Cell-subtype-specific changes in adenosine pathways in schizophrenia
Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on th...
Saved in:
Published in | Neuropsychopharmacology (New York, N.Y.) Vol. 43; no. 8; pp. 1667 - 1674 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Nature Publishing Group
01.07.2018
Springer International Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on the following questions: (1) Which components of the adenosine system are dysregulated in schizophrenia, and (2) are these changes limited to astrocytes? To address these questions, we captured enriched populations of DLPFC pyramidal neurons and astrocytes from schizophrenia and control subjects using laser capture microdissection and assessed expression of adenosine system components using qPCR. Interestingly, we found changes in enriched populations of astrocytes and neurons spanning metabolic and catabolic pathways. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and ENTPD2 mRNA levels were significantly decreased (p < 0.05, n = 16 per group) in enriched populations of astrocytes; in pyramidal neurons equilibrative nucleoside transporter 1 (ENT1) and adenosine A
receptor mRNA levels were significantly decreased, with an increase in adenosine deaminase (ADA) (p < 0.05, n = 16 per group). Rodent studies suggest that some of our findings (A
R and ENTPD2) may be due to treatment with antipsychotics. Our findings suggest changes in expression of genes involved in regulating metabolism of ATP in enriched populations of astrocytes, leading to lower availability of substrates needed to generate adenosine. In pyramidal neurons, changes in ENT1 and ADA mRNA may suggest increased catabolism of adenosine. These results offer new insights into the cell-subtype-specific pathophysiology of the adenosine system in this illness. |
---|---|
AbstractList | Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on the following questions: (1) Which components of the adenosine system are dysregulated in schizophrenia, and (2) are these changes limited to astrocytes? To address these questions, we captured enriched populations of DLPFC pyramidal neurons and astrocytes from schizophrenia and control subjects using laser capture microdissection and assessed expression of adenosine system components using qPCR. Interestingly, we found changes in enriched populations of astrocytes and neurons spanning metabolic and catabolic pathways. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and ENTPD2 mRNA levels were significantly decreased (p < 0.05, n = 16 per group) in enriched populations of astrocytes; in pyramidal neurons equilibrative nucleoside transporter 1 (ENT1) and adenosine A1 receptor mRNA levels were significantly decreased, with an increase in adenosine deaminase (ADA) (p < 0.05, n = 16 per group). Rodent studies suggest that some of our findings (A1R and ENTPD2) may be due to treatment with antipsychotics. Our findings suggest changes in expression of genes involved in regulating metabolism of ATP in enriched populations of astrocytes, leading to lower availability of substrates needed to generate adenosine. In pyramidal neurons, changes in ENT1 and ADA mRNA may suggest increased catabolism of adenosine. These results offer new insights into the cell-subtype-specific pathophysiology of the adenosine system in this illness. Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on the following questions: (1) Which components of the adenosine system are dysregulated in schizophrenia, and (2) are these changes limited to astrocytes? To address these questions, we captured enriched populations of DLPFC pyramidal neurons and astrocytes from schizophrenia and control subjects using laser capture microdissection and assessed expression of adenosine system components using qPCR. Interestingly, we found changes in enriched populations of astrocytes and neurons spanning metabolic and catabolic pathways. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and ENTPD2 mRNA levels were significantly decreased (p < 0.05, n = 16 per group) in enriched populations of astrocytes; in pyramidal neurons equilibrative nucleoside transporter 1 (ENT1) and adenosine A receptor mRNA levels were significantly decreased, with an increase in adenosine deaminase (ADA) (p < 0.05, n = 16 per group). Rodent studies suggest that some of our findings (A R and ENTPD2) may be due to treatment with antipsychotics. Our findings suggest changes in expression of genes involved in regulating metabolism of ATP in enriched populations of astrocytes, leading to lower availability of substrates needed to generate adenosine. In pyramidal neurons, changes in ENT1 and ADA mRNA may suggest increased catabolism of adenosine. These results offer new insights into the cell-subtype-specific pathophysiology of the adenosine system in this illness. Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on the following questions: (1) Which components of the adenosine system are dysregulated in schizophrenia, and (2) are these changes limited to astrocytes? To address these questions, we captured enriched populations of DLPFC pyramidal neurons and astrocytes from schizophrenia and control subjects using laser capture microdissection and assessed expression of adenosine system components using qPCR. Interestingly, we found changes in enriched populations of astrocytes and neurons spanning metabolic and catabolic pathways. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and ENTPD2 mRNA levels were significantly decreased ( p < 0.05, n = 16 per group) in enriched populations of astrocytes; in pyramidal neurons equilibrative nucleoside transporter 1 (ENT1) and adenosine A 1 receptor mRNA levels were significantly decreased, with an increase in adenosine deaminase (ADA) ( p < 0.05, n = 16 per group). Rodent studies suggest that some of our findings (A 1 R and ENTPD2) may be due to treatment with antipsychotics. Our findings suggest changes in expression of genes involved in regulating metabolism of ATP in enriched populations of astrocytes, leading to lower availability of substrates needed to generate adenosine. In pyramidal neurons, changes in ENT1 and ADA mRNA may suggest increased catabolism of adenosine. These results offer new insights into the cell-subtype-specific pathophysiology of the adenosine system in this illness. Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on the following questions: (1) Which components of the adenosine system are dysregulated in schizophrenia, and (2) are these changes limited to astrocytes? To address these questions, we captured enriched populations of DLPFC pyramidal neurons and astrocytes from schizophrenia and control subjects using laser capture microdissection and assessed expression of adenosine system components using qPCR. Interestingly, we found changes in enriched populations of astrocytes and neurons spanning metabolic and catabolic pathways. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and ENTPD2 mRNA levels were significantly decreased (p < 0.05, n = 16 per group) in enriched populations of astrocytes; in pyramidal neurons equilibrative nucleoside transporter 1 (ENT1) and adenosine A1 receptor mRNA levels were significantly decreased, with an increase in adenosine deaminase (ADA) (p < 0.05, n = 16 per group). Rodent studies suggest that some of our findings (A1R and ENTPD2) may be due to treatment with antipsychotics. Our findings suggest changes in expression of genes involved in regulating metabolism of ATP in enriched populations of astrocytes, leading to lower availability of substrates needed to generate adenosine. In pyramidal neurons, changes in ENT1 and ADA mRNA may suggest increased catabolism of adenosine. These results offer new insights into the cell-subtype-specific pathophysiology of the adenosine system in this illness.Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms of schizophrenia. In the present study, we sought to reverse-translate these findings back to the human brain in schizophrenia, focusing on the following questions: (1) Which components of the adenosine system are dysregulated in schizophrenia, and (2) are these changes limited to astrocytes? To address these questions, we captured enriched populations of DLPFC pyramidal neurons and astrocytes from schizophrenia and control subjects using laser capture microdissection and assessed expression of adenosine system components using qPCR. Interestingly, we found changes in enriched populations of astrocytes and neurons spanning metabolic and catabolic pathways. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1) and ENTPD2 mRNA levels were significantly decreased (p < 0.05, n = 16 per group) in enriched populations of astrocytes; in pyramidal neurons equilibrative nucleoside transporter 1 (ENT1) and adenosine A1 receptor mRNA levels were significantly decreased, with an increase in adenosine deaminase (ADA) (p < 0.05, n = 16 per group). Rodent studies suggest that some of our findings (A1R and ENTPD2) may be due to treatment with antipsychotics. Our findings suggest changes in expression of genes involved in regulating metabolism of ATP in enriched populations of astrocytes, leading to lower availability of substrates needed to generate adenosine. In pyramidal neurons, changes in ENT1 and ADA mRNA may suggest increased catabolism of adenosine. These results offer new insights into the cell-subtype-specific pathophysiology of the adenosine system in this illness. |
Author | O’Donovan, Sinead Marie Moody, Cassidy Lynn Devine, Emily Hasselfeld, Kathryn Koene, Rachael McCullumsmith, Robert Erne Sullivan, Courtney |
Author_xml | – sequence: 1 givenname: Sinead Marie surname: O’Donovan fullname: O’Donovan, Sinead Marie – sequence: 2 givenname: Courtney surname: Sullivan fullname: Sullivan, Courtney – sequence: 3 givenname: Rachael surname: Koene fullname: Koene, Rachael – sequence: 4 givenname: Emily surname: Devine fullname: Devine, Emily – sequence: 5 givenname: Kathryn surname: Hasselfeld fullname: Hasselfeld, Kathryn – sequence: 6 givenname: Cassidy Lynn surname: Moody fullname: Moody, Cassidy Lynn – sequence: 7 givenname: Robert Erne surname: McCullumsmith fullname: McCullumsmith, Robert Erne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29483661$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFD8AFrcSFi2HscRzngoSWv1IlLiD1Zk1tb-Mqa4c4AS2fHi9bKuiBk62Z3xvNvHfGTlJOgbGnAl4KQPOqKIFGcxCGA0jD9QO2Eq0CrlFdnrAVmA65QLw8ZWel3ACIptXmETuVnTKotVixt5swDLwsV_N-DLyMwcVtdGvXU7oOZR3TmnxIucQU1iPN_Q_a_64W18efeeynkCI9Zg-3NJTw5PY9Z1_fv_uy-cgvPn_4tHlzwZ3qcOaoFKEAr7xwJmBDChWia52gBpxTzmuSteCl6YzBtiXpTOtRksfg6-ecvT7OHZerXfAupHmiwY5T3NG0t5mi_beTYm-v83erAbRsoA54cTtgyt-WUGa7i8VVByiFvBQrAYwxSqsD-vweepOXKdXzKqWrs6KTTaWe_b3R3Sp_DK6AOAJuyqVMYXuHCLCHEO0xRFtDtIcQra6a9p7GxZnmmA9HxeE_yl8iS6EE |
CitedBy_id | crossref_primary_10_3390_ijms231911835 crossref_primary_10_1007_s11302_018_9627_2 crossref_primary_10_1038_s41380_022_01768_4 crossref_primary_10_1038_s41380_022_01911_1 crossref_primary_10_1186_s12884_024_06914_0 crossref_primary_10_3390_brainsci14010013 crossref_primary_10_3390_cells11203315 crossref_primary_10_1038_s41380_024_02770_8 crossref_primary_10_1038_s41398_024_02833_y crossref_primary_10_3389_fncel_2024_1358450 crossref_primary_10_3390_cells13010032 crossref_primary_10_3390_ijms25158266 crossref_primary_10_1093_schbul_sbz086 crossref_primary_10_3389_fnins_2021_703783 crossref_primary_10_3390_ijms26051826 crossref_primary_10_1038_s41380_024_02861_6 crossref_primary_10_3389_fncel_2023_1120532 crossref_primary_10_3390_genes11040390 crossref_primary_10_3390_ijms23031219 crossref_primary_10_1038_s41537_022_00312_1 crossref_primary_10_3389_fnins_2022_903941 crossref_primary_10_1038_s41380_021_01205_y crossref_primary_10_1111_bph_16298 crossref_primary_10_1111_ejn_14752 crossref_primary_10_3390_brainsci14070649 crossref_primary_10_1016_j_neuropharm_2023_109756 crossref_primary_10_3390_cells13191657 crossref_primary_10_1093_schbul_sbaa190 crossref_primary_10_1186_s13578_024_01318_1 crossref_primary_10_3389_fpsyt_2020_00636 crossref_primary_10_1080_15622975_2020_1821917 crossref_primary_10_1093_schbul_sbae092 crossref_primary_10_1016_j_neubiorev_2021_03_004 |
Cites_doi | 10.1113/jphysiol.2013.253450 10.1124/pr.112.006361 10.1016/S0006-8993(98)00840-3 10.1523/JNEUROSCI.6052-11.2012 10.1038/mp.2015.148 10.1016/j.pnpbp.2006.02.002 10.1097/WNR.0b013e3283500987 10.1016/j.schres.2013.03.010 10.1046/j.1460-9568.2002.02122.x 10.1016/j.bbamcr.2008.01.024 10.1016/S0022-3956(99)00029-1 10.1111/j.1460-9568.2007.05897.x 10.1146/annurev.neuro.24.1.31 10.1097/00001756-199809140-00016 10.1111/jnc.13724 10.2174/156802611795347555 10.1016/j.neulet.2006.11.071 10.1046/j.1471-4159.2001.00607.x 10.1126/science.1116916 10.4088/JCP.v66n0209 10.1016/j.neuropharm.2011.01.048 10.1073/pnas.1120997109 10.1038/nn1288 10.1056/NEJMra035458 10.1016/j.jpsychires.2013.12.013 10.1074/jbc.M113.466102 10.1016/S0140-6736(09)60995-8 10.1038/cdd.2009.131 10.1016/j.biopsych.2011.02.022 10.1016/S0074-7742(05)63007-3 10.1001/archpsyc.1982.04290090001001 10.1007/s10695-015-0093-2 10.1016/j.tiv.2008.10.003 10.1016/j.neuint.2007.06.026 10.1590/S1516-44462010005000003 10.1002/1098-1128(200103)21:2<105::AID-MED1002>3.0.CO;2-U 10.1038/tp.2015.74 10.1038/tp.2013.94 10.1007/s11302-012-9309-4 10.1126/scisignal.3104re1 10.1097/00001756-200303030-00003 10.1007/s11302-013-9370-7 10.1523/JNEUROSCI.1860-14.2014 10.1038/npp.2014.337 |
ContentType | Journal Article |
Copyright | Copyright Nature Publishing Group Jul 2018 American College of Neuropsychopharmacology 2018 |
Copyright_xml | – notice: Copyright Nature Publishing Group Jul 2018 – notice: American College of Neuropsychopharmacology 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM |
DOI | 10.1038/s41386-018-0028-6 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1740-634X |
EndPage | 1674 |
ExternalDocumentID | PMC6006250 29483661 10_1038_s41386_018_0028_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: K08 MH074016 – fundername: NIMH NIH HHS grantid: R01 MH107487 – fundername: NIMH NIH HHS grantid: R01 MH094445 |
GroupedDBID | --- -DZ -Q- 0R~ 29N 2WC 36B 39C 4.4 406 5RE 70F 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AACDK AANZL AASML AATNV AAYXX AAYZH ABAKF ABBRH ABDBE ABFSG ABIVO ABJNI ABLJU ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACMFV ACMJI ACPRK ACSTC ACZOJ ADBBV ADFRT AEFQL AEJRE AEMSY AENEX AESKC AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AHWEU AIGIU AILAN AIXLP AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF AOIJS ASPBG ATHPR AVWKF AYFIA AZFZN AZQEC BAWUL BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION CS3 DIK DNIVK DPUIP DWQXO E3Z EBLON EBS EE. EJD F5P FDB FDQFY FIGPU FIZPM FYUFA GNUQQ GX1 HCIFZ HMCUK HYE HZ~ IWAJR JSO JZLTJ KQ8 M1P M2M M7P NQJWS O9- OK1 P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO PSYQQ Q2X RNT RNTTT ROL RPM SNX SNYQT SOJ SRMVM SWTZT TAOOD TR2 UKHRP W2D ZGI --K 1B1 53G 5VS AAEDT AALRI AAQFI AAQXK AAXUO ABMAC ABRTQ ABWVN ACIUM ACRPL ACRQY ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ CAG CGR COF CUY CVF ECM EIF EIOEI EMB EMOBN FEDTE FERAY FGOYB FSGXE HVGLF IHE LGEZI LOTEE M41 MK0 NADUK NPM NQ- NXXTH PJZUB PPXIY PQGLB R2- RIG RNS RPZ SEW SOHCF SSZ SV3 TBHMF TDRGL ZKB 3V. 7TK 7XB 8FE 8FH 8FK K9. LK8 PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c493t-344a310d4d1c8e35a43433c7c1a50cc4cd6a233cd28988377a2c87d32ad3ed7d3 |
IEDL.DBID | 7X7 |
ISSN | 0893-133X 1740-634X |
IngestDate | Thu Aug 21 18:20:54 EDT 2025 Fri Jul 11 16:14:06 EDT 2025 Fri Jul 25 09:03:41 EDT 2025 Mon Jul 21 05:47:34 EDT 2025 Tue Jul 01 01:05:35 EDT 2025 Thu Apr 24 22:50:28 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-344a310d4d1c8e35a43433c7c1a50cc4cd6a233cd28988377a2c87d32ad3ed7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41386-018-0028-6.pdf |
PMID | 29483661 |
PQID | 2060891925 |
PQPubID | 33935 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6006250 proquest_miscellaneous_2008884640 proquest_journals_2060891925 pubmed_primary_29483661 crossref_primary_10_1038_s41386_018_0028_6 crossref_citationtrail_10_1038_s41386_018_0028_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York – name: Cham |
PublicationTitle | Neuropsychopharmacology (New York, N.Y.) |
PublicationTitleAlternate | Neuropsychopharmacology |
PublicationYear | 2018 |
Publisher | Nature Publishing Group Springer International Publishing |
Publisher_xml | – name: Nature Publishing Group – name: Springer International Publishing |
References | JW Olney (28_CR4) 1999; 33 JM Brundege (28_CR21) 1998; 9 PL Ipata (28_CR6) 2011; 11 J Deckert (28_CR14) 2003; 14 RA Cunha (28_CR19) 2008; 52 BB Fredholm (28_CR41) 2005; 63 RE McCullumsmith (28_CR43) 2015; 40 BK Yee (28_CR8) 2007; 26 GP Dutra (28_CR39) 2010; 32 Y Hwang (28_CR13) 2013; 3 JB Drummond (28_CR27) 2013; 147 I Villar-Menendez (28_CR16) 2014; 51 D Boison (28_CR10) 2013; 65 A Kurumaji (28_CR15) 1998; 808 GG Yegutkin (28_CR30) 2008; 1783 BP Klyuch (28_CR22) 2012; 32 D Lu (28_CR32) 2013; 288 RE McCullumsmith (28_CR24) 2016; 21 DS Choi (28_CR34) 2004; 7 D Shan (28_CR35) 2012; 23 RA Cunha (28_CR7) 2016; 139 D Lovatt (28_CR23) 2012; 109 MS Sodhi (28_CR26) 2011; 70 SM O’Donovan (28_CR25) 2015; 5 O Pascual (28_CR18) 2005; 310 MJ Wall (28_CR36) 2013; 591 E Aliagas (28_CR17) 2013; 9 J Os van (28_CR2) 2009; 374 S Latini (28_CR20) 2001; 79 D Shan (28_CR40) 2012; 53 KJ Seibt (28_CR46) 2009; 23 R Corriden (28_CR31) 2010; 3 KJ Seibt (28_CR45) 2015; 41 DR Lara (28_CR5) 2006; 30 K Kashihara (28_CR28) 1986; 6 TV Dunwiddie (28_CR33) 2001; 24 MG Brunstein (28_CR38) 2007; 414 R Freedman (28_CR1) 2003; 349 L Gimenez-Llort (28_CR42) 2002; 16 H Zimmermann (28_CR29) 2012; 8 AV Mackay (28_CR3) 1982; 39 Y Zhang (28_CR44) 2014; 34 MG Brunstein (28_CR12) 2005; 66 G Cristalli (28_CR37) 2001; 21 D Boison (28_CR9) 2012; 62 D Boison (28_CR11) 2010; 17 |
References_xml | – volume: 6 start-page: 275 year: 1986 ident: 28_CR28 publication-title: Yakubutsu Seishin Kodo = Japanese J Psychopharmacol – volume: 591 start-page: 3853 year: 2013 ident: 28_CR36 publication-title: J Physiol doi: 10.1113/jphysiol.2013.253450 – volume: 65 start-page: 906 year: 2013 ident: 28_CR10 publication-title: Pharmacol Rev doi: 10.1124/pr.112.006361 – volume: 808 start-page: 320 year: 1998 ident: 28_CR15 publication-title: Brain Res doi: 10.1016/S0006-8993(98)00840-3 – volume: 32 start-page: 3842 year: 2012 ident: 28_CR22 publication-title: J Neurosci: Off J Soc Neurosci doi: 10.1523/JNEUROSCI.6052-11.2012 – volume: 21 start-page: 823 year: 2016 ident: 28_CR24 publication-title: Mol Psychiatry doi: 10.1038/mp.2015.148 – volume: 30 start-page: 617 year: 2006 ident: 28_CR5 publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2006.02.002 – volume: 23 start-page: 224 year: 2012 ident: 28_CR35 publication-title: Neuroreport doi: 10.1097/WNR.0b013e3283500987 – volume: 147 start-page: 32 year: 2013 ident: 28_CR27 publication-title: Schizophr Res doi: 10.1016/j.schres.2013.03.010 – volume: 16 start-page: 547 year: 2002 ident: 28_CR42 publication-title: Eur J Neurosci doi: 10.1046/j.1460-9568.2002.02122.x – volume: 1783 start-page: 673 year: 2008 ident: 28_CR30 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2008.01.024 – volume: 33 start-page: 523 year: 1999 ident: 28_CR4 publication-title: J Psychiatr Res doi: 10.1016/S0022-3956(99)00029-1 – volume: 26 start-page: 3237 year: 2007 ident: 28_CR8 publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2007.05897.x – volume: 24 start-page: 31 year: 2001 ident: 28_CR33 publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.24.1.31 – volume: 9 start-page: 3007 year: 1998 ident: 28_CR21 publication-title: Neuroreport doi: 10.1097/00001756-199809140-00016 – volume: 139 start-page: 1019 year: 2016 ident: 28_CR7 publication-title: J Neurochem doi: 10.1111/jnc.13724 – volume: 11 start-page: 909 year: 2011 ident: 28_CR6 publication-title: Curr Top Med Chem doi: 10.2174/156802611795347555 – volume: 414 start-page: 61 year: 2007 ident: 28_CR38 publication-title: Neurosci Lett doi: 10.1016/j.neulet.2006.11.071 – volume: 79 start-page: 463 year: 2001 ident: 28_CR20 publication-title: J Neurochem doi: 10.1046/j.1471-4159.2001.00607.x – volume: 310 start-page: 113 year: 2005 ident: 28_CR18 publication-title: Science doi: 10.1126/science.1116916 – volume: 66 start-page: 213 year: 2005 ident: 28_CR12 publication-title: J Clin Psychiatry doi: 10.4088/JCP.v66n0209 – volume: 62 start-page: 1527 year: 2012 ident: 28_CR9 publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2011.01.048 – volume: 109 start-page: 6265 year: 2012 ident: 28_CR23 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1120997109 – volume: 7 start-page: 855 year: 2004 ident: 28_CR34 publication-title: Nat Neurosci doi: 10.1038/nn1288 – volume: 349 start-page: 1738 year: 2003 ident: 28_CR1 publication-title: N Engl J Med doi: 10.1056/NEJMra035458 – volume: 51 start-page: 49 year: 2014 ident: 28_CR16 publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2013.12.013 – volume: 288 start-page: 19040 year: 2013 ident: 28_CR32 publication-title: J Biol Chem doi: 10.1074/jbc.M113.466102 – volume: 374 start-page: 635 year: 2009 ident: 28_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(09)60995-8 – volume: 17 start-page: 1071 year: 2010 ident: 28_CR11 publication-title: Cell Death Differ doi: 10.1038/cdd.2009.131 – volume: 70 start-page: 646 year: 2011 ident: 28_CR26 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2011.02.022 – volume: 63 start-page: 191 year: 2005 ident: 28_CR41 publication-title: Int Rev Neurobiol doi: 10.1016/S0074-7742(05)63007-3 – volume: 39 start-page: 991 year: 1982 ident: 28_CR3 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1982.04290090001001 – volume: 53 start-page: 233 year: 2012 ident: 28_CR40 publication-title: Minerva Psichiatr – volume: 41 start-page: 1383 year: 2015 ident: 28_CR45 publication-title: Fish Physiol Biochem doi: 10.1007/s10695-015-0093-2 – volume: 23 start-page: 78 year: 2009 ident: 28_CR46 publication-title: Toxicol Vitr: Int J Publ Assoc BIBRA doi: 10.1016/j.tiv.2008.10.003 – volume: 52 start-page: 65 year: 2008 ident: 28_CR19 publication-title: Neurochem Int doi: 10.1016/j.neuint.2007.06.026 – volume: 32 start-page: 275 year: 2010 ident: 28_CR39 publication-title: Rev Bras De Psiquiatr doi: 10.1590/S1516-44462010005000003 – volume: 21 start-page: 105 year: 2001 ident: 28_CR37 publication-title: Med Res Rev doi: 10.1002/1098-1128(200103)21:2<105::AID-MED1002>3.0.CO;2-U – volume: 5 year: 2015 ident: 28_CR25 publication-title: Transl Psychiatry doi: 10.1038/tp.2015.74 – volume: 3 year: 2013 ident: 28_CR13 publication-title: Transl Psychiatry doi: 10.1038/tp.2013.94 – volume: 8 start-page: 437 year: 2012 ident: 28_CR29 publication-title: Purinergic Signal doi: 10.1007/s11302-012-9309-4 – volume: 3 start-page: re1 year: 2010 ident: 28_CR31 publication-title: Sci Signal doi: 10.1126/scisignal.3104re1 – volume: 14 start-page: 313 year: 2003 ident: 28_CR14 publication-title: Neuroreport doi: 10.1097/00001756-200303030-00003 – volume: 9 start-page: 599 year: 2013 ident: 28_CR17 publication-title: Purinergic Signal doi: 10.1007/s11302-013-9370-7 – volume: 34 start-page: 11929 year: 2014 ident: 28_CR44 publication-title: J Neurosci: Off J Soc Neurosci doi: 10.1523/JNEUROSCI.1860-14.2014 – volume: 40 start-page: 1307 year: 2015 ident: 28_CR43 publication-title: Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol doi: 10.1038/npp.2014.337 |
SSID | ssj0015768 |
Score | 2.4281952 |
Snippet | Prior work in animal models implicates abnormalities of adenosine metabolism in astrocytes as a possible pathophysiological mechanism underlying the symptoms... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1667 |
SubjectTerms | 5'-Nucleotidase - metabolism Adenosine Adenosine - metabolism Adenosine deaminase Adenosine Kinase - metabolism Adenosine Triphosphatases - metabolism Adult Aged Animal models Animals Antipsychotic Agents - pharmacology Antipsychotics Astrocytes Astrocytes - drug effects Astrocytes - metabolism Equilibrative Nucleoside Transporter 1 - metabolism Female Frontal Lobe - drug effects Frontal Lobe - metabolism Gene Expression GPI-Linked Proteins - metabolism Haloperidol - pharmacology Humans Male Mental disorders Metabolism Middle Aged mRNA Nucleoside transporter Pyramidal cells Pyramidal Cells - drug effects Pyramidal Cells - metabolism Rats, Sprague-Dawley Receptors, Purinergic P1 - metabolism RNA, Messenger - metabolism Schizophrenia Schizophrenia - drug therapy Schizophrenia - metabolism Young Adult |
Title | Cell-subtype-specific changes in adenosine pathways in schizophrenia |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29483661 https://www.proquest.com/docview/2060891925 https://www.proquest.com/docview/2008884640 https://pubmed.ncbi.nlm.nih.gov/PMC6006250 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB7aBEpfQuP0UHOwhZKHkqWSdiWtnoqdxoRCTCgJ-E3sFRpw5TSyKf73mVnJStxCniRWWklo9vjm-gbgc-mVia23PNEmRQXFe66Fk9wiOscN1ORxoMy_mOTn1_LHNJt2BremC6tcr4lhoXZzSzZyVNKxW4l4JPt294dT1SjyrnYlNF7CNlGXUUhXMe0VroSwdECRpeCoi03XXk2hvja4eCvSpRUPBqZ8c1_6D2z-GzP5ZBMav4GdDj2yYSvuXXjh6wHsDWvUnH-v2DEL8ZzBUD6AVxed23wAx5ctQfXqhF095ls1J6FHT1292oPvp342483SkGWWUxYmRRKxNju4Ybc1047YxfGpjGoZ_9Wr0No8Dd17C9fjs6vTc97VWeBWlmLBhZQaUZ6TLrHKi0xTtqmwhU10Flsrrct1ig0OlTOFCm2hU6sKJ1LthHd48g626nntPwCzpbHO2NLivi-JtybzN8KUeeJvYqMTG0G8_suV7UjIqRbGrArOcKGqVjAVCqYiwVR5BF_6LnctA8dzNx-sRVd1k7GpHodOBJ_6yziNyDeiaz9fNqEap0IsJuMI3reS7t-WllIJxDERFBtjoL-BKLo3r9S3vwJVd045qln88fnP2ofXaRiJFAV8AFuL-6U_RKyzMEdhQB_B9nA8Gk3wODqbXP58AOZLADQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuCFIehgKLBD2grrC9a2d9QKj0oZQ2UYVSKTd3XxWVglNwosp_it_I7PrRBqTeerNsrx1lZr3ftzPzDcD7zAoVaqtpJFWMBMVaKpnhVCM6xwVUpaGXzB-N0-Ep_zZNpmvwp62FcWmV7TfRf6jNXLs9ciTpOCxDPJJ8ufxFXdcoF11tW2jUbnFkqyukbOXnwz2074c4Ptif7A5p01WAap6xBWWcS8Q0hptIC8sS6WormR7oSCah1lybVMZ4wiAVEUjfBjLWYmBYLA2zBg_wufdgnTOkMj1Y_7o_PvnexS0ceve4NWMU2d-0jaMy8anE5UI49i6o39JKV1fC_-Dtv1maN5a9g8fwqMGrZKd2sCewZos-bOwUyNV_VmSL-AxSvzXfh_ujJlDfh62TWhK72iaT6wqvctuP6MSyqw3Y27WzGS2Xyu0FU1f36XKXSF2PXJKLgkjj9MzxqcR1T76SlT9b3kwWfAqnd2KDZ9Ar5oV9AURnShulM41IgzulnMSeM5WlkT0PlYx0AGH7L-e6kT133TdmuQ-_M5HXhsnRMLkzTJ4G8LEbcllrftx282ZruryZ_mV-7awBvOsu48R10RhZ2Pmy9P0_BaI_HgbwvLZ097Y444IhcgpgsOID3Q1OFHz1SnHxw4uDp64qNglf3v6z3sKD4WR0nB8fjo9ewcPYe6XLQd6E3uL30r5GpLVQbxr3JnB21zPqL1MkOwE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIU28IOiAFQYYCfaAZi2JncR5QGhaqTbGpj1sUt-CY7tiUkkHaTXlX-Ov4875sRWkve2tSuK06p3t7_PdfQfwPnOqCIwzPNRFhATFOa6FldwgOscNtEgCL5l_cpocXsivk3iyBn-6WhhKq-zWRL9Q27mhM3Ik6TgsQzwS703btIiz0fjz1S9OHaQo0tq102hc5NjV10jfqk9HI7T1hygafzk_OORthwFuZCYWXEipEd9YaUOjnIg11VkKk5pQx4Ex0thER3jBIi1RSOVSHRmVWhFpK5zFD_jeB_AwFXFIcyyd9GQvJBzvEWwmOPLASRdRFWqvwo1DEY9X3B9uJat74n9A9998zVsb4PgJPG6RK9tvXO0prLlyAJv7JbL2nzXbYT6X1B_SD2DjpA3ZD2DnrBHHrnfZ-U2tV7XrR_Sy2fUmjA7cbMarZUGnwpwqQCmLiTWVyRW7LJm2pGyOb2XUR_la1_5qdTtt8Blc3IsFnsN6OS_dFjCTFcYWJjOIOSRp5sRuKoosCd00KHRohhB0_3JuWgF06sMxy30gXqi8MUyOhsnJMHkyhI_9kKtG_eOuh7c70-XtQlDlN247hHf9bZzCFJfRpZsvK98JVCEOlMEQXjSW7r8tyqQSiKGGkK74QP8AyYOv3ikvf3iZ8ITqY-Pg5d0_6y1s4DzKvx2dHr-CR5F3SkpG3ob1xe-le42Qa1G88b7N4Pt9T6a_jMA90Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cell-subtype-specific+changes+in+adenosine+pathways+in+schizophrenia&rft.jtitle=Neuropsychopharmacology+%28New+York%2C+N.Y.%29&rft.au=O%27Donovan%2C+Sinead+Marie&rft.au=Sullivan%2C+Courtney&rft.au=Koene%2C+Rachael&rft.au=Devine%2C+Emily&rft.date=2018-07-01&rft.issn=1740-634X&rft.eissn=1740-634X&rft.volume=43&rft.issue=8&rft.spage=1667&rft_id=info:doi/10.1038%2Fs41386-018-0028-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-133X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-133X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-133X&client=summon |