushY20LlPhxcy0E_gE5RFu4RMMKoxlGjMmWkkT1tQ2ECNDvO5LhQeBC0x5raps85jds4TTHeIU6kFSdS4kRac8KDt8sl53WTj6uIB8SrJSH1565-KKdHaaPuaWjRbhubi8BRQzObSNuziU5y_OeJcviSzZbTaWM0ZulfEffgxfIxqjvlcHThygXRRGhFMYZPPHhYC8ZyJwgdY5ow5kG8IjIrW119UpwcVy3FFRXLBPzx1dt6DjdR59LPu-O9J3CLzoTyalxtQmc-XbinCM_m5lmjBwy-Xbfq_QHwSE_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+Brain+Fusion%3A+Graph+Convolutional+Network+for+Alzheimer%27s+Disease+Prediction+and+Analysis&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Li%2C+Wenchao&rft.au=Zhao%2C+Jiaqi&rft.au=Shen%2C+Chenyu&rft.au=Zhang%2C+Jingwen&rft.date=2022-04-29&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=16&rft_id=info:doi/10.3389%2Ffninf.2022.886365&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fninf_2022_886365 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |