Current state of fabrication technologies and materials for bone tissue engineering
[Display omitted] A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair...
Saved in:
Published in | Acta biomaterialia Vol. 80; pp. 1 - 30 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.10.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors’ perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures.
The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue. |
---|---|
AbstractList | A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors’ perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. Statement of Significance The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue. [Display omitted] A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors’ perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue. A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue. |
Author | Ayranci, Cagri Wubneh, Abiy Tsekoura, Eleni K. Uludağ, Hasan |
Author_xml | – sequence: 1 givenname: Abiy surname: Wubneh fullname: Wubneh, Abiy organization: Department of Mechanical Engineering, Faculty of Engineering, U. of Alberta, Edmonton, AB, Canada – sequence: 2 givenname: Eleni K. surname: Tsekoura fullname: Tsekoura, Eleni K. organization: Department of Chemical & Materials Engineering, Faculty of Engineering, U. of Alberta, Edmonton, AB, Canada – sequence: 3 givenname: Cagri surname: Ayranci fullname: Ayranci, Cagri email: cayranci@ualberta.ca organization: Department of Mechanical Engineering, Faculty of Engineering, U. of Alberta, Edmonton, AB, Canada – sequence: 4 givenname: Hasan surname: Uludağ fullname: Uludağ, Hasan email: huludag@ualberta.ca organization: Department of Chemical & Materials Engineering, Faculty of Engineering, U. of Alberta, Edmonton, AB, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30248515$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc2LFDEQxYPs4n7ofyAS8OKle1NJppP2IMjgx8LCHtRzSNLVY4aeZE3Sgv-9WWf1sAc9VUH9XvF474KcxBSRkBfAemAwXO1766sLqecMdM_Gngl4Qs5BK92pzaBP2q4k7xQb4IxclLJnTGjg-ik5E4xLvYHNOfm8XXPGWGmptiJNM52ty8HbGlKkFf23mJa0C1iojRM9NCgHuxQ6p0xdc0RrKGVFinEXIrZj3D0jp3ND8PnDvCRfP7z_sv3U3dx-vN6-u-m8HEXtuADNJCB3zDUvHNUEanBCIxPesVHaZl0p7oZRjV5YO4t54koJPsvJCScuyevj37ucvq9YqjmE4nFZbMS0FsMBOOhRSmjoq0foPq05NneNaj4ESD406uUDtboDTuYuh4PNP82fuBogj4DPqZSM818EmLlvxezNsRVz34pho2mtNNmbRzIf6u-Ea7Zh-Z_47VGMLcofAbMpPmD0OIWMvpophX8_-AV1yKk_ |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2022_10_029 crossref_primary_10_3390_ma12172660 crossref_primary_10_1002_mabi_202300325 crossref_primary_10_1016_j_jor_2023_10_023 crossref_primary_10_2147_IJN_S397316 crossref_primary_10_3389_fbioe_2023_1222102 crossref_primary_10_1016_j_mtbio_2023_100784 crossref_primary_10_1155_2024_5176251 crossref_primary_10_1016_j_mtbio_2023_100558 crossref_primary_10_3390_pharmaceutics12100930 crossref_primary_10_1089_ten_teb_2020_0181 crossref_primary_10_2147_IJN_S372247 crossref_primary_10_1177_2041731420968030 crossref_primary_10_1002_advs_202300038 crossref_primary_10_2174_2211738511666230817102159 crossref_primary_10_1557_s43578_021_00201_w crossref_primary_10_25100_iyc_v25i3_12572 crossref_primary_10_1007_s11082_024_06500_w crossref_primary_10_3390_bioengineering7040132 crossref_primary_10_1089_ten_teb_2023_0218 crossref_primary_10_1016_j_msec_2019_110399 crossref_primary_10_1111_ijac_14416 crossref_primary_10_1021_acsbiomaterials_2c00596 crossref_primary_10_1016_j_actbio_2022_10_045 crossref_primary_10_1016_j_jmbbm_2024_106385 crossref_primary_10_1007_s13346_022_01191_w crossref_primary_10_1016_j_cej_2021_128709 crossref_primary_10_1080_10717544_2024_2391001 crossref_primary_10_3389_fbioe_2025_1541746 crossref_primary_10_1016_j_eurpolymj_2024_113251 crossref_primary_10_1016_j_matdes_2023_112563 crossref_primary_10_1021_acsbiomaterials_4c01661 crossref_primary_10_3390_bioengineering8080113 crossref_primary_10_1002_jbm_a_37262 crossref_primary_10_1002_term_3139 crossref_primary_10_1039_D2TB01161A crossref_primary_10_1016_j_coco_2022_101127 crossref_primary_10_1166_sam_2021_4032 crossref_primary_10_1038_s41368_020_0073_y crossref_primary_10_1080_25740881_2024_2307351 crossref_primary_10_3389_fbioe_2023_1168504 crossref_primary_10_1088_1748_605X_ac9e34 crossref_primary_10_1021_acsbiomaterials_0c00152 crossref_primary_10_1016_j_bioactmat_2024_05_033 crossref_primary_10_3389_fbioe_2022_962483 crossref_primary_10_3389_fchem_2023_1078840 crossref_primary_10_1021_acsomega_0c02621 crossref_primary_10_3390_applmech2020018 crossref_primary_10_1016_j_actbio_2020_12_032 crossref_primary_10_1039_D1TB01554K crossref_primary_10_3390_biomedicines11071781 crossref_primary_10_1038_s41536_023_00308_0 crossref_primary_10_1016_j_matpr_2021_09_459 crossref_primary_10_3390_ma17102413 crossref_primary_10_3390_polym14224906 crossref_primary_10_1039_D0BM01591A crossref_primary_10_3390_polym14153222 crossref_primary_10_1002_biot_202100074 crossref_primary_10_1021_acsami_2c10242 crossref_primary_10_2174_2666145416666230228120343 crossref_primary_10_1039_D1TC01846A crossref_primary_10_1089_ten_teb_2020_0252 crossref_primary_10_1177_20417314241267017 crossref_primary_10_3390_jfb14070388 crossref_primary_10_3390_biomedicines11102781 crossref_primary_10_1007_s42242_020_00102_7 crossref_primary_10_1021_acsbiomaterials_4c01613 crossref_primary_10_1016_j_jmrt_2023_05_099 crossref_primary_10_1088_1748_605X_ad72c3 crossref_primary_10_1134_S2075113321020143 crossref_primary_10_23736_S2724_5691_23_10113_4 crossref_primary_10_1016_j_mtbio_2024_100972 crossref_primary_10_1039_D5TB00109A crossref_primary_10_3390_polym16050627 crossref_primary_10_22363_2313_0245_2024_28_1_9_22 crossref_primary_10_1007_s10856_021_06533_7 crossref_primary_10_1002_jbm_a_37694 crossref_primary_10_1039_D4DT01190B crossref_primary_10_1016_j_ceramint_2022_06_327 crossref_primary_10_1016_j_colsurfa_2023_132740 crossref_primary_10_1016_j_msec_2019_110071 crossref_primary_10_1134_S2075113322010361 crossref_primary_10_1002_adem_202400155 crossref_primary_10_1039_D3CS01014G crossref_primary_10_1016_j_actbio_2022_09_036 crossref_primary_10_1021_acsanm_4c02701 crossref_primary_10_2217_nnm_2023_0161 crossref_primary_10_1007_s10517_021_05160_0 crossref_primary_10_1177_20417314211004211 crossref_primary_10_1016_j_ijbiomac_2022_12_200 crossref_primary_10_1266_ggs_22_00068 crossref_primary_10_1016_j_joms_2021_10_011 crossref_primary_10_1080_03008207_2024_2396002 crossref_primary_10_1166_jbn_2023_3523 crossref_primary_10_3390_ijms232012670 crossref_primary_10_1177_08839115211055720 crossref_primary_10_1016_j_ceramint_2024_01_362 crossref_primary_10_1016_j_ijbiomac_2020_11_049 crossref_primary_10_3390_jfb15030060 crossref_primary_10_1039_D4TB02314E crossref_primary_10_1088_1758_5090_ad2189 crossref_primary_10_1089_ten_teb_2024_0004 crossref_primary_10_1016_j_sdentj_2020_12_008 crossref_primary_10_1002_mame_201900394 crossref_primary_10_1016_j_compositesb_2021_109512 crossref_primary_10_1016_j_mtcomm_2020_101024 crossref_primary_10_3390_app122312445 crossref_primary_10_1093_burnst_tkae036 crossref_primary_10_3389_fbioe_2023_1232427 crossref_primary_10_3390_bioengineering10050610 crossref_primary_10_1080_00914037_2021_2014483 crossref_primary_10_1080_20550324_2022_2076025 crossref_primary_10_1557_s43578_021_00156_y crossref_primary_10_1016_j_matdes_2020_108608 crossref_primary_10_1021_acsami_1c14382 crossref_primary_10_1002_adhm_202302305 crossref_primary_10_1002_admt_202300061 crossref_primary_10_1016_j_msec_2020_111639 crossref_primary_10_1016_j_reth_2023_09_007 crossref_primary_10_1002_adhm_202300128 crossref_primary_10_1016_j_msec_2020_110782 crossref_primary_10_1080_17452759_2024_2346271 crossref_primary_10_3390_ijms24032271 crossref_primary_10_1038_s41467_020_18267_1 crossref_primary_10_3390_polym15224403 crossref_primary_10_1002_advs_202207334 crossref_primary_10_1016_j_carbpol_2023_121484 crossref_primary_10_3390_biomimetics9030153 crossref_primary_10_1016_j_ijbiomac_2024_135227 crossref_primary_10_2174_18742106_v16_e2208200 crossref_primary_10_1089_3dp_2023_0104 crossref_primary_10_1016_j_matdes_2020_108830 crossref_primary_10_3390_biomedicines9070748 crossref_primary_10_3390_ma14123290 crossref_primary_10_1002_pen_27152 crossref_primary_10_18019_1028_4427_2023_29_6_585_590 crossref_primary_10_1016_j_actbio_2020_03_037 crossref_primary_10_1016_j_jot_2021_03_003 crossref_primary_10_1016_j_matpr_2023_08_053 crossref_primary_10_1021_acsbiomaterials_3c00051 crossref_primary_10_3390_jcm9124008 crossref_primary_10_1016_j_ijbiomac_2020_01_252 crossref_primary_10_1021_acsbiomaterials_1c01072 crossref_primary_10_1038_s41413_024_00378_w crossref_primary_10_1016_j_giant_2022_100121 crossref_primary_10_1016_j_ijbiomac_2022_05_184 crossref_primary_10_1016_j_jmst_2020_02_052 crossref_primary_10_1039_D3TB01847D crossref_primary_10_1002_adma_202309875 crossref_primary_10_3390_ijms21144837 crossref_primary_10_1111_cpr_13043 crossref_primary_10_1177_08853282241274528 crossref_primary_10_3390_gels6030029 crossref_primary_10_1016_j_carbpol_2022_120193 crossref_primary_10_3390_ma14010224 crossref_primary_10_1002_adfm_202010609 crossref_primary_10_1002_adhm_202301692 crossref_primary_10_1007_s40430_023_04495_1 crossref_primary_10_1016_j_trsl_2021_06_003 crossref_primary_10_1039_D1MA01166A crossref_primary_10_1089_ten_tec_2022_0041 crossref_primary_10_1007_s13534_024_00350_x crossref_primary_10_1039_D4SM01197J crossref_primary_10_1016_j_cej_2023_144537 crossref_primary_10_1016_j_ceramint_2022_06_067 crossref_primary_10_1080_09205063_2019_1696004 crossref_primary_10_1021_acs_chemrev_0c01200 crossref_primary_10_1016_j_jmapro_2023_12_040 crossref_primary_10_3390_asi4030067 crossref_primary_10_3390_bioengineering6030067 crossref_primary_10_1166_sam_2023_4569 crossref_primary_10_12677_HJBM_2020_104011 crossref_primary_10_1002_adfm_202301839 crossref_primary_10_1021_acsbiomaterials_3c01105 crossref_primary_10_1021_acsbiomaterials_3c01468 crossref_primary_10_2147_IJN_S416098 crossref_primary_10_1016_j_ceramint_2019_09_150 crossref_primary_10_1002_admt_202401522 crossref_primary_10_1016_j_irbm_2020_06_003 crossref_primary_10_1016_j_jmbbm_2023_106136 crossref_primary_10_1016_j_matchemphys_2020_123718 crossref_primary_10_3389_fbioe_2022_882631 crossref_primary_10_1007_s00264_023_05808_8 crossref_primary_10_1039_D1NA00741F crossref_primary_10_1016_j_matlet_2022_131920 crossref_primary_10_1088_1758_5090_ac6700 crossref_primary_10_1186_s13287_020_02056_0 crossref_primary_10_1080_21655979_2022_2027066 crossref_primary_10_1021_acsami_9b04283 crossref_primary_10_1016_j_rinma_2023_100465 crossref_primary_10_3390_pharmaceutics15030982 crossref_primary_10_2174_0118715303258126231025115956 crossref_primary_10_1016_j_ceramint_2025_01_150 crossref_primary_10_1016_j_bioactmat_2022_07_032 crossref_primary_10_1016_j_ceramint_2024_09_294 crossref_primary_10_1038_s41526_022_00236_1 crossref_primary_10_1016_j_ijbiomac_2024_137834 crossref_primary_10_3390_bioengineering9040163 crossref_primary_10_1016_j_jmrt_2023_06_258 crossref_primary_10_1002_pi_6742 crossref_primary_10_1002_pi_6740 crossref_primary_10_1039_D2TB02280J crossref_primary_10_1016_j_matchemphys_2023_128831 crossref_primary_10_1177_0391398819876286 crossref_primary_10_3390_biom11101538 crossref_primary_10_1016_j_jma_2020_05_022 crossref_primary_10_1016_j_msec_2021_111928 crossref_primary_10_1039_D1TB01559A crossref_primary_10_3390_ma14174896 crossref_primary_10_3390_molecules24101931 crossref_primary_10_1016_j_bioadv_2022_212748 crossref_primary_10_36306_konjes_1198527 crossref_primary_10_1042_BST20221448 crossref_primary_10_1002_adma_202403641 crossref_primary_10_1093_oxfmat_itac009 crossref_primary_10_3390_sym15020403 crossref_primary_10_1002_smll_202406441 crossref_primary_10_1002_adfm_202305603 crossref_primary_10_1002_adtp_202300428 crossref_primary_10_3390_biomedicines12112461 crossref_primary_10_1016_j_bioadv_2023_213626 crossref_primary_10_1016_j_bioadv_2023_213624 crossref_primary_10_3390_jfb15070174 crossref_primary_10_1016_j_matdes_2021_110242 crossref_primary_10_2174_1574888X16666210810111754 crossref_primary_10_3390_ma14040712 crossref_primary_10_3390_polym13213825 crossref_primary_10_1021_acsbiomaterials_1c01482 crossref_primary_10_3390_app11094102 crossref_primary_10_3390_ijms25105414 crossref_primary_10_1016_j_ceramint_2023_03_109 crossref_primary_10_1002_anbr_202100116 crossref_primary_10_1080_00222348_2022_2160133 crossref_primary_10_3389_fbioe_2024_1339916 crossref_primary_10_2217_3dp_2022_0025 crossref_primary_10_3390_ijms232416190 crossref_primary_10_1080_09205063_2020_1815278 crossref_primary_10_1016_j_powtec_2019_06_010 crossref_primary_10_1177_08853282231216546 crossref_primary_10_1016_j_bioactmat_2021_12_012 crossref_primary_10_3390_met9091004 crossref_primary_10_1038_s41598_024_80103_z crossref_primary_10_1016_j_mtcomm_2021_102335 crossref_primary_10_1021_acsnano_1c09688 crossref_primary_10_3390_nano13071236 crossref_primary_10_1016_j_actbio_2021_03_008 crossref_primary_10_1088_1758_5090_ad1b20 crossref_primary_10_3390_polym14214566 crossref_primary_10_22141_1608_1706_6_23_2022_918 crossref_primary_10_1016_j_bioadv_2023_213642 crossref_primary_10_1002_pc_25893 crossref_primary_10_1002_jbm_b_35297 crossref_primary_10_1016_j_tice_2024_102390 crossref_primary_10_3390_molecules26040860 crossref_primary_10_1002_adma_202300313 crossref_primary_10_3390_gels10040257 crossref_primary_10_3390_ijms24044200 crossref_primary_10_1177_20417314241231452 crossref_primary_10_1093_rb_rbab007 crossref_primary_10_1016_j_cej_2024_152296 crossref_primary_10_3389_fbioe_2022_891765 crossref_primary_10_3389_fbioe_2020_553529 crossref_primary_10_3390_ma14185338 crossref_primary_10_1016_j_matdes_2021_109490 crossref_primary_10_23736_S2784_8469_20_04032_1 crossref_primary_10_1016_j_reth_2023_03_005 crossref_primary_10_1177_03913988221113354 crossref_primary_10_1111_jace_20269 crossref_primary_10_1016_j_ijbiomac_2023_127410 crossref_primary_10_3389_fbioe_2022_1016598 crossref_primary_10_1002_mabi_202200114 crossref_primary_10_1021_acs_biomac_1c00842 crossref_primary_10_1080_09506608_2022_2153219 crossref_primary_10_1186_s12893_025_02823_x crossref_primary_10_1093_rb_rbab013 crossref_primary_10_3390_molecules25204785 crossref_primary_10_1002_pat_6310 crossref_primary_10_3390_ijms22031195 crossref_primary_10_1016_j_bprint_2023_e00268 crossref_primary_10_1016_j_matdes_2025_113792 crossref_primary_10_1080_00914037_2019_1667801 crossref_primary_10_1016_j_reth_2025_01_025 crossref_primary_10_1016_j_cej_2021_129015 crossref_primary_10_1016_j_apmt_2020_100700 crossref_primary_10_1016_j_matdes_2024_113035 crossref_primary_10_3390_life13112141 crossref_primary_10_1002_advs_202401589 crossref_primary_10_1186_s13018_024_04948_w crossref_primary_10_3390_polym16233379 crossref_primary_10_1021_acsabm_0c01126 crossref_primary_10_1002_adfm_202006967 crossref_primary_10_1016_j_colsurfa_2019_124048 crossref_primary_10_1016_j_msec_2021_112513 crossref_primary_10_1016_j_ijbiomac_2023_128644 crossref_primary_10_1016_j_ijbiomac_2023_127556 crossref_primary_10_1021_acsomega_4c04870 crossref_primary_10_1177_08853282241246210 crossref_primary_10_33271_nvngu_2022_6_052 crossref_primary_10_1002_adhm_202304232 crossref_primary_10_1016_j_compositesb_2023_110644 crossref_primary_10_1002_jgm_3282 crossref_primary_10_1002_adfm_202003542 crossref_primary_10_1039_C9BM00664H crossref_primary_10_1016_j_colsurfb_2023_113384 crossref_primary_10_3390_bioengineering7020052 crossref_primary_10_1016_j_msec_2020_111334 crossref_primary_10_1088_1748_605X_ad7e6c crossref_primary_10_3389_fbioe_2023_1228250 crossref_primary_10_3390_molecules25194480 crossref_primary_10_1016_j_biomaterials_2019_119372 crossref_primary_10_1016_j_ijbiomac_2023_126238 crossref_primary_10_1039_D4NJ02194K crossref_primary_10_1016_j_colcom_2025_100828 crossref_primary_10_1002_mabi_202200481 crossref_primary_10_1016_j_surfcoat_2025_131913 crossref_primary_10_1186_s40824_023_00458_8 crossref_primary_10_1002_adhm_202202768 crossref_primary_10_3390_polym16192784 crossref_primary_10_1002_adhm_202202766 crossref_primary_10_1016_j_bsecv_2024_12_001 crossref_primary_10_1016_j_ajps_2022_03_003 crossref_primary_10_1016_j_bbrc_2021_03_145 crossref_primary_10_3390_ma15186383 crossref_primary_10_3390_nano11020404 crossref_primary_10_1016_j_matchemphys_2024_129332 crossref_primary_10_1080_17452759_2020_1808937 crossref_primary_10_1021_acs_nanolett_4c00970 crossref_primary_10_1016_j_jep_2023_117253 crossref_primary_10_1016_j_bioadv_2022_213195 crossref_primary_10_1016_j_jmst_2023_07_018 crossref_primary_10_1016_j_mser_2024_100870 crossref_primary_10_1016_j_ijbiomac_2019_06_184 crossref_primary_10_1016_j_bone_2024_117363 crossref_primary_10_1177_20417314211003735 crossref_primary_10_1002_mba2_14 crossref_primary_10_1016_j_scs_2023_104621 crossref_primary_10_1016_j_jmrt_2020_11_061 crossref_primary_10_3389_fmats_2022_954525 crossref_primary_10_1016_j_bsecv_2021_11_005 crossref_primary_10_1007_s10853_023_08798_5 crossref_primary_10_3390_bioengineering11020193 crossref_primary_10_1016_j_rser_2021_111505 crossref_primary_10_3389_fbioe_2020_00061 crossref_primary_10_1016_j_tice_2023_102279 crossref_primary_10_1134_S0036029523040122 crossref_primary_10_1080_10255842_2024_2358378 crossref_primary_10_1016_j_matdes_2024_112896 crossref_primary_10_1007_s12178_022_09757_4 crossref_primary_10_3389_fbioe_2023_1167474 crossref_primary_10_1002_admt_202300635 crossref_primary_10_1016_j_cocis_2020_08_009 crossref_primary_10_1007_s00289_022_04149_7 crossref_primary_10_34133_research_0021 crossref_primary_10_1590_1980_5373_mr_2020_0211 crossref_primary_10_1007_s40204_023_00217_x crossref_primary_10_1016_j_mtbio_2024_101180 crossref_primary_10_1016_j_ijbiomac_2020_08_029 crossref_primary_10_22141_1608_1706_2_22_2021_231952 crossref_primary_10_1016_j_tice_2023_102144 crossref_primary_10_3390_ma13030695 crossref_primary_10_3390_mi12060664 crossref_primary_10_1016_j_msec_2021_112549 crossref_primary_10_1186_s13287_022_02823_1 crossref_primary_10_3389_fbioe_2022_942128 crossref_primary_10_34133_research_0255 crossref_primary_10_1016_j_cej_2024_150706 crossref_primary_10_18019_1028_4427_2024_30_1_76_89 crossref_primary_10_3390_polym14030566 crossref_primary_10_1093_rb_rbad025 crossref_primary_10_3390_ijms23063352 crossref_primary_10_1089_ten_teb_2023_0280 crossref_primary_10_1016_j_compositesb_2022_110264 crossref_primary_10_1039_D0BM00390E crossref_primary_10_3390_ma16072799 crossref_primary_10_1016_j_addma_2020_101452 crossref_primary_10_1016_j_jot_2021_06_002 crossref_primary_10_1155_2022_4996530 crossref_primary_10_1080_00222348_2024_2347749 crossref_primary_10_1007_s44245_024_00070_7 crossref_primary_10_1016_j_msec_2021_112372 crossref_primary_10_1155_2020_7381391 crossref_primary_10_1016_j_actbio_2018_12_018 crossref_primary_10_1021_acsabm_4c00073 crossref_primary_10_3390_ijms21186942 crossref_primary_10_1016_j_ceramint_2019_06_048 crossref_primary_10_1021_acsbiomaterials_0c01756 crossref_primary_10_1016_j_ceramint_2020_05_013 crossref_primary_10_1016_j_ijbiomac_2020_08_053 crossref_primary_10_12677_ACM_2022_12121703 crossref_primary_10_1021_acsbiomaterials_9b00254 crossref_primary_10_1155_2023_1105664 crossref_primary_10_1016_j_ijbiomac_2022_03_193 crossref_primary_10_3390_ijms21062175 crossref_primary_10_1039_D2TB00471B crossref_primary_10_1016_j_jconrel_2023_05_042 crossref_primary_10_1016_j_mtchem_2024_102258 crossref_primary_10_1002_btm2_10206 crossref_primary_10_3390_ijms222011216 crossref_primary_10_3390_ijms21010315 crossref_primary_10_1016_j_pmatsci_2023_101072 crossref_primary_10_3389_fmats_2024_1390372 crossref_primary_10_3390_polym14122422 crossref_primary_10_1186_s12951_023_02241_2 crossref_primary_10_1007_s10856_019_6290_2 crossref_primary_10_1002_pc_29345 crossref_primary_10_3390_jfb14030134 crossref_primary_10_3390_ijms22126203 crossref_primary_10_1016_j_matdes_2023_112351 crossref_primary_10_1016_j_jnoncrysol_2023_122322 crossref_primary_10_1080_02648725_2023_2191080 crossref_primary_10_3389_fbioe_2023_1197075 crossref_primary_10_1002_adhm_202400232 crossref_primary_10_1016_j_mtbio_2023_100929 crossref_primary_10_3389_fbioe_2022_1003484 crossref_primary_10_1021_acsami_2c20339 crossref_primary_10_1177_2041731420926918 crossref_primary_10_3390_biomimetics8010081 crossref_primary_10_1016_j_jmst_2024_02_018 crossref_primary_10_1016_j_cej_2024_155139 crossref_primary_10_1186_s12891_024_08031_7 crossref_primary_10_1016_j_bioactmat_2020_08_030 crossref_primary_10_1088_1758_5090_ab860e crossref_primary_10_1016_j_matdes_2025_113829 crossref_primary_10_1038_s41392_021_00727_9 crossref_primary_10_1039_C9TB02901J crossref_primary_10_1016_j_mtbio_2023_100934 crossref_primary_10_1021_acsami_2c22650 crossref_primary_10_1007_s40964_024_00743_5 crossref_primary_10_1016_j_matpr_2023_03_260 crossref_primary_10_1016_j_bbe_2020_02_003 crossref_primary_10_1515_epoly_2020_0046 crossref_primary_10_3390_ijms23031460 crossref_primary_10_1002_adts_202100278 crossref_primary_10_1016_j_jeurceramsoc_2019_11_009 crossref_primary_10_2139_ssrn_4166570 crossref_primary_10_4012_dmj_2023_247 |
Cites_doi | 10.1016/S1369-7021(10)70202-9 10.1007/s00170-015-7386-6 10.1080/17452759.2012.738551 10.1021/acsami.7b14175 10.1016/j.matlet.2017.05.038 10.1021/acs.chemrev.7b00074 10.1097/BOT.0b013e3181cec4a1 10.1002/pat.3417 10.1002/mawe.200500968 10.1163/092050610X522486 10.1007/s12221-017-7120-0 10.3390/ma8085259 10.1177/03946320110241S201 10.5402/2012/208760 10.1016/j.biomaterials.2014.01.064 10.1016/j.jeurceramsoc.2017.08.006 10.1089/3dp.2015.0019 10.1108/RPJ-12-2014-0175 10.1007/s10853-007-1661-3 10.1007/978-3-319-20726-1 10.1108/RPJ-03-2013-0037 10.1016/j.compscitech.2006.05.018 10.3390/ma6115398 10.1016/j.jmbbm.2016.01.031 10.1007/s00366-015-0407-0 10.1016/j.addr.2016.07.006 10.1016/j.actbio.2011.03.019 10.14336/AD.2015.1206 10.1016/j.msec.2016.02.010 10.1108/RPJ-07-2013-0076 10.1089/ten.2005.11.1640 10.1016/j.biotechadv.2016.03.009 10.1007/978-3-319-05846-7 10.1515/amm-2016-0110 10.1016/j.biomaterials.2016.01.012 10.1016/j.colsurfb.2015.06.074 10.1089/ten.tea.2007.0277 10.1007/s00590-012-1070-4 10.1007/s12206-016-1049-x 10.1100/2012/646417 10.1002/term.1813 10.1088/1757-899X/100/1/012033 10.1002/jbm.a.34130 10.1088/1758-5090/7/3/035002 10.1016/j.polymer.2007.09.017 10.1021/la3009249 10.3109/21691401.2013.775578 10.1002/jbm.b.32863 10.1016/j.ijbiomac.2016.05.024 10.1186/s11671-017-1911-5 10.1016/j.actbio.2012.04.022 10.1088/1758-5082/3/2/025004 10.1016/j.polymertesting.2018.03.042 10.1016/j.msec.2017.05.132 10.1016/j.ceramint.2017.07.082 10.1080/09205063.2017.1388993 10.1016/j.msec.2017.03.001 10.1007/s10856-017-5898-3 10.1016/S0266-3538(03)00275-6 10.1016/j.matlet.2015.05.084 10.1007/s10856-007-3346-5 10.1007/s10853-015-9244-1 10.1007/s00289-017-2093-0 10.1016/j.bioactmat.2016.11.001 10.1089/107632702320934182 10.1016/j.biomaterials.2017.05.021 10.1021/bm060317c 10.1088/0957-4484/23/9/095705 10.1016/j.ceramint.2017.09.095 10.1016/j.actbio.2013.07.019 10.1063/1.1408260 10.1002/mabi.201600290 10.1039/C2BM00039C 10.1177/0883911515597928 10.1088/1758-5082/6/2/025005 10.1016/j.actbio.2017.12.008 10.1016/j.biomaterials.2005.03.026 10.1007/s10439-013-0913-4 10.1007/s10544-012-9677-0 10.1016/j.actbio.2010.09.039 10.1117/12.2254475 10.1177/0885328216638636 10.1088/1758-5090/8/3/035008 10.1080/17436753.2017.1356043 10.1088/1758-5090/aa5766 10.1007/s10856-009-3878-y 10.1088/0957-4484/18/5/055101 10.1016/j.medengphy.2015.08.006 10.3390/ma11010013 10.1016/j.progpolymsci.2013.06.001 10.1089/ten.teb.2009.0687 10.1557/mrs.2015.3 10.1007/s10856-009-3767-4 10.1063/1.2924439 10.1016/j.bone.2013.06.028 10.1177/0022034517734846 10.1371/journal.pone.0151216 10.1007/s10853-017-1528-1 10.1063/1.373532 10.1016/j.actbio.2010.06.024 10.1002/sctm.17-0148 10.1007/s12541-014-0571-y 10.1016/j.biomaterials.2003.10.032 10.1002/jbm.a.35540 10.4028/www.scientific.net/KEM.240-242.111 10.1177/0022034515588303 10.1590/1414-431X20143930 10.1002/mame.201800247 10.1016/j.biomaterials.2016.01.024 10.1016/j.oraloncology.2018.01.005 10.1049/mnl.2011.0440 10.1016/j.ceramint.2014.06.117 10.1016/j.jmbbm.2016.12.014 10.1016/j.jtbi.2014.10.012 10.1016/S0142-9612(02)00148-5 10.1088/1748-6041/10/3/035013 10.1016/j.matlet.2016.04.070 10.1016/j.jeurceramsoc.2013.08.003 10.1007/978-3-031-02579-2 10.2147/IJN.S146679 10.1088/1758-5082/6/1/015003 10.1002/adhm.201500168 10.1109/ICMA.2010.45 10.1108/RPJ-03-2016-0037 10.3390/fib2020158 10.1016/j.compbiomed.2015.10.017 10.1016/j.actbio.2005.12.004 10.1111/ijac.12076 10.1136/postgradmedj-2013-132387 10.1007/s11517-012-1001-x 10.1590/S1516-14392014005000075 10.1007/s10544-017-0245-5 10.1007/s00170-009-2162-0 10.3390/polym10030328 10.1016/j.matdes.2016.07.094 10.1080/09205063.2017.1354671 10.1016/j.polymdegradstab.2010.06.007 10.1016/j.actbio.2015.06.032 10.1016/B978-0-12-800547-7.00011-4 10.1016/j.jeurceramsoc.2010.04.037 10.7150/ijbs.13139 10.1016/j.medengphy.2014.02.010 10.1016/j.cma.2006.09.023 10.1080/15422119.2013.795902 10.1016/j.cej.2015.12.047 10.1108/RPJ-12-2013-0123 10.1016/S0167-577X(02)01339-3 10.1016/j.saa.2017.12.008 10.1016/j.polymer.2009.11.025 10.1109/JPROC.2016.2625098 10.1111/clr.12486 10.15302/J-ENG-2015061 10.1023/A:1008973120918 10.1088/1758-5090/7/3/035004 10.1002/jbm.a.33058 10.1038/am.2017.171 10.1016/j.injury.2011.03.033 10.1016/j.jdsr.2013.01.001 10.1155/2016/8590971 10.1016/j.jnnfm.2007.11.011 10.1002/pat.3892 10.1016/j.matlet.2016.05.146 10.1016/S0142-9612(00)00121-6 10.1177/0022034515588885 10.1016/j.bprint.2017.04.002 10.1002/jbm.b.33660 10.1080/00222348.2015.1090654 10.1088/1468-6996/14/5/055002 10.1002/jbm.a.36289 10.3390/ma9040232 10.1016/j.msec.2017.08.040 10.4028/www.scientific.net/MSF.783-786.1366 10.1108/RPJ-03-2014-0029 10.1002/term.1897 10.1088/1758-5082/6/1/015006 10.1108/RPJ-09-2013-0092 10.1097/ID.0000000000000655 10.1007/s10856-006-0073-2 10.1080/00914037.2016.1180617 10.1016/j.actbio.2008.10.012 10.1016/j.rcim.2015.06.005 10.1016/j.jconrel.2016.05.061 10.1007/s10856-015-5658-1 10.1177/0883911513490341 10.1016/j.actbio.2006.02.004 10.1039/C4RA15893H 10.1116/1.4897217 10.1016/j.actbio.2016.01.007 10.1155/2012/382639 10.1155/2016/5862586 10.1016/j.medengphy.2015.05.009 10.1002/jbm.a.32645 10.1007/s10856-015-5465-8 10.3390/ma10121344 10.1080/17452759.2012.673152 10.1021/acsomega.8b00219 10.22203/eCM.v006a02 10.1152/physiol.00061.2014 10.1016/j.jmapro.2009.03.002 10.1016/j.ijmachtools.2017.08.004 10.3109/03008207.2013.822864 10.1108/RPJ-11-2014-0148 10.1115/1.2162589 10.1016/j.matlet.2016.03.021 10.1016/j.msec.2016.11.049 10.1016/j.actbio.2012.08.015 10.1016/j.apsusc.2017.11.218 10.1016/j.actbio.2009.07.018 10.1002/bdrc.21047 10.1016/j.actbio.2014.12.028 10.1016/j.matlet.2017.06.096 10.1002/1097-4636(20010605)55:3<401::AID-JBM1029>3.0.CO;2-H 10.1016/j.msec.2018.04.016 10.1016/j.ymeth.2009.08.007 10.1016/j.actbio.2010.02.002 10.1371/journal.pone.0034117 10.1016/j.ijbiomac.2014.10.040 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F 10.22203/eCM.v015a05 10.1002/asia.201000436 10.1088/1758-5082/5/2/025005 10.1016/j.jbiosc.2012.07.005 10.1007/s11633-014-0853-y 10.1016/j.jmbbm.2018.01.013 10.1016/j.msec.2016.07.041 10.1108/RPJ-04-2013-0040 10.1016/j.ijimpeng.2017.09.018 10.1002/biot.201600734 10.1016/j.ijpharm.2015.11.012 10.1371/journal.pone.0147399 10.1088/1748-6041/10/4/045019 10.1016/j.jconrel.2018.01.006 10.1177/0954411916682984 10.1111/j.1551-2916.2006.01143.x 10.1080/17452759.2013.873337 10.1016/j.actbio.2014.12.024 10.1016/j.biocel.2007.06.009 10.1016/j.actbio.2016.08.032 10.1108/13552541111184206 10.1002/9781118406748.ch10 10.1016/j.msec.2014.07.052 10.1016/j.actbio.2008.06.008 10.1242/jcs.063032 10.1016/j.polymer.2006.08.042 10.1002/adma.201103482 10.1002/jbm.a.31587 10.1039/C6TB00675B 10.1089/ten.teb.2015.0464 10.1155/2014/657542 10.1016/j.actbio.2008.03.019 10.1016/j.ibiod.2017.10.001 10.1016/j.cytogfr.2013.03.008 10.1177/039463201202500119 10.1039/C5TB01468A 10.1089/teb.2008.0038 10.33549/physiolres.933134 10.1016/j.progpolymsci.2007.05.017 10.1016/j.biomaterials.2010.04.050 10.1016/j.actbio.2009.10.051 10.1002/jbm.b.33239 10.1016/j.actbio.2018.02.027 10.1089/ten.tec.2008.0288 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R 10.1016/j.jmbbm.2015.12.007 10.1088/1758-5082/5/3/035012 10.1016/j.biomaterials.2017.06.005 10.1007/s10856-007-3089-3 10.1016/j.actbio.2014.05.026 10.1016/j.actbio.2016.12.040 10.1002/jbm.b.31577 10.1016/j.actbio.2012.10.009 10.1023/B:JMSM.0000004006.90399.b4 10.1016/j.cad.2005.02.006 10.1016/j.msec.2014.10.074 10.1016/j.msec.2014.01.027 10.1177/0883911515627471 10.1002/jbm.a.34985 10.1177/0021955X08099929 10.1088/1748-605X/aa5d76 10.3390/ma10111244 10.1016/j.ijbiomac.2016.08.046 10.1016/j.biomaterials.2006.01.039 10.5301/jabfm.5000252 10.1002/jbm.a.36270 10.1016/j.mser.2016.01.001 10.1016/j.actbio.2011.11.002 10.1196/annals.1365.035 10.1016/j.jeurceramsoc.2016.08.018 10.1016/S0142-9612(03)00131-5 10.1002/jbm.a.34394 10.1016/j.mattod.2013.11.017 10.1007/s12221-017-1061-5 10.1016/j.coms.2010.04.007 10.1163/092050610X534230 10.1088/1758-5082/5/1/015014 10.1109/TNANO.2013.2293704 10.1016/j.semcdb.2008.07.004 10.1002/jbm.b.33700 10.1016/j.msec.2016.09.040 |
ContentType | Journal Article |
Copyright | 2018 Acta Materialia Inc. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Copyright Elsevier BV Oct 15, 2018 |
Copyright_xml | – notice: 2018 Acta Materialia Inc. – notice: Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier BV Oct 15, 2018 |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1016/j.actbio.2018.09.031 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 30 |
ExternalDocumentID | 30248515 10_1016_j_actbio_2018_09_031 S1742706118305518 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABGSF ABJNI ABMAC ABNUV ABUDA ABXRA ABYKQ ACDAQ ACGFS ACIWK ACPRK ACRLP ADBBV ADEWK ADEZE ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SEW SSH NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c493t-2318041e2b0b5152e7d176b38e03cb094a706772b6979c3aaf3fd27732f4db3b3 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Fri Jul 11 10:39:52 EDT 2025 Wed Aug 13 05:01:45 EDT 2025 Wed Feb 19 02:37:27 EST 2025 Thu Apr 24 23:08:51 EDT 2025 Tue Jul 01 01:17:20 EDT 2025 Fri Feb 23 02:39:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Material extrusion Selective laser sintering Gas foaming Cryogelation Selective laser melting Tissue engineering Binder jetting Bone scaffolds Electrospinning Additive manufacturing Vat photoplymerization |
Language | English |
License | Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-2318041e2b0b5152e7d176b38e03cb094a706772b6979c3aaf3fd27732f4db3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 30248515 |
PQID | 2131831426 |
PQPubID | 2045286 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2112189441 proquest_journals_2131831426 pubmed_primary_30248515 crossref_primary_10_1016_j_actbio_2018_09_031 crossref_citationtrail_10_1016_j_actbio_2018_09_031 elsevier_sciencedirect_doi_10_1016_j_actbio_2018_09_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-15 |
PublicationDateYYYYMMDD | 2018-10-15 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Kidlington |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Lukasiewicz, Basnett, Nigmatullin, Matharu, Knowles, Roy (b0395) 2018; 71 Bergmann, Lindner, Zhang, Koczur, Kirsten, Telle, Fischer (b0180) 2010; 30 Salerno, Oliviero, Di Maio, Iannace, Netti (b0280) 2009; 20 Van Rie, Declercq, Van Hoorick, Dierick, Van Hoorebeke, Cornelissen, Thienpont, Dubruel, Van Vlierberghe (b0620) 2015; 26 Malikmammadov, Tanir, Kiziltay, Hasirci, Hasirci (b1345) 2018; 29 Scalera, Esposito Corcione, Montagna, Sannino, Maffezzoli (b1435) 2014; 40 M.M. Savalani, C.C. Ng, H.C. Man, Selective Laser Melting of Magnesium for Future Applications in Medicine, 2010 Int. Conf. Manuf. Autom. (2010) 50–54. doi:10.1109/ICMA.2010.45. Shakir, Jolly, Khan, Rauf, Kazmi (b0340) 2016; 93 Zhou, Wang, Cheung, Ip (b1095) 2010 Szlazak, Jaroszewicz, Ostrowska, Jaroszewicz, Nabiałek, Szota, Swieszkowski (b1195) 2016; 61 Yarin, Koombhongse, Reneker (b1595) 2001; 90 C. Mota, D. Puppi, D. Dinucci, M. Gazzarri, F. Chiellini, Additive manufacturing of star poly (ε -caprolactone) wet- spun scaffolds for bone tissue engineering applications, (2013). doi:10.1177/0883911513490341. Bignon, Chouteau, Chevalier, Fantozzi, Carret, Chavassieux, Boivin, Melin, Hartmann (b0295) 2003; 14 Kumaresan, Gandhinathan, Ramu, Ananthasubramanian, Pradheepa (b1115) 2016; 30 Yao, Bastiaansen, Peijs (b1490) 2014; 2 Poursamar, Hatami, Lehner, Da Silva, Ferreira, Antunes (b1730) 2015; 48 B. Leukers, H. Gulkan, S.H. Irsen, S. Milz, C. Tille, H. Seitz, M. Schieker, Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing, Materwiss. Werksttech. 36 (2005) 781–787. doi:10.1002/mawe.200500968. Melchels, Feijen, Grijpma (b1475) 2010; 31 Zhang, Fang, Zhou (b0235) 2017 Singh, Pandey, Verma (b1015) 2016; 22 Lv, Xiu, Tan, Jia, Cai, Liu (b1280) 2015; 10 Saijo, Fujihara, Kanno, Hoshi, Hikita (b1690) 2016; 5 Mancuso, Alharbi, Bretcanu, Marshall, Birch, McCaskie, Dalgarno (b0955) 2017; 231 Yang, Jia, Liu, Li, Hou, Wang, Guan (b1565) 2008; 103 Hochleitner, Kessler, Schmitz, Boccaccini, Teβmar, Groll (b1605) 2017; 205 R. do V. Pereira, G.V. Salmoria, M.O.C. de Moura, Á. Aragones, M.C. Fredel, Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering, Mater. Res. 17 (2014) 33–38. doi:10.1590/S1516-14392014005000075. Li, Jiang, Deng, Li, Li, Peng, Wang (b1205) 2017; 7 Kim, Kim, Koh, Shim, Lee, Kim, Hwang (b0695) 2017 Butscher, Bohner, Doebelin, Hofmann, Müller (b0810) 2013; 9 Kinstlinger, Bastian, Paulsen, Hwang, Ta, Yalacki, Schmidt, Miller (b0975) 2016; 11 Mota, Wang, Puppi, Gazzarri, Migone, Chiellini, Chen, Chiellini (b1330) 2017; 11 . Siddiqui, Partridge (b0160) 2016; 31 M. Castilho, C. Moseke, A. Ewald, U. Gbureck, Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects, (n.d.). doi:10.1088/1758-5082/6/1/015006. A. Singh, A.K. Gaharwar, Microscale technologies for cell engineering, Microscale Technol. Cell Eng. (2015) 1–318. doi:10.1007/978-3-319-20726-1. Demir, Monguzzi, Previtali (b1245) 2017; 15 Kim, Amirthalingam, Kim, Lee, Rangasamy, Hwang (b0215) 2017; 1700612 S. Provided, I.S.O. No, I.H.S. Licensee, INTERNATIONAL STANDARD Additive manufacturing — General, 2014 (2014). D. Liu, J. Zhuang, C. Shuai, S. Peng, Mechanical properties’ improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering., Biofabrication. 5 (2013) 025005 (10pp). doi:10.1088/1758-5082/5/2/025005. Kumar, Mishra, Reinwald, Bhat (b0590) 2010; 13 Moghadam, Hassanajili, Esmaeilzadeh, Ayatollahi, Ahmadi (b0540) 2017; 69 Puppi, Mota, Gazzarri, Dinucci, Gloria, Myrzabekova, Ambrosio, Chiellini (b1335) 2012; 14 Dalton, Vaquette, Farrugia, Dargaville, Brown, Hutmacher (b1405) 2013; 1 Dimitriou, Tsiridis, Giannoudis (b0060) 2005 O. Suzuki, T. Anada, Octacalcium Phosphate: A Potential Scaffold Material for Controlling Activity of Bone-Related Cells <i∗gt;In Vitro</i>, Mater. Sci. Forum. 783–786 (2014) 1366–1371. doi:10.4028/www.scientific.net/MSF.783-786.1366. Khalyfa, Vogt, Weisser, Grimm, Rechtenbach, Meyer, Schnabelrauch (b0895) 2007; 18 Shuai, Feng, Zhang, Gao, Hu, Peng, Min (b0995) 2013; 14 Jackson, Patrick, Page, Powell, Lythgoe, Miodownik, Parkin, Carmalt, Kalber, Bear (b1140) 2018; 3 B.H. Moghadam, A.K. Haghi, S. Kasaei, Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods computational-based approach for predicting porosity of electrospun nanofiber mats using response S, 2348 (2015). doi:10.1080/00222348.2015.1090654. R. Smeets, M. Barbeck, H. Hanken, H. Fischer, M. Lindner, M. Heiland, M. Wöltje, S. Ghanaati, A. Kolk, Selective laser-melted fully biodegradable scaffold composed of poly(d, l-lactide) and ??-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: In vitro and in vivo results, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2016) 1–16. doi:10.1002/jbm.b.33660. P.S.M. S, Tissue engineering and regenerative medicine Concise Review: Bioprinting of stem cells for transplantable tissue fabrication, (2017) 1940–1948. doi:10.1002/sctm.17-0148. Kolar, Schmidt-Bleek, Schell, Gaber, Toben, Schmidmaier, Perka, Buttgereit, Duda (b0120) 2010; 16 Gardan (b0480) 2015; 7543 Rodrigues, Leonor, Gröen, Viegas, Dias, Caridade, Mano, Gomes, Reis (b1355) 2014; 10 J. Gilmore, T. Burg, R.E. Groff, K.J.L. Burg, Design and optimization of a novel bio-loom to weave melt-spun absorbable polymers for bone tissue engineering, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2017) 1342–1351. doi:10.1002/jbm.b.33700. He, Xia, Li (b1645) 2016; 8 Tan, Chua, Leong, Cheah, Gui, Tan, Wiria (b1020) 2005; 15 Yang, Mun, Kim (b1775) 2016; 288 Lam, Mo, Teoh, Hutmacher (b0935) 2002; 20 D.L. Alge, J. Bennett, T. Treasure, S. Voytik-Harbin, W.S. Goebel, T.M.G. Chu, Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering, J. Biomed. Mater. Res. - Part A. 100 A (2012) 1792–1802. doi:10.1002/jbm.a.34130. Yang, Du, Wang, Yang, Zhang (b0510) 2016; 173 P.H. Warnke, H. Seitz, F. Warnke, S.T. Becker, S. Sivananthan, E. Sherry, Q. Liu, J. Wiltfang, T. Douglas, Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations, J. Biomed. Mater. Res. - Part B Appl. Biomater. 93 (2010) 212–217. doi:10.1002/jbm.b.31577. Wang, Xu, Zhou, Xu, Leary, Choong, Qian, Brandt, Xie (b0230) 2016; 83 Cavo, Scaglione (b1305) 2016; 68 Oropallo, Piegl (b0475) 2016; 32 Dávila, Freitas, Neto, Silveira, Silva, d’Ávila (b0750) 2016; 84 H. Shao, M. Sun, F. Zhang, A. Liu, Y. He, J. Fu, X. Yang, H. Wang, Z. Gou, Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds, J. Dent. Res. (2017) 002203451773484. doi:10.1177/0022034517734846. G. Vozzi, a Previti, D. De Rossi, a Ahluwalia, Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering., Tissue Eng. 8 (2002) 1089–1098. doi:10.1089/107632702320934182. M. Sc, Y. Yang, M. Sc, D. Ph, P. Korkusuz, N. Bo, E. Gu, Three-Dimensional Ingrowth of Bone Cells Within Biodegradable, 14 (2008). doi:10.1089/ten.tea.2007.0277. Jia, Li, Xiu, Xu, Cheng, Zheng, Xi, Wei, Liu (b1275) 2015; 157 Han, Li, Wang, Wen, Wei, Yan, Hao, Liu, Shi (b0755) 2018; 80 Gobal, Ravani (b0980) 2016; 17 Shuai, Mao, Lu, Nie, Hu, Peng (b1010) 2013; 5 Eqtesadi, Motealleh, Miranda, Pajares, Lemos, Ferreira (b1385) 2014; 34 Yang, Choi, Leung, Curtin, Du, Zhang, Chen, Su (b1715) 2018; 78 Naga, Awaad, El-Maghraby, El-Kady (b0890) 2014; 11 Tesavibul, Chantaweroad, Laohaprapanon, Channasanon, Uppanan, Tanodekaew, Chalermkarnnon, Sitthiseripratip (b1450) 2015; 26 Li, Liu, Peng, Ma, Fong (b1630) 2016; 176 Zhang, Mao, Zhao, Jiang, Du, Li, Jiang, Han (b1200) 2017; 7 Izquierdo-Barba (b1425) 2014; 9781118406 Torres, Nazhat, Sheikh Md Fadzullah, Maquet, Boccaccini (b0270) 2007; 67 Partee, Hollister, Das (b0990) 2006; 128 Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang, S. Peng, Novel biomaterial strategies for controlled growth factor delivery for biomedical applications, (2017). doi:10.1038/am.2017.171. Vasireddi, Basu (b0800) 2015; 21 N. Kemençe, N. Bölgen, Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility, (2017) 20–33. doi:10.1002/term.1813. L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung, Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials: techniques and applications, n.d. (accessed June 19, 2017). Eshraghi, Das (b1085) 2012; 8 D. Puppi, A. Morelli, F. Bello, S. Valentini, F. Chiellini, Additive Manufacturing of Poly (Methyl Methacrylate) Biomedical Implants with Dual-Scale Porosity, 1800247 (2018) 1–9. doi:10.1002/mame.201800247. Tan, Chua, Leong, Cheah, Cheang, Abu Bakar, Cha (b1025) 2003; 24 Webler, Rodrigues, Silva, Silva, Fonseca, Degenhardt, Oliveira, Otubo, Barros Filho (b0375) 2017; 436 Srivas, Kapat, Dadhich, Pal, Dutta, Datta, Dhara (b1150) 2017; 6 Cadafalch Gazquez, Chen, Moroni, Boukamp, ten Elshof (b0835) 2017; 208 Wallace, Wang, Thompson, Busso, Belle, Mammoser, Kim, Fisher, Siblani, Xu, Welter, Lennon, Sun, Caplan, Dean (b1455) 2014; 6 Youssef, Hollister, Dalton (b1780) 2017; 09 D. Puppi, A. Pirosa, A. Morelli, F. Chiellini, D. Puppi, A. Pirosa, A. Morelli, F. Chiellini, Design, fabrication and characterization of tailored poly [(R) -3-hydroxybutyrate-co- (R) -3- hydroxyexanoate ] scaffolds by computer-aided wet-spinning, (2018). doi:10.1108/RPJ-03-2016-0037. Bohner, Baumgart Robert (b0275) 2004; 25 Misra, Valappil, Roy, Boccaccini (b0410) 2006; 7 Hendriks, Riesle, van Blitterswijk (b0650) 2010; 4 H. Liu, W. Li, C. Liu, J. Tan, H. Wang, B. Hai, H. Cai, H. Leng, Incorporating simvastatin / poloxamer 407 hydrogel into 3D-printed porous Ti 6 Al 4 V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth Incorporating simvastatin / poloxamer 407 hydrogel into 3D-pri Zhang (10.1016/j.actbio.2018.09.031_b0235) 2017 Barui (10.1016/j.actbio.2018.09.031_b1225) 2017; 70 Saijo (10.1016/j.actbio.2018.09.031_b1690) 2016; 5 Savalani (10.1016/j.actbio.2018.09.031_b1250) 2016; 22 Crockett (10.1016/j.actbio.2018.09.031_b0095) 2011; 124 10.1016/j.actbio.2018.09.031_b0185 Siddiqui (10.1016/j.actbio.2018.09.031_b0160) 2016; 31 10.1016/j.actbio.2018.09.031_b0860 Miranda (10.1016/j.actbio.2018.09.031_b1390) 2008; 85 10.1016/j.actbio.2018.09.031_b0730 Wei (10.1016/j.actbio.2018.09.031_b0815) 2017; 43 10.1016/j.actbio.2018.09.031_b1700 Bohner (10.1016/j.actbio.2018.09.031_b0275) 2004; 25 10.1016/j.actbio.2018.09.031_b0735 Ozturk (10.1016/j.actbio.2018.09.031_b0660) 2013; 23 10.1016/j.actbio.2018.09.031_b1705 Miranda (10.1016/j.actbio.2018.09.031_b1395) 2006; 2 Shuai (10.1016/j.actbio.2018.09.031_b0995) 2013; 14 Armentano (10.1016/j.actbio.2018.09.031_b0310) 2010; 95 Xia (10.1016/j.actbio.2018.09.031_b1045) 2013; 8 Vasireddi (10.1016/j.actbio.2018.09.031_b0800) 2015; 21 Naghieh (10.1016/j.actbio.2018.09.031_b1290) 2016; 59 Pereira (10.1016/j.actbio.2018.09.031_b1090) 2012; 7 10.1016/j.actbio.2018.09.031_b0070 10.1016/j.actbio.2018.09.031_b1040 10.1016/j.actbio.2018.09.031_b1285 Misra (10.1016/j.actbio.2018.09.031_b0410) 2006; 7 Zhmayev (10.1016/j.actbio.2018.09.031_b1555) 2008; 153 10.1016/j.actbio.2018.09.031_b1710 Yang (10.1016/j.actbio.2018.09.031_b1715) 2018; 78 Cama (10.1016/j.actbio.2018.09.031_b0390) 2014 Singh (10.1016/j.actbio.2018.09.031_b1015) 2016; 22 Lichte (10.1016/j.actbio.2018.09.031_b0195) 2011; 42 Bandyopadhyay (10.1016/j.actbio.2018.09.031_b1105) 2015; 40 Tesavibul (10.1016/j.actbio.2018.09.031_b1450) 2015; 26 Carvalho (10.1016/j.actbio.2018.09.031_b0585) 2014; 43 Boccaccini (10.1016/j.actbio.2018.09.031_b0535) 2003; 63 Marques (10.1016/j.actbio.2018.09.031_b1400) 2017; 37 An (10.1016/j.actbio.2018.09.031_b1235) 2015; 1 10.1016/j.actbio.2018.09.031_b1370 Venugopal (10.1016/j.actbio.2018.09.031_b1515) 2007; 18 Bignon (10.1016/j.actbio.2018.09.031_b0295) 2003; 14 10.1016/j.actbio.2018.09.031_b1130 10.1016/j.actbio.2018.09.031_b1375 10.1016/j.actbio.2018.09.031_b0045 10.1016/j.actbio.2018.09.031_b1255 10.1016/j.actbio.2018.09.031_b0710 Wang (10.1016/j.actbio.2018.09.031_b0250) 2017 Torres (10.1016/j.actbio.2018.09.031_b0270) 2007; 67 Seidenstuecker (10.1016/j.actbio.2018.09.031_b0830) 2017; 11 Naga (10.1016/j.actbio.2018.09.031_b0890) 2014; 11 Komárek (10.1016/j.actbio.2018.09.031_b1550) 2010 Liao (10.1016/j.actbio.2018.09.031_b0950) 2013; 4 Nam (10.1016/j.actbio.2018.09.031_b0570) 2000; 53 Bose (10.1016/j.actbio.2018.09.031_b0005) 2013; 16 White (10.1016/j.actbio.2018.09.031_b1485) 2015; 2 Salerno (10.1016/j.actbio.2018.09.031_b0545) 2015; 496 10.1016/j.actbio.2018.09.031_b0290 Nommeots-Nomm (10.1016/j.actbio.2018.09.031_b1315) 2018; 38 Hutmacher (10.1016/j.actbio.2018.09.031_b0300) 2000; 21 Skwarek (10.1016/j.actbio.2018.09.031_b0335) 2017; 12 10.1016/j.actbio.2018.09.031_b1260 10.1016/j.actbio.2018.09.031_b0175 Yang (10.1016/j.actbio.2018.09.031_b0515) 2015; 37 10.1016/j.actbio.2018.09.031_b0970 Warnke (10.1016/j.actbio.2018.09.031_b1030) 2009; 15 Yarin (10.1016/j.actbio.2018.09.031_b1595) 2001; 90 Kim (10.1016/j.actbio.2018.09.031_b0695) 2017 10.1016/j.actbio.2018.09.031_b0600 10.1016/j.actbio.2018.09.031_b0720 10.1016/j.actbio.2018.09.031_b0965 Gardan (10.1016/j.actbio.2018.09.031_b0480) 2015; 7543 Dias (10.1016/j.actbio.2018.09.031_b0495) 2014; 36 Comlekci (10.1016/j.actbio.2018.09.031_b1505) 2013; 103 Van Rie (10.1016/j.actbio.2018.09.031_b0620) 2015; 26 10.1016/j.actbio.2018.09.031_b0725 Yao (10.1016/j.actbio.2018.09.031_b1490) 2014; 2 10.1016/j.actbio.2018.09.031_b0845 Mumtaz (10.1016/j.actbio.2018.09.031_b1230) 2007; 42 Nidhi (10.1016/j.actbio.2018.09.031_b1535) 2011; 3 Mancuso (10.1016/j.actbio.2018.09.031_b0955) 2017; 231 Calignano (10.1016/j.actbio.2018.09.031_b1745) 2017; 105 Brunello (10.1016/j.actbio.2018.09.031_b0210) 2016; 34 Doyle (10.1016/j.actbio.2018.09.031_b1065) 2014; 42 Muerza-Cascante (10.1016/j.actbio.2018.09.031_b1615) 2017; 52 Sarkar (10.1016/j.actbio.2018.09.031_b0355) 2018; 53 Li (10.1016/j.actbio.2018.09.031_b1630) 2016; 176 Shapiro (10.1016/j.actbio.2018.09.031_b0075) 2008; 15 de Peppo (10.1016/j.actbio.2018.09.031_b1270) 2012; 2012 Mondschein (10.1016/j.actbio.2018.09.031_b1465) 2017; 140 Inzana (10.1016/j.actbio.2018.09.031_b0780) 2014; 35 Puppi (10.1016/j.actbio.2018.09.031_b1335) 2012; 14 Zhou (10.1016/j.actbio.2018.09.031_b0785) 2014; 38 10.1016/j.actbio.2018.09.031_b0265 Eshraghi (10.1016/j.actbio.2018.09.031_b1085) 2012; 8 Lv (10.1016/j.actbio.2018.09.031_b1280) 2015; 10 10.1016/j.actbio.2018.09.031_b0135 Shakir (10.1016/j.actbio.2018.09.031_b0340) 2016; 93 10.1016/j.actbio.2018.09.031_b0930 Nyary (10.1016/j.actbio.2018.09.031_b0110) 2017 Guillaume (10.1016/j.actbio.2018.09.031_b1430) 2017; 28 Butscher (10.1016/j.actbio.2018.09.031_b0810) 2013; 9 Gobal (10.1016/j.actbio.2018.09.031_b0980) 2016; 17 Youssef (10.1016/j.actbio.2018.09.031_b1780) 2017; 09 Qi (10.1016/j.actbio.2018.09.031_b0910) 2017; 7 Auyson (10.1016/j.actbio.2018.09.031_b1575) 2014 Vetrik (10.1016/j.actbio.2018.09.031_b0715) 2018 Jia (10.1016/j.actbio.2018.09.031_b1275) 2015; 157 Hendriks (10.1016/j.actbio.2018.09.031_b0650) 2010; 4 Thompson (10.1016/j.actbio.2018.09.031_b1570) 2007; 48 Kim (10.1016/j.actbio.2018.09.031_b1760) 2008; 4 Zhang (10.1016/j.actbio.2018.09.031_b1200) 2017; 7 Srivas (10.1016/j.actbio.2018.09.031_b1150) 2017; 6 Lee (10.1016/j.actbio.2018.09.031_b1635) 2012; 28 Soliman (10.1016/j.actbio.2018.09.031_b1650) 2010; 6 10.1016/j.actbio.2018.09.031_b1360 Singh (10.1016/j.actbio.2018.09.031_b0610) 2011; 22 Yang (10.1016/j.actbio.2018.09.031_b1775) 2016; 288 10.1016/j.actbio.2018.09.031_b0155 Bhat (10.1016/j.actbio.2018.09.031_b0625) 2012; 114 Zhou (10.1016/j.actbio.2018.09.031_b0325) 2011; 7 10.1016/j.actbio.2018.09.031_b0940 10.1016/j.actbio.2018.09.031_b0700 10.1016/j.actbio.2018.09.031_b0945 Yan (10.1016/j.actbio.2018.09.031_b1325) 2003; 57 Lam (10.1016/j.actbio.2018.09.031_b0935) 2002; 20 10.1016/j.actbio.2018.09.031_b0825 Kolan (10.1016/j.actbio.2018.09.031_b1135) 2011; 3 Qin (10.1016/j.actbio.2018.09.031_b0055) 2014; 90 Grau (10.1016/j.actbio.2018.09.031_b1145) 2017; 10 Karatay (10.1016/j.actbio.2018.09.031_b1495) 2011; 6 Lim (10.1016/j.actbio.2018.09.031_b0245) 2017; 79 Wallace (10.1016/j.actbio.2018.09.031_b1455) 2014; 6 Deng (10.1016/j.actbio.2018.09.031_b0840) 2017; 7 Malikmammadov (10.1016/j.actbio.2018.09.031_b1345) 2018; 29 Zhang (10.1016/j.actbio.2018.09.031_b1675) 2016; 181 Yang (10.1016/j.actbio.2018.09.031_b0510) 2016; 173 Dean (10.1016/j.actbio.2018.09.031_b1445) 2014; 9 Partee (10.1016/j.actbio.2018.09.031_b0990) 2006; 128 Shuai (10.1016/j.actbio.2018.09.031_b1215) 2018; 68 Cavo (10.1016/j.actbio.2018.09.031_b1305) 2016; 68 Joguet (10.1016/j.actbio.2018.09.031_b1170) 2016; 22 D’Amato (10.1016/j.actbio.2018.09.031_b1510) 2017; 18 Hutmacher (10.1016/j.actbio.2018.09.031_b0315) 2011; 6 Jazayeri (10.1016/j.actbio.2018.09.031_b0740) 2018; 44 Tang (10.1016/j.actbio.2018.09.031_b0365) 2016; 83 10.1016/j.actbio.2018.09.031_b1210 Zhou (10.1016/j.actbio.2018.09.031_b1545) 2006; 47 Bölgen (10.1016/j.actbio.2018.09.031_b0605) 2014; 42 Han (10.1016/j.actbio.2018.09.031_b0630) 2016; 93 10.1016/j.actbio.2018.09.031_b1695 Kolan (10.1016/j.actbio.2018.09.031_b1125) 2015; 21 Li (10.1016/j.actbio.2018.09.031_b1180) 2018; 67 Raina (10.1016/j.actbio.2018.09.031_b0640) 2016; 235 Zouhary (10.1016/j.actbio.2018.09.031_b0170) 2010; 22 Li (10.1016/j.actbio.2018.09.031_b1205) 2017; 7 Dini (10.1016/j.actbio.2018.09.031_b1380) 2016 Dirckx (10.1016/j.actbio.2018.09.031_b0130) 2013; 99 10.1016/j.actbio.2018.09.031_b0915 Shuai (10.1016/j.actbio.2018.09.031_b1010) 2013; 5 Abarrategi (10.1016/j.actbio.2018.09.031_b1785) 2012; 7 Pal (10.1016/j.actbio.2018.09.031_b0020) 2014; 9781461462 Butscher (10.1016/j.actbio.2018.09.031_b0040) 2011; 7 Tan (10.1016/j.actbio.2018.09.031_b1020) 2005; 15 van Bochove (10.1016/j.actbio.2018.09.031_b1420) 2016 Yang (10.1016/j.actbio.2018.09.031_b1565) 2008; 103 Vaquette (10.1016/j.actbio.2018.09.031_b1725) 2013; 9 Kumaresan (10.1016/j.actbio.2018.09.031_b1115) 2016; 30 10.1016/j.actbio.2018.09.031_b1580 10.1016/j.actbio.2018.09.031_b0010 Kang (10.1016/j.actbio.2018.09.031_b1680) 2015; 16 10.1016/j.actbio.2018.09.031_b0255 Zhou (10.1016/j.actbio.2018.09.031_b0380) 2017; 12 Belinha (10.1016/j.actbio.2018.09.031_b0030) 2014; 8 10.1016/j.actbio.2018.09.031_b1585 Will (10.1016/j.actbio.2018.09.031_b0770) 2008; 19 Hochleitner (10.1016/j.actbio.2018.09.031_b1605) 2017; 205 Zhang (10.1016/j.actbio.2018.09.031_b1220) 2016 Bushan (10.1016/j.actbio.2018.09.031_b1740) 2018; 272 Shakir (10.1016/j.actbio.2018.09.031_b0345) 2015; 26 Rodrigues (10.1016/j.actbio.2018.09.031_b1355) 2014; 10 10.1016/j.actbio.2018.09.031_b0925 Thavornyutikarn (10.1016/j.actbio.2018.09.031_b1480) 2017; 75 Zhmayev (10.1016/j.actbio.2018.09.031_b1590) 2010; 51 Wei (10.1016/j.actbio.2018.09.031_b0820) 2016; 57 Mishra (10.1016/j.actbio.2018.09.031_b0615) 2011; 22 Kolar (10.1016/j.actbio.2018.09.031_b0120) 2010; 16 Gong (10.1016/j.actbio.2018.09.031_b0920) 2017; 28 Shuai (10.1016/j.actbio.2018.09.031_b1100) 2014; 20 Nair (10.1016/j.actbio.2018.09.031_b0305) 2007; 32 Do (10.1016/j.actbio.2018.09.031_b0745) 2015; 4 Vlasea (10.1016/j.actbio.2018.09.031_b0035) 2015 Hadjidakis (10.1016/j.actbio.2018.09.031_b0100) 2006; 1092 Torkkeli (10.1016/j.actbio.2018.09.031_b0795) 2003; 63 Du (10.1016/j.actbio.2018.09.031_b1075) 2017; 137 10.1016/j.actbio.2018.09.031_b1670 10.1016/j.actbio.2018.09.031_b0220 Nik (10.1016/j.actbio.2018.09.031_b0760) 2015 Okamoto (10.1016/j.actbio.2018.09.031_b0425) 2013; 38 10.1016/j.actbio.2018.09.031_b1310 Aghazadeh (10.1016/j.actbio.2018.09.031_b1770) 2017; 18 10.1016/j.actbio.2018.09.031_b0455 Chen (10.1016/j.actbio.2018.09.031_b0790) 2017; 123 Li (10.1016/j.actbio.2018.09.031_b1000) 2015; 21 10.1016/j.actbio.2018.09.031_b1665 Hong (10.1016/j.actbio.2018.09.031_b0960) 2016; 45 Hollister (10.1016/j.actbio.2018.09.031_b0490) 2002; 23 Merceron (10.1016/j.actbio.2018.09.031_b0145) 2018 Azidin (10.1016/j.actbio.2018.09.031_b1175) 2015; 100 Paskiabi (10.1016/j.actbio.2018.09.0 |
References_xml | – reference: B. Aldemİr, S. Dİkİcİ, Ş. Öztürk, O. Karaman, A.Ş. Ürkmez, 3D Tissue Scaffold Printing On Custom Artificial Bone Applications Kişiye Özel Yapay Kemik Uygulamaları için 3B Yazdırma Tekniği Kullanılarak Doku İskelesi Oluşturulması, 18 (2014) 1–9. – volume: 49 start-page: 58 year: 2013 end-page: 71 ident: b0885 article-title: Octacalcium phosphate (OCP)-based bone substitute materials publication-title: Jpn. Dent. Sci. Rev. – reference: a. Salerno, P. a. A. Netti, E. Di Maio, S. Iannace, Engineering of Foamed Structures for Biomedical Application, J. Cell. Plast. 45 (2009) 103–117. doi:10.1177/0021955X08099929. – volume: 2014 start-page: 1 year: 2014 end-page: 6 ident: b1525 article-title: Bioactivity assessment of poly(ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application publication-title: J. Nanomater. – volume: 43 start-page: 502 year: 2014 end-page: 505 ident: b0505 article-title: Effective method for multi-scale gradient porous scaffold design and fabrication publication-title: Mater. Sci. Eng. C – reference: L. Yin, S. Yang, M. He, Y. Chang, K. Wang, Y. Zhu, Y. Liu, Y. Chang, Z. Yu, Physicochemical and biological characteristics of BMP-2 / IGF-1- loaded three-dimensional coaxial electrospun fi brous membranes for bone defect repair, (2017). doi:10.1007/s10856-017-5898-3. – volume: 15 start-page: 113 year: 2005 end-page: 124 ident: b1020 article-title: Selective laser sintering of biocompatible polymers for applications in tissue engineering publication-title: Biomed. Mater. Eng. – reference: G. Vozzi, a Previti, D. De Rossi, a Ahluwalia, Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering., Tissue Eng. 8 (2002) 1089–1098. doi:10.1089/107632702320934182. – volume: 51 start-page: 274 year: 2010 end-page: 290 ident: b1590 article-title: Modeling of melt electrospinning for semi-crystalline polymers publication-title: Polymer (Guildf) – reference: S. Tunchel, A. Blay, R. Kolerman, E. Mijiritsky, J.A. Shibli, 3D printing/additive manufacturing single titanium dental implants : a prospective multicenter study with 3 years of follow-up, 2016 (2016). – volume: 2 start-page: 277 year: 2006 end-page: 286 ident: b0350 article-title: Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications publication-title: Acta Biomater. – volume: 68 start-page: 872 year: 2016 end-page: 879 ident: b1305 article-title: Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications publication-title: Mater. Sci. Eng. C – volume: 68 start-page: 27 year: 2018 end-page: 33 ident: b1215 article-title: Positive feedback effects of Mg on the hydrolysis of poly-l-lactic acid (PLLA): promoted degradation of PLLA scaffolds publication-title: Polym. Test. – volume: 24 start-page: 1 year: 2015 end-page: 11 ident: b1410 article-title: Combined additive manufacturing approaches in tissue engineering publication-title: Acta Biomater. – volume: 7 start-page: 035002 year: 2015 ident: b1560 article-title: Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing publication-title: Biofabrication – volume: 1 start-page: 93 year: 2016 end-page: 108 ident: b0420 article-title: Bioactive polymeric scaffolds for tissue engineering publication-title: Bioact. Mater. – volume: 193 start-page: 175 year: 2018 end-page: 184 ident: b0360 article-title: Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. – volume: 48 start-page: 63 year: 2015 end-page: 70 ident: b1730 article-title: Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment publication-title: Mater. Sci. Eng. C – volume: 128 start-page: 47 year: 2017 end-page: 56 ident: b0645 article-title: Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures publication-title: Polym. (United Kingdom) – volume: 21 start-page: 1255 year: 2010 end-page: 1262 ident: b0190 article-title: Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering publication-title: J. Mater. Sci. Mater. Med. – reference: M.A. Liebert, H. Fetal, B. Cells, M. Montjovent, L. Mathieu, D. Ph, B. Hinz, L.E.E.L. Applegate, P. Bourban, P. Zambelli, Biocompatibility of Bioresorbable Poly(, 11 (2005) 1640–1649. – year: 2014 ident: b0595 publication-title: Polymeric cryogels macroporous gels with remarkable properties – volume: 7 start-page: 2769 year: 2011 end-page: 2781 ident: b0325 article-title: Nanoscale hydroxyapatite particles for bone tissue engineering publication-title: Acta Biomater. – reference: DRAFT INTERNATIONAL STANDARD ISO/DIS 17296–1 Additive manufacturing — General principles — Part 1 : Terminology, 2014 (2017). – volume: 14 start-page: 1115 year: 2012 end-page: 1127 ident: b1335 article-title: Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering publication-title: Biomed. Microdev. – volume: 1092 start-page: 385 year: 2006 end-page: 396 ident: b0100 article-title: Bone remodeling publication-title: Ann. N. Y. Acad. Sci. – reference: P.M. Mountziaris, A.G. Mikos, D. Ph, Modulation of the Inflammatory Response for Enhanced Bone Tissue Regeneration, 14 (2008). doi:10.1089/ten.teb.2008.0038. – reference: Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang, S. Peng, Novel biomaterial strategies for controlled growth factor delivery for biomedical applications, (2017). doi:10.1038/am.2017.171. – volume: 11 start-page: 1 year: 2016 end-page: 29 ident: b0900 article-title: Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing publication-title: PLoS One – volume: 2 start-page: 158 year: 2014 end-page: 186 ident: b1490 article-title: High strength and high modulus electrospun nanofibers publication-title: Fibers – volume: 75 start-page: 1299 year: 2018 end-page: 1309 ident: b1110 article-title: Properties of PLDLA/bioglass scaffolds produced by selective laser sintering publication-title: Polym. Bull. – reference: M.M. Savalani, C.C. Ng, H.C. Man, Selective Laser Melting of Magnesium for Future Applications in Medicine, 2010 Int. Conf. Manuf. Autom. (2010) 50–54. doi:10.1109/ICMA.2010.45. – volume: 13 start-page: 42 year: 2010 end-page: 44 ident: b0590 article-title: Cryogels: Freezing unveiled by thawing publication-title: Mater. Today. – volume: 45 start-page: 1 year: 2016 end-page: 22 ident: b0850 article-title: 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery publication-title: Ann. Biomed. Eng. – volume: 18 start-page: 055101 year: 2007 ident: b1515 article-title: Biocomposite nanofibres and osteoblasts for bone tissue engineering publication-title: Nanotechnology – reference: P.H. Warnke, H. Seitz, F. Warnke, S.T. Becker, S. Sivananthan, E. Sherry, Q. Liu, J. Wiltfang, T. Douglas, Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations, J. Biomed. Mater. Res. - Part B Appl. Biomater. 93 (2010) 212–217. doi:10.1002/jbm.b.31577. – volume: 25 start-page: 3569 year: 2004 end-page: 3582 ident: b0275 article-title: Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes publication-title: Biomaterials – volume: 26 start-page: 6099 year: 2005 end-page: 6105 ident: b0285 article-title: Synthesis and characterization of porous b-tricalcium phosphate blocks publication-title: Biomaterials – volume: 11 start-page: 175 year: 2017 end-page: 186 ident: b1330 article-title: Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development publication-title: J. Tissue Eng. Regen. Med. – volume: 14 start-page: 055002 year: 2013 ident: b0995 article-title: Correlation between properties and microstructure of laser sintered porous β-tricalcium phosphate bone scaffolds publication-title: Sci. Technol. Adv. Mater. – volume: 21 start-page: 747 year: 2015 end-page: 762 ident: b1000 article-title: Current status of additive manufacturing for tissue engineering scaffold publication-title: Rapid Prototyp. J. – volume: 10 start-page: 1344 year: 2017 ident: b1145 article-title: In vitro evaluation of PCL and P(3HB) as coating materials for selective laser melted porous titanium implants publication-title: Materials (Basel) – volume: 11 start-page: 13 year: 2017 ident: b0830 article-title: 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds publication-title: Materials (Basel) – start-page: 1853 year: 2016 end-page: 1863 ident: b1420 article-title: Preparation of designed poly(trimethylene carbonate) meniscus implants by stereolithography: challenges in stereolithography publication-title: Macromol. Biosci. – volume: 20 start-page: 2043 year: 2009 end-page: 2051 ident: b0280 article-title: Design of porous polymeric scaffolds by gas foaming of heterogeneous blends publication-title: J. Mater. Sci. Mater. Med. – year: 2017 ident: b0695 publication-title: Enhanced osteogenic commitment of human mesenchymal stem cells on polyethylene glycol-based cryogel with graphene oxide substrate – volume: 27 start-page: 1 year: 2016 end-page: 11 ident: b1340 article-title: Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing publication-title: J. Mater. Sci. Mater. Med. – volume: 2 start-page: 457 year: 2006 end-page: 466 ident: b1395 article-title: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications publication-title: Acta Biomater. – volume: 55 start-page: 401 year: 2001 end-page: 408 ident: b0530 article-title: Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts publication-title: J. Biomed. Mater. Res. – reference: Z. Wang, X. Zhu, W. Wang, The use of 3D-printed titanium mesh tray in treating complex comminuted mandibular fractures, (n.d.) 1–5. – volume: 16 start-page: 427 year: 2010 end-page: 434 ident: b0120 article-title: The early fracture hematoma and its potential role in fracture healing publication-title: Tissue Eng. Part B Rev. – volume: 205 start-page: 257 year: 2017 end-page: 260 ident: b1605 article-title: Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles publication-title: Mater. Lett. – volume: 40 start-page: 46 year: 2008 end-page: 62 ident: b0090 article-title: Endochondral ossification: How cartilage is converted into bone in the developing skeleton publication-title: Int. J. Biochem. Cell Biol. – volume: 128 start-page: 531 year: 2006 ident: b0990 article-title: Selective laser sintering process optimization for layered manufacturing of CAPA[sup ®] 6501 polycaprolactone bone tissue engineering scaffolds publication-title: J. Manuf. Sci. Eng. – year: 2018 ident: b0715 article-title: Porous heat-treated polyacrylonitrile scaffolds for bone publication-title: Tissue Eng. – volume: 30 start-page: 5305 year: 2016 end-page: 5312 ident: b1115 article-title: Design, analysis and fabrication of polyamide/ hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications publication-title: J. Mech. Sci. Technol. – volume: 3 start-page: 26 year: 2011 end-page: 33 ident: b1535 article-title: Hydrotropy: a promising tool for solubility enhancement: a review publication-title: Int. J. Drug Dev. Res. – year: 2010 ident: b0025 publication-title: Fundament. Biomech. Bone Tissue Eng. – volume: 2012 start-page: 1 year: 2012 end-page: 10 ident: b1005 article-title: A review of additive manufacturing publication-title: ISRN Mech. Eng. – volume: 6 start-page: 8 year: 2017 end-page: 17 ident: b1150 article-title: Osseointegration assessment of extrusion printed Ti6Al4V scaffold towards accelerated skeletal defect healing via tissue in-growth publication-title: Bioprinting – volume: 17 start-page: 479 year: 2011 end-page: 490 ident: b1240 article-title: Fabrication of magnesium using selective laser melting technique publication-title: Rapid Prototyp. J. – volume: 30 start-page: 2563 year: 2010 end-page: 2567 ident: b0180 article-title: 3D printing of bone substitute implants using calcium phosphate and bioactive glasses publication-title: J. Eur. Ceram. Soc. – volume: 34 start-page: 740 year: 2016 end-page: 753 ident: b0210 article-title: Powder-based 3D printing for bone tissue engineering publication-title: Biotechnol. Adv. – volume: 22 start-page: 1733 year: 2011 end-page: 1751 ident: b0610 article-title: Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel publication-title: J. Biomater. Sci. Polym. Ed. – volume: 31 start-page: 233 year: 2016 end-page: 245 ident: b0160 article-title: Physiological bone remodeling: systemic regulation and growth factor involvement publication-title: Physiology – volume: 100 start-page: 012033 year: 2015 ident: b1175 article-title: Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 240–242 start-page: 111 year: 2003 end-page: 142 ident: b0330 article-title: Tailoring the bioactivity of natural origin inorganic – Polymeric based systems publication-title: Key Eng. Mater. – volume: 365 start-page: 247 year: 2015 end-page: 264 ident: b0150 article-title: Oxygen as a critical determinant of bone fracture healing — A multiscale model publication-title: J. Theor. Biol. – volume: 82 start-page: 559 year: 2016 end-page: 571 ident: b0260 article-title: 3D printing-assisted design of scaffold structures publication-title: Int. J. Adv. Manuf. Technol. – volume: 35 start-page: 4026 year: 2014 end-page: 4034 ident: b0780 article-title: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration publication-title: Biomaterials – volume: 7 start-page: 2 year: 2017 end-page: 13 ident: b0910 article-title: Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo publication-title: Sci. Rep. – reference: H. Liu, W. Li, C. Liu, J. Tan, H. Wang, B. Hai, H. Cai, H. Leng, Incorporating simvastatin / poloxamer 407 hydrogel into 3D-printed porous Ti 6 Al 4 V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth Incorporating simvastatin / poloxamer 407 hydrogel into 3D-printed porous Ti 6 Al 4 V sc, (n.d.). – volume: 10 year: 2017 ident: b1155 article-title: Mesoporous bioactive glass functionalized 3D Ti-6Al-4V Scaffolds with improved surface bioactivity publication-title: Materials (Basel) – volume: 7 start-page: 1 year: 2017 end-page: 13 ident: b1200 article-title: Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an in vivo bioreactor model publication-title: Sci. Rep. – volume: 45 start-page: 1 year: 2016 end-page: 11 ident: b0205 article-title: Additive biomanufacturing: an advanced approach for periodontal tissue regeneration publication-title: Ann. Biomed. Eng. – reference: K.R. Hixon, C.T. Eberlin, T. Lu, S.M. Neal, N.D. Case, S.H. Mcbride-gagyi, S.A. Sell, The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration The calci fi cation potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration, (2017). – start-page: 25 year: 2015 end-page: 27 ident: b0760 article-title: The effect of bone scaffold gradient architecture design on stem cell mechanical modulation: a computational study publication-title: Proceedings of the 22nd Iranian Conference on Biomedical Engineering (ICBME) – volume: 7 start-page: 035004 year: 2015 ident: b0320 article-title: Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair publication-title: Biofabrication – volume: 9781461462 start-page: 1 year: 2014 end-page: 419 ident: b0020 article-title: Design of artificial human joints & organs publication-title: Des. Artif. Hum. Joints Organs. – reference: K. Aktories, M. Fakultät, K. Pharmakologie, A.I. Albert-, L. Freiburg, R.W. Compans, M.D. Cooper, New Perspectives in Regeneration Responsible series editor : Hilary Kropowski, n.d. – start-page: 846 year: 2013 end-page: 849 ident: b0665 publication-title: Ultrasound stimulus to enhance the bone regeneration capability of gelatin cryogels – volume: 87 start-page: 4531 year: 2000 end-page: 4547 ident: b1600 article-title: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning publication-title: J. Appl. Phys. – reference: S. Tarafder, W.S. Dernell, A. Bandyopadhyay, S. Bose, SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and in vivo osteogenesis in a rabbit model, J. Biomed. Mater. Res. - Part B Appl. Biomater. 103 (2015) 679–690. doi:10.1002/jbm.b.33239. – volume: 38 start-page: 1 year: 2014 end-page: 10 ident: b0785 article-title: Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique publication-title: Mater. Sci. Eng. C – volume: 9 start-page: 1 year: 2016 end-page: 15 ident: b1620 article-title: Poly(ε-caprolactone) scaffolds fabricated by melt electrospinning for bone tissue engineering publication-title: Materials (Basel). – volume: 117 start-page: 10212 year: 2017 end-page: 10290 ident: b1735 article-title: Polymers for 3D printing and customized additive manufacturing publication-title: Chem. Rev. – volume: 37 start-page: 767 year: 2015 end-page: 776 ident: b1060 article-title: Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials publication-title: Med. Eng. Phys. – reference: D. Liu, J. Zhuang, C. Shuai, S. Peng, Mechanical properties’ improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering., Biofabrication. 5 (2013) 025005 (10pp). doi:10.1088/1758-5082/5/2/025005. – volume: 9 start-page: 5369 year: 2013 end-page: 5378 ident: b0430 article-title: Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering publication-title: Acta Biomater. – reference: M. Castilho, C. Moseke, A. Ewald, U. Gbureck, Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects, (n.d.). doi:10.1088/1758-5082/6/1/015006. – volume: 24 start-page: 3115 year: 2003 end-page: 3123 ident: b1025 article-title: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends publication-title: Biomaterials – volume: 1 start-page: 261 year: 2015 end-page: 268 ident: b1235 article-title: Design and 3D printing of scaffolds and tissues publication-title: Engineering – reference: O. Suzuki, T. Anada, Octacalcium Phosphate: A Potential Scaffold Material for Controlling Activity of Bone-Related Cells <i∗gt;In Vitro</i>, Mater. Sci. Forum. 783–786 (2014) 1366–1371. doi:10.4028/www.scientific.net/MSF.783-786.1366. – volume: 11 start-page: 1 year: 2016 end-page: 25 ident: b0975 article-title: Open-Source Selective Laser Sintering (OpenSLS) of nylon and biocompatible polycaprolactone publication-title: PLoS One – volume: 50 start-page: 7182 year: 2015 end-page: 7191 ident: b0870 article-title: Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting publication-title: J. Mater. Sci. – volume: 231 start-page: 575 year: 2017 end-page: 585 ident: b0955 article-title: Three-dimensional printing of porous load-bearing bioceramic scaffolds publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. – volume: 6 start-page: 858 year: 2011 ident: b1495 article-title: Modelling of electrospinning process at various electric fields publication-title: Micro Nano Lett. – volume: 23 year: 2012 ident: b0655 article-title: Mechanical properties and in vitro behavior of nanofiberhydrogel composites for tissue engineering applications publication-title: Nanotechnology – volume: 9781118406 start-page: 291 year: 2014 end-page: 313 ident: b1425 article-title: Scaffold designing publication-title: Bio-Ceram. Clin. Appl. – reference: D. Steffens, R. Alvarenga Rezende, B. Santi, F.D. Alencar de Sena Pereira, P. Inforçatti Neto, J.V. Lopes da Silva, P. Pranke, 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells, J. Appl. Biomater. Funct. Mater. 14 (2016) 0–0. doi:10.5301/jabfm.5000252. – volume: 95 start-page: 2126 year: 2010 end-page: 2146 ident: b0310 article-title: Biodegradable polymer matrix nanocomposites for tissue engineering: a review publication-title: Polym. Degrad. Stab. – volume: 7 start-page: 13 year: 2012 end-page: 24 ident: b1460 article-title: Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds publication-title: Virtual Phys. Prototyp. – year: 2016 ident: b1380 publication-title: Tailored star poly scaffolds for in vivo regeneration of long bone critical size defects – volume: 104 start-page: 57 year: 2016 end-page: 70 ident: b0635 article-title: Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration publication-title: J. Biomed. Mater. Res. – Part A. – reference: Y. Huang, X. Zhang, G. Gao, T. Yonezawa, X. Cui, 3D bioprinting and the current applications in tissue engineering, 1600734 (2017). doi:10.1002/biot.201600734. – volume: 6 start-page: 4495 year: 2010 end-page: 4505 ident: b1050 article-title: Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering publication-title: Acta Biomater. – volume: 3 start-page: 8348 year: 2015 end-page: 8358 ident: b1415 article-title: Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography publication-title: J. Mater. Chem. B – reference: Y. Su, Q. Su, W. Liu, M. Lim, J. Reddy, X. Mo, Acta Biomaterialia Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core – shell PLLACL – collagen fibers for use in bone tissue engineering, 8 (2012) 763–771. doi:10.1016/j.actbio.2011.11.002. – volume: 26 start-page: 41 year: 2015 end-page: 48 ident: b0345 article-title: Synthesis and characterization of a nano-hydroxyapatite/chitosan/polyethylene glycol nanocomposite for bone tissue engineering publication-title: Polym. Adv. Technol. – reference: F. Luongo, F.G. Mangano, A. Macchi, G. Luongo, C. Mangano, Custom-Made Synthetic Scaffolds for Bone Reconstruction : A Retrospective, Multicenter Clinical Study on 15 Patients, 2016 (2016). – volume: 37 start-page: 359 year: 2017 end-page: 368 ident: b1400 article-title: Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties publication-title: J. Eur. Ceram. Soc. – reference: M. Lindner, S. Hoeges, W. Meiners, K. Wissenbach, R. Smeets, R. Telle, R. Poprawe, H. Fischer, Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique, J. Biomed. Mater. Res. - Part A. 97 A (2011) 466–471. doi:10.1002/jbm.a.33058. – reference: B. Sez, O. Pediatrica, I.S. Matteo, F.S. Maugeri, D. Smec, S. Ortopedia, I.S. Matteo, T. Engineering, effects of electromagnetic stimulation on osteogenic differentiation of human mesenchymal stromal cells seeded onto gelatin cryogel, 24 (2011) 1–6. doi:10.1177/03946320110241S201. – volume: 70 start-page: 812 year: 2017 end-page: 823 ident: b1225 article-title: Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis publication-title: Mater. Sci. Eng. C – reference: F. Obregon, C. Vaquette, S. Ivanovski, D.W. Hutmacher, L.E. Bertassoni, Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering, 94 (n.d.) 143–152. – volume: 23 start-page: 5651 year: 2011 end-page: 5657 ident: b1640 article-title: Direct writing by way of melt electrospinning publication-title: Adv. Mater. – volume: 7543 start-page: 1 year: 2015 end-page: 15 ident: b0480 article-title: Additive manufacturing technologies: state of the art and trends publication-title: Int. J. Prod. Res. – volume: 83 start-page: 127 year: 2016 end-page: 141 ident: b0230 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review publication-title: Biomaterials – volume: 6 start-page: 5398 year: 2013 end-page: 5409 ident: b1160 article-title: Comparative analysis of the oxygen supply and viability of human osteoblasts in three-dimensional titanium scaffolds produced by laser-beam or electron-beam melting publication-title: Materials (Basel) – volume: 40 start-page: 108 year: 2015 end-page: 114 ident: b1105 article-title: 3D printing of biomaterials publication-title: MRS Bull. – volume: 16 start-page: 103 year: 2015 end-page: 116 ident: b1680 article-title: Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors publication-title: Acta Biomater. – volume: 79 start-page: 917 year: 2017 end-page: 929 ident: b0245 article-title: Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds publication-title: Mater. Sci. Eng. C. – volume: 22 start-page: 243 year: 2018 end-page: 255 ident: b0465 article-title: Accuracy in dental surgical guide fabrication using different 3-D printing techniques publication-title: Addit. Manuf. – reference: A. Golunova, J. Jaroš, V. Jurtíková, I. Kotelnikov, J. Kotek, N - (2-Hydroxypropyl) Methacrylamide Based Cryogels – Synthesis and Biomimetic Modification for Stem Cell Applications, 64 (2015). – volume: 2012 year: 2012 ident: b1540 article-title: Needleless melt-electrospinning of polypropylene nanofibres publication-title: J. Nanomater. – volume: 103 start-page: 149 year: 2013 end-page: 151 ident: b1505 article-title: Electrostatic field considerations related force effect on electrospinning publication-title: IEEE Trans. Nanotechnol. – volume: 54 start-page: 351 year: 2013 end-page: 360 ident: b1265 article-title: Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting publication-title: Connect. Tissue Res. – volume: 27 start-page: 3413 year: 2006 end-page: 3431 ident: b0370 article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering publication-title: Biomaterials – volume: 22 start-page: 20 year: 2016 end-page: 30 ident: b1170 article-title: Porosity content control of CoCrMo and titanium parts by Taguchi method applied to selective laser melting process parameter publication-title: Rapid Prototyp. J. – volume: 83 start-page: 363 year: 2016 end-page: 382 ident: b0365 article-title: Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration publication-title: Biomaterials – volume: 42 start-page: 569 year: 2011 end-page: 573 ident: b0195 article-title: Scaffolds for bone healing: Concepts, materials and evidence publication-title: Injury – volume: 56 start-page: 363 year: 2013 end-page: 374 ident: b0445 article-title: Micro-CT finite element model and experimental validation of trabecular bone damage and fracture publication-title: Bone – volume: 22 start-page: 752 year: 2016 end-page: 765 ident: b1015 article-title: Fabrication of three dimensional open porous regular structure of PA-2200 for enhanced strength of scaffold using selective laser sintering publication-title: Rapid Prototyp. J. – start-page: 10 year: 2010 end-page: 15 ident: b1550 article-title: Design and evaluation of melt-electrospinning electrodes nanofiber production without need for solvent recuperation is one of the possible ways to transform the laboratory scale electrospinning technique to high productivity process publication-title: Melt-Electrospinning – volume: 42 start-page: 70 year: 2014 end-page: 77 ident: b0605 article-title: Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects publication-title: Artif. Cells, Nanomed. Biotechnol. – volume: 40 start-page: 15455 year: 2014 end-page: 15462 ident: b1435 article-title: Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering publication-title: Ceram. Int. – reference: B.H. Moghadam, A.K. Haghi, S. Kasaei, Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods computational-based approach for predicting porosity of electrospun nanofiber mats using response S, 2348 (2015). doi:10.1080/00222348.2015.1090654. – reference: S.C. Rodrigues, C.L. Salgado, A. Sahu, M.P. Garcia, M.H. Fernandes, F.J. Monteiro, Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications, J. Biomed. Mater. Res. - Part A. 101 A (2013) 1080–1094. doi:10.1002/jbm.a.34394. – volume: 22 start-page: 2107 year: 2011 end-page: 2126 ident: b0615 article-title: Inorganic/organic biocomposite cryogels for regeneration of bony tissues publication-title: J. Biomater. Sci. Polym. Ed. – reference: M.N. Oliveira, L.H. Rau, R.D.S. Magini, Ridge Preservation After Maxillary Third Molar Extraction Using 30% Porosity PLGA/HA/b-TCP Scaffolds With and Without Simvastatin: A Pilot Randomized Controlled Clinical Trial, (2017) 832–840. doi:10.1097/ID.0000000000000655. – volume: 13 start-page: 101 year: 2014 end-page: 108 ident: b1500 article-title: An alternative electrospinning approach with varying electric field for 2-D-aligned nanofibers publication-title: IEEE Trans. Nanotechnol. – volume: 47 start-page: 533 year: 2014 end-page: 539 ident: b0415 article-title: Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering publication-title: Brazilian J. Med. Biol. Res. – volume: 18 start-page: 9 year: 2015 end-page: 20 ident: b1470 article-title: Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds publication-title: Acta Biomater. – start-page: 231 year: 2015 end-page: 263 ident: b0035 article-title: Additive manufacturing for bone load bearing applications publication-title: 3D Bioprint. Nanotechnol. Tissue Eng. Regen. Med. – volume: 93 start-page: 276 year: 2016 end-page: 289 ident: b0340 article-title: Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 102 start-page: 4317 year: 2014 end-page: 4325 ident: b0805 article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds publication-title: J. Biomed. Mater. Res. – Part A – volume: 31 start-page: 6121 year: 2010 end-page: 6130 ident: b1475 article-title: A review on stereolithography and its applications in biomedical engineering publication-title: Biomaterials – volume: 62 start-page: 668 year: 2016 end-page: 677 ident: b0565 article-title: Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds publication-title: Mater. Sci. Eng. C – volume: 80 start-page: 119 year: 2018 end-page: 127 ident: b0755 article-title: Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants publication-title: J. Mech. Behav. Biomed. Mater. – volume: 5 start-page: 1082 year: 2009 end-page: 1093 ident: b0560 article-title: Engineered μ-bimodal poly(ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation publication-title: Acta Biomater. – reference: H. Shao, M. Sun, F. Zhang, A. Liu, Y. He, J. Fu, X. Yang, H. Wang, Z. Gou, Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds, J. Dent. Res. (2017) 002203451773484. doi:10.1177/0022034517734846. – volume: 9 start-page: 9149 year: 2013 end-page: 9158 ident: b0810 article-title: New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes publication-title: Acta Biomater. – reference: B. Holmes, K. Bulusu, M. Plesniak, A. Di Luca, A. Longoni, G. Criscenti, G. Criscenti, A. Longoni, A. Di Luca, A. Lode, M. Meyer, S. Brüggemeier, A. Di Luca, A. Longoni, G. Criscenti, porosity gradient 3D printing of novel osteochondral scaffolds with graded microstructure, (n.d.). – reference: J. Li, X. Liu, B. zuo, L. Zhang, The Role of Bone Marrow Microenvironment in Governing the Balance between Osteoblastogenesis and Adipogenesis, Aging Dis. 7 (2016) 514. doi:10.14336/AD.2015.1206. – year: 2014 ident: b0390 article-title: 1 – Calcium Phosphate Cements for Bone Regeneration publication-title: Woodhead Publishing Limited – volume: 2014 year: 2014 ident: b0580 article-title: Biological effect of gas plasma treatment on CO2 gas foaming/salt leaching fabricated porous polycaprolactone scaffolds in bone tissue engineering publication-title: J. Nanomater. – reference: 6.4 Bone Formation and Development | Anatomy and Physiology, (n.d.). – volume: 31 start-page: 132 year: 2016 end-page: 139 ident: b1120 article-title: Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells publication-title: J. Biomater. Appl. – volume: 7 year: 2012 ident: b1785 article-title: Biological properties of solid free form designed ceramic scaffolds with bmp-2: In vitro and in vivo evaluation publication-title: PLoS One – volume: 53 start-page: 1 year: 2000 end-page: 7 ident: b0570 article-title: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive publication-title: J. Biomed. Mater. Res. – reference: D. Ben, P. Tan, Novel 3D polycaprolactone scaffold for ridge preservation – a pilot randomised controlled clinical trial, (2014) 271–277. doi:10.1111/clr.12486. – volume: 81 start-page: 1089 year: 2015 end-page: 1097 ident: b1765 article-title: Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach publication-title: Int. J. Biol. Macromol. – reference: A.L. Hong, B.T. Newman, A. Khalid, O.M. Teter, E.A. Kobe, M. Shukurova, R. Shinde, D. Sipzner, R.J. Pignolo, J.K. Udupa, C.S. Rajapakse, Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging, (2017) 101380O. doi:10.1117/12.2254475. – volume: 29 start-page: 805 year: 2018 end-page: 824 ident: b1345 article-title: PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering publication-title: J. Biomater. Sci. Polym. Ed. – volume: 23 start-page: 767 year: 2013 end-page: 774 ident: b0660 article-title: The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (VEGF)-loaded gelatin/hydroxyapatite “cryogel” scaffold publication-title: Eur. J. Orthop. Surg. Traumatol. – volume: 4 start-page: 1742 year: 2015 end-page: 1762 ident: b0745 article-title: 3D Printing of scaffolds for tissue regeneration applications publication-title: Adv. Healthc. Mater. – reference: . – reference: J.B. Vella, R.P. Trombetta, M.D. Hoffman, J. Inzana, H. Awad, D.S.W. Benoit, Three dimensional printed calcium phosphate and poly (caprolactone) composites with improved mechanical properties and preserved microstructure, (2017) 663–672. doi:10.1002/jbm.a.36270. – year: 2017 ident: b0235 publication-title: Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical – volume: 38 start-page: 1487 year: 2013 end-page: 1503 ident: b0425 article-title: Synthetic biopolymer nanocomposites for tissue engineering scaffolds publication-title: Prog. Polym. Sci. – volume: 109 start-page: 415 year: 2016 end-page: 424 ident: b0555 article-title: Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds publication-title: Mater. Des. – volume: 8 start-page: 035008 year: 2016 ident: b1645 article-title: Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds publication-title: Biofabrication – volume: 4 start-page: 1611 year: 2008 end-page: 1619 ident: b1760 article-title: Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles publication-title: Acta Biomater. – volume: 26 year: 2015 ident: b0620 article-title: Cryogel-PCL combination scaffolds for bone tissue repair publication-title: J. Mater. Sci. Mater. Med. – reference: P. Fernandes, B. Gouveia, J. Rodrigues, Fabrication of computationally designed scaffolds by low temperature 3D printing, (n.d.). doi:10.1088/1758-5082/5/3/035012. – volume: 90 start-page: 4836 year: 2001 end-page: 4846 ident: b1595 article-title: Taylor cone and jetting from liquid droplets in electrospinning of nanofibers publication-title: J. Appl. Phys. – volume: 78 start-page: 31 year: 2018 end-page: 36 ident: b1715 article-title: Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: a prospective pilot study publication-title: Oral Oncol. – volume: 10 start-page: 4175 year: 2014 end-page: 4185 ident: b1355 article-title: Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: the effect of silanol groups publication-title: Acta Biomater. – reference: C. Mota, D. Puppi, D. Dinucci, M. Gazzarri, F. Chiellini, Additive manufacturing of star poly (ε -caprolactone) wet- spun scaffolds for bone tissue engineering applications, (2013). doi:10.1177/0883911513490341. – volume: 6 start-page: 015003 year: 2014 ident: b1455 article-title: Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package publication-title: Biofabrication – volume: 15 start-page: 115 year: 2009 end-page: 124 ident: b1030 article-title: Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering publication-title: Tissue Eng. Part C-Methods – start-page: 355 year: 2018 end-page: 364 ident: b0145 publication-title: Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells – year: 2014 ident: b1530 article-title: 5 – Multifunctional Scaffolds For Bone Regeneration publication-title: Woodhead Publishing Limited – volume: 3 year: 2018 ident: b1140 article-title: Chemically treated 3D printed polymer scaffolds for biomineral formation publication-title: ACS Omega – reference: International Standard Additive manufacturing — General Overview of process categories and 2015 (2015). – volume: 5 start-page: 015014 year: 2013 ident: b1010 article-title: Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering publication-title: Biofabrication – volume: 44 start-page: 1 year: 2018 end-page: 9 ident: b0740 article-title: The cross-disciplinary emergence of 3D printed bioceramic scaffolds in orthopedic bioengineering publication-title: Ceram. Int. – volume: 6 start-page: 2467 year: 2010 end-page: 2476 ident: b1070 article-title: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering publication-title: Acta Biomater. – volume: 89 start-page: 3176 year: 2006 end-page: 3181 ident: b0865 article-title: Internal structure evaluation of three-dimensional calcium phosphate bone scaffolds: a micro-computed tomographic study publication-title: J. Am. Ceram. Soc. – volume: 181 start-page: 119 year: 2016 end-page: 122 ident: b1675 article-title: The controlled release of growth factor via modified coaxial electrospun fibres with emulsion or hydrogel as the core publication-title: Mater. Lett. – reference: A. Rodriguez-Palomo, D. Monopoli, H. Afonso, I. Izquierdo-Barba, M. Vallet-Regí, Surface zwitterionization of customized 3D Ti6Al4V scaffolds: a promising alternative to eradicate bone infection, J. Mater. Chem. B. (2016) 4356–4365. doi:10.1039/C6TB00675B. – volume: 57 start-page: 2623 year: 2003 end-page: 2628 ident: b1325 article-title: Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition publication-title: Mater. Lett. – volume: 16 start-page: 496 year: 2013 end-page: 504 ident: b0005 article-title: Bone tissue engineering using 3D printing publication-title: Mater. Today. – volume: 42 start-page: 7647 year: 2007 end-page: 7656 ident: b1230 article-title: Laser melting functionally graded composition of Waspaloy® and Zirconia powders publication-title: J. Mater. Sci. – volume: 10 start-page: 035013 year: 2015 ident: b1280 article-title: Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti 6 Al 4 V scaffolds incorporating growth factor-doped fibrin glue publication-title: Biomed. Mater. – reference: A. Mazzoli, C. Ferretti, a Gigante, E. Salvolini, M. Mattioli-Belmonte, Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering, Rapid Prototyp. J. 21 (2015) 386–392. doi:10.1108/RPJ-04-2013-0040. – start-page: 7 year: 2017 end-page: 14 ident: b0110 publication-title: Principles Bone Joint Res. – volume: 63 start-page: 3 year: 2003 end-page: 194 ident: b0795 article-title: Droplet microfluidics on a planar surface publication-title: VTT Publ. – volume: 42 start-page: 661 year: 2014 end-page: 677 ident: b1065 article-title: Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling publication-title: Ann. Biomed. Eng. – reference: N. Kemençe, N. Bölgen, Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility, (2017) 20–33. doi:10.1002/term.1813. – volume: 23 start-page: 4095 year: 2002 end-page: 4103 ident: b0490 article-title: Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints publication-title: Biomaterials – volume: 71 start-page: 225 year: 2018 end-page: 234 ident: b0395 article-title: Binary polyhydroxyalkanoate systems for soft tissue engineering publication-title: Acta Biomater. – volume: 21 start-page: 716 year: 2015 end-page: 724 ident: b0800 article-title: Conceptual design of three-dimensional scaffolds of powder-based materials for bone tissue engineering applications publication-title: Rapid Prototyp. J. – volume: 82 start-page: 163 year: 2018 end-page: 181 ident: b0855 article-title: Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application publication-title: Mater. Sci. Eng. C – volume: 31 start-page: 304 year: 2015 end-page: 319 ident: b1350 article-title: Modified chitosan scaffolds: Proliferative, cytotoxic, apoptotic, and necrotic effects on Saos-2 cells and antimicrobial effect on publication-title: J. Bioact. Compat. Polym. – year: 2010 ident: b0065 article-title: Developmental biology – volume: 124 start-page: 991 year: 2011 end-page: 998 ident: b0095 article-title: Bone remodelling at a glance publication-title: J. Cell Sci. – volume: 18 start-page: 483 year: 2017 end-page: 492 ident: b1510 article-title: Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal publication-title: Fibers Polym. – volume: 24 start-page: S36 year: 2010 end-page: S40 ident: b0165 article-title: Autologous bone graft: properties and techniques publication-title: J. Orthop. Trauma – volume: 114 start-page: 663 year: 2012 end-page: 670 ident: b0625 article-title: Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications publication-title: J. Biosci. Bioeng. – volume: 1700612 start-page: 1 year: 2017 end-page: 18 ident: b0215 article-title: Biomimetic materials and fabrication approaches for bone publication-title: Tissue Eng. – volume: 18 start-page: 909 year: 2007 end-page: 916 ident: b0895 article-title: Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants publication-title: J. Mater. Sci. Mater. Med. – reference: D. Puppi, A. Pirosa, A. Morelli, F. Chiellini, D. Puppi, A. Pirosa, A. Morelli, F. Chiellini, Design, fabrication and characterization of tailored poly [(R) -3-hydroxybutyrate-co- (R) -3- hydroxyexanoate ] scaffolds by computer-aided wet-spinning, (2018). doi:10.1108/RPJ-03-2016-0037. – volume: 32 start-page: 135 year: 2016 end-page: 148 ident: b0475 article-title: Ten challenges in 3D printing publication-title: Eng. Comput. – volume: 103 start-page: 1 year: 2008 end-page: 12 ident: b1565 article-title: Effect of electric field distribution uniformity on electrospinning publication-title: J. Appl. Phys. – volume: 8 start-page: 328 year: 2014 ident: b0030 article-title: Meshless methods in biomechanics: bone tissue remodelling analysis publication-title: Lect. Notes Comput. Vis. Biomech. – volume: 22 start-page: 115 year: 2016 end-page: 122 ident: b1250 article-title: Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium publication-title: Rapid Prototyp. J. – volume: 14 start-page: 1089 year: 2003 end-page: 1097 ident: b0295 article-title: Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response publication-title: J. Mater. Sci. Mater. Med. – volume: 111 start-page: 255 year: 2018 end-page: 272 ident: b0765 article-title: Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading publication-title: Exp. Int. J. Impact Eng. – volume: 15 start-page: 2117 year: 2014 end-page: 2126 ident: b0485 article-title: Advanced projection image generation algorithm for fabrication of a tissue scaffold using volumetric distance field publication-title: Int. J. Precis. Eng. Manuf. – volume: 37 start-page: 1037 year: 2015 end-page: 1046 ident: b0515 article-title: Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering publication-title: Med. Eng. Phys. – year: 2017 ident: b0250 article-title: Principal theories of electrospinning publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 11 start-page: 1 year: 2014 end-page: 11 ident: b0890 article-title: Biological performance of calcium pyrophosphate-coated porous alumina scaffolds publication-title: Int. J. Appl. Ceram. Technol. – volume: 7 start-page: 1 year: 2017 end-page: 14 ident: b0840 article-title: 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation publication-title: Sci. Rep. – volume: 45 start-page: 375 year: 2016 end-page: 386 ident: b0960 article-title: Acta Biomaterialia Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys publication-title: Acta Biomater. – volume: 72 start-page: 53 year: 2017 end-page: 61 ident: b0575 article-title: Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming publication-title: Mater. Sci. Eng. C – volume: 84 start-page: 1671 year: 2016 end-page: 1677 ident: b0750 article-title: Software to generate 3-D continuous printing paths for the fabrication of tissue engineering scaffolds publication-title: Int. J. Adv. Manuf. Technol. – reference: B. Leukers, H. Gulkan, S.H. Irsen, S. Milz, C. Tille, H. Seitz, M. Schieker, Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing, Materwiss. Werksttech. 36 (2005) 781–787. doi:10.1002/mawe.200500968. – volume: 8 start-page: 4197 year: 2013 end-page: 4213 ident: b1045 article-title: Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications publication-title: Int. J. Nanomed. – volume: 4 start-page: 1198 year: 2008 end-page: 1207 ident: b1520 article-title: Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration publication-title: Acta Biomater. – reference: A. Barba, A. Diez-Escudero, Y. Maazouz, K. Rappe, M. Espanol, E.B. Montufar, M. Bonany, J.M. Sadowska, J. Guillem-Marti, C. Öhman-Mägi, C. Persson, M.-C. Manzanares, J. Franch, M.-P. Ginebra, Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture, ACS Appl. Mater. Interfaces. (2017) acsami.7b14175. doi:10.1021/acsami.7b14175. – reference: Z. Huan, H.K. Chu, H. Liu, J. Yang, D. Sun, Engineered bone scaffolds with Dielectrophoresis-based patterning using 3D printing, (2017) 1–9. – volume: 107 start-page: 228 year: 2016 end-page: 246 ident: b0240 article-title: Polylactides in additive biomanufacturing publication-title: Adv. Drug Deliv. Rev. – volume: 173 start-page: 136 year: 2016 end-page: 140 ident: b0510 article-title: Mathematically defined gradient porous materials publication-title: Mater. Lett. – reference: C. Shuai, C. Shuai, P. Feng, C. Gao, S. Peng, Y. Yang, Antibacterial Capability, Physicochemical Properties, and Biocompatibility of nTiO2 Incorporated Polymeric Scaffolds, (2018). doi:10.3390/polym10030328. – reference: S. Mohammadzadehmoghadam, Y. Dong, I.J. Davies, International Journal of Polymeric Materials and Modeling electrospun nanofibers : An overview from theoretical, empirical, and numerical approaches, 4037 (2016). doi:10.1080/00914037.2016.1180617. – volume: 28 start-page: 2196 year: 2017 end-page: 2204 ident: b0920 article-title: Strain-controlled fatigue behaviors of porous PLA-based scaffolds by 3D-printing technology publication-title: J. Biomater. Sci. Polym. Ed. – start-page: 12 year: 2010 end-page: 27 ident: b0140 article-title: Vascularization in bone tissue engineering: physiology, current strategies publication-title: Major Hurdles Future Challenges – volume: 61 start-page: 645 year: 2016 end-page: 649 ident: b1195 article-title: , , , Characterization of three-dimensional printed composite scaffolds prepared with different fabrication methods publication-title: Arch. Metall. Mater. – volume: 19 start-page: 2781 year: 2008 end-page: 2790 ident: b0770 article-title: Porous ceramic bone scaffolds for vascularized bone tissue regeneration publication-title: J. Mater. Sci. Mater. Med. – volume: 53 start-page: 230 year: 2018 end-page: 246 ident: b0355 article-title: Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application publication-title: J. Mater. Sci. – volume: 19 start-page: 459 year: 2008 end-page: 466 ident: b0115 article-title: Bone remodeling during fracture repair: the cellular picture publication-title: Semin. Cell Dev. Biol. – volume: 208 start-page: 118 year: 2017 end-page: 121 ident: b0835 article-title: β-Tricalcium phosphate nanofiber scaffolds with fine unidirectional grains publication-title: Mater. Lett. – start-page: 1 year: 2016 end-page: 17 ident: b1220 publication-title: Additive manufacturing of functionally graded objects: a review – volume: 21 start-page: 152 year: 2015 end-page: 158 ident: b1125 article-title: assessment of laser sintered bioactive glass scaffolds with different pore geometries publication-title: Rapid Prototyp. J. – volume: 67 start-page: 378 year: 2018 end-page: 392 ident: b1180 article-title: Additively manufactured biodegradable porous magnesium publication-title: Acta Biomater. – volume: 59 start-page: 241 year: 2016 end-page: 250 ident: b1290 article-title: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating publication-title: J. Mech. Behav. Biomed. Mater. – volume: 137 start-page: 37 year: 2017 end-page: 48 ident: b1075 article-title: Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits publication-title: Biomaterials – volume: 2012 start-page: 646417 year: 2012 ident: b1270 article-title: Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors publication-title: Sci. World J. – reference: M. Asadi-Eydivand, M. Solati-Hashjin, A. Farzad, N.A. Abu Osman, Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes, Robot. Comput. Integr. Manuf. 37 (2016) 57–67. doi:10.1016/j.rcim.2015.06.005. – start-page: 1392 year: 2005 end-page: 1404 ident: b0060 publication-title: Current concepts of molecular aspects of bone healing – volume: 43 start-page: 13702 year: 2017 end-page: 13709 ident: b0815 article-title: Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds publication-title: Ceram. Int. – reference: R. Smeets, M. Barbeck, H. Hanken, H. Fischer, M. Lindner, M. Heiland, M. Wöltje, S. Ghanaati, A. Kolk, Selective laser-melted fully biodegradable scaffold composed of poly(d, l-lactide) and ??-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: In vitro and in vivo results, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2016) 1–16. doi:10.1002/jbm.b.33660. – volume: 12 start-page: 220 year: 2015 end-page: 228 ident: b0520 article-title: Osteochondral integrated scaffolds with gradient structure by 3D printing forming publication-title: Int. J. Autom. Comput. – volume: 32 start-page: 762 year: 2007 end-page: 798 ident: b0305 article-title: Biodegradable polymers as biomaterials publication-title: Prog. Polym. Sci. – volume: 135 start-page: 81 year: 2015 end-page: 89 ident: b1080 article-title: Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility publication-title: Colloids Surfaces B Biointerfaces – volume: 288 start-page: 648 year: 2016 end-page: 658 ident: b1775 article-title: Direct electrospinning writing for producing 3D hybrid constructs consisting of microfibers and macro-struts for tissue engineering publication-title: Chem. Eng. J. – reference: T. Lu, A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration, (n.d.). – volume: 37 start-page: 1151 year: 2005 end-page: 1161 ident: b0460 article-title: Application of micro CT and computation modeling in bone tissue engineering publication-title: CAD Comput. Aided Des. – reference: R. do V. Pereira, G.V. Salmoria, M.O.C. de Moura, Á. Aragones, M.C. Fredel, Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering, Mater. Res. 17 (2014) 33–38. doi:10.1590/S1516-14392014005000075. – reference: L. Fassinai, E. Sain, L. Visap, J. Schelfhoup, M. Dierick, L.V.A.N. Hoorebeke, P. Dubruel, F. Benazz, G. Magenesl, S.V.A.N. Vlierberghe, Electromagnetic stimulation to optimize the bone regeneration capacity of gelatin-based cryogels, Department of Computer Engineering and Systems Science, University of Pavia, Italy; Centre for, 25 (2012) 165–174. doi:10.1177/039463201202500119. – volume: 1 start-page: 1 year: 2013 end-page: 27 ident: b1405 article-title: Electrospinning and additive manufacturing: converging technologies publication-title: Biomater. Sci. – volume: 140 start-page: 170 year: 2017 end-page: 188 ident: b1465 article-title: Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds publication-title: Biomaterials – volume: 8 start-page: 5490 year: 2015 end-page: 5507 ident: b1165 article-title: Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations publication-title: Materials (Basel) – volume: 93 start-page: 1410 year: 2016 end-page: 1419 ident: b0630 article-title: Extracellular matrix-based cryogels for cartilage tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 47 start-page: 7497 year: 2006 end-page: 7505 ident: b1545 article-title: The thermal effects on electrospinning of polylactic acid melts publication-title: Polymer (Guildf) – reference: D. Puppi, A. Morelli, F. Bello, S. Valentini, F. Chiellini, Additive Manufacturing of Poly (Methyl Methacrylate) Biomedical Implants with Dual-Scale Porosity, 1800247 (2018) 1–9. doi:10.1002/mame.201800247. – volume: 12 start-page: 7577 year: 2017 end-page: 7588 ident: b0380 article-title: Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation publication-title: Int. J. Nanomed. – volume: 3 year: 2011 ident: b1135 article-title: Fabrication of 13–93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering publication-title: Biofabrication – reference: A. Singh, A.K. Gaharwar, Microscale technologies for cell engineering, Microscale Technol. Cell Eng. (2015) 1–318. doi:10.1007/978-3-319-20726-1. – volume: 12 start-page: 155 year: 2017 ident: b0335 article-title: Synthesis, structural, and adsorption properties and thermal stability of nanohydroxyapatite/polysaccharide composites publication-title: Nanoscale Res. Lett. – reference: A. Mazzoli, Selective laser sintering in biomedical engineering., Med. & Biol. Eng. & Comput. 51 (2013) 245–256. doi:10.1007/s11517-012-1001-x. – volume: 17 start-page: 1 year: 2016 end-page: 7 ident: b0980 article-title: Physical modeling for selective laser sintering (SLS) process publication-title: J. Comput. Inf. Sci. Eng. – volume: 90 start-page: 643 year: 2014 end-page: 647 ident: b0055 article-title: Mesenchymal stem cells: Mechanisms and role in bone regeneration publication-title: Postgrad. Med. J. – reference: J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Ga Llur, M. De, S. Mps, B. Thierry, Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo, J. MATE RIALS Sci. Mater. Medicine. 10 (1999) 111–120. – volume: 5 start-page: 20227 year: 2015 end-page: 20233 ident: b0705 article-title: RSC advances application in bone tissue engineering publication-title: RSC Adv. – volume: 28 start-page: 1219 year: 2017 end-page: 1225 ident: b1430 article-title: Poly(trimethylene carbonate) and nano-hydroxyapatite porous scaffolds manufactured by stereolithography publication-title: Polym. Adv. Technol. – reference: A. Grémare, V. Guduric, R. Bareille, V. Heroguez, S. Latour, N. L’heureux, J.C. Fricain, S. Catros, D. Le Nihouannen, Characterization of printed PLA scaffolds for bone tissue engineering, J. Biomed. Mater. Res. - Part A. (2017) 1–8. doi:10.1002/jbm.a.36289. – reference: D.L. Alge, J. Bennett, T. Treasure, S. Voytik-Harbin, W.S. Goebel, T.M.G. Chu, Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering, J. Biomed. Mater. Res. - Part A. 100 A (2012) 1792–1802. doi:10.1002/jbm.a.34130. – volume: 57 start-page: 190 year: 2016 end-page: 200 ident: b0820 article-title: Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds publication-title: J. Mech. Behav. Biomed. Mater. – volume: 31 start-page: 15 year: 2016 end-page: 30 ident: b1365 article-title: Tailored star poly (ε-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects publication-title: J. Bioact. Compat. Polym. – volume: 22 start-page: 301 year: 2010 end-page: 316 ident: b0170 article-title: Bone graft harvesting from distant sites: concepts and techniques publication-title: Oral Maxillofac. Surg. Clin. North Am. – volume: 157 start-page: 143 year: 2015 end-page: 146 ident: b1275 article-title: A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles publication-title: Mater. Lett. – volume: 36 start-page: 448 year: 2014 end-page: 457 ident: b0495 article-title: Optimization of scaffold design for bone tissue engineering: a computational and experimental study publication-title: Med. Eng. Phys. – reference: (accessed June 19, 2017). – volume: 126 start-page: 45 year: 2018 end-page: 56 ident: b0400 article-title: Polyhydroxyalkanoates: characteristics, production, recent developments and applications publication-title: Int. Biodeterior. Biodegrad. – reference: S. Provided, I.S.O. No, I.H.S. Licensee, INTERNATIONAL STANDARD Additive manufacturing — General, 2014 (2014). – volume: 116 start-page: 452 year: 2017 end-page: 461 ident: b0435 article-title: Synthesis and characterisation of β-TCP/bioglass/zirconia scaffolds publication-title: Adv. Appl. Ceram. – volume: 46 start-page: 1021 year: 2010 end-page: 1033 ident: b0470 article-title: Recommended slicing positions for adaptive direct slicing by image processing technique publication-title: Int. J. Adv. Manuf. Technol. – volume: 15 start-page: 53 year: 2008 end-page: 76 ident: b0075 article-title: Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts publication-title: Eur. Cells Mater. – volume: 34 start-page: 107 year: 2014 end-page: 118 ident: b1385 article-title: Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering publication-title: J. Eur. Ceram. Soc. – volume: 9 start-page: 3 year: 2014 end-page: 9 ident: b1445 article-title: Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds publication-title: Virtual Phys. Prototyp. – volume: 153 start-page: 95 year: 2008 end-page: 108 ident: b1555 article-title: Modeling of non-isothermal polymer jets in melt electrospinning publication-title: J. Nonnewton. Fluid Mech. – reference: L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung, Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials: techniques and applications, n.d. – volume: 99 start-page: 170 year: 2013 end-page: 191 ident: b0130 article-title: Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration publication-title: Birth Defects Res. Part C – Embryo Today Rev. – volume: 24 start-page: 297 year: 2013 end-page: 310 ident: b0125 article-title: Angiogenic factors in bone local environment publication-title: Cytokine Growth Factor Rev. – volume: 64 start-page: 278 year: 1997 end-page: 294 ident: b0050 article-title: Growth kinetics, self-renewal, and the Osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation publication-title: J. Cell. Biochem. – volume: 123 start-page: 146 year: 2017 end-page: 159 ident: b0790 article-title: Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method publication-title: Int. J. Mach. Tools Manuf. – volume: 67 start-page: 1139 year: 2007 end-page: 1147 ident: b0270 article-title: Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds publication-title: Compos. Sci. Technol. – volume: 89 start-page: 265 year: 2018 end-page: 273 ident: b0405 article-title: Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering publication-title: Mater. Sci. Eng. C. – volume: 6 start-page: 2511 year: 2010 end-page: 2517 ident: b0985 article-title: Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds publication-title: Acta Biomater. – volume: 6 start-page: 1227 year: 2010 end-page: 1237 ident: b1650 article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning publication-title: Acta Biomater. – reference: M.Á. Brennan, A. Renaud, A. Gamblin, C.D. Arros, S. Nedellec, 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet- sprayed or electrospun micro-fiber scaffolds 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or el, (n.d.). doi:10.1088/1748-6041/10/4/045019. – volume: 436 start-page: 141 year: 2017 end-page: 151 ident: b0375 article-title: Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method publication-title: Appl. Surf. Sci. – volume: 235 start-page: 365 year: 2016 end-page: 378 ident: b0640 article-title: Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration publication-title: J. Control. Release – reference: G. Rasperini, S.P. Pilipchuk, C.L. Flanagan, C.H. Park, G. Pagni, S.J. Hollister, W. V Giannobile, 3D-printed Bioresorbable Scaffold for Periodontal Repair, 94 (2014) 153–157. doi:10.1177/0022034515588303. – reference: P.S.M. S, Tissue engineering and regenerative medicine Concise Review: Bioprinting of stem cells for transplantable tissue fabrication, (2017) 1940–1948. doi:10.1002/sctm.17-0148. – volume: 52 start-page: 145 year: 2017 end-page: 158 ident: b1615 article-title: Endosteal-like extracellular matrix expression on melt electrospun written scaffolds publication-title: Acta Biomater. – volume: 5 start-page: 72 year: 2016 end-page: 78 ident: b1690 publication-title: Clinical experience of full custom-made arti fi cial bones for the maxillofacial region – start-page: 179 year: 2010 end-page: 204 ident: b1095 article-title: Selective laser sintering of poly (L-lactide)/ carbonated hydroxyapatite nanocomposite porous scaffolds for bone tissue engineering publication-title: Tissue Eng. – start-page: 149 year: 2014 end-page: 154 ident: b1575 publication-title: Investigation of applying electrospinning in fused deposition modeling for scaffold fabrication – volume: 38 start-page: 837 year: 2018 end-page: 844 ident: b1315 article-title: Direct ink writing of highly bioactive glasses publication-title: J. Eur. Ceram. Soc. – reference: J. Korpela, A. Kokkari, H. Korhonen, M. Malin, T. Narhi, J. Seppalea, Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling, J. Biomed. Mater. Res. - Part B Appl. Biomater. 101 (2013) 610–619. doi:10.1002/jbm.b.32863. – volume: 75 start-page: 1281 year: 2017 end-page: 1288 ident: b1480 article-title: Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds publication-title: Mater. Sci. Eng. C – reference: J. Gilmore, T. Burg, R.E. Groff, K.J.L. Burg, Design and optimization of a novel bio-loom to weave melt-spun absorbable polymers for bone tissue engineering, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2017) 1342–1351. doi:10.1002/jbm.b.33700. – volume: 69 start-page: 115 year: 2017 end-page: 127 ident: b0540 article-title: Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2gas foaming method publication-title: J. Mech. Behav. Biomed. Mater. – volume: 6 start-page: 44 year: 2011 end-page: 56 ident: b0315 article-title: Melt electrospinning publication-title: Chem. – An Asian J. – volume: 196 start-page: 2991 year: 2007 end-page: 2998 ident: b0500 article-title: Computational design of tissue engineering scaffolds publication-title: Comput. Methods Appl. Mech. Eng. – volume: 48 start-page: 6913 year: 2007 end-page: 6922 ident: b1570 article-title: Effects of parameters on nanofiber diameter determined from electrospinning model publication-title: Polymer (Guildf) – volume: 496 start-page: 654 year: 2015 end-page: 663 ident: b0545 article-title: Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal publication-title: Int. J. Pharm. – volume: 7 start-page: 2249 year: 2006 end-page: 2258 ident: b0410 article-title: Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications publication-title: Biomacromolecules – volume: 15 start-page: 20 year: 2017 end-page: 28 ident: b1245 article-title: Selective laser melting of pure Zn with high density for biodegradable implant manufacturing publication-title: Addit. Manuf. – reference: R. Mishra, D.B. Raina, M. Pelkonen, L. Lidgren, M. Tägil, Study of in Vitro and in Vivo Bone Formation in Compo- site Cryogels and the Influence of Electrical Stimulation, 11 (2015). doi:10.7150/ijbs.13139. – volume: 272 start-page: 83 year: 2018 end-page: 96 ident: b1740 article-title: Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties publication-title: J. Control. Release – volume: 4 start-page: 524 year: 2010 end-page: 531 ident: b0650 article-title: Co-culture in cartilage tissue engineering publication-title: J. Tissue Eng. Regen. Med. – volume: 32 start-page: 161 year: 2016 end-page: 169 ident: b1300 article-title: Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation publication-title: Acta Biomater. – volume: 7 start-page: 275 year: 2012 end-page: 285 ident: b1090 article-title: Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering publication-title: Virtual Phys. Prototyp. – volume: 20 start-page: 49 year: 2002 end-page: 56 ident: b0935 article-title: Scaffold development using 3D printing with a starch-based publication-title: Polymer – volume: 2 start-page: 145 year: 2015 end-page: 149 ident: b1485 article-title: A novel approach to 3d-printed fabrics and garments publication-title: 3d Print. Addit. Manuf. – volume: 09 start-page: 012002 year: 2017 ident: b1780 article-title: Additive manufacturing of polymer melts for implantable medical devices and scaffolds publication-title: Biofabrication – year: 2015 ident: b0385 publication-title: Tissue Eng. Osteo. Tissue – volume: 102 start-page: 3140 year: 2014 end-page: 3153 ident: b1625 article-title: Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration publication-title: J. Biomed. Mater. Res. – Part A. – reference: M. Castilho, M. Dias, E. Vorndran, U. Gbureck, B. Gouveia, H. Arm, Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement, (n.d.). doi:10.1088/1758-5082/6/2/025005. – volume: 19 start-page: 2535 year: 2008 end-page: 2540 ident: b1035 article-title: Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres publication-title: J. Mater. Sci. Mater. Med. – volume: 21 start-page: 2529 year: 2000 end-page: 2543 ident: b0300 article-title: Sca!olds in tissue engineering bone and cartilage publication-title: Biomaterials – volume: 85 start-page: 218 year: 2008 end-page: 227 ident: b1390 article-title: Mechanical properties of calcium phosphate scaffolds fabricated by robocasting publication-title: J. Biomed. Mater. Res. – Part A – volume: 6 start-page: 12 year: 2003 end-page: 21 ident: b0085 article-title: Differential roles for small leucine-rich proteoglycans in bone formation publication-title: Eur. Cells Mater. – volume: 20 start-page: 369 year: 2014 end-page: 376 ident: b1100 article-title: Inhibition of phase transformation from β- to α-tricalcium phosphate with addition of poly (L-lactic acid) in selective laser sintering publication-title: Rapid Prototyp. J. – volume: 103 start-page: 1 year: 2016 end-page: 39 ident: b0015 article-title: Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment publication-title: Mater. Sci. Eng. R Reports. – volume: 10 start-page: 96 year: 2008 end-page: 104 ident: b0775 article-title: A review of process development steps for new material systems in three dimensional printing (3DP) publication-title: J. Manuf. Process. – volume: 28 start-page: 7267 year: 2012 end-page: 7275 ident: b1635 article-title: Fabrication of patterned nanofibrous mats using direct-write electrospinning publication-title: Langmuir – volume: 105 start-page: 593 year: 2017 end-page: 612 ident: b1745 article-title: Overview on additive manufacturing technologies publication-title: Proc. IEEE. – volume: 26 start-page: 31 year: 2015 end-page: 38 ident: b1450 article-title: Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing publication-title: Biomed. Mater. Eng. – volume: 63 start-page: 2417 year: 2003 end-page: 2429 ident: b0535 article-title: Bioresorbable and bioactive polymer/Bioglass?? composites with tailored pore structure for tissue engineering applications publication-title: Compos. Sci. Technol. – volume: 4 start-page: 524 year: 2013 end-page: 531 ident: b0950 article-title: Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I publication-title: J. Tissue Eng. Regen. Med. – volume: 7 start-page: 1 year: 2017 end-page: 12 ident: b1205 article-title: RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties publication-title: Sci. Rep. – volume: 43 start-page: 241 year: 2014 end-page: 262 ident: b0585 article-title: Cryogel poly(acrylamide): Synthesis, structure and applications publication-title: Sep. Purif. Rev. – volume: 8 start-page: 3138 year: 2012 end-page: 3143 ident: b1085 article-title: Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering publication-title: Acta Biomater. – reference: M. Sc, Y. Yang, M. Sc, D. Ph, P. Korkusuz, N. Bo, E. Gu, Three-Dimensional Ingrowth of Bone Cells Within Biodegradable, 14 (2008). doi:10.1089/ten.tea.2007.0277. – volume: 7 start-page: 907 year: 2011 end-page: 920 ident: b0040 article-title: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing publication-title: Acta Biomater. – volume: 176 start-page: 194 year: 2016 end-page: 198 ident: b1630 article-title: Effects of hot airflow on macromolecular orientation and crystallinity of melt electrospun poly(L-lactic acid) fibers publication-title: Mater. Lett. – reference: OpenStax, Anatomy-and-Physiology, OpenStax CNX, 2016. – reference: S. Sahoo, L.T. Ang, J.C. Goh, S. Toh, Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications, (2009). doi:10.1002/jbm.a.32645. – volume: 68 start-page: 9 year: 2016 end-page: 20 ident: b0440 article-title: Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model publication-title: Comput. Biol. Med. – volume: 18 start-page: 1468 year: 2017 end-page: 1477 ident: b1770 article-title: Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold publication-title: Fibers Polym. – volume: 22 start-page: 298 year: 2016 end-page: 310 ident: b0200 article-title: A review of three-dimensional printing in tissue engineering publication-title: Tissue Eng. Part B Rev. – reference: P. Nooeaid, W. Li, J. a Roether, V. Mourino, O.-M. Goudouri, D.W. Schubert, A.R. Boccaccini, Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating., Biointerphases. 9 (2014) 41001. doi:10.1116/1.4897217. – volume: 9 start-page: 4599 year: 2013 end-page: 4608 ident: b1725 article-title: A simple method for fabricating 3-D multilayered composite scaffolds publication-title: Acta Biomater. – volume: 50 start-page: 2 year: 2010 end-page: 13 ident: b0450 article-title: Application of micro-CT in small animal imaging publication-title: Methods – volume: 13 start-page: 42 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0590 article-title: Cryogels: Freezing unveiled by thawing publication-title: Mater. Today. doi: 10.1016/S1369-7021(10)70202-9 – volume: 82 start-page: 559 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0260 article-title: 3D printing-assisted design of scaffold structures publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-7386-6 – volume: 7 start-page: 275 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1090 article-title: Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2012.738551 – ident: 10.1016/j.actbio.2018.09.031_b0875 doi: 10.1021/acsami.7b14175 – volume: 103 start-page: 149 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b1505 article-title: Electrostatic field considerations related force effect on electrospinning publication-title: IEEE Trans. Nanotechnol. – year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0235 publication-title: Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical – volume: 208 start-page: 118 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0835 article-title: β-Tricalcium phosphate nanofiber scaffolds with fine unidirectional grains publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.05.038 – volume: 4 start-page: 524 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0950 article-title: Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I publication-title: J. Tissue Eng. Regen. Med. – volume: 117 start-page: 10212 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1735 article-title: Polymers for 3D printing and customized additive manufacturing publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00074 – volume: 24 start-page: S36 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0165 article-title: Autologous bone graft: properties and techniques publication-title: J. Orthop. Trauma doi: 10.1097/BOT.0b013e3181cec4a1 – volume: 26 start-page: 41 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0345 article-title: Synthesis and characterization of a nano-hydroxyapatite/chitosan/polyethylene glycol nanocomposite for bone tissue engineering publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3417 – ident: 10.1016/j.actbio.2018.09.031_b0175 doi: 10.1002/mawe.200500968 – volume: 22 start-page: 1733 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b0610 article-title: Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/092050610X522486 – start-page: 355 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0145 publication-title: Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells – volume: 18 start-page: 1468 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1770 article-title: Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold publication-title: Fibers Polym. doi: 10.1007/s12221-017-7120-0 – volume: 8 start-page: 5490 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1165 article-title: Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations publication-title: Materials (Basel) doi: 10.3390/ma8085259 – ident: 10.1016/j.actbio.2018.09.031_b0720 doi: 10.1177/03946320110241S201 – volume: 2012 start-page: 1 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1005 article-title: A review of additive manufacturing publication-title: ISRN Mech. Eng. doi: 10.5402/2012/208760 – volume: 35 start-page: 4026 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0780 article-title: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.01.064 – volume: 38 start-page: 837 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b1315 article-title: Direct ink writing of highly bioactive glasses publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2017.08.006 – volume: 2 start-page: 145 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1485 article-title: A novel approach to 3d-printed fabrics and garments publication-title: 3d Print. Addit. Manuf. doi: 10.1089/3dp.2015.0019 – year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0065 – volume: 21 start-page: 152 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1125 article-title: In vitro assessment of laser sintered bioactive glass scaffolds with different pore geometries publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-12-2014-0175 – volume: 42 start-page: 7647 year: 2007 ident: 10.1016/j.actbio.2018.09.031_b1230 article-title: Laser melting functionally graded composition of Waspaloy® and Zirconia powders publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-1661-3 – start-page: 10 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b1550 article-title: Design and evaluation of melt-electrospinning electrodes nanofiber production without need for solvent recuperation is one of the possible ways to transform the laboratory scale electrospinning technique to high productivity process publication-title: Melt-Electrospinning – ident: 10.1016/j.actbio.2018.09.031_b1440 doi: 10.1007/978-3-319-20726-1 – volume: 20 start-page: 369 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1100 article-title: Inhibition of phase transformation from β- to α-tricalcium phosphate with addition of poly (L-lactic acid) in selective laser sintering publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-03-2013-0037 – volume: 67 start-page: 1139 year: 2007 ident: 10.1016/j.actbio.2018.09.031_b0270 article-title: Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2006.05.018 – volume: 6 start-page: 5398 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b1160 article-title: Comparative analysis of the oxygen supply and viability of human osteoblasts in three-dimensional titanium scaffolds produced by laser-beam or electron-beam melting publication-title: Materials (Basel) doi: 10.3390/ma6115398 – volume: 59 start-page: 241 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1290 article-title: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.01.031 – year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0250 article-title: Principal theories of electrospinning publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 32 start-page: 135 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0475 article-title: Ten challenges in 3D printing publication-title: Eng. Comput. doi: 10.1007/s00366-015-0407-0 – volume: 107 start-page: 228 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0240 article-title: Polylactides in additive biomanufacturing publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.07.006 – volume: 7 start-page: 2769 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b0325 article-title: Nanoscale hydroxyapatite particles for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.03.019 – ident: 10.1016/j.actbio.2018.09.031_b0105 doi: 10.14336/AD.2015.1206 – volume: 62 start-page: 668 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0565 article-title: Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.02.010 – volume: 22 start-page: 115 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1250 article-title: Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-07-2013-0076 – ident: 10.1016/j.actbio.2018.09.031_b0185 doi: 10.1089/ten.2005.11.1640 – volume: 34 start-page: 740 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0210 article-title: Powder-based 3D printing for bone tissue engineering publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.03.009 – year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0595 publication-title: Polymeric cryogels macroporous gels with remarkable properties doi: 10.1007/978-3-319-05846-7 – volume: 61 start-page: 645 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1195 article-title: , , , Characterization of three-dimensional printed composite scaffolds prepared with different fabrication methods publication-title: Arch. Metall. Mater. doi: 10.1515/amm-2016-0110 – volume: 83 start-page: 127 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0230 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.012 – volume: 135 start-page: 81 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1080 article-title: Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility publication-title: Colloids Surfaces B Biointerfaces doi: 10.1016/j.colsurfb.2015.06.074 – ident: 10.1016/j.actbio.2018.09.031_b0690 doi: 10.1089/ten.tea.2007.0277 – volume: 23 start-page: 767 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0660 article-title: The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (VEGF)-loaded gelatin/hydroxyapatite “cryogel” scaffold publication-title: Eur. J. Orthop. Surg. Traumatol. doi: 10.1007/s00590-012-1070-4 – volume: 30 start-page: 5305 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1115 article-title: Design, analysis and fabrication of polyamide/ hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-016-1049-x – volume: 2012 start-page: 646417 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1270 article-title: Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors publication-title: Sci. World J. doi: 10.1100/2012/646417 – volume: 4 start-page: 524 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0650 article-title: Co-culture in cartilage tissue engineering publication-title: J. Tissue Eng. Regen. Med. – ident: 10.1016/j.actbio.2018.09.031_b0700 doi: 10.1002/term.1813 – ident: 10.1016/j.actbio.2018.09.031_b0940 – volume: 100 start-page: 012033 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1175 article-title: Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/100/1/012033 – ident: 10.1016/j.actbio.2018.09.031_b0860 doi: 10.1002/jbm.a.34130 – volume: 7 start-page: 035002 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1560 article-title: Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing publication-title: Biofabrication doi: 10.1088/1758-5090/7/3/035002 – ident: 10.1016/j.actbio.2018.09.031_b1320 – volume: 48 start-page: 6913 year: 2007 ident: 10.1016/j.actbio.2018.09.031_b1570 article-title: Effects of parameters on nanofiber diameter determined from electrospinning model publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2007.09.017 – volume: 28 start-page: 7267 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1635 article-title: Fabrication of patterned nanofibrous mats using direct-write electrospinning publication-title: Langmuir doi: 10.1021/la3009249 – volume: 42 start-page: 70 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0605 article-title: Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects publication-title: Artif. Cells, Nanomed. Biotechnol. doi: 10.3109/21691401.2013.775578 – ident: 10.1016/j.actbio.2018.09.031_b1190 doi: 10.1002/jbm.b.32863 – volume: 93 start-page: 1410 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0630 article-title: Extracellular matrix-based cryogels for cartilage tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.05.024 – volume: 12 start-page: 155 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0335 article-title: Synthesis, structural, and adsorption properties and thermal stability of nanohydroxyapatite/polysaccharide composites publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-1911-5 – volume: 8 start-page: 3138 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1085 article-title: Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.04.022 – volume: 3 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b1135 article-title: Fabrication of 13–93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering publication-title: Biofabrication doi: 10.1088/1758-5082/3/2/025004 – volume: 68 start-page: 27 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b1215 article-title: Positive feedback effects of Mg on the hydrolysis of poly-l-lactic acid (PLLA): promoted degradation of PLLA scaffolds publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.03.042 – volume: 79 start-page: 917 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0245 article-title: Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds publication-title: Mater. Sci. Eng. C. doi: 10.1016/j.msec.2017.05.132 – volume: 43 start-page: 13702 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0815 article-title: Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.07.082 – volume: 63 start-page: 3 year: 2003 ident: 10.1016/j.actbio.2018.09.031_b0795 article-title: Droplet microfluidics on a planar surface publication-title: VTT Publ. – volume: 28 start-page: 2196 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0920 article-title: Strain-controlled fatigue behaviors of porous PLA-based scaffolds by 3D-printing technology publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2017.1388993 – volume: 75 start-page: 1281 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1480 article-title: Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.03.001 – ident: 10.1016/j.actbio.2018.09.031_b1665 doi: 10.1007/s10856-017-5898-3 – volume: 63 start-page: 2417 year: 2003 ident: 10.1016/j.actbio.2018.09.031_b0535 article-title: Bioresorbable and bioactive polymer/Bioglass?? composites with tailored pore structure for tissue engineering applications publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(03)00275-6 – volume: 157 start-page: 143 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1275 article-title: A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.05.084 – volume: 26 start-page: 31 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1450 article-title: Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing publication-title: Biomed. Mater. Eng. – volume: 19 start-page: 2781 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b0770 article-title: Porous ceramic bone scaffolds for vascularized bone tissue regeneration publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-007-3346-5 – volume: 50 start-page: 7182 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0870 article-title: Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9244-1 – volume: 75 start-page: 1299 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b1110 article-title: Properties of PLDLA/bioglass scaffolds produced by selective laser sintering publication-title: Polym. Bull. doi: 10.1007/s00289-017-2093-0 – volume: 1 start-page: 93 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0420 article-title: Bioactive polymeric scaffolds for tissue engineering publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2016.11.001 – ident: 10.1016/j.actbio.2018.09.031_b1310 doi: 10.1089/107632702320934182 – volume: 137 start-page: 37 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1075 article-title: Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.05.021 – volume: 7 start-page: 2249 year: 2006 ident: 10.1016/j.actbio.2018.09.031_b0410 article-title: Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications publication-title: Biomacromolecules doi: 10.1021/bm060317c – volume: 23 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b0655 article-title: Mechanical properties and in vitro behavior of nanofiberhydrogel composites for tissue engineering applications publication-title: Nanotechnology doi: 10.1088/0957-4484/23/9/095705 – volume: 44 start-page: 1 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0740 article-title: The cross-disciplinary emergence of 3D printed bioceramic scaffolds in orthopedic bioengineering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.09.095 – volume: 9 start-page: 9149 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0810 article-title: New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes publication-title: Acta Biomater. doi: 10.1016/j.actbio.2013.07.019 – volume: 90 start-page: 4836 year: 2001 ident: 10.1016/j.actbio.2018.09.031_b1595 article-title: Taylor cone and jetting from liquid droplets in electrospinning of nanofibers publication-title: J. Appl. Phys. doi: 10.1063/1.1408260 – start-page: 1853 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1420 article-title: Preparation of designed poly(trimethylene carbonate) meniscus implants by stereolithography: challenges in stereolithography publication-title: Macromol. Biosci. doi: 10.1002/mabi.201600290 – volume: 1 start-page: 1 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b1405 article-title: Electrospinning and additive manufacturing: converging technologies publication-title: Biomater. Sci. doi: 10.1039/C2BM00039C – volume: 31 start-page: 15 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1365 article-title: Tailored star poly (ε-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects publication-title: J. Bioact. Compat. Polym. doi: 10.1177/0883911515597928 – ident: 10.1016/j.actbio.2018.09.031_b1750 doi: 10.1088/1758-5082/6/2/025005 – volume: 67 start-page: 378 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b1180 article-title: Additively manufactured biodegradable porous magnesium publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.12.008 – volume: 26 start-page: 6099 year: 2005 ident: 10.1016/j.actbio.2018.09.031_b0285 article-title: Synthesis and characterization of porous b-tricalcium phosphate blocks publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.03.026 – volume: 15 start-page: 113 year: 2005 ident: 10.1016/j.actbio.2018.09.031_b1020 article-title: Selective laser sintering of biocompatible polymers for applications in tissue engineering publication-title: Biomed. Mater. Eng. – volume: 42 start-page: 661 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1065 article-title: Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0913-4 – start-page: 179 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b1095 article-title: Selective laser sintering of poly (L-lactide)/ carbonated hydroxyapatite nanocomposite porous scaffolds for bone tissue engineering publication-title: Tissue Eng. – volume: 14 start-page: 1115 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1335 article-title: Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering publication-title: Biomed. Microdev. doi: 10.1007/s10544-012-9677-0 – volume: 7 start-page: 907 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b0040 article-title: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.09.039 – start-page: 1392 year: 2005 ident: 10.1016/j.actbio.2018.09.031_b0060 publication-title: Current concepts of molecular aspects of bone healing – ident: 10.1016/j.actbio.2018.09.031_b0525 doi: 10.1117/12.2254475 – volume: 31 start-page: 132 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1120 article-title: Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells publication-title: J. Biomater. Appl. doi: 10.1177/0885328216638636 – volume: 8 start-page: 035008 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1645 article-title: Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds publication-title: Biofabrication doi: 10.1088/1758-5090/8/3/035008 – volume: 45 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0850 article-title: 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery publication-title: Ann. Biomed. Eng. – volume: 116 start-page: 452 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0435 article-title: Synthesis and characterisation of β-TCP/bioglass/zirconia scaffolds publication-title: Adv. Appl. Ceram. doi: 10.1080/17436753.2017.1356043 – volume: 09 start-page: 012002 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1780 article-title: Additive manufacturing of polymer melts for implantable medical devices and scaffolds publication-title: Biofabrication doi: 10.1088/1758-5090/aa5766 – volume: 21 start-page: 1255 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0190 article-title: Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-009-3878-y – volume: 18 start-page: 055101 year: 2007 ident: 10.1016/j.actbio.2018.09.031_b1515 article-title: Biocomposite nanofibres and osteoblasts for bone tissue engineering publication-title: Nanotechnology doi: 10.1088/0957-4484/18/5/055101 – volume: 37 start-page: 1037 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0515 article-title: Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.08.006 – volume: 11 start-page: 13 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0830 article-title: 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds publication-title: Materials (Basel) doi: 10.3390/ma11010013 – volume: 38 start-page: 1487 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0425 article-title: Synthetic biopolymer nanocomposites for tissue engineering scaffolds publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2013.06.001 – volume: 16 start-page: 427 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0120 article-title: The early fracture hematoma and its potential role in fracture healing publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2009.0687 – ident: 10.1016/j.actbio.2018.09.031_b0730 – start-page: 149 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1575 publication-title: Investigation of applying electrospinning in fused deposition modeling for scaffold fabrication – ident: 10.1016/j.actbio.2018.09.031_b0455 – volume: 45 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0205 article-title: Additive biomanufacturing: an advanced approach for periodontal tissue regeneration publication-title: Ann. Biomed. Eng. – volume: 40 start-page: 108 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1105 article-title: 3D printing of biomaterials publication-title: MRS Bull. doi: 10.1557/mrs.2015.3 – volume: 20 start-page: 2043 year: 2009 ident: 10.1016/j.actbio.2018.09.031_b0280 article-title: Design of porous polymeric scaffolds by gas foaming of heterogeneous blends publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-009-3767-4 – volume: 103 start-page: 1 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b1565 article-title: Effect of electric field distribution uniformity on electrospinning publication-title: J. Appl. Phys. doi: 10.1063/1.2924439 – volume: 56 start-page: 363 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0445 article-title: Micro-CT finite element model and experimental validation of trabecular bone damage and fracture publication-title: Bone doi: 10.1016/j.bone.2013.06.028 – ident: 10.1016/j.actbio.2018.09.031_b0825 doi: 10.1177/0022034517734846 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0900 article-title: Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing publication-title: PLoS One doi: 10.1371/journal.pone.0151216 – year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0390 article-title: 1 – Calcium Phosphate Cements for Bone Regeneration publication-title: Woodhead Publishing Limited – volume: 53 start-page: 230 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0355 article-title: Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1528-1 – volume: 87 start-page: 4531 year: 2000 ident: 10.1016/j.actbio.2018.09.031_b1600 article-title: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning publication-title: J. Appl. Phys. doi: 10.1063/1.373532 – volume: 6 start-page: 4495 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b1050 article-title: Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.06.024 – ident: 10.1016/j.actbio.2018.09.031_b0220 doi: 10.1002/sctm.17-0148 – volume: 15 start-page: 2117 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0485 article-title: Advanced projection image generation algorithm for fabrication of a tissue scaffold using volumetric distance field publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-014-0571-y – volume: 25 start-page: 3569 year: 2004 ident: 10.1016/j.actbio.2018.09.031_b0275 article-title: Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.10.032 – volume: 104 start-page: 57 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0635 article-title: Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration publication-title: J. Biomed. Mater. Res. – Part A. doi: 10.1002/jbm.a.35540 – volume: 240–242 start-page: 111 year: 2003 ident: 10.1016/j.actbio.2018.09.031_b0330 article-title: Tailoring the bioactivity of natural origin inorganic – Polymeric based systems publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.240-242.111 – ident: 10.1016/j.actbio.2018.09.031_b1705 doi: 10.1177/0022034515588303 – volume: 47 start-page: 533 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0415 article-title: Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering publication-title: Brazilian J. Med. Biol. Res. doi: 10.1590/1414-431X20143930 – ident: 10.1016/j.actbio.2018.09.031_b1360 doi: 10.1002/mame.201800247 – volume: 83 start-page: 363 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0365 article-title: Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.024 – volume: 78 start-page: 31 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b1715 article-title: Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: a prospective pilot study publication-title: Oral Oncol. doi: 10.1016/j.oraloncology.2018.01.005 – volume: 6 start-page: 858 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b1495 article-title: Modelling of electrospinning process at various electric fields publication-title: Micro Nano Lett. doi: 10.1049/mnl.2011.0440 – volume: 40 start-page: 15455 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1435 article-title: Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.06.117 – volume: 69 start-page: 115 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0540 article-title: Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2gas foaming method publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2016.12.014 – volume: 365 start-page: 247 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0150 article-title: Oxygen as a critical determinant of bone fracture healing — A multiscale model publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2014.10.012 – volume: 23 start-page: 4095 year: 2002 ident: 10.1016/j.actbio.2018.09.031_b0490 article-title: Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints publication-title: Biomaterials doi: 10.1016/S0142-9612(02)00148-5 – volume: 10 start-page: 035013 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1280 article-title: Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti 6 Al 4 V scaffolds incorporating growth factor-doped fibrin glue publication-title: Biomed. Mater. doi: 10.1088/1748-6041/10/3/035013 – volume: 176 start-page: 194 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1630 article-title: Effects of hot airflow on macromolecular orientation and crystallinity of melt electrospun poly(L-lactic acid) fibers publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.04.070 – volume: 34 start-page: 107 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1385 article-title: Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2013.08.003 – year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0025 publication-title: Fundament. Biomech. Bone Tissue Eng. doi: 10.1007/978-3-031-02579-2 – volume: 12 start-page: 7577 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0380 article-title: Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S146679 – volume: 6 start-page: 015003 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1455 article-title: Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package publication-title: Biofabrication doi: 10.1088/1758-5082/6/1/015003 – volume: 4 start-page: 1742 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0745 article-title: 3D Printing of scaffolds for tissue regeneration applications publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500168 – ident: 10.1016/j.actbio.2018.09.031_b1260 doi: 10.1109/ICMA.2010.45 – ident: 10.1016/j.actbio.2018.09.031_b1375 doi: 10.1108/RPJ-03-2016-0037 – volume: 2 start-page: 158 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1490 article-title: High strength and high modulus electrospun nanofibers publication-title: Fibers doi: 10.3390/fib2020158 – volume: 68 start-page: 9 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0440 article-title: Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2015.10.017 – volume: 2 start-page: 277 year: 2006 ident: 10.1016/j.actbio.2018.09.031_b0350 article-title: Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2005.12.004 – start-page: 25 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0760 article-title: The effect of bone scaffold gradient architecture design on stem cell mechanical modulation: a computational study – volume: 11 start-page: 1 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0890 article-title: Biological performance of calcium pyrophosphate-coated porous alumina scaffolds publication-title: Int. J. Appl. Ceram. Technol. doi: 10.1111/ijac.12076 – volume: 90 start-page: 643 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0055 article-title: Mesenchymal stem cells: Mechanisms and role in bone regeneration publication-title: Postgrad. Med. J. doi: 10.1136/postgradmedj-2013-132387 – ident: 10.1016/j.actbio.2018.09.031_b0970 doi: 10.1007/s11517-012-1001-x – ident: 10.1016/j.actbio.2018.09.031_b1130 doi: 10.1590/S1516-14392014005000075 – ident: 10.1016/j.actbio.2018.09.031_b0930 doi: 10.1007/s10544-017-0245-5 – volume: 46 start-page: 1021 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0470 article-title: Recommended slicing positions for adaptive direct slicing by image processing technique publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2162-0 – ident: 10.1016/j.actbio.2018.09.031_b1210 doi: 10.3390/polym10030328 – volume: 109 start-page: 415 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0555 article-title: Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.07.094 – volume: 29 start-page: 805 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b1345 article-title: PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2017.1354671 – volume: 95 start-page: 2126 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0310 article-title: Biodegradable polymer matrix nanocomposites for tissue engineering: a review publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.06.007 – volume: 24 start-page: 1 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1410 article-title: Combined additive manufacturing approaches in tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.06.032 – volume: 5 start-page: 72 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1690 publication-title: Clinical experience of full custom-made arti fi cial bones for the maxillofacial region – start-page: 231 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0035 article-title: Additive manufacturing for bone load bearing applications publication-title: 3D Bioprint. Nanotechnol. Tissue Eng. Regen. Med. doi: 10.1016/B978-0-12-800547-7.00011-4 – volume: 30 start-page: 2563 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0180 article-title: 3D printing of bone substitute implants using calcium phosphate and bioactive glasses publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2010.04.037 – year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0695 publication-title: Enhanced osteogenic commitment of human mesenchymal stem cells on polyethylene glycol-based cryogel with graphene oxide substrate – ident: 10.1016/j.actbio.2018.09.031_b0710 doi: 10.7150/ijbs.13139 – volume: 36 start-page: 448 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0495 article-title: Optimization of scaffold design for bone tissue engineering: a computational and experimental study publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.02.010 – volume: 196 start-page: 2991 year: 2007 ident: 10.1016/j.actbio.2018.09.031_b0500 article-title: Computational design of tissue engineering scaffolds publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.09.023 – volume: 43 start-page: 241 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0585 article-title: Cryogel poly(acrylamide): Synthesis, structure and applications publication-title: Sep. Purif. Rev. doi: 10.1080/15422119.2013.795902 – volume: 288 start-page: 648 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1775 article-title: Direct electrospinning writing for producing 3D hybrid constructs consisting of microfibers and macro-struts for tissue engineering publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.12.047 – ident: 10.1016/j.actbio.2018.09.031_b0070 – volume: 21 start-page: 716 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0800 article-title: Conceptual design of three-dimensional scaffolds of powder-based materials for bone tissue engineering applications publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-12-2013-0123 – volume: 57 start-page: 2623 year: 2003 ident: 10.1016/j.actbio.2018.09.031_b1325 article-title: Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition publication-title: Mater. Lett. doi: 10.1016/S0167-577X(02)01339-3 – volume: 193 start-page: 175 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0360 article-title: Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2017.12.008 – volume: 51 start-page: 274 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b1590 article-title: Modeling of melt electrospinning for semi-crystalline polymers publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2009.11.025 – volume: 105 start-page: 593 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1745 article-title: Overview on additive manufacturing technologies publication-title: Proc. IEEE. doi: 10.1109/JPROC.2016.2625098 – ident: 10.1016/j.actbio.2018.09.031_b0135 – ident: 10.1016/j.actbio.2018.09.031_b1700 doi: 10.1111/clr.12486 – volume: 1 start-page: 261 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1235 article-title: Design and 3D printing of scaffolds and tissues publication-title: Engineering doi: 10.15302/J-ENG-2015061 – ident: 10.1016/j.actbio.2018.09.031_b0290 doi: 10.1023/A:1008973120918 – volume: 7 start-page: 035004 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0320 article-title: Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair publication-title: Biofabrication doi: 10.1088/1758-5090/7/3/035004 – ident: 10.1016/j.actbio.2018.09.031_b1255 doi: 10.1002/jbm.a.33058 – ident: 10.1016/j.actbio.2018.09.031_b1655 doi: 10.1038/am.2017.171 – volume: 42 start-page: 569 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b0195 article-title: Scaffolds for bone healing: Concepts, materials and evidence publication-title: Injury doi: 10.1016/j.injury.2011.03.033 – volume: 49 start-page: 58 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0885 article-title: Octacalcium phosphate (OCP)-based bone substitute materials publication-title: Jpn. Dent. Sci. Rev. doi: 10.1016/j.jdsr.2013.01.001 – ident: 10.1016/j.actbio.2018.09.031_b1720 doi: 10.1155/2016/8590971 – volume: 153 start-page: 95 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b1555 article-title: Modeling of non-isothermal polymer jets in melt electrospinning publication-title: J. Nonnewton. Fluid Mech. doi: 10.1016/j.jnnfm.2007.11.011 – volume: 28 start-page: 1219 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1430 article-title: Poly(trimethylene carbonate) and nano-hydroxyapatite porous scaffolds manufactured by stereolithography publication-title: Polym. Adv. Technol. doi: 10.1002/pat.3892 – volume: 181 start-page: 119 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1675 article-title: The controlled release of growth factor via modified coaxial electrospun fibres with emulsion or hydrogel as the core publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.05.146 – volume: 21 start-page: 2529 year: 2000 ident: 10.1016/j.actbio.2018.09.031_b0300 article-title: Sca!olds in tissue engineering bone and cartilage publication-title: Biomaterials doi: 10.1016/S0142-9612(00)00121-6 – ident: 10.1016/j.actbio.2018.09.031_b0735 – ident: 10.1016/j.actbio.2018.09.031_b0255 doi: 10.1177/0022034515588885 – volume: 6 start-page: 8 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1150 article-title: Osseointegration assessment of extrusion printed Ti6Al4V scaffold towards accelerated skeletal defect healing via tissue in-growth publication-title: Bioprinting doi: 10.1016/j.bprint.2017.04.002 – ident: 10.1016/j.actbio.2018.09.031_b1185 doi: 10.1002/jbm.b.33660 – ident: 10.1016/j.actbio.2018.09.031_b1585 doi: 10.1080/00222348.2015.1090654 – volume: 14 start-page: 055002 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0995 article-title: Correlation between properties and microstructure of laser sintered porous β-tricalcium phosphate bone scaffolds publication-title: Sci. Technol. Adv. Mater. doi: 10.1088/1468-6996/14/5/055002 – ident: 10.1016/j.actbio.2018.09.031_b0925 doi: 10.1002/jbm.a.36289 – volume: 9 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1620 article-title: Poly(ε-caprolactone) scaffolds fabricated by melt electrospinning for bone tissue engineering publication-title: Materials (Basel). doi: 10.3390/ma9040232 – volume: 82 start-page: 163 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0855 article-title: Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.08.040 – ident: 10.1016/j.actbio.2018.09.031_b0880 doi: 10.4028/www.scientific.net/MSF.783-786.1366 – start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1220 publication-title: Additive manufacturing of functionally graded objects: a review – volume: 21 start-page: 747 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1000 article-title: Current status of additive manufacturing for tissue engineering scaffold publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-03-2014-0029 – volume: 11 start-page: 175 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1330 article-title: Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development publication-title: J. Tissue Eng. Regen. Med. doi: 10.1002/term.1897 – ident: 10.1016/j.actbio.2018.09.031_b0915 doi: 10.1088/1758-5082/6/1/015006 – volume: 22 start-page: 20 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1170 article-title: Porosity content control of CoCrMo and titanium parts by Taguchi method applied to selective laser melting process parameter publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-09-2013-0092 – ident: 10.1016/j.actbio.2018.09.031_b1710 doi: 10.1097/ID.0000000000000655 – volume: 18 start-page: 909 year: 2007 ident: 10.1016/j.actbio.2018.09.031_b0895 article-title: Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-006-0073-2 – ident: 10.1016/j.actbio.2018.09.031_b1580 doi: 10.1080/00914037.2016.1180617 – start-page: 7 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0110 publication-title: Principles Bone Joint Res. – volume: 5 start-page: 1082 year: 2009 ident: 10.1016/j.actbio.2018.09.031_b0560 article-title: Engineered μ-bimodal poly(ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.10.012 – ident: 10.1016/j.actbio.2018.09.031_b0905 doi: 10.1016/j.rcim.2015.06.005 – volume: 235 start-page: 365 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0640 article-title: Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.05.061 – volume: 27 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1340 article-title: Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-015-5658-1 – volume: 84 start-page: 1671 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0750 article-title: Software to generate 3-D continuous printing paths for the fabrication of tissue engineering scaffolds publication-title: Int. J. Adv. Manuf. Technol. – ident: 10.1016/j.actbio.2018.09.031_b1370 doi: 10.1177/0883911513490341 – volume: 2 start-page: 457 year: 2006 ident: 10.1016/j.actbio.2018.09.031_b1395 article-title: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2006.02.004 – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0980 article-title: Physical modeling for selective laser sintering (SLS) process publication-title: J. Comput. Inf. Sci. Eng. – volume: 5 start-page: 20227 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0705 article-title: RSC advances application in bone tissue engineering publication-title: RSC Adv. doi: 10.1039/C4RA15893H – ident: 10.1016/j.actbio.2018.09.031_b0945 doi: 10.1116/1.4897217 – volume: 32 start-page: 161 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1300 article-title: Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.01.007 – volume: 8 start-page: 328 issue: 2 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0030 article-title: Meshless methods in biomechanics: bone tissue remodelling analysis publication-title: Lect. Notes Comput. Vis. Biomech. – ident: 10.1016/j.actbio.2018.09.031_b1685 – volume: 2012 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1540 article-title: Needleless melt-electrospinning of polypropylene nanofibres publication-title: J. Nanomater. doi: 10.1155/2012/382639 – ident: 10.1016/j.actbio.2018.09.031_b1695 doi: 10.1155/2016/5862586 – volume: 37 start-page: 767 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1060 article-title: Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.05.009 – year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0385 publication-title: Tissue Eng. Osteo. Tissue – ident: 10.1016/j.actbio.2018.09.031_b1670 doi: 10.1002/jbm.a.32645 – volume: 26 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0620 article-title: Cryogel-PCL combination scaffolds for bone tissue repair publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-015-5465-8 – volume: 10 start-page: 1344 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1145 article-title: In vitro evaluation of PCL and P(3HB) as coating materials for selective laser melted porous titanium implants publication-title: Materials (Basel) doi: 10.3390/ma10121344 – volume: 7 start-page: 13 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1460 article-title: Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2012.673152 – volume: 3 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b1140 article-title: Chemically treated 3D printed polymer scaffolds for biomineral formation publication-title: ACS Omega doi: 10.1021/acsomega.8b00219 – volume: 6 start-page: 12 year: 2003 ident: 10.1016/j.actbio.2018.09.031_b0085 article-title: Differential roles for small leucine-rich proteoglycans in bone formation publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v006a02 – volume: 31 start-page: 233 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0160 article-title: Physiological bone remodeling: systemic regulation and growth factor involvement publication-title: Physiology doi: 10.1152/physiol.00061.2014 – start-page: 846 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0665 publication-title: Ultrasound stimulus to enhance the bone regeneration capability of gelatin cryogels – volume: 10 start-page: 96 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b0775 article-title: A review of process development steps for new material systems in three dimensional printing (3DP) publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2009.03.002 – volume: 123 start-page: 146 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0790 article-title: Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2017.08.004 – volume: 54 start-page: 351 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b1265 article-title: Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting publication-title: Connect. Tissue Res. doi: 10.3109/03008207.2013.822864 – volume: 22 start-page: 752 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1015 article-title: Fabrication of three dimensional open porous regular structure of PA-2200 for enhanced strength of scaffold using selective laser sintering publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-11-2014-0148 – volume: 9781461462 start-page: 1 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0020 article-title: Design of artificial human joints & organs publication-title: Des. Artif. Hum. Joints Organs. – volume: 128 start-page: 531 year: 2006 ident: 10.1016/j.actbio.2018.09.031_b0990 article-title: Selective laser sintering process optimization for layered manufacturing of CAPA[sup ®] 6501 polycaprolactone bone tissue engineering scaffolds publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.2162589 – volume: 173 start-page: 136 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0510 article-title: Mathematically defined gradient porous materials publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.03.021 – volume: 72 start-page: 53 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0575 article-title: Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.11.049 – volume: 9 start-page: 4599 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b1725 article-title: A simple method for fabricating 3-D multilayered composite scaffolds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.08.015 – volume: 436 start-page: 141 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0375 article-title: Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.11.218 – volume: 6 start-page: 2511 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0985 article-title: Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.07.018 – volume: 99 start-page: 170 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0130 article-title: Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration publication-title: Birth Defects Res. Part C – Embryo Today Rev. doi: 10.1002/bdrc.21047 – volume: 16 start-page: 103 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1680 article-title: Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.12.028 – volume: 20 start-page: 49 year: 2002 ident: 10.1016/j.actbio.2018.09.031_b0935 article-title: Scaffold development using 3D printing with a starch-based publication-title: Polymer – volume: 205 start-page: 257 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1605 article-title: Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2017.06.096 – volume: 55 start-page: 401 year: 2001 ident: 10.1016/j.actbio.2018.09.031_b0530 article-title: Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts publication-title: J. Biomed. Mater. Res. doi: 10.1002/1097-4636(20010605)55:3<401::AID-JBM1029>3.0.CO;2-H – volume: 89 start-page: 265 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0405 article-title: Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering publication-title: Mater. Sci. Eng. C. doi: 10.1016/j.msec.2018.04.016 – volume: 15 start-page: 20 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1245 article-title: Selective laser melting of pure Zn with high density for biodegradable implant manufacturing publication-title: Addit. Manuf. – volume: 50 start-page: 2 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0450 article-title: Application of micro-CT in small animal imaging publication-title: Methods doi: 10.1016/j.ymeth.2009.08.007 – volume: 6 start-page: 2467 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b1070 article-title: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.02.002 – volume: 7 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b1785 article-title: Biological properties of solid free form designed ceramic scaffolds with bmp-2: In vitro and in vivo evaluation publication-title: PLoS One doi: 10.1371/journal.pone.0034117 – ident: 10.1016/j.actbio.2018.09.031_b0080 – volume: 81 start-page: 1089 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1765 article-title: Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.10.040 – volume: 64 start-page: 278 year: 1997 ident: 10.1016/j.actbio.2018.09.031_b0050 article-title: Growth kinetics, self-renewal, and the Osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation publication-title: J. Cell. Biochem. doi: 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F – volume: 15 start-page: 53 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b0075 article-title: Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts publication-title: Eur. Cells Mater. doi: 10.22203/eCM.v015a05 – volume: 6 start-page: 44 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b0315 article-title: Melt electrospinning publication-title: Chem. – An Asian J. doi: 10.1002/asia.201000436 – ident: 10.1016/j.actbio.2018.09.031_b1055 doi: 10.1088/1758-5082/5/2/025005 – volume: 114 start-page: 663 year: 2012 ident: 10.1016/j.actbio.2018.09.031_b0625 article-title: Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2012.07.005 – volume: 12 start-page: 220 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0520 article-title: Osteochondral integrated scaffolds with gradient structure by 3D printing forming publication-title: Int. J. Autom. Comput. doi: 10.1007/s11633-014-0853-y – ident: 10.1016/j.actbio.2018.09.031_b0685 – volume: 80 start-page: 119 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0755 article-title: Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.01.013 – volume: 68 start-page: 872 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1305 article-title: Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.07.041 – ident: 10.1016/j.actbio.2018.09.031_b0725 – year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0715 article-title: Porous heat-treated polyacrylonitrile scaffolds for bone publication-title: Tissue Eng. – ident: 10.1016/j.actbio.2018.09.031_b1040 doi: 10.1108/RPJ-04-2013-0040 – volume: 111 start-page: 255 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0765 article-title: Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading publication-title: Exp. Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2017.09.018 – ident: 10.1016/j.actbio.2018.09.031_b0225 doi: 10.1002/biot.201600734 – volume: 496 start-page: 654 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0545 article-title: Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.11.012 – volume: 11 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0975 article-title: Open-Source Selective Laser Sintering (OpenSLS) of nylon and biocompatible polycaprolactone publication-title: PLoS One doi: 10.1371/journal.pone.0147399 – ident: 10.1016/j.actbio.2018.09.031_b1755 doi: 10.1088/1748-6041/10/4/045019 – volume: 272 start-page: 83 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b1740 article-title: Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.01.006 – volume: 231 start-page: 575 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0955 article-title: Three-dimensional printing of porous load-bearing bioceramic scaffolds publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411916682984 – volume: 89 start-page: 3176 year: 2006 ident: 10.1016/j.actbio.2018.09.031_b0865 article-title: Internal structure evaluation of three-dimensional calcium phosphate bone scaffolds: a micro-computed tomographic study publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2006.01143.x – start-page: 12 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0140 article-title: Vascularization in bone tissue engineering: physiology, current strategies publication-title: Major Hurdles Future Challenges – volume: 9 start-page: 3 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1445 article-title: Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds publication-title: Virtual Phys. Prototyp. doi: 10.1080/17452759.2013.873337 – volume: 3 start-page: 26 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b1535 article-title: Hydrotropy: a promising tool for solubility enhancement: a review publication-title: Int. J. Drug Dev. Res. – volume: 18 start-page: 9 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1470 article-title: Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.12.024 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1525 article-title: Bioactivity assessment of poly(ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application publication-title: J. Nanomater. – volume: 40 start-page: 46 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b0090 article-title: Endochondral ossification: How cartilage is converted into bone in the developing skeleton publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2007.06.009 – volume: 102 start-page: 4317 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0805 article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds publication-title: J. Biomed. Mater. Res. – Part A – volume: 45 start-page: 375 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0960 article-title: Acta Biomaterialia Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.08.032 – volume: 17 start-page: 479 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b1240 article-title: Fabrication of magnesium using selective laser melting technique publication-title: Rapid Prototyp. J. doi: 10.1108/13552541111184206 – volume: 9781118406 start-page: 291 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1425 article-title: Scaffold designing publication-title: Bio-Ceram. Clin. Appl. doi: 10.1002/9781118406748.ch10 – volume: 43 start-page: 502 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0505 article-title: Effective method for multi-scale gradient porous scaffold design and fabrication publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.07.052 – volume: 4 start-page: 1611 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b1760 article-title: Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.06.008 – volume: 124 start-page: 991 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b0095 article-title: Bone remodelling at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.063032 – volume: 22 start-page: 243 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0465 article-title: Accuracy in dental surgical guide fabrication using different 3-D printing techniques publication-title: Addit. Manuf. – volume: 47 start-page: 7497 year: 2006 ident: 10.1016/j.actbio.2018.09.031_b1545 article-title: The thermal effects on electrospinning of polylactic acid melts publication-title: Polymer (Guildf) doi: 10.1016/j.polymer.2006.08.042 – volume: 23 start-page: 5651 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b1640 article-title: Direct writing by way of melt electrospinning publication-title: Adv. Mater. doi: 10.1002/adma.201103482 – volume: 85 start-page: 218 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b1390 article-title: Mechanical properties of calcium phosphate scaffolds fabricated by robocasting publication-title: J. Biomed. Mater. Res. – Part A doi: 10.1002/jbm.a.31587 – volume: 1700612 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0215 article-title: Biomimetic materials and fabrication approaches for bone publication-title: Tissue Eng. – ident: 10.1016/j.actbio.2018.09.031_b1285 doi: 10.1039/C6TB00675B – volume: 22 start-page: 298 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0200 article-title: A review of three-dimensional printing in tissue engineering publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2015.0464 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0840 article-title: 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation publication-title: Sci. Rep. – volume: 2014 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0580 article-title: Biological effect of gas plasma treatment on CO2 gas foaming/salt leaching fabricated porous polycaprolactone scaffolds in bone tissue engineering publication-title: J. Nanomater. doi: 10.1155/2014/657542 – volume: 4 start-page: 1198 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b1520 article-title: Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.03.019 – volume: 126 start-page: 45 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0400 article-title: Polyhydroxyalkanoates: characteristics, production, recent developments and applications publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2017.10.001 – volume: 24 start-page: 297 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0125 article-title: Angiogenic factors in bone local environment publication-title: Cytokine Growth Factor Rev. doi: 10.1016/j.cytogfr.2013.03.008 – ident: 10.1016/j.actbio.2018.09.031_b0670 doi: 10.1177/039463201202500119 – volume: 128 start-page: 47 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0645 article-title: Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures publication-title: Polym. (United Kingdom) – volume: 3 start-page: 8348 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1415 article-title: Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography publication-title: J. Mater. Chem. B doi: 10.1039/C5TB01468A – ident: 10.1016/j.actbio.2018.09.031_b0155 doi: 10.1089/teb.2008.0038 – ident: 10.1016/j.actbio.2018.09.031_b0675 doi: 10.33549/physiolres.933134 – volume: 32 start-page: 762 year: 2007 ident: 10.1016/j.actbio.2018.09.031_b0305 article-title: Biodegradable polymers as biomaterials publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2007.05.017 – volume: 31 start-page: 6121 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b1475 article-title: A review on stereolithography and its applications in biomedical engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.04.050 – volume: 6 start-page: 1227 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b1650 article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.10.051 – ident: 10.1016/j.actbio.2018.09.031_b0010 doi: 10.1002/jbm.b.33239 – volume: 71 start-page: 225 year: 2018 ident: 10.1016/j.actbio.2018.09.031_b0395 article-title: Binary polyhydroxyalkanoate systems for soft tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.02.027 – year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1530 article-title: 5 – Multifunctional Scaffolds For Bone Regeneration publication-title: Woodhead Publishing Limited – volume: 15 start-page: 115 year: 2009 ident: 10.1016/j.actbio.2018.09.031_b1030 article-title: Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering publication-title: Tissue Eng. Part C-Methods doi: 10.1089/ten.tec.2008.0288 – year: 2016 ident: 10.1016/j.actbio.2018.09.031_b1380 publication-title: Tailored star poly scaffolds for in vivo regeneration of long bone critical size defects – ident: 10.1016/j.actbio.2018.09.031_b0045 – volume: 53 start-page: 1 year: 2000 ident: 10.1016/j.actbio.2018.09.031_b0570 article-title: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive publication-title: J. Biomed. Mater. Res. doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R – volume: 57 start-page: 190 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0820 article-title: Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.12.007 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1205 article-title: RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties publication-title: Sci. Rep. – ident: 10.1016/j.actbio.2018.09.031_b0845 doi: 10.1088/1758-5082/5/3/035012 – volume: 140 start-page: 170 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1465 article-title: Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.06.005 – volume: 19 start-page: 2535 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b1035 article-title: Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-007-3089-3 – volume: 10 start-page: 4175 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1355 article-title: Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: the effect of silanol groups publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.05.026 – volume: 52 start-page: 145 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1615 article-title: Endosteal-like extracellular matrix expression on melt electrospun written scaffolds publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.12.040 – ident: 10.1016/j.actbio.2018.09.031_b0265 doi: 10.1002/jbm.b.31577 – volume: 9 start-page: 5369 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0430 article-title: Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2012.10.009 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1200 article-title: Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an in vivo bioreactor model publication-title: Sci. Rep. – volume: 14 start-page: 1089 year: 2003 ident: 10.1016/j.actbio.2018.09.031_b0295 article-title: Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response publication-title: J. Mater. Sci. Mater. Med. doi: 10.1023/B:JMSM.0000004006.90399.b4 – volume: 37 start-page: 1151 year: 2005 ident: 10.1016/j.actbio.2018.09.031_b0460 article-title: Application of micro CT and computation modeling in bone tissue engineering publication-title: CAD Comput. Aided Des. doi: 10.1016/j.cad.2005.02.006 – volume: 48 start-page: 63 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1730 article-title: Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.10.074 – volume: 38 start-page: 1 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b0785 article-title: Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.01.027 – volume: 31 start-page: 304 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b1350 article-title: Modified chitosan scaffolds: Proliferative, cytotoxic, apoptotic, and necrotic effects on Saos-2 cells and antimicrobial effect on Escherichia coli publication-title: J. Bioact. Compat. Polym. doi: 10.1177/0883911515627471 – volume: 102 start-page: 3140 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1625 article-title: Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration publication-title: J. Biomed. Mater. Res. – Part A. doi: 10.1002/jbm.a.34985 – ident: 10.1016/j.actbio.2018.09.031_b0550 doi: 10.1177/0021955X08099929 – ident: 10.1016/j.actbio.2018.09.031_b0680 doi: 10.1088/1748-605X/aa5d76 – volume: 10 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1155 article-title: Mesoporous bioactive glass functionalized 3D Ti-6Al-4V Scaffolds with improved surface bioactivity publication-title: Materials (Basel) doi: 10.3390/ma10111244 – volume: 93 start-page: 276 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0340 article-title: Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.08.046 – volume: 27 start-page: 3413 year: 2006 ident: 10.1016/j.actbio.2018.09.031_b0370 article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.039 – ident: 10.1016/j.actbio.2018.09.031_b1295 doi: 10.5301/jabfm.5000252 – ident: 10.1016/j.actbio.2018.09.031_b0965 doi: 10.1002/jbm.a.36270 – volume: 103 start-page: 1 year: 2016 ident: 10.1016/j.actbio.2018.09.031_b0015 article-title: Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment publication-title: Mater. Sci. Eng. R Reports. doi: 10.1016/j.mser.2016.01.001 – ident: 10.1016/j.actbio.2018.09.031_b1660 doi: 10.1016/j.actbio.2011.11.002 – volume: 1092 start-page: 385 year: 2006 ident: 10.1016/j.actbio.2018.09.031_b0100 article-title: Bone remodeling publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1365.035 – volume: 37 start-page: 359 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1400 article-title: Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.08.018 – volume: 24 start-page: 3115 year: 2003 ident: 10.1016/j.actbio.2018.09.031_b1025 article-title: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00131-5 – ident: 10.1016/j.actbio.2018.09.031_b0600 doi: 10.1002/jbm.a.34394 – volume: 8 start-page: 4197 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b1045 article-title: Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications publication-title: Int. J. Nanomed. – volume: 16 start-page: 496 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b0005 article-title: Bone tissue engineering using 3D printing publication-title: Mater. Today. doi: 10.1016/j.mattod.2013.11.017 – volume: 18 start-page: 483 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1510 article-title: Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal publication-title: Fibers Polym. doi: 10.1007/s12221-017-1061-5 – volume: 22 start-page: 301 year: 2010 ident: 10.1016/j.actbio.2018.09.031_b0170 article-title: Bone graft harvesting from distant sites: concepts and techniques publication-title: Oral Maxillofac. Surg. Clin. North Am. doi: 10.1016/j.coms.2010.04.007 – volume: 22 start-page: 2107 year: 2011 ident: 10.1016/j.actbio.2018.09.031_b0615 article-title: Inorganic/organic biocomposite cryogels for regeneration of bony tissues publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1163/092050610X534230 – volume: 5 start-page: 015014 year: 2013 ident: 10.1016/j.actbio.2018.09.031_b1010 article-title: Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering publication-title: Biofabrication doi: 10.1088/1758-5082/5/1/015014 – volume: 7543 start-page: 1 year: 2015 ident: 10.1016/j.actbio.2018.09.031_b0480 article-title: Additive manufacturing technologies: state of the art and trends publication-title: Int. J. Prod. Res. – volume: 13 start-page: 101 year: 2014 ident: 10.1016/j.actbio.2018.09.031_b1500 article-title: An alternative electrospinning approach with varying electric field for 2-D-aligned nanofibers publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2013.2293704 – volume: 19 start-page: 459 year: 2008 ident: 10.1016/j.actbio.2018.09.031_b0115 article-title: Bone remodeling during fracture repair: the cellular picture publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2008.07.004 – ident: 10.1016/j.actbio.2018.09.031_b1610 doi: 10.1002/jbm.b.33700 – volume: 7 start-page: 2 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b0910 article-title: Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo publication-title: Sci. Rep. – volume: 70 start-page: 812 year: 2017 ident: 10.1016/j.actbio.2018.09.031_b1225 article-title: Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.09.040 |
SSID | ssj0038128 |
Score | 2.6698475 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in... A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Additive manufacturing Binder jetting Biocompatibility Biodegradability Biodegradable materials Biodegradation Biological activity Biomaterials Biomedical materials Bone scaffolds Bones Commercialization Cryogelation Electrospinning Fabrication Freeform fabrication Gas foaming Material extrusion Material properties Materials selection Repair Scaffolds Selective laser melting Selective laser sintering Surgical implants Tissue engineering Vat photoplymerization |
Title | Current state of fabrication technologies and materials for bone tissue engineering |
URI | https://dx.doi.org/10.1016/j.actbio.2018.09.031 https://www.ncbi.nlm.nih.gov/pubmed/30248515 https://www.proquest.com/docview/2131831426 https://www.proquest.com/docview/2112189441 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEB9EL3oQP566fhHBa942SbvZHEWUVdGLCt5Ckqawj0d30Xr1b3emTVc9iOCxbdKGyWTml3TmNwCncRRiXkTBjckNz10IfKxKz3EllcJnPpiMspFv70aTx_z6qXhagvM-F4bCKpPt72x6a63TnWGS5nA-nQ7vEUtLje4IlTIjXjHKYM81afnft0WYBzqktr4qNebUuk-fa2O8XGj8lFIAxbhjOxXfuafv4Gfrhi43YD3hR3bWDXETlmK9BWufWAW34T5xLrE2WYjNKlY5_5zO5ljTn6XjFpm5umQIWTstZIhfmZ_VkTXtbLD48dY_8Hh58XA-4al2Ag-5UQ1H2EbMQlGivBGyyKhLoUdejWOmgsc9ndPEHSf9yGgTlHOVqkqptZJVXnrl1Q4s1_jFPWBCl6qsVIFdcXvj3DjKKlIlwCC1DL4YgOpFZkMiFqf6Fv9tH0H2z3aCtiRomxmLgh4AX_Sad8QaP7TX_WzYLwpi0fb_0POwnzybFuiLlYKMmUB8MoCTxWNcWvS_xNVx9kptBAIgg4BxALvdpC-GqlouOFHs_3pYB7BKV-QHRXEIy83zazxCgNP441aDj2Hl7OpmcvcOoIL6Vg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x8sB4QGwDVgabJ-3Vamwndf2IEFXLj74AEm-W7ThSEUorFv5_7hKn2x4Q0l5jX2Ldne8-O77PAL_iOMS8iIIbkxueuxD4RJWe40wqhc98MBlVI98sxrP7_PKheNiC874Who5VptjfxfQ2Wqcno6TN0Xq5HN0ilpYa0xE6ZUa8Yh9gm9ipigFsn82vZos-IGNOaq9Ypf6cBPoKuvaYlwuNX1IVoJh0hKfirQz1FgJtM9F0H_YShGRn3Sg_wVasP8PuX8SCX-A20S6xtl6IrSpWOf-ctudY02-n4yqZubpkiFo7R2QIYZlf1ZE1rUFY_PPWA7ifXtydz3i6PoGH3KiGI3IjcqEoUeWIWmTUpdBjryYxU8Hjss5poo-Tfmy0Ccq5SlWl1FrJKi-98uoQBjV-8SswoUtVVqpAUVzhODeJsop0GWCQWgZfDEH1KrMhcYvTFRdPtj9E9mg7RVtStM2MRUUPgW-k1h23xjv9dW8N-4-PWAz_70ie9MazaY7-tlJQPBMIUYbwc9OMs4t-mbg6rl6oj0AMZBAzDuGoM_pmqKqlgxPF8X8P6wfszO5uru31fHH1DT5SC6VFUZzAoHl-iaeIdxr_PfnzKzUW_Qc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+state+of+fabrication+technologies+and+materials+for+bone+tissue+engineering&rft.jtitle=Acta+biomaterialia&rft.au=Wubneh%2C+Abiy&rft.au=Tsekoura%2C+Eleni+K.&rft.au=Ayranci%2C+Cagri&rft.au=Uluda%C4%9F%2C+Hasan&rft.date=2018-10-15&rft.pub=Elsevier+Ltd&rft.issn=1742-7061&rft.eissn=1878-7568&rft.volume=80&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1016%2Fj.actbio.2018.09.031&rft.externalDocID=S1742706118305518 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |