A high-impedance detector-array glove for magnetic resonance imaging of the hand

Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, imposes performance limitations and narrows the scope of MRI experime...

Full description

Saved in:
Bibliographic Details
Published inNature biomedical engineering Vol. 2; no. 8; pp. 570 - 577
Main Authors Zhang, Bei, Sodickson, Daniel K., Cloos, Martijn A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2157-846X
2157-846X
DOI10.1038/s41551-018-0233-y

Cover

Loading…
Abstract Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, imposes performance limitations and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighbouring elements. We experimentally verified that the detectors do not suffer from the signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs. A flexible magnetic resonance imaging coil bearing an array of high-impedance detectors can be stitched onto a glove and used to image the biomechanics of the hand’s soft tissue.
AbstractList Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, imposes performance limitations and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighbouring elements. We experimentally verified that the detectors do not suffer from the signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.A flexible magnetic resonance imaging coil bearing an array of high-impedance detectors can be stitched onto a glove and used to image the biomechanics of the hand’s soft tissue.
Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant inductive coupling, which restricts coil design to fixed geometries, imposes performance limitations, and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighboring elements. We experimentally verified that the detectors do not suffer from signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.
Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant inductive coupling, which restricts the coil design to fixed geometries, imposes performance limitations and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighbouring elements. We experimentally verified that the detectors do not suffer from the signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs. A flexible magnetic resonance imaging coil bearing an array of high-impedance detectors can be stitched onto a glove and used to image the biomechanics of the hand’s soft tissue.
Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant inductive coupling, which restricts coil design to fixed geometries, imposes performance limitations, and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighboring elements. We experimentally verified that the detectors do not suffer from signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant inductive coupling, which restricts coil design to fixed geometries, imposes performance limitations, and narrows the scope of MRI experiments to motionless subjects. Here, we report the design of high-impedance detectors, and the fabrication and performance of a wearable detector array for MRI of the hand, that cloak themselves from electrodynamic interactions with neighboring elements. We experimentally verified that the detectors do not suffer from signal-to-noise degradation mechanisms typically observed with the use of traditional low-impedance elements. The detectors are adaptive and can accommodate movement, providing access to the imaging of soft-tissue biomechanics with unprecedented flexibility. The design of the wearable detector glove exemplifies the potential of high-impedance detectors in enabling a wide range of applications that are not well suited to traditional coil designs.
Author Cloos, Martijn A.
Sodickson, Daniel K.
Zhang, Bei
AuthorAffiliation 4 Tech4Health, NYU Langone Health, New York, New York, USA
2 Center for Advanced Imaging Innovation and Research (CAI 2 R), New York University School of Medicine, New York, NY, USA
3 The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
1 Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
AuthorAffiliation_xml – name: 1 Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
– name: 2 Center for Advanced Imaging Innovation and Research (CAI 2 R), New York University School of Medicine, New York, NY, USA
– name: 4 Tech4Health, NYU Langone Health, New York, New York, USA
– name: 3 The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
Author_xml – sequence: 1
  givenname: Bei
  surname: Zhang
  fullname: Zhang, Bei
  email: bei.zhang@nyumc.org
  organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research, New York University School of Medicine
– sequence: 2
  givenname: Daniel K.
  surname: Sodickson
  fullname: Sodickson, Daniel K.
  organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research, New York University School of Medicine, Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, Tech4Health, NYU Langone Health
– sequence: 3
  givenname: Martijn A.
  orcidid: 0000-0002-0636-234X
  surname: Cloos
  fullname: Cloos, Martijn A.
  email: Martijn.Cloos@nyumc.org
  organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, Center for Advanced Imaging Innovation and Research, New York University School of Medicine, Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, Tech4Health, NYU Langone Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30854251$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFrFTEUhYNUbK39AW5kwI2b6E0ymcxshFK0CgVdKLgLeZmbmZR5yTPJK7x_b15fq7Wgq1yS7xxO7nlOjkIMSMhLBm8ZiP5dbpmUjALrKXAh6O4JOeFMKtq33Y-jB_MxOcv5GgDYINpByWfkWEAvWy7ZCfl63sx-mqlfb3A0wWIzYkFbYqImJbNrpiXeYONiatZmCli8bRLmGG5ZX-98mJromjJjM5swviBPnVkynt2dp-T7xw_fLj7Rqy-Xny_Or6htB1GoEEopJ8Ay41A5yTvVGVDtinNEjpxx041t62TXArjO2rEiK9PLHlCtYBSn5P3Bd7NdrXG0GEoyi96kmintdDRe__0S_KyneKOroeQCqsGbO4MUf24xF7322eKymIBxmzVnAzAYpJQVff0IvY7bFOr3NBf9oJgYQFXq1cNEv6PcL7sC6gDYFHNO6LT1xRQf9wH9ohnofbP60Kyuzep9s3pXleyR8t78fxp-0OTKhgnTn9D_Fv0Cb321pg
CitedBy_id crossref_primary_10_1038_s41598_020_65634_5
crossref_primary_10_1088_1361_6560_ab37a8
crossref_primary_10_1016_j_mri_2020_07_003
crossref_primary_10_1016_j_mri_2020_07_006
crossref_primary_10_1038_s41578_022_00427_y
crossref_primary_10_1002_mrm_30268
crossref_primary_10_1002_mrm_28662
crossref_primary_10_1148_rg_210214
crossref_primary_10_1016_j_jmr_2022_107321
crossref_primary_10_1007_s10334_023_01067_1
crossref_primary_10_1109_JERM_2021_3136090
crossref_primary_10_1109_TAP_2023_3318837
crossref_primary_10_3390_jcm12041634
crossref_primary_10_1038_s41551_018_0278_y
crossref_primary_10_1002_mrm_28983
crossref_primary_10_1016_j_jmr_2023_107577
crossref_primary_10_1016_j_comnet_2021_108074
crossref_primary_10_1109_TAP_2021_3111347
crossref_primary_10_1002_advs_202414299
crossref_primary_10_1038_s41467_018_05585_8
crossref_primary_10_3390_ma17133325
crossref_primary_10_1002_mrm_29062
crossref_primary_10_1088_1361_6560_ab8cd8
crossref_primary_10_3389_fphy_2020_00080
crossref_primary_10_1002_jmri_27865
crossref_primary_10_1002_mrm_30130
crossref_primary_10_1109_TMI_2023_3261922
crossref_primary_10_3389_fphy_2020_00240
crossref_primary_10_1002_mrm_29147
crossref_primary_10_1002_jmri_29205
crossref_primary_10_3390_s23177588
crossref_primary_10_1007_s00256_024_04829_7
crossref_primary_10_1109_JSSC_2022_3223215
crossref_primary_10_1002_mrm_27964
crossref_primary_10_1088_1361_6560_aba87a
crossref_primary_10_1002_mrm_29546
crossref_primary_10_1109_TMI_2021_3051390
crossref_primary_10_1038_s41598_022_19282_6
crossref_primary_10_1088_1361_6560_ad0217
crossref_primary_10_1088_1361_6560_aaf9e4
crossref_primary_10_3390_magnetochemistry9010006
crossref_primary_10_1109_TBME_2019_2956682
crossref_primary_10_1016_j_mri_2024_02_007
crossref_primary_10_1016_j_jmr_2022_107302
crossref_primary_10_1002_mrm_29891
crossref_primary_10_1016_j_kint_2018_09_024
crossref_primary_10_1109_TBME_2020_3027296
crossref_primary_10_1088_1361_6560_abaffb
crossref_primary_10_1002_mrm_27637
crossref_primary_10_1109_TAP_2023_3328174
crossref_primary_10_1038_s41467_024_51061_x
crossref_primary_10_1002_mrm_29259
crossref_primary_10_1016_j_mri_2023_06_014
crossref_primary_10_1038_s41598_021_95335_6
crossref_primary_10_1148_radiol_230531
crossref_primary_10_1109_TBME_2023_3341760
crossref_primary_10_1097_RLI_0000000000000991
crossref_primary_10_1016_j_zemedi_2023_05_002
crossref_primary_10_1109_ACCESS_2020_3009367
crossref_primary_10_1109_TMI_2022_3140717
crossref_primary_10_1088_1361_6560_ad388c
crossref_primary_10_1038_s41598_019_54600_5
crossref_primary_10_3390_s24113390
crossref_primary_10_1002_mrm_30036
crossref_primary_10_2214_AJR_18_20459
crossref_primary_10_1002_admt_202301053
crossref_primary_10_1002_adma_202313692
crossref_primary_10_1177_02841851231188222
crossref_primary_10_1016_j_jmr_2024_107786
crossref_primary_10_1097_RLI_0000000000000906
crossref_primary_10_1016_j_ejrad_2022_110271
crossref_primary_10_1109_TIM_2023_3342226
crossref_primary_10_3389_fphy_2021_717369
crossref_primary_10_1038_s41598_024_53364_x
crossref_primary_10_1002_jmri_26991
crossref_primary_10_1088_1361_6560_ac6ebd
crossref_primary_10_1109_ACCESS_2022_3209676
crossref_primary_10_1109_TAP_2024_3470892
crossref_primary_10_1148_radiol_2020200967
Cites_doi 10.1002/mrm.24427
10.1002/mrm.10171
10.1002/mrm.1910060313
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1038/242190a0
10.1002/mrm.20713
10.1103/PhysRev.74.1025
10.1038/ncomms10839
10.1002/1522-2594(200012)44:6<978::AID-MRM22>3.0.CO;2-9
10.1002/mrm.23198
10.1109/10.412657
10.1002/mrm.1910390317
10.1002/mrm.1910380424
10.1109/TMI.2006.885337
10.1109/8.841903
10.1002/mrm.10597
10.1016/j.jmr.2016.10.008
10.1002/mrm.21598
10.1126/science.1143254
10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
10.1016/j.jmr.2007.03.001
10.1002/mrm.22028
10.1002/jmri.24159
10.1006/jmre.1996.1103
10.1002/mrm.25260
10.1002/mrm.24432
10.1002/mrm.20183
10.1002/mrm.25666
10.1002/mrm.1910380414
10.1002/mrm.23097
10.1002/mrm.1910160203
10.1088/0022-3719/6/22/007
10.1002/nbm.1435
10.1002/mrm.22423
10.1109/APS.2013.6711080
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018.
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018.
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/s41551-018-0233-y
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2157-846X
EndPage 577
ExternalDocumentID PMC6405230
30854251
10_1038_s41551_018_0233_y
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: P41 EB017183
GroupedDBID 0R~
53G
AARCD
AAYZH
ABJCF
ABJNI
ABLJU
ACBWK
ACGFS
AFANA
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ATHPR
AXYYD
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
M7P
M7S
NFIDA
NNMJJ
O9-
ODYON
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
AAYXX
CITATION
NPM
8FE
8FG
8FH
AZQEC
DWQXO
GNUQQ
L6V
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c493t-33777f30c1afe7f52676a074b22ee2e212a6d44f56400f6ccd526ba8580e7b0d3
IEDL.DBID BENPR
ISSN 2157-846X
IngestDate Thu Aug 21 13:49:20 EDT 2025
Thu Aug 07 15:19:20 EDT 2025
Wed Jul 16 16:24:13 EDT 2025
Thu Apr 03 07:00:52 EDT 2025
Sun Aug 31 08:57:43 EDT 2025
Thu Apr 24 22:53:03 EDT 2025
Sun Aug 31 08:58:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-33777f30c1afe7f52676a074b22ee2e212a6d44f56400f6ccd526ba8580e7b0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0636-234X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6405230
PMID 30854251
PQID 2389713907
PQPubID 4669717
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6405230
proquest_miscellaneous_2190109555
proquest_journals_2389713907
pubmed_primary_30854251
crossref_citationtrail_10_1038_s41551_018_0233_y
crossref_primary_10_1038_s41551_018_0233_y
springer_journals_10_1038_s41551_018_0233_y
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature biomedical engineering
PublicationTitleAbbrev Nat Biomed Eng
PublicationTitleAlternate Nat Biomed Eng
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Schnell, Renz, Vester, Ermert (CR7) 2000; 48
Larkman (CR27) 2001; 13
Serfaty, Haziza, Darrasse, Kan (CR18) 1997; 38
Chung, Kim, Breton, Axel (CR37) 2010; 64
Schmitt (CR13) 2008; 59
Setsompop (CR28) 2012; 67
Kellman, McVeigh (CR38) 2005; 54
Winkelmann, Schaeffter, Koehler, Eggers, Doessel (CR39) 2007; 26
Ocali, Atalar (CR6) 1998; 39
CR16
Stengaard (CR23) 1997; 125
Roemer (CR4) 1990; 16
Noeske, Seifert, Rhein, Rinneberg (CR36) 2000; 44
CR34
Gonord, Kan, Leroy-Willig (CR17) 1988; 6
Griswold (CR26) 2002; 47
Sodickson, Manning (CR24) 1997; 38
Wiesinger, Boesiger, Pruessmann (CR9) 2004; 52
Wiggins (CR12) 2009; 62
Brown (CR31) 2013; 70
Shajan (CR32) 2016; 75
Ohliger, Grant, Sodickson (CR8) 2003; 50
Lattanzi (CR10) 2010; 23
Pruessmann, Weiger, Scheidegger, Boesiger (CR25) 1999; 42
Lattanzi, Sodickson (CR11) 2012; 68
Schnall, Harihara Subramanian, Leigh, Chance (CR29) 1985; 65
Lauterbur (CR2) 1973; 242
Bloch, Nicodemus, Staub (CR1) 1948; 74
Keil (CR35) 2013; 70
Avdievich, Hetherington (CR30) 2007; 186
Kriegl (CR33) 2015; 73
CR22
CR21
Kurs (CR15) 2007; 317
Fujita, Zheng, Yang, Finnerty, Handa (CR14) 2013; 38
Corea (CR20) 2016; 7
Mansfield, Grannell (CR3) 1973; 6
Frass-Kriegl (CR19) 2016; 273
Wang, Reykowski, Dickas (CR5) 1995; 42
233_CR21
S Winkelmann (233_CR39) 2007; 26
K Setsompop (233_CR28) 2012; 67
O Ocali (233_CR6) 1998; 39
233_CR22
PC Lauterbur (233_CR2) 1973; 242
M Griswold (233_CR26) 2002; 47
S Serfaty (233_CR18) 1997; 38
NI Avdievich (233_CR30) 2007; 186
R Lattanzi (233_CR11) 2012; 68
P Mansfield (233_CR3) 1973; 6
F Bloch (233_CR1) 1948; 74
JR Corea (233_CR20) 2016; 7
B Keil (233_CR35) 2013; 70
J Wang (233_CR5) 1995; 42
DK Sodickson (233_CR24) 1997; 38
P Kellman (233_CR38) 2005; 54
MD Schnall (233_CR29) 1985; 65
G Shajan (233_CR32) 2016; 75
233_CR16
F Wiesinger (233_CR9) 2004; 52
R Kriegl (233_CR33) 2015; 73
R Frass-Kriegl (233_CR19) 2016; 273
A Stengaard (233_CR23) 1997; 125
H Fujita (233_CR14) 2013; 38
MA Ohliger (233_CR8) 2003; 50
DJ Larkman (233_CR27) 2001; 13
233_CR34
R Noeske (233_CR36) 2000; 44
R Lattanzi (233_CR10) 2010; 23
A Kurs (233_CR15) 2007; 317
K Pruessmann (233_CR25) 1999; 42
PB Roemer (233_CR4) 1990; 16
GC Wiggins (233_CR12) 2009; 62
S Chung (233_CR37) 2010; 64
W Schnell (233_CR7) 2000; 48
P Gonord (233_CR17) 1988; 6
M Schmitt (233_CR13) 2008; 59
R Brown (233_CR31) 2013; 70
31015679 - Nat Biomed Eng. 2018 Sep;2(9):708
References_xml – volume: 64
  start-page: 439
  year: 2010
  end-page: 446
  ident: CR37
  article-title: Rapid B mapping using a preconditioning RF pulse with TurboFLASH readout
  publication-title: Magn. Reson. Med.
– ident: CR22
– volume: 70
  start-page: 248
  year: 2013
  end-page: 258
  ident: CR35
  article-title: A 64-channel 3T array coil for accelerated brain MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24427
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  ident: CR26
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10171
– volume: 6
  start-page: 353
  year: 1988
  end-page: 358
  ident: CR17
  article-title: Parallel-plate split-conductor surface coil: analysis and design
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910060313
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  ident: CR25
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: CR16
– volume: 242
  start-page: 190
  year: 1973
  end-page: 191
  ident: CR2
  article-title: Image formation by induced local interactions: examples employing nuclear magnetic resonance
  publication-title: Nature
  doi: 10.1038/242190a0
– volume: 54
  start-page: 1439
  year: 2005
  end-page: 1447
  ident: CR38
  article-title: Image reconstruction in SNR units: a general method for SNR measurement
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20713
– volume: 74
  start-page: 1025
  year: 1948
  ident: CR1
  article-title: Quantitative determination of the magnetic moment of the neutron in units of the proton moment
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.1025
– volume: 65
  start-page: 122
  year: 1985
  end-page: 129
  ident: CR29
  article-title: A new double-tuned probed for concurrent 1H and 31P NMR
  publication-title: J. Magn. Reson.
– volume: 7
  year: 2016
  ident: CR20
  article-title: Screen-printed flexible MRI receive coils
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10839
– volume: 44
  start-page: 978
  year: 2000
  end-page: 982
  ident: CR36
  article-title: Human cardiac imaging at 3T using phased array coils
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200012)44:6<978::AID-MRM22>3.0.CO;2-9
– volume: 68
  start-page: 286
  year: 2012
  end-page: 304
  ident: CR11
  article-title: Ideal current patterns yielding optimal signal-to-noise ratio and specific absorption rate in magnetic resonance imaging: computational methods and physical insights
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23198
– volume: 42
  start-page: 908
  year: 1995
  end-page: 917
  ident: CR5
  article-title: Calculation of the signal-to-noise ratio for simple surface coils and arrays of coils
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.412657
– volume: 39
  start-page: 462
  year: 1998
  end-page: 473
  ident: CR6
  article-title: Ultimate intrinsic signal-to-noise ratio in MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390317
– volume: 23
  start-page: 142
  year: 2010
  end-page: 151
  ident: CR10
  article-title: Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR
  publication-title: NMR Biomed.
– volume: 38
  start-page: 687
  year: 1997
  end-page: 689
  ident: CR18
  article-title: Multi-turn split-conductor transmission-line resonators
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380424
– volume: 26
  start-page: 68
  year: 2007
  end-page: 76
  ident: CR39
  article-title: An optimal radial profile order based on the Golden Ratio for time-resolved MRI
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.885337
– volume: 48
  start-page: 418
  year: 2000
  end-page: 428
  ident: CR7
  article-title: Ultimate signal-to-noise ratio of surface and body antennas for magnetic resonance imaging
  publication-title: IEEE Trans. Antenn. Propag.
  doi: 10.1109/8.841903
– volume: 50
  start-page: 1018
  year: 2003
  end-page: 1030
  ident: CR8
  article-title: Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10597
– ident: CR21
– volume: 273
  start-page: 65
  year: 2016
  end-page: 72
  ident: CR19
  article-title: Multi-turn multi-gap transmission line resonators: concept, design and first implementation at 4.7T and 7T
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2016.10.008
– volume: 59
  start-page: 1431
  year: 2008
  end-page: 1439
  ident: CR13
  article-title: A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21598
– volume: 317
  start-page: 83
  year: 2007
  end-page: 86
  ident: CR15
  article-title: Wireless power transfer via strongly coupled magnetic resonances
  publication-title: Science
  doi: 10.1126/science.1143254
– volume: 13
  start-page: 313
  year: 2001
  end-page: 317
  ident: CR27
  article-title: Use of multicoil arrays for separation of signal from multiple slices simultaneously excited
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
– volume: 186
  start-page: 341
  year: 2007
  end-page: 346
  ident: CR30
  article-title: 4 T Actively detuneable double-tuned 1H/31P head volume coil and four-channel 31P phased array for human brain spectroscopy
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2007.03.001
– volume: 62
  start-page: 754
  year: 2009
  end-page: 762
  ident: CR12
  article-title: 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22028
– volume: 38
  start-page: 12
  year: 2013
  end-page: 25
  ident: CR14
  article-title: RF surface receive array coils: the art of an LC circuit
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24159
– volume: 125
  start-page: 84
  year: 1997
  end-page: 91
  ident: CR23
  article-title: Planar quadrature coil design using shielded-loop resonators
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1996.1103
– volume: 73
  start-page: 1669
  year: 2015
  end-page: 1681
  ident: CR33
  article-title: Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25260
– volume: 70
  start-page: 259
  year: 2013
  end-page: 268
  ident: CR31
  article-title: Design of a nested eight-channel sodium and four-channel proton coil for 7T knee imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24432
– volume: 52
  start-page: 376
  year: 2004
  end-page: 390
  ident: CR9
  article-title: Electrodynamics and ultimate SNR in parallel MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20183
– volume: 75
  start-page: 906
  year: 2016
  end-page: 916
  ident: CR32
  article-title: Three-layered radio frequency coil arrangement for sodium MRI of the human brain at 9.4 Tesla
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25666
– ident: CR34
– volume: 38
  start-page: 591
  year: 1997
  end-page: 603
  ident: CR24
  article-title: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380414
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  ident: CR28
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced -factor penalty
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23097
– volume: 16
  start-page: 192
  year: 1990
  end-page: 225
  ident: CR4
  article-title: The NMR phased array
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910160203
– volume: 6
  start-page: L422
  year: 1973
  end-page: L426
  ident: CR3
  article-title: NMR ‘diffraction’ in solids?
  publication-title: J. Phys. C Solid State
  doi: 10.1088/0022-3719/6/22/007
– volume: 38
  start-page: 12
  year: 2013
  ident: 233_CR14
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24159
– volume: 42
  start-page: 908
  year: 1995
  ident: 233_CR5
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.412657
– volume: 50
  start-page: 1018
  year: 2003
  ident: 233_CR8
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10597
– volume: 6
  start-page: L422
  year: 1973
  ident: 233_CR3
  publication-title: J. Phys. C Solid State
  doi: 10.1088/0022-3719/6/22/007
– volume: 26
  start-page: 68
  year: 2007
  ident: 233_CR39
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.885337
– volume: 242
  start-page: 190
  year: 1973
  ident: 233_CR2
  publication-title: Nature
  doi: 10.1038/242190a0
– volume: 23
  start-page: 142
  year: 2010
  ident: 233_CR10
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.1435
– volume: 16
  start-page: 192
  year: 1990
  ident: 233_CR4
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910160203
– volume: 52
  start-page: 376
  year: 2004
  ident: 233_CR9
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20183
– volume: 68
  start-page: 286
  year: 2012
  ident: 233_CR11
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23198
– ident: 233_CR21
– volume: 70
  start-page: 248
  year: 2013
  ident: 233_CR35
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24427
– volume: 64
  start-page: 439
  year: 2010
  ident: 233_CR37
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22423
– volume: 42
  start-page: 952
  year: 1999
  ident: 233_CR25
  publication-title: Magn. Reson. Med.
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– volume: 74
  start-page: 1025
  year: 1948
  ident: 233_CR1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.1025
– volume: 75
  start-page: 906
  year: 2016
  ident: 233_CR32
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25666
– volume: 65
  start-page: 122
  year: 1985
  ident: 233_CR29
  publication-title: J. Magn. Reson.
– volume: 59
  start-page: 1431
  year: 2008
  ident: 233_CR13
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21598
– volume: 317
  start-page: 83
  year: 2007
  ident: 233_CR15
  publication-title: Science
  doi: 10.1126/science.1143254
– volume: 38
  start-page: 591
  year: 1997
  ident: 233_CR24
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380414
– volume: 62
  start-page: 754
  year: 2009
  ident: 233_CR12
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22028
– volume: 67
  start-page: 1210
  year: 2012
  ident: 233_CR28
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23097
– volume: 39
  start-page: 462
  year: 1998
  ident: 233_CR6
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910390317
– ident: 233_CR16
  doi: 10.1109/APS.2013.6711080
– volume: 70
  start-page: 259
  year: 2013
  ident: 233_CR31
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24432
– volume: 6
  start-page: 353
  year: 1988
  ident: 233_CR17
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910060313
– ident: 233_CR34
– volume: 38
  start-page: 687
  year: 1997
  ident: 233_CR18
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910380424
– volume: 186
  start-page: 341
  year: 2007
  ident: 233_CR30
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2007.03.001
– volume: 13
  start-page: 313
  year: 2001
  ident: 233_CR27
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/1522-2586(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W
– volume: 54
  start-page: 1439
  year: 2005
  ident: 233_CR38
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20713
– volume: 47
  start-page: 1202
  year: 2002
  ident: 233_CR26
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.10171
– volume: 7
  year: 2016
  ident: 233_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10839
– volume: 273
  start-page: 65
  year: 2016
  ident: 233_CR19
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2016.10.008
– volume: 44
  start-page: 978
  year: 2000
  ident: 233_CR36
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200012)44:6<978::AID-MRM22>3.0.CO;2-9
– volume: 48
  start-page: 418
  year: 2000
  ident: 233_CR7
  publication-title: IEEE Trans. Antenn. Propag.
  doi: 10.1109/8.841903
– volume: 73
  start-page: 1669
  year: 2015
  ident: 233_CR33
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25260
– ident: 233_CR22
– volume: 125
  start-page: 84
  year: 1997
  ident: 233_CR23
  publication-title: J. Magn. Reson.
  doi: 10.1006/jmre.1996.1103
– reference: 31015679 - Nat Biomed Eng. 2018 Sep;2(9):708
SSID ssj0001934975
Score 2.3990982
Snippet Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased array detectors, suffer from resonant...
Densely packed resonant structures used for magnetic resonance imaging (MRI), such as nuclear magnetic resonance phased-array detectors, suffer from resonant...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 570
SubjectTerms 59/57
639/166/985
639/166/987
639/766/1130/2798
639/766/930/2735
692/308
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Detectors
Impedance
Magnetic resonance imaging
NMR
Nuclear magnetic resonance
Phased arrays
Resonant inductive coupling
Sensors
Soft tissues
Wearable technology
Title A high-impedance detector-array glove for magnetic resonance imaging of the hand
URI https://link.springer.com/article/10.1038/s41551-018-0233-y
https://www.ncbi.nlm.nih.gov/pubmed/30854251
https://www.proquest.com/docview/2389713907
https://www.proquest.com/docview/2190109555
https://pubmed.ncbi.nlm.nih.gov/PMC6405230
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7xuJRDVWgLaQG5EqdWFtnYjp1TRSsW1ANCqEjcIsex6UqQwO5y2H_fGW-y2y2CsydKPDP2fPPIDMARWqQ6VC7FI64MlwNTcFvJwIOSskhtyFIXu31e5OfX8teNuukCbpOurLK_E-NFXbeOYuTHaFoKdKjQl_v-8MhpahRlV7sRGuuwiVewQQ3f_HF6cXm1jLIUQhZa9elMYY4nZEHJgzYczZXgs1WD9AxlPi-W_C9jGg3R8B287RAkO5mLfBvWfLMDW__0FXwPlyeM2hDzEWLimsTKaj-N4Xlux2M7Y7dUuckQr7J7e9vQf4wM3e62ibSj-zi5iLWBITpkFFr_ANfD098_z3k3OoE7WYgpF0JrHUTqBjZ4HVSW69wiWqiyzPvMI7NsXksZVI5nOOTO1UhSWaNM6nWV1uIjbDRt4_eA5dor6ZSQViMUkOgCeUQpVjnlKxfqkEDa8690XV9xGm9xV8b8tjDlnOUlsrwklpezBL4uHnmYN9V4jXi_F0rZna9JudSGBL4slvFkULrDNr59QhrCOtRhTyWwO5fh4m0CkSbeVoME9Ip0FwTUdXt1pRn9id23kWMUSU_gW68Hy896cROfXt_EZ3iTRY2kwsJ92JiOn_wBgp1pdQjrZnh22On1X1iS_mc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqLxK2gJGggvIaja24-SAqgpYtrRUHFqpt-A4dlmJJu3uVmj_VH8jM85ml6Wit549eXg89nzz8AzAG9RIlS9tjFtcZVz2spybUnrulZR5bHwS21Dt8zAdHMuvJ-pkBa66uzCUVtmdieGgrhpLPvJtVC05GlRoy-2cX3DqGkXR1a6FRisW-276G0228Ye9T7i-b5Ok__no44DPugpwK3Mx4UJorb2Ibc94p71KUp0aVKRlkjiXODzKTVpJ6VWK4u1TayskKU2mstjpMq4EvvcO3JVC5JRCmPW_LHw6uZC5Vl3wVGTbY9LXZK9nHJWj4NNl9XcN015PzfwnPhvUXn8NHs7wKtttBewRrLj6MTz4q4rhE_i-y6joMR8iAq9IiFjlJiEYwM1oZKbslPJEGaJjdmZOa7o1ydDIb-pAOzwLfZJY4xliUUaO_KdwfCssfQardVO758BS7ZS0SkijEXhINLgcYiKjrHKl9ZWPIO74V9hZFXNqpvGrCNF0kRUtywtkeUEsL6YRvJs_ct6W8LiJeKtblGK2m8fFQvYieD0fxn1IwRVTu-YSaQhZUT0_FcF6u4bzrwnEtXg29iLQS6s7J6Aa38sj9fBnqPWNHCO_fQTvOzlY_NZ_J7Fx8yRewb3B0beD4mDvcH8T7idBOimlcQtWJ6NL9wJh1qR8GWSbwY_b3kx_ACJgOGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-impedance+detector-array+glove+for+magnetic+resonance+imaging+of+the+hand&rft.jtitle=Nature+biomedical+engineering&rft.au=Zhang%2C+Bei&rft.au=Sodickson%2C+Daniel+K.&rft.au=Cloos%2C+Martijn+A.&rft.date=2018-08-01&rft.issn=2157-846X&rft.eissn=2157-846X&rft.volume=2&rft.issue=8&rft.spage=570&rft.epage=577&rft_id=info:doi/10.1038%2Fs41551-018-0233-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41551_018_0233_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2157-846X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2157-846X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2157-846X&client=summon