A high-impedance detector-array glove for magnetic resonance imaging of the hand
Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, imposes performance limitations and narrows the scope of MRI experime...
Saved in:
Published in | Nature biomedical engineering Vol. 2; no. 8; pp. 570 - 577 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2157-846X 2157-846X |
DOI | 10.1038/s41551-018-0233-y |
Cover
Loading…
Abstract | Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, imposes performance limitations and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighbouring elements. We experimentally verified that the detectors do not suffer from the signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.
A flexible magnetic resonance imaging coil bearing an array of high-impedance detectors can be stitched onto a glove and used to image the biomechanics of the hand’s soft tissue. |
---|---|
AbstractList | Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, imposes performance limitations and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighbouring elements. We experimentally verified that the detectors do not suffer from the signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.A flexible magnetic resonance imaging coil bearing an array of high-impedance detectors can be stitched onto a glove and used to image the biomechanics of the hand’s soft tissue. Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant inductive coupling, which restricts coil design to fixed geometries, imposes performance limitations, and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighboring elements. We experimentally verified that the detectors do not suffer from signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs. Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, imposes performance limitations and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighbouring elements. We experimentally verified that the detectors do not suffer from the signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs. A flexible magnetic resonance imaging coil bearing an array of high-impedance detectors can be stitched onto a glove and used to image the biomechanics of the hand’s soft tissue. Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant inductive coupling, which restricts coil design to fixed geometries, imposes performance limitations, and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighboring elements. We experimentally verified that the detectors do not suffer from signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant inductive coupling, which restricts coil design to fixed geometries, imposes performance limitations, and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighboring elements. We experimentally verified that the detectors do not suffer from signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs. |
Author | Cloos, Martijn A. Sodickson, Daniel K. Zhang, Bei |
AuthorAffiliation | 4 Tech4Health, NYU Langone Health, New York, New York, USA 2 Center for Advanced Imaging Innovation and Research (CAI 2 R), New York University School of Medicine, New York, NY, USA 3 The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA 1 Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA |
AuthorAffiliation_xml | – name: 1 Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA – name: 2 Center for Advanced Imaging Innovation and Research (CAI 2 R), New York University School of Medicine, New York, NY, USA – name: 4 Tech4Health, NYU Langone Health, New York, New York, USA – name: 3 The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA |
Author_xml | – sequence: 1 givenname: Bei surname: Zhang fullname: Zhang, Bei email: bei.zhang@nyumc.org organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research, New York University School of Medicine – sequence: 2 givenname: Daniel K. surname: Sodickson fullname: Sodickson, Daniel K. organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research, New York University School of Medicine, Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, Tech4Health, NYU Langone Health – sequence: 3 givenname: Martijn A. orcidid: 0000-0002-0636-234X surname: Cloos fullname: Cloos, Martijn A. email: Martijn.Cloos@nyumc.org organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research, New York University School of Medicine, Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, Tech4Health, NYU Langone Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30854251$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFrFTEUhYNUbK39AW5kwI2b6E0ymcxshFK0CgVdKLgLeZmbmZR5yTPJK7x_b15fq7Wgq1yS7xxO7nlOjkIMSMhLBm8ZiP5dbpmUjALrKXAh6O4JOeFMKtq33Y-jB_MxOcv5GgDYINpByWfkWEAvWy7ZCfl63sx-mqlfb3A0wWIzYkFbYqImJbNrpiXeYONiatZmCli8bRLmGG5ZX-98mJromjJjM5swviBPnVkynt2dp-T7xw_fLj7Rqy-Xny_Or6htB1GoEEopJ8Ay41A5yTvVGVDtinNEjpxx041t62TXArjO2rEiK9PLHlCtYBSn5P3Bd7NdrXG0GEoyi96kmintdDRe__0S_KyneKOroeQCqsGbO4MUf24xF7322eKymIBxmzVnAzAYpJQVff0IvY7bFOr3NBf9oJgYQFXq1cNEv6PcL7sC6gDYFHNO6LT1xRQf9wH9ohnofbP60Kyuzep9s3pXleyR8t78fxp-0OTKhgnTn9D_Fv0Cb321pg |
CitedBy_id | crossref_primary_10_1038_s41598_020_65634_5 crossref_primary_10_1088_1361_6560_ab37a8 crossref_primary_10_1016_j_mri_2020_07_003 crossref_primary_10_1016_j_mri_2020_07_006 crossref_primary_10_1038_s41578_022_00427_y crossref_primary_10_1002_mrm_30268 crossref_primary_10_1002_mrm_28662 crossref_primary_10_1148_rg_210214 crossref_primary_10_1016_j_jmr_2022_107321 crossref_primary_10_1007_s10334_023_01067_1 crossref_primary_10_1109_JERM_2021_3136090 crossref_primary_10_1109_TAP_2023_3318837 crossref_primary_10_3390_jcm12041634 crossref_primary_10_1038_s41551_018_0278_y crossref_primary_10_1002_mrm_28983 crossref_primary_10_1016_j_jmr_2023_107577 crossref_primary_10_1016_j_comnet_2021_108074 crossref_primary_10_1109_TAP_2021_3111347 crossref_primary_10_1002_advs_202414299 crossref_primary_10_1038_s41467_018_05585_8 crossref_primary_10_3390_ma17133325 crossref_primary_10_1002_mrm_29062 crossref_primary_10_1088_1361_6560_ab8cd8 crossref_primary_10_3389_fphy_2020_00080 crossref_primary_10_1002_jmri_27865 crossref_primary_10_1002_mrm_30130 crossref_primary_10_1109_TMI_2023_3261922 crossref_primary_10_3389_fphy_2020_00240 crossref_primary_10_1002_mrm_29147 crossref_primary_10_1002_jmri_29205 crossref_primary_10_3390_s23177588 crossref_primary_10_1007_s00256_024_04829_7 crossref_primary_10_1109_JSSC_2022_3223215 crossref_primary_10_1002_mrm_27964 crossref_primary_10_1088_1361_6560_aba87a crossref_primary_10_1002_mrm_29546 crossref_primary_10_1109_TMI_2021_3051390 crossref_primary_10_1038_s41598_022_19282_6 crossref_primary_10_1088_1361_6560_ad0217 crossref_primary_10_1088_1361_6560_aaf9e4 crossref_primary_10_3390_magnetochemistry9010006 crossref_primary_10_1109_TBME_2019_2956682 crossref_primary_10_1016_j_mri_2024_02_007 crossref_primary_10_1016_j_jmr_2022_107302 crossref_primary_10_1002_mrm_29891 crossref_primary_10_1016_j_kint_2018_09_024 crossref_primary_10_1109_TBME_2020_3027296 crossref_primary_10_1088_1361_6560_abaffb crossref_primary_10_1002_mrm_27637 crossref_primary_10_1109_TAP_2023_3328174 crossref_primary_10_1038_s41467_024_51061_x crossref_primary_10_1002_mrm_29259 crossref_primary_10_1016_j_mri_2023_06_014 crossref_primary_10_1038_s41598_021_95335_6 crossref_primary_10_1148_radiol_230531 crossref_primary_10_1109_TBME_2023_3341760 crossref_primary_10_1097_RLI_0000000000000991 crossref_primary_10_1016_j_zemedi_2023_05_002 crossref_primary_10_1109_ACCESS_2020_3009367 crossref_primary_10_1109_TMI_2022_3140717 crossref_primary_10_1088_1361_6560_ad388c crossref_primary_10_1038_s41598_019_54600_5 crossref_primary_10_3390_s24113390 crossref_primary_10_1002_mrm_30036 crossref_primary_10_2214_AJR_18_20459 crossref_primary_10_1002_admt_202301053 crossref_primary_10_1002_adma_202313692 crossref_primary_10_1177_02841851231188222 crossref_primary_10_1016_j_jmr_2024_107786 crossref_primary_10_1097_RLI_0000000000000906 crossref_primary_10_1016_j_ejrad_2022_110271 crossref_primary_10_1109_TIM_2023_3342226 crossref_primary_10_3389_fphy_2021_717369 crossref_primary_10_1038_s41598_024_53364_x crossref_primary_10_1002_jmri_26991 crossref_primary_10_1088_1361_6560_ac6ebd crossref_primary_10_1109_ACCESS_2022_3209676 crossref_primary_10_1109_TAP_2024_3470892 crossref_primary_10_1148_radiol_2020200967 |
Cites_doi | 10.1002/mrm.24427 10.1002/mrm.10171 10.1002/mrm.1910060313 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1038/242190a0 10.1002/mrm.20713 10.1103/PhysRev.74.1025 10.1038/ncomms10839 10.1002/1522-2594(200012)44:6<978::AID-MRM22>3.0.CO;2-9 10.1002/mrm.23198 10.1109/10.412657 10.1002/mrm.1910390317 10.1002/mrm.1910380424 10.1109/TMI.2006.885337 10.1109/8.841903 10.1002/mrm.10597 10.1016/j.jmr.2016.10.008 10.1002/mrm.21598 10.1126/science.1143254 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W 10.1016/j.jmr.2007.03.001 10.1002/mrm.22028 10.1002/jmri.24159 10.1006/jmre.1996.1103 10.1002/mrm.25260 10.1002/mrm.24432 10.1002/mrm.20183 10.1002/mrm.25666 10.1002/mrm.1910380414 10.1002/mrm.23097 10.1002/mrm.1910160203 10.1088/0022-3719/6/22/007 10.1002/nbm.1435 10.1002/mrm.22423 10.1109/APS.2013.6711080 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 The Author(s) 2018. |
Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018. |
DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/s41551-018-0233-y |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2157-846X |
EndPage | 577 |
ExternalDocumentID | PMC6405230 30854251 10_1038_s41551_018_0233_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: P41 EB017183 |
GroupedDBID | 0R~ 53G AARCD AAYZH ABJCF ABJNI ABLJU ACBWK ACGFS AFANA AFKRA AFSHS AFWHJ AHSBF AIBTJ ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ATHPR AXYYD BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU EBS EJD FSGXE FZEXT HCIFZ M7P M7S NFIDA NNMJJ O9- ODYON PHGZM PHGZT PQGLB PTHSS PUEGO RNT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG AAYXX CITATION NPM 8FE 8FG 8FH AZQEC DWQXO GNUQQ L6V LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c493t-33777f30c1afe7f52676a074b22ee2e212a6d44f56400f6ccd526ba8580e7b0d3 |
IEDL.DBID | BENPR |
ISSN | 2157-846X |
IngestDate | Thu Aug 21 13:49:20 EDT 2025 Thu Aug 07 15:19:20 EDT 2025 Wed Jul 16 16:24:13 EDT 2025 Thu Apr 03 07:00:52 EDT 2025 Sun Aug 31 08:57:43 EDT 2025 Thu Apr 24 22:53:03 EDT 2025 Sun Aug 31 08:58:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-33777f30c1afe7f52676a074b22ee2e212a6d44f56400f6ccd526ba8580e7b0d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0636-234X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6405230 |
PMID | 30854251 |
PQID | 2389713907 |
PQPubID | 4669717 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405230 proquest_miscellaneous_2190109555 proquest_journals_2389713907 pubmed_primary_30854251 crossref_citationtrail_10_1038_s41551_018_0233_y crossref_primary_10_1038_s41551_018_0233_y springer_journals_10_1038_s41551_018_0233_y |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature biomedical engineering |
PublicationTitleAbbrev | Nat Biomed Eng |
PublicationTitleAlternate | Nat Biomed Eng |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Schnell, Renz, Vester, Ermert (CR7) 2000; 48 Larkman (CR27) 2001; 13 Serfaty, Haziza, Darrasse, Kan (CR18) 1997; 38 Chung, Kim, Breton, Axel (CR37) 2010; 64 Schmitt (CR13) 2008; 59 Setsompop (CR28) 2012; 67 Kellman, McVeigh (CR38) 2005; 54 Winkelmann, Schaeffter, Koehler, Eggers, Doessel (CR39) 2007; 26 Ocali, Atalar (CR6) 1998; 39 CR16 Stengaard (CR23) 1997; 125 Roemer (CR4) 1990; 16 Noeske, Seifert, Rhein, Rinneberg (CR36) 2000; 44 CR34 Gonord, Kan, Leroy-Willig (CR17) 1988; 6 Griswold (CR26) 2002; 47 Sodickson, Manning (CR24) 1997; 38 Wiesinger, Boesiger, Pruessmann (CR9) 2004; 52 Wiggins (CR12) 2009; 62 Brown (CR31) 2013; 70 Shajan (CR32) 2016; 75 Ohliger, Grant, Sodickson (CR8) 2003; 50 Lattanzi (CR10) 2010; 23 Pruessmann, Weiger, Scheidegger, Boesiger (CR25) 1999; 42 Lattanzi, Sodickson (CR11) 2012; 68 Schnall, Harihara Subramanian, Leigh, Chance (CR29) 1985; 65 Lauterbur (CR2) 1973; 242 Bloch, Nicodemus, Staub (CR1) 1948; 74 Keil (CR35) 2013; 70 Avdievich, Hetherington (CR30) 2007; 186 Kriegl (CR33) 2015; 73 CR22 CR21 Kurs (CR15) 2007; 317 Fujita, Zheng, Yang, Finnerty, Handa (CR14) 2013; 38 Corea (CR20) 2016; 7 Mansfield, Grannell (CR3) 1973; 6 Frass-Kriegl (CR19) 2016; 273 Wang, Reykowski, Dickas (CR5) 1995; 42 233_CR21 S Winkelmann (233_CR39) 2007; 26 K Setsompop (233_CR28) 2012; 67 O Ocali (233_CR6) 1998; 39 233_CR22 PC Lauterbur (233_CR2) 1973; 242 M Griswold (233_CR26) 2002; 47 S Serfaty (233_CR18) 1997; 38 NI Avdievich (233_CR30) 2007; 186 R Lattanzi (233_CR11) 2012; 68 P Mansfield (233_CR3) 1973; 6 F Bloch (233_CR1) 1948; 74 JR Corea (233_CR20) 2016; 7 B Keil (233_CR35) 2013; 70 J Wang (233_CR5) 1995; 42 DK Sodickson (233_CR24) 1997; 38 P Kellman (233_CR38) 2005; 54 MD Schnall (233_CR29) 1985; 65 G Shajan (233_CR32) 2016; 75 233_CR16 F Wiesinger (233_CR9) 2004; 52 R Kriegl (233_CR33) 2015; 73 R Frass-Kriegl (233_CR19) 2016; 273 A Stengaard (233_CR23) 1997; 125 H Fujita (233_CR14) 2013; 38 MA Ohliger (233_CR8) 2003; 50 DJ Larkman (233_CR27) 2001; 13 233_CR34 R Noeske (233_CR36) 2000; 44 R Lattanzi (233_CR10) 2010; 23 A Kurs (233_CR15) 2007; 317 K Pruessmann (233_CR25) 1999; 42 PB Roemer (233_CR4) 1990; 16 GC Wiggins (233_CR12) 2009; 62 S Chung (233_CR37) 2010; 64 W Schnell (233_CR7) 2000; 48 P Gonord (233_CR17) 1988; 6 M Schmitt (233_CR13) 2008; 59 R Brown (233_CR31) 2013; 70 31015679 - Nat Biomed Eng. 2018 Sep;2(9):708 |
References_xml | – volume: 64 start-page: 439 year: 2010 end-page: 446 ident: CR37 article-title: Rapid B mapping using a preconditioning RF pulse with TurboFLASH readout publication-title: Magn. Reson. Med. – ident: CR22 – volume: 70 start-page: 248 year: 2013 end-page: 258 ident: CR35 article-title: A 64-channel 3T array coil for accelerated brain MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24427 – volume: 47 start-page: 1202 year: 2002 end-page: 1210 ident: CR26 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10171 – volume: 6 start-page: 353 year: 1988 end-page: 358 ident: CR17 article-title: Parallel-plate split-conductor surface coil: analysis and design publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910060313 – volume: 42 start-page: 952 year: 1999 end-page: 962 ident: CR25 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – ident: CR16 – volume: 242 start-page: 190 year: 1973 end-page: 191 ident: CR2 article-title: Image formation by induced local interactions: examples employing nuclear magnetic resonance publication-title: Nature doi: 10.1038/242190a0 – volume: 54 start-page: 1439 year: 2005 end-page: 1447 ident: CR38 article-title: Image reconstruction in SNR units: a general method for SNR measurement publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20713 – volume: 74 start-page: 1025 year: 1948 ident: CR1 article-title: Quantitative determination of the magnetic moment of the neutron in units of the proton moment publication-title: Phys. Rev. doi: 10.1103/PhysRev.74.1025 – volume: 65 start-page: 122 year: 1985 end-page: 129 ident: CR29 article-title: A new double-tuned probed for concurrent 1H and 31P NMR publication-title: J. Magn. Reson. – volume: 7 year: 2016 ident: CR20 article-title: Screen-printed flexible MRI receive coils publication-title: Nat. Commun. doi: 10.1038/ncomms10839 – volume: 44 start-page: 978 year: 2000 end-page: 982 ident: CR36 article-title: Human cardiac imaging at 3T using phased array coils publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200012)44:6<978::AID-MRM22>3.0.CO;2-9 – volume: 68 start-page: 286 year: 2012 end-page: 304 ident: CR11 article-title: Ideal current patterns yielding optimal signal-to-noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23198 – volume: 42 start-page: 908 year: 1995 end-page: 917 ident: CR5 article-title: Calculation of the signal-to-noise ratio for simple surface coils and arrays of coils publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.412657 – volume: 39 start-page: 462 year: 1998 end-page: 473 ident: CR6 article-title: Ultimate intrinsic signal-to-noise ratio in MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390317 – volume: 23 start-page: 142 year: 2010 end-page: 151 ident: CR10 article-title: Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR publication-title: NMR Biomed. – volume: 38 start-page: 687 year: 1997 end-page: 689 ident: CR18 article-title: Multi-turn split-conductor transmission-line resonators publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380424 – volume: 26 start-page: 68 year: 2007 end-page: 76 ident: CR39 article-title: An optimal radial profile order based on the Golden Ratio for time-resolved MRI publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.885337 – volume: 48 start-page: 418 year: 2000 end-page: 428 ident: CR7 article-title: Ultimate signal-to-noise ratio of surface and body antennas for magnetic resonance imaging publication-title: IEEE Trans. Antenn. Propag. doi: 10.1109/8.841903 – volume: 50 start-page: 1018 year: 2003 end-page: 1030 ident: CR8 article-title: Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10597 – ident: CR21 – volume: 273 start-page: 65 year: 2016 end-page: 72 ident: CR19 article-title: Multi-turn multi-gap transmission line resonators: concept, design and first implementation at 4.7T and 7T publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2016.10.008 – volume: 59 start-page: 1431 year: 2008 end-page: 1439 ident: CR13 article-title: A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21598 – volume: 317 start-page: 83 year: 2007 end-page: 86 ident: CR15 article-title: Wireless power transfer via strongly coupled magnetic resonances publication-title: Science doi: 10.1126/science.1143254 – volume: 13 start-page: 313 year: 2001 end-page: 317 ident: CR27 article-title: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited publication-title: J. Magn. Reson. Imaging doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W – volume: 186 start-page: 341 year: 2007 end-page: 346 ident: CR30 article-title: 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2007.03.001 – volume: 62 start-page: 754 year: 2009 end-page: 762 ident: CR12 article-title: 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22028 – volume: 38 start-page: 12 year: 2013 end-page: 25 ident: CR14 article-title: RF surface receive array coils: the art of an LC circuit publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24159 – volume: 125 start-page: 84 year: 1997 end-page: 91 ident: CR23 article-title: Planar quadrature coil design using shielded-loop resonators publication-title: J. Magn. Reson. doi: 10.1006/jmre.1996.1103 – volume: 73 start-page: 1669 year: 2015 end-page: 1681 ident: CR33 article-title: Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25260 – volume: 70 start-page: 259 year: 2013 end-page: 268 ident: CR31 article-title: Design of a nested eight-channel sodium and four-channel proton coil for 7T knee imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24432 – volume: 52 start-page: 376 year: 2004 end-page: 390 ident: CR9 article-title: Electrodynamics and ultimate SNR in parallel MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20183 – volume: 75 start-page: 906 year: 2016 end-page: 916 ident: CR32 article-title: Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25666 – ident: CR34 – volume: 38 start-page: 591 year: 1997 end-page: 603 ident: CR24 article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380414 – volume: 67 start-page: 1210 year: 2012 end-page: 1224 ident: CR28 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced -factor penalty publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 16 start-page: 192 year: 1990 end-page: 225 ident: CR4 article-title: The NMR phased array publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910160203 – volume: 6 start-page: L422 year: 1973 end-page: L426 ident: CR3 article-title: NMR ‘diffraction’ in solids? publication-title: J. Phys. C Solid State doi: 10.1088/0022-3719/6/22/007 – volume: 38 start-page: 12 year: 2013 ident: 233_CR14 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24159 – volume: 42 start-page: 908 year: 1995 ident: 233_CR5 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.412657 – volume: 50 start-page: 1018 year: 2003 ident: 233_CR8 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10597 – volume: 6 start-page: L422 year: 1973 ident: 233_CR3 publication-title: J. Phys. C Solid State doi: 10.1088/0022-3719/6/22/007 – volume: 26 start-page: 68 year: 2007 ident: 233_CR39 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.885337 – volume: 242 start-page: 190 year: 1973 ident: 233_CR2 publication-title: Nature doi: 10.1038/242190a0 – volume: 23 start-page: 142 year: 2010 ident: 233_CR10 publication-title: NMR Biomed. doi: 10.1002/nbm.1435 – volume: 16 start-page: 192 year: 1990 ident: 233_CR4 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910160203 – volume: 52 start-page: 376 year: 2004 ident: 233_CR9 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20183 – volume: 68 start-page: 286 year: 2012 ident: 233_CR11 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23198 – ident: 233_CR21 – volume: 70 start-page: 248 year: 2013 ident: 233_CR35 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24427 – volume: 64 start-page: 439 year: 2010 ident: 233_CR37 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22423 – volume: 42 start-page: 952 year: 1999 ident: 233_CR25 publication-title: Magn. Reson. Med. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 74 start-page: 1025 year: 1948 ident: 233_CR1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.74.1025 – volume: 75 start-page: 906 year: 2016 ident: 233_CR32 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25666 – volume: 65 start-page: 122 year: 1985 ident: 233_CR29 publication-title: J. Magn. Reson. – volume: 59 start-page: 1431 year: 2008 ident: 233_CR13 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21598 – volume: 317 start-page: 83 year: 2007 ident: 233_CR15 publication-title: Science doi: 10.1126/science.1143254 – volume: 38 start-page: 591 year: 1997 ident: 233_CR24 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380414 – volume: 62 start-page: 754 year: 2009 ident: 233_CR12 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22028 – volume: 67 start-page: 1210 year: 2012 ident: 233_CR28 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 39 start-page: 462 year: 1998 ident: 233_CR6 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910390317 – ident: 233_CR16 doi: 10.1109/APS.2013.6711080 – volume: 70 start-page: 259 year: 2013 ident: 233_CR31 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24432 – volume: 6 start-page: 353 year: 1988 ident: 233_CR17 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910060313 – ident: 233_CR34 – volume: 38 start-page: 687 year: 1997 ident: 233_CR18 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1910380424 – volume: 186 start-page: 341 year: 2007 ident: 233_CR30 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2007.03.001 – volume: 13 start-page: 313 year: 2001 ident: 233_CR27 publication-title: J. Magn. Reson. Imaging doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W – volume: 54 start-page: 1439 year: 2005 ident: 233_CR38 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.20713 – volume: 47 start-page: 1202 year: 2002 ident: 233_CR26 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.10171 – volume: 7 year: 2016 ident: 233_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms10839 – volume: 273 start-page: 65 year: 2016 ident: 233_CR19 publication-title: J. Magn. Reson. doi: 10.1016/j.jmr.2016.10.008 – volume: 44 start-page: 978 year: 2000 ident: 233_CR36 publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200012)44:6<978::AID-MRM22>3.0.CO;2-9 – volume: 48 start-page: 418 year: 2000 ident: 233_CR7 publication-title: IEEE Trans. Antenn. Propag. doi: 10.1109/8.841903 – volume: 73 start-page: 1669 year: 2015 ident: 233_CR33 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25260 – ident: 233_CR22 – volume: 125 start-page: 84 year: 1997 ident: 233_CR23 publication-title: J. Magn. Reson. doi: 10.1006/jmre.1996.1103 – reference: 31015679 - Nat Biomed Eng. 2018 Sep;2(9):708 |
SSID | ssj0001934975 |
Score | 2.3990982 |
Snippet | Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant... Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 570 |
SubjectTerms | 59/57 639/166/985 639/166/987 639/766/1130/2798 639/766/930/2735 692/308 Biomechanics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Detectors Impedance Magnetic resonance imaging NMR Nuclear magnetic resonance Phased arrays Resonant inductive coupling Sensors Soft tissues Wearable technology |
Title | A high-impedance detector-array glove for magnetic resonance imaging of the hand |
URI | https://link.springer.com/article/10.1038/s41551-018-0233-y https://www.ncbi.nlm.nih.gov/pubmed/30854251 https://www.proquest.com/docview/2389713907 https://www.proquest.com/docview/2190109555 https://pubmed.ncbi.nlm.nih.gov/PMC6405230 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuJRDVWgLaQG5EqdWFtnYjp1TRSsW1ANCqEjcIsex6UqQwO5y2H_fGW-y2y2CsydKPDP2fPPIDMARWqQ6VC7FI64MlwNTcFvJwIOSskhtyFIXu31e5OfX8teNuukCbpOurLK_E-NFXbeOYuTHaFoKdKjQl_v-8MhpahRlV7sRGuuwiVewQQ3f_HF6cXm1jLIUQhZa9elMYY4nZEHJgzYczZXgs1WD9AxlPi-W_C9jGg3R8B287RAkO5mLfBvWfLMDW__0FXwPlyeM2hDzEWLimsTKaj-N4Xlux2M7Y7dUuckQr7J7e9vQf4wM3e62ibSj-zi5iLWBITpkFFr_ANfD098_z3k3OoE7WYgpF0JrHUTqBjZ4HVSW69wiWqiyzPvMI7NsXksZVI5nOOTO1UhSWaNM6nWV1uIjbDRt4_eA5dor6ZSQViMUkOgCeUQpVjnlKxfqkEDa8690XV9xGm9xV8b8tjDlnOUlsrwklpezBL4uHnmYN9V4jXi_F0rZna9JudSGBL4slvFkULrDNr59QhrCOtRhTyWwO5fh4m0CkSbeVoME9Ip0FwTUdXt1pRn9id23kWMUSU_gW68Hy896cROfXt_EZ3iTRY2kwsJ92JiOn_wBgp1pdQjrZnh22On1X1iS_mc |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLxK2gJGggvIaja24-SAqgpYtrRUHFqpt-A4dlmJJu3uVmj_VH8jM85ml6Wit549eXg89nzz8AzAG9RIlS9tjFtcZVz2spybUnrulZR5bHwS21Dt8zAdHMuvJ-pkBa66uzCUVtmdieGgrhpLPvJtVC05GlRoy-2cX3DqGkXR1a6FRisW-276G0228Ye9T7i-b5Ok__no44DPugpwK3Mx4UJorb2Ibc94p71KUp0aVKRlkjiXODzKTVpJ6VWK4u1TayskKU2mstjpMq4EvvcO3JVC5JRCmPW_LHw6uZC5Vl3wVGTbY9LXZK9nHJWj4NNl9XcN015PzfwnPhvUXn8NHs7wKtttBewRrLj6MTz4q4rhE_i-y6joMR8iAq9IiFjlJiEYwM1oZKbslPJEGaJjdmZOa7o1ydDIb-pAOzwLfZJY4xliUUaO_KdwfCssfQardVO758BS7ZS0SkijEXhINLgcYiKjrHKl9ZWPIO74V9hZFXNqpvGrCNF0kRUtywtkeUEsL6YRvJs_ct6W8LiJeKtblGK2m8fFQvYieD0fxn1IwRVTu-YSaQhZUT0_FcF6u4bzrwnEtXg29iLQS6s7J6Aa38sj9fBnqPWNHCO_fQTvOzlY_NZ_J7Fx8yRewb3B0beD4mDvcH8T7idBOimlcQtWJ6NL9wJh1qR8GWSbwY_b3kx_ACJgOGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-impedance+detector-array+glove+for+magnetic+resonance+imaging+of+the+hand&rft.jtitle=Nature+biomedical+engineering&rft.au=Zhang%2C+Bei&rft.au=Sodickson%2C+Daniel+K.&rft.au=Cloos%2C+Martijn+A.&rft.date=2018-08-01&rft.issn=2157-846X&rft.eissn=2157-846X&rft.volume=2&rft.issue=8&rft.spage=570&rft.epage=577&rft_id=info:doi/10.1038%2Fs41551-018-0233-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41551_018_0233_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon |