Current state of fabrication technologies and materials for bone tissue engineering

[Display omitted] A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 80; pp. 1 - 30
Main Authors Wubneh, Abiy, Tsekoura, Eleni K., Ayranci, Cagri, Uludağ, Hasan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.10.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors’ perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
AbstractList A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors’ perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. Statement of Significance The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
[Display omitted] A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors’ perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
Author Ayranci, Cagri
Wubneh, Abiy
Tsekoura, Eleni K.
Uludağ, Hasan
Author_xml – sequence: 1
  givenname: Abiy
  surname: Wubneh
  fullname: Wubneh, Abiy
  organization: Department of Mechanical Engineering, Faculty of Engineering, U. of Alberta, Edmonton, AB, Canada
– sequence: 2
  givenname: Eleni K.
  surname: Tsekoura
  fullname: Tsekoura, Eleni K.
  organization: Department of Chemical & Materials Engineering, Faculty of Engineering, U. of Alberta, Edmonton, AB, Canada
– sequence: 3
  givenname: Cagri
  surname: Ayranci
  fullname: Ayranci, Cagri
  email: cayranci@ualberta.ca
  organization: Department of Mechanical Engineering, Faculty of Engineering, U. of Alberta, Edmonton, AB, Canada
– sequence: 4
  givenname: Hasan
  surname: Uludağ
  fullname: Uludağ, Hasan
  email: huludag@ualberta.ca
  organization: Department of Chemical & Materials Engineering, Faculty of Engineering, U. of Alberta, Edmonton, AB, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30248515$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2LFDEQxYPs4n7ofyAS8OKle1NJppP2IMjgx8LCHtRzSNLVY4aeZE3Sgv-9WWf1sAc9VUH9XvF474KcxBSRkBfAemAwXO1766sLqecMdM_Gngl4Qs5BK92pzaBP2q4k7xQb4IxclLJnTGjg-ik5E4xLvYHNOfm8XXPGWGmptiJNM52ty8HbGlKkFf23mJa0C1iojRM9NCgHuxQ6p0xdc0RrKGVFinEXIrZj3D0jp3ND8PnDvCRfP7z_sv3U3dx-vN6-u-m8HEXtuADNJCB3zDUvHNUEanBCIxPesVHaZl0p7oZRjV5YO4t54koJPsvJCScuyevj37ucvq9YqjmE4nFZbMS0FsMBOOhRSmjoq0foPq05NneNaj4ESD406uUDtboDTuYuh4PNP82fuBogj4DPqZSM818EmLlvxezNsRVz34pho2mtNNmbRzIf6u-Ea7Zh-Z_47VGMLcofAbMpPmD0OIWMvpophX8_-AV1yKk_
CitedBy_id crossref_primary_10_1016_j_bioactmat_2022_10_029
crossref_primary_10_3390_ma12172660
crossref_primary_10_1002_mabi_202300325
crossref_primary_10_1016_j_jor_2023_10_023
crossref_primary_10_2147_IJN_S397316
crossref_primary_10_3389_fbioe_2023_1222102
crossref_primary_10_1016_j_mtbio_2023_100784
crossref_primary_10_1155_2024_5176251
crossref_primary_10_1016_j_mtbio_2023_100558
crossref_primary_10_3390_pharmaceutics12100930
crossref_primary_10_1089_ten_teb_2020_0181
crossref_primary_10_2147_IJN_S372247
crossref_primary_10_1177_2041731420968030
crossref_primary_10_1002_advs_202300038
crossref_primary_10_2174_2211738511666230817102159
crossref_primary_10_1557_s43578_021_00201_w
crossref_primary_10_25100_iyc_v25i3_12572
crossref_primary_10_1007_s11082_024_06500_w
crossref_primary_10_3390_bioengineering7040132
crossref_primary_10_1089_ten_teb_2023_0218
crossref_primary_10_1016_j_msec_2019_110399
crossref_primary_10_1111_ijac_14416
crossref_primary_10_1021_acsbiomaterials_2c00596
crossref_primary_10_1016_j_actbio_2022_10_045
crossref_primary_10_1016_j_jmbbm_2024_106385
crossref_primary_10_1007_s13346_022_01191_w
crossref_primary_10_1016_j_cej_2021_128709
crossref_primary_10_1080_10717544_2024_2391001
crossref_primary_10_3389_fbioe_2025_1541746
crossref_primary_10_1016_j_eurpolymj_2024_113251
crossref_primary_10_1016_j_matdes_2023_112563
crossref_primary_10_1021_acsbiomaterials_4c01661
crossref_primary_10_3390_bioengineering8080113
crossref_primary_10_1002_jbm_a_37262
crossref_primary_10_1002_term_3139
crossref_primary_10_1039_D2TB01161A
crossref_primary_10_1016_j_coco_2022_101127
crossref_primary_10_1166_sam_2021_4032
crossref_primary_10_1038_s41368_020_0073_y
crossref_primary_10_1080_25740881_2024_2307351
crossref_primary_10_3389_fbioe_2023_1168504
crossref_primary_10_1088_1748_605X_ac9e34
crossref_primary_10_1021_acsbiomaterials_0c00152
crossref_primary_10_1016_j_bioactmat_2024_05_033
crossref_primary_10_3389_fbioe_2022_962483
crossref_primary_10_3389_fchem_2023_1078840
crossref_primary_10_1021_acsomega_0c02621
crossref_primary_10_3390_applmech2020018
crossref_primary_10_1016_j_actbio_2020_12_032
crossref_primary_10_1039_D1TB01554K
crossref_primary_10_3390_biomedicines11071781
crossref_primary_10_1038_s41536_023_00308_0
crossref_primary_10_1016_j_matpr_2021_09_459
crossref_primary_10_3390_ma17102413
crossref_primary_10_3390_polym14224906
crossref_primary_10_1039_D0BM01591A
crossref_primary_10_3390_polym14153222
crossref_primary_10_1002_biot_202100074
crossref_primary_10_1021_acsami_2c10242
crossref_primary_10_2174_2666145416666230228120343
crossref_primary_10_1039_D1TC01846A
crossref_primary_10_1089_ten_teb_2020_0252
crossref_primary_10_1177_20417314241267017
crossref_primary_10_3390_jfb14070388
crossref_primary_10_3390_biomedicines11102781
crossref_primary_10_1007_s42242_020_00102_7
crossref_primary_10_1021_acsbiomaterials_4c01613
crossref_primary_10_1016_j_jmrt_2023_05_099
crossref_primary_10_1088_1748_605X_ad72c3
crossref_primary_10_1134_S2075113321020143
crossref_primary_10_23736_S2724_5691_23_10113_4
crossref_primary_10_1016_j_mtbio_2024_100972
crossref_primary_10_1039_D5TB00109A
crossref_primary_10_3390_polym16050627
crossref_primary_10_22363_2313_0245_2024_28_1_9_22
crossref_primary_10_1007_s10856_021_06533_7
crossref_primary_10_1002_jbm_a_37694
crossref_primary_10_1039_D4DT01190B
crossref_primary_10_1016_j_ceramint_2022_06_327
crossref_primary_10_1016_j_colsurfa_2023_132740
crossref_primary_10_1016_j_msec_2019_110071
crossref_primary_10_1134_S2075113322010361
crossref_primary_10_1002_adem_202400155
crossref_primary_10_1039_D3CS01014G
crossref_primary_10_1016_j_actbio_2022_09_036
crossref_primary_10_1021_acsanm_4c02701
crossref_primary_10_2217_nnm_2023_0161
crossref_primary_10_1007_s10517_021_05160_0
crossref_primary_10_1177_20417314211004211
crossref_primary_10_1016_j_ijbiomac_2022_12_200
crossref_primary_10_1266_ggs_22_00068
crossref_primary_10_1016_j_joms_2021_10_011
crossref_primary_10_1080_03008207_2024_2396002
crossref_primary_10_1166_jbn_2023_3523
crossref_primary_10_3390_ijms232012670
crossref_primary_10_1177_08839115211055720
crossref_primary_10_1016_j_ceramint_2024_01_362
crossref_primary_10_1016_j_ijbiomac_2020_11_049
crossref_primary_10_3390_jfb15030060
crossref_primary_10_1039_D4TB02314E
crossref_primary_10_1088_1758_5090_ad2189
crossref_primary_10_1089_ten_teb_2024_0004
crossref_primary_10_1016_j_sdentj_2020_12_008
crossref_primary_10_1002_mame_201900394
crossref_primary_10_1016_j_compositesb_2021_109512
crossref_primary_10_1016_j_mtcomm_2020_101024
crossref_primary_10_3390_app122312445
crossref_primary_10_1093_burnst_tkae036
crossref_primary_10_3389_fbioe_2023_1232427
crossref_primary_10_3390_bioengineering10050610
crossref_primary_10_1080_00914037_2021_2014483
crossref_primary_10_1080_20550324_2022_2076025
crossref_primary_10_1557_s43578_021_00156_y
crossref_primary_10_1016_j_matdes_2020_108608
crossref_primary_10_1021_acsami_1c14382
crossref_primary_10_1002_adhm_202302305
crossref_primary_10_1002_admt_202300061
crossref_primary_10_1016_j_msec_2020_111639
crossref_primary_10_1016_j_reth_2023_09_007
crossref_primary_10_1002_adhm_202300128
crossref_primary_10_1016_j_msec_2020_110782
crossref_primary_10_1080_17452759_2024_2346271
crossref_primary_10_3390_ijms24032271
crossref_primary_10_1038_s41467_020_18267_1
crossref_primary_10_3390_polym15224403
crossref_primary_10_1002_advs_202207334
crossref_primary_10_1016_j_carbpol_2023_121484
crossref_primary_10_3390_biomimetics9030153
crossref_primary_10_1016_j_ijbiomac_2024_135227
crossref_primary_10_2174_18742106_v16_e2208200
crossref_primary_10_1089_3dp_2023_0104
crossref_primary_10_1016_j_matdes_2020_108830
crossref_primary_10_3390_biomedicines9070748
crossref_primary_10_3390_ma14123290
crossref_primary_10_1002_pen_27152
crossref_primary_10_18019_1028_4427_2023_29_6_585_590
crossref_primary_10_1016_j_actbio_2020_03_037
crossref_primary_10_1016_j_jot_2021_03_003
crossref_primary_10_1016_j_matpr_2023_08_053
crossref_primary_10_1021_acsbiomaterials_3c00051
crossref_primary_10_3390_jcm9124008
crossref_primary_10_1016_j_ijbiomac_2020_01_252
crossref_primary_10_1021_acsbiomaterials_1c01072
crossref_primary_10_1038_s41413_024_00378_w
crossref_primary_10_1016_j_giant_2022_100121
crossref_primary_10_1016_j_ijbiomac_2022_05_184
crossref_primary_10_1016_j_jmst_2020_02_052
crossref_primary_10_1039_D3TB01847D
crossref_primary_10_1002_adma_202309875
crossref_primary_10_3390_ijms21144837
crossref_primary_10_1111_cpr_13043
crossref_primary_10_1177_08853282241274528
crossref_primary_10_3390_gels6030029
crossref_primary_10_1016_j_carbpol_2022_120193
crossref_primary_10_3390_ma14010224
crossref_primary_10_1002_adfm_202010609
crossref_primary_10_1002_adhm_202301692
crossref_primary_10_1007_s40430_023_04495_1
crossref_primary_10_1016_j_trsl_2021_06_003
crossref_primary_10_1039_D1MA01166A
crossref_primary_10_1089_ten_tec_2022_0041
crossref_primary_10_1007_s13534_024_00350_x
crossref_primary_10_1039_D4SM01197J
crossref_primary_10_1016_j_cej_2023_144537
crossref_primary_10_1016_j_ceramint_2022_06_067
crossref_primary_10_1080_09205063_2019_1696004
crossref_primary_10_1021_acs_chemrev_0c01200
crossref_primary_10_1016_j_jmapro_2023_12_040
crossref_primary_10_3390_asi4030067
crossref_primary_10_3390_bioengineering6030067
crossref_primary_10_1166_sam_2023_4569
crossref_primary_10_12677_HJBM_2020_104011
crossref_primary_10_1002_adfm_202301839
crossref_primary_10_1021_acsbiomaterials_3c01105
crossref_primary_10_1021_acsbiomaterials_3c01468
crossref_primary_10_2147_IJN_S416098
crossref_primary_10_1016_j_ceramint_2019_09_150
crossref_primary_10_1002_admt_202401522
crossref_primary_10_1016_j_irbm_2020_06_003
crossref_primary_10_1016_j_jmbbm_2023_106136
crossref_primary_10_1016_j_matchemphys_2020_123718
crossref_primary_10_3389_fbioe_2022_882631
crossref_primary_10_1007_s00264_023_05808_8
crossref_primary_10_1039_D1NA00741F
crossref_primary_10_1016_j_matlet_2022_131920
crossref_primary_10_1088_1758_5090_ac6700
crossref_primary_10_1186_s13287_020_02056_0
crossref_primary_10_1080_21655979_2022_2027066
crossref_primary_10_1021_acsami_9b04283
crossref_primary_10_1016_j_rinma_2023_100465
crossref_primary_10_3390_pharmaceutics15030982
crossref_primary_10_2174_0118715303258126231025115956
crossref_primary_10_1016_j_ceramint_2025_01_150
crossref_primary_10_1016_j_bioactmat_2022_07_032
crossref_primary_10_1016_j_ceramint_2024_09_294
crossref_primary_10_1038_s41526_022_00236_1
crossref_primary_10_1016_j_ijbiomac_2024_137834
crossref_primary_10_3390_bioengineering9040163
crossref_primary_10_1016_j_jmrt_2023_06_258
crossref_primary_10_1002_pi_6742
crossref_primary_10_1002_pi_6740
crossref_primary_10_1039_D2TB02280J
crossref_primary_10_1016_j_matchemphys_2023_128831
crossref_primary_10_1177_0391398819876286
crossref_primary_10_3390_biom11101538
crossref_primary_10_1016_j_jma_2020_05_022
crossref_primary_10_1016_j_msec_2021_111928
crossref_primary_10_1039_D1TB01559A
crossref_primary_10_3390_ma14174896
crossref_primary_10_3390_molecules24101931
crossref_primary_10_1016_j_bioadv_2022_212748
crossref_primary_10_36306_konjes_1198527
crossref_primary_10_1042_BST20221448
crossref_primary_10_1002_adma_202403641
crossref_primary_10_1093_oxfmat_itac009
crossref_primary_10_3390_sym15020403
crossref_primary_10_1002_smll_202406441
crossref_primary_10_1002_adfm_202305603
crossref_primary_10_1002_adtp_202300428
crossref_primary_10_3390_biomedicines12112461
crossref_primary_10_1016_j_bioadv_2023_213626
crossref_primary_10_1016_j_bioadv_2023_213624
crossref_primary_10_3390_jfb15070174
crossref_primary_10_1016_j_matdes_2021_110242
crossref_primary_10_2174_1574888X16666210810111754
crossref_primary_10_3390_ma14040712
crossref_primary_10_3390_polym13213825
crossref_primary_10_1021_acsbiomaterials_1c01482
crossref_primary_10_3390_app11094102
crossref_primary_10_3390_ijms25105414
crossref_primary_10_1016_j_ceramint_2023_03_109
crossref_primary_10_1002_anbr_202100116
crossref_primary_10_1080_00222348_2022_2160133
crossref_primary_10_3389_fbioe_2024_1339916
crossref_primary_10_2217_3dp_2022_0025
crossref_primary_10_3390_ijms232416190
crossref_primary_10_1080_09205063_2020_1815278
crossref_primary_10_1016_j_powtec_2019_06_010
crossref_primary_10_1177_08853282231216546
crossref_primary_10_1016_j_bioactmat_2021_12_012
crossref_primary_10_3390_met9091004
crossref_primary_10_1038_s41598_024_80103_z
crossref_primary_10_1016_j_mtcomm_2021_102335
crossref_primary_10_1021_acsnano_1c09688
crossref_primary_10_3390_nano13071236
crossref_primary_10_1016_j_actbio_2021_03_008
crossref_primary_10_1088_1758_5090_ad1b20
crossref_primary_10_3390_polym14214566
crossref_primary_10_22141_1608_1706_6_23_2022_918
crossref_primary_10_1016_j_bioadv_2023_213642
crossref_primary_10_1002_pc_25893
crossref_primary_10_1002_jbm_b_35297
crossref_primary_10_1016_j_tice_2024_102390
crossref_primary_10_3390_molecules26040860
crossref_primary_10_1002_adma_202300313
crossref_primary_10_3390_gels10040257
crossref_primary_10_3390_ijms24044200
crossref_primary_10_1177_20417314241231452
crossref_primary_10_1093_rb_rbab007
crossref_primary_10_1016_j_cej_2024_152296
crossref_primary_10_3389_fbioe_2022_891765
crossref_primary_10_3389_fbioe_2020_553529
crossref_primary_10_3390_ma14185338
crossref_primary_10_1016_j_matdes_2021_109490
crossref_primary_10_23736_S2784_8469_20_04032_1
crossref_primary_10_1016_j_reth_2023_03_005
crossref_primary_10_1177_03913988221113354
crossref_primary_10_1111_jace_20269
crossref_primary_10_1016_j_ijbiomac_2023_127410
crossref_primary_10_3389_fbioe_2022_1016598
crossref_primary_10_1002_mabi_202200114
crossref_primary_10_1021_acs_biomac_1c00842
crossref_primary_10_1080_09506608_2022_2153219
crossref_primary_10_1186_s12893_025_02823_x
crossref_primary_10_1093_rb_rbab013
crossref_primary_10_3390_molecules25204785
crossref_primary_10_1002_pat_6310
crossref_primary_10_3390_ijms22031195
crossref_primary_10_1016_j_bprint_2023_e00268
crossref_primary_10_1016_j_matdes_2025_113792
crossref_primary_10_1080_00914037_2019_1667801
crossref_primary_10_1016_j_reth_2025_01_025
crossref_primary_10_1016_j_cej_2021_129015
crossref_primary_10_1016_j_apmt_2020_100700
crossref_primary_10_1016_j_matdes_2024_113035
crossref_primary_10_3390_life13112141
crossref_primary_10_1002_advs_202401589
crossref_primary_10_1186_s13018_024_04948_w
crossref_primary_10_3390_polym16233379
crossref_primary_10_1021_acsabm_0c01126
crossref_primary_10_1002_adfm_202006967
crossref_primary_10_1016_j_colsurfa_2019_124048
crossref_primary_10_1016_j_msec_2021_112513
crossref_primary_10_1016_j_ijbiomac_2023_128644
crossref_primary_10_1016_j_ijbiomac_2023_127556
crossref_primary_10_1021_acsomega_4c04870
crossref_primary_10_1177_08853282241246210
crossref_primary_10_33271_nvngu_2022_6_052
crossref_primary_10_1002_adhm_202304232
crossref_primary_10_1016_j_compositesb_2023_110644
crossref_primary_10_1002_jgm_3282
crossref_primary_10_1002_adfm_202003542
crossref_primary_10_1039_C9BM00664H
crossref_primary_10_1016_j_colsurfb_2023_113384
crossref_primary_10_3390_bioengineering7020052
crossref_primary_10_1016_j_msec_2020_111334
crossref_primary_10_1088_1748_605X_ad7e6c
crossref_primary_10_3389_fbioe_2023_1228250
crossref_primary_10_3390_molecules25194480
crossref_primary_10_1016_j_biomaterials_2019_119372
crossref_primary_10_1016_j_ijbiomac_2023_126238
crossref_primary_10_1039_D4NJ02194K
crossref_primary_10_1016_j_colcom_2025_100828
crossref_primary_10_1002_mabi_202200481
crossref_primary_10_1016_j_surfcoat_2025_131913
crossref_primary_10_1186_s40824_023_00458_8
crossref_primary_10_1002_adhm_202202768
crossref_primary_10_3390_polym16192784
crossref_primary_10_1002_adhm_202202766
crossref_primary_10_1016_j_bsecv_2024_12_001
crossref_primary_10_1016_j_ajps_2022_03_003
crossref_primary_10_1016_j_bbrc_2021_03_145
crossref_primary_10_3390_ma15186383
crossref_primary_10_3390_nano11020404
crossref_primary_10_1016_j_matchemphys_2024_129332
crossref_primary_10_1080_17452759_2020_1808937
crossref_primary_10_1021_acs_nanolett_4c00970
crossref_primary_10_1016_j_jep_2023_117253
crossref_primary_10_1016_j_bioadv_2022_213195
crossref_primary_10_1016_j_jmst_2023_07_018
crossref_primary_10_1016_j_mser_2024_100870
crossref_primary_10_1016_j_ijbiomac_2019_06_184
crossref_primary_10_1016_j_bone_2024_117363
crossref_primary_10_1177_20417314211003735
crossref_primary_10_1002_mba2_14
crossref_primary_10_1016_j_scs_2023_104621
crossref_primary_10_1016_j_jmrt_2020_11_061
crossref_primary_10_3389_fmats_2022_954525
crossref_primary_10_1016_j_bsecv_2021_11_005
crossref_primary_10_1007_s10853_023_08798_5
crossref_primary_10_3390_bioengineering11020193
crossref_primary_10_1016_j_rser_2021_111505
crossref_primary_10_3389_fbioe_2020_00061
crossref_primary_10_1016_j_tice_2023_102279
crossref_primary_10_1134_S0036029523040122
crossref_primary_10_1080_10255842_2024_2358378
crossref_primary_10_1016_j_matdes_2024_112896
crossref_primary_10_1007_s12178_022_09757_4
crossref_primary_10_3389_fbioe_2023_1167474
crossref_primary_10_1002_admt_202300635
crossref_primary_10_1016_j_cocis_2020_08_009
crossref_primary_10_1007_s00289_022_04149_7
crossref_primary_10_34133_research_0021
crossref_primary_10_1590_1980_5373_mr_2020_0211
crossref_primary_10_1007_s40204_023_00217_x
crossref_primary_10_1016_j_mtbio_2024_101180
crossref_primary_10_1016_j_ijbiomac_2020_08_029
crossref_primary_10_22141_1608_1706_2_22_2021_231952
crossref_primary_10_1016_j_tice_2023_102144
crossref_primary_10_3390_ma13030695
crossref_primary_10_3390_mi12060664
crossref_primary_10_1016_j_msec_2021_112549
crossref_primary_10_1186_s13287_022_02823_1
crossref_primary_10_3389_fbioe_2022_942128
crossref_primary_10_34133_research_0255
crossref_primary_10_1016_j_cej_2024_150706
crossref_primary_10_18019_1028_4427_2024_30_1_76_89
crossref_primary_10_3390_polym14030566
crossref_primary_10_1093_rb_rbad025
crossref_primary_10_3390_ijms23063352
crossref_primary_10_1089_ten_teb_2023_0280
crossref_primary_10_1016_j_compositesb_2022_110264
crossref_primary_10_1039_D0BM00390E
crossref_primary_10_3390_ma16072799
crossref_primary_10_1016_j_addma_2020_101452
crossref_primary_10_1016_j_jot_2021_06_002
crossref_primary_10_1155_2022_4996530
crossref_primary_10_1080_00222348_2024_2347749
crossref_primary_10_1007_s44245_024_00070_7
crossref_primary_10_1016_j_msec_2021_112372
crossref_primary_10_1155_2020_7381391
crossref_primary_10_1016_j_actbio_2018_12_018
crossref_primary_10_1021_acsabm_4c00073
crossref_primary_10_3390_ijms21186942
crossref_primary_10_1016_j_ceramint_2019_06_048
crossref_primary_10_1021_acsbiomaterials_0c01756
crossref_primary_10_1016_j_ceramint_2020_05_013
crossref_primary_10_1016_j_ijbiomac_2020_08_053
crossref_primary_10_12677_ACM_2022_12121703
crossref_primary_10_1021_acsbiomaterials_9b00254
crossref_primary_10_1155_2023_1105664
crossref_primary_10_1016_j_ijbiomac_2022_03_193
crossref_primary_10_3390_ijms21062175
crossref_primary_10_1039_D2TB00471B
crossref_primary_10_1016_j_jconrel_2023_05_042
crossref_primary_10_1016_j_mtchem_2024_102258
crossref_primary_10_1002_btm2_10206
crossref_primary_10_3390_ijms222011216
crossref_primary_10_3390_ijms21010315
crossref_primary_10_1016_j_pmatsci_2023_101072
crossref_primary_10_3389_fmats_2024_1390372
crossref_primary_10_3390_polym14122422
crossref_primary_10_1186_s12951_023_02241_2
crossref_primary_10_1007_s10856_019_6290_2
crossref_primary_10_1002_pc_29345
crossref_primary_10_3390_jfb14030134
crossref_primary_10_3390_ijms22126203
crossref_primary_10_1016_j_matdes_2023_112351
crossref_primary_10_1016_j_jnoncrysol_2023_122322
crossref_primary_10_1080_02648725_2023_2191080
crossref_primary_10_3389_fbioe_2023_1197075
crossref_primary_10_1002_adhm_202400232
crossref_primary_10_1016_j_mtbio_2023_100929
crossref_primary_10_3389_fbioe_2022_1003484
crossref_primary_10_1021_acsami_2c20339
crossref_primary_10_1177_2041731420926918
crossref_primary_10_3390_biomimetics8010081
crossref_primary_10_1016_j_jmst_2024_02_018
crossref_primary_10_1016_j_cej_2024_155139
crossref_primary_10_1186_s12891_024_08031_7
crossref_primary_10_1016_j_bioactmat_2020_08_030
crossref_primary_10_1088_1758_5090_ab860e
crossref_primary_10_1016_j_matdes_2025_113829
crossref_primary_10_1038_s41392_021_00727_9
crossref_primary_10_1039_C9TB02901J
crossref_primary_10_1016_j_mtbio_2023_100934
crossref_primary_10_1021_acsami_2c22650
crossref_primary_10_1007_s40964_024_00743_5
crossref_primary_10_1016_j_matpr_2023_03_260
crossref_primary_10_1016_j_bbe_2020_02_003
crossref_primary_10_1515_epoly_2020_0046
crossref_primary_10_3390_ijms23031460
crossref_primary_10_1002_adts_202100278
crossref_primary_10_1016_j_jeurceramsoc_2019_11_009
crossref_primary_10_2139_ssrn_4166570
crossref_primary_10_4012_dmj_2023_247
Cites_doi 10.1016/S1369-7021(10)70202-9
10.1007/s00170-015-7386-6
10.1080/17452759.2012.738551
10.1021/acsami.7b14175
10.1016/j.matlet.2017.05.038
10.1021/acs.chemrev.7b00074
10.1097/BOT.0b013e3181cec4a1
10.1002/pat.3417
10.1002/mawe.200500968
10.1163/092050610X522486
10.1007/s12221-017-7120-0
10.3390/ma8085259
10.1177/03946320110241S201
10.5402/2012/208760
10.1016/j.biomaterials.2014.01.064
10.1016/j.jeurceramsoc.2017.08.006
10.1089/3dp.2015.0019
10.1108/RPJ-12-2014-0175
10.1007/s10853-007-1661-3
10.1007/978-3-319-20726-1
10.1108/RPJ-03-2013-0037
10.1016/j.compscitech.2006.05.018
10.3390/ma6115398
10.1016/j.jmbbm.2016.01.031
10.1007/s00366-015-0407-0
10.1016/j.addr.2016.07.006
10.1016/j.actbio.2011.03.019
10.14336/AD.2015.1206
10.1016/j.msec.2016.02.010
10.1108/RPJ-07-2013-0076
10.1089/ten.2005.11.1640
10.1016/j.biotechadv.2016.03.009
10.1007/978-3-319-05846-7
10.1515/amm-2016-0110
10.1016/j.biomaterials.2016.01.012
10.1016/j.colsurfb.2015.06.074
10.1089/ten.tea.2007.0277
10.1007/s00590-012-1070-4
10.1007/s12206-016-1049-x
10.1100/2012/646417
10.1002/term.1813
10.1088/1757-899X/100/1/012033
10.1002/jbm.a.34130
10.1088/1758-5090/7/3/035002
10.1016/j.polymer.2007.09.017
10.1021/la3009249
10.3109/21691401.2013.775578
10.1002/jbm.b.32863
10.1016/j.ijbiomac.2016.05.024
10.1186/s11671-017-1911-5
10.1016/j.actbio.2012.04.022
10.1088/1758-5082/3/2/025004
10.1016/j.polymertesting.2018.03.042
10.1016/j.msec.2017.05.132
10.1016/j.ceramint.2017.07.082
10.1080/09205063.2017.1388993
10.1016/j.msec.2017.03.001
10.1007/s10856-017-5898-3
10.1016/S0266-3538(03)00275-6
10.1016/j.matlet.2015.05.084
10.1007/s10856-007-3346-5
10.1007/s10853-015-9244-1
10.1007/s00289-017-2093-0
10.1016/j.bioactmat.2016.11.001
10.1089/107632702320934182
10.1016/j.biomaterials.2017.05.021
10.1021/bm060317c
10.1088/0957-4484/23/9/095705
10.1016/j.ceramint.2017.09.095
10.1016/j.actbio.2013.07.019
10.1063/1.1408260
10.1002/mabi.201600290
10.1039/C2BM00039C
10.1177/0883911515597928
10.1088/1758-5082/6/2/025005
10.1016/j.actbio.2017.12.008
10.1016/j.biomaterials.2005.03.026
10.1007/s10439-013-0913-4
10.1007/s10544-012-9677-0
10.1016/j.actbio.2010.09.039
10.1117/12.2254475
10.1177/0885328216638636
10.1088/1758-5090/8/3/035008
10.1080/17436753.2017.1356043
10.1088/1758-5090/aa5766
10.1007/s10856-009-3878-y
10.1088/0957-4484/18/5/055101
10.1016/j.medengphy.2015.08.006
10.3390/ma11010013
10.1016/j.progpolymsci.2013.06.001
10.1089/ten.teb.2009.0687
10.1557/mrs.2015.3
10.1007/s10856-009-3767-4
10.1063/1.2924439
10.1016/j.bone.2013.06.028
10.1177/0022034517734846
10.1371/journal.pone.0151216
10.1007/s10853-017-1528-1
10.1063/1.373532
10.1016/j.actbio.2010.06.024
10.1002/sctm.17-0148
10.1007/s12541-014-0571-y
10.1016/j.biomaterials.2003.10.032
10.1002/jbm.a.35540
10.4028/www.scientific.net/KEM.240-242.111
10.1177/0022034515588303
10.1590/1414-431X20143930
10.1002/mame.201800247
10.1016/j.biomaterials.2016.01.024
10.1016/j.oraloncology.2018.01.005
10.1049/mnl.2011.0440
10.1016/j.ceramint.2014.06.117
10.1016/j.jmbbm.2016.12.014
10.1016/j.jtbi.2014.10.012
10.1016/S0142-9612(02)00148-5
10.1088/1748-6041/10/3/035013
10.1016/j.matlet.2016.04.070
10.1016/j.jeurceramsoc.2013.08.003
10.1007/978-3-031-02579-2
10.2147/IJN.S146679
10.1088/1758-5082/6/1/015003
10.1002/adhm.201500168
10.1109/ICMA.2010.45
10.1108/RPJ-03-2016-0037
10.3390/fib2020158
10.1016/j.compbiomed.2015.10.017
10.1016/j.actbio.2005.12.004
10.1111/ijac.12076
10.1136/postgradmedj-2013-132387
10.1007/s11517-012-1001-x
10.1590/S1516-14392014005000075
10.1007/s10544-017-0245-5
10.1007/s00170-009-2162-0
10.3390/polym10030328
10.1016/j.matdes.2016.07.094
10.1080/09205063.2017.1354671
10.1016/j.polymdegradstab.2010.06.007
10.1016/j.actbio.2015.06.032
10.1016/B978-0-12-800547-7.00011-4
10.1016/j.jeurceramsoc.2010.04.037
10.7150/ijbs.13139
10.1016/j.medengphy.2014.02.010
10.1016/j.cma.2006.09.023
10.1080/15422119.2013.795902
10.1016/j.cej.2015.12.047
10.1108/RPJ-12-2013-0123
10.1016/S0167-577X(02)01339-3
10.1016/j.saa.2017.12.008
10.1016/j.polymer.2009.11.025
10.1109/JPROC.2016.2625098
10.1111/clr.12486
10.15302/J-ENG-2015061
10.1023/A:1008973120918
10.1088/1758-5090/7/3/035004
10.1002/jbm.a.33058
10.1038/am.2017.171
10.1016/j.injury.2011.03.033
10.1016/j.jdsr.2013.01.001
10.1155/2016/8590971
10.1016/j.jnnfm.2007.11.011
10.1002/pat.3892
10.1016/j.matlet.2016.05.146
10.1016/S0142-9612(00)00121-6
10.1177/0022034515588885
10.1016/j.bprint.2017.04.002
10.1002/jbm.b.33660
10.1080/00222348.2015.1090654
10.1088/1468-6996/14/5/055002
10.1002/jbm.a.36289
10.3390/ma9040232
10.1016/j.msec.2017.08.040
10.4028/www.scientific.net/MSF.783-786.1366
10.1108/RPJ-03-2014-0029
10.1002/term.1897
10.1088/1758-5082/6/1/015006
10.1108/RPJ-09-2013-0092
10.1097/ID.0000000000000655
10.1007/s10856-006-0073-2
10.1080/00914037.2016.1180617
10.1016/j.actbio.2008.10.012
10.1016/j.rcim.2015.06.005
10.1016/j.jconrel.2016.05.061
10.1007/s10856-015-5658-1
10.1177/0883911513490341
10.1016/j.actbio.2006.02.004
10.1039/C4RA15893H
10.1116/1.4897217
10.1016/j.actbio.2016.01.007
10.1155/2012/382639
10.1155/2016/5862586
10.1016/j.medengphy.2015.05.009
10.1002/jbm.a.32645
10.1007/s10856-015-5465-8
10.3390/ma10121344
10.1080/17452759.2012.673152
10.1021/acsomega.8b00219
10.22203/eCM.v006a02
10.1152/physiol.00061.2014
10.1016/j.jmapro.2009.03.002
10.1016/j.ijmachtools.2017.08.004
10.3109/03008207.2013.822864
10.1108/RPJ-11-2014-0148
10.1115/1.2162589
10.1016/j.matlet.2016.03.021
10.1016/j.msec.2016.11.049
10.1016/j.actbio.2012.08.015
10.1016/j.apsusc.2017.11.218
10.1016/j.actbio.2009.07.018
10.1002/bdrc.21047
10.1016/j.actbio.2014.12.028
10.1016/j.matlet.2017.06.096
10.1002/1097-4636(20010605)55:3<401::AID-JBM1029>3.0.CO;2-H
10.1016/j.msec.2018.04.016
10.1016/j.ymeth.2009.08.007
10.1016/j.actbio.2010.02.002
10.1371/journal.pone.0034117
10.1016/j.ijbiomac.2014.10.040
10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
10.22203/eCM.v015a05
10.1002/asia.201000436
10.1088/1758-5082/5/2/025005
10.1016/j.jbiosc.2012.07.005
10.1007/s11633-014-0853-y
10.1016/j.jmbbm.2018.01.013
10.1016/j.msec.2016.07.041
10.1108/RPJ-04-2013-0040
10.1016/j.ijimpeng.2017.09.018
10.1002/biot.201600734
10.1016/j.ijpharm.2015.11.012
10.1371/journal.pone.0147399
10.1088/1748-6041/10/4/045019
10.1016/j.jconrel.2018.01.006
10.1177/0954411916682984
10.1111/j.1551-2916.2006.01143.x
10.1080/17452759.2013.873337
10.1016/j.actbio.2014.12.024
10.1016/j.biocel.2007.06.009
10.1016/j.actbio.2016.08.032
10.1108/13552541111184206
10.1002/9781118406748.ch10
10.1016/j.msec.2014.07.052
10.1016/j.actbio.2008.06.008
10.1242/jcs.063032
10.1016/j.polymer.2006.08.042
10.1002/adma.201103482
10.1002/jbm.a.31587
10.1039/C6TB00675B
10.1089/ten.teb.2015.0464
10.1155/2014/657542
10.1016/j.actbio.2008.03.019
10.1016/j.ibiod.2017.10.001
10.1016/j.cytogfr.2013.03.008
10.1177/039463201202500119
10.1039/C5TB01468A
10.1089/teb.2008.0038
10.33549/physiolres.933134
10.1016/j.progpolymsci.2007.05.017
10.1016/j.biomaterials.2010.04.050
10.1016/j.actbio.2009.10.051
10.1002/jbm.b.33239
10.1016/j.actbio.2018.02.027
10.1089/ten.tec.2008.0288
10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R
10.1016/j.jmbbm.2015.12.007
10.1088/1758-5082/5/3/035012
10.1016/j.biomaterials.2017.06.005
10.1007/s10856-007-3089-3
10.1016/j.actbio.2014.05.026
10.1016/j.actbio.2016.12.040
10.1002/jbm.b.31577
10.1016/j.actbio.2012.10.009
10.1023/B:JMSM.0000004006.90399.b4
10.1016/j.cad.2005.02.006
10.1016/j.msec.2014.10.074
10.1016/j.msec.2014.01.027
10.1177/0883911515627471
10.1002/jbm.a.34985
10.1177/0021955X08099929
10.1088/1748-605X/aa5d76
10.3390/ma10111244
10.1016/j.ijbiomac.2016.08.046
10.1016/j.biomaterials.2006.01.039
10.5301/jabfm.5000252
10.1002/jbm.a.36270
10.1016/j.mser.2016.01.001
10.1016/j.actbio.2011.11.002
10.1196/annals.1365.035
10.1016/j.jeurceramsoc.2016.08.018
10.1016/S0142-9612(03)00131-5
10.1002/jbm.a.34394
10.1016/j.mattod.2013.11.017
10.1007/s12221-017-1061-5
10.1016/j.coms.2010.04.007
10.1163/092050610X534230
10.1088/1758-5082/5/1/015014
10.1109/TNANO.2013.2293704
10.1016/j.semcdb.2008.07.004
10.1002/jbm.b.33700
10.1016/j.msec.2016.09.040
ContentType Journal Article
Copyright 2018 Acta Materialia Inc.
Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright Elsevier BV Oct 15, 2018
Copyright_xml – notice: 2018 Acta Materialia Inc.
– notice: Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier BV Oct 15, 2018
DBID AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.actbio.2018.09.031
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 30
ExternalDocumentID 30248515
10_1016_j_actbio_2018_09_031
S1742706118305518
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SEW
SSH
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c493t-2318041e2b0b5152e7d176b38e03cb094a706772b6979c3aaf3fd27732f4db3b3
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Fri Jul 11 10:39:52 EDT 2025
Wed Aug 13 05:01:45 EDT 2025
Wed Feb 19 02:37:27 EST 2025
Thu Apr 24 23:08:51 EDT 2025
Tue Jul 01 01:17:20 EDT 2025
Fri Feb 23 02:39:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Material extrusion
Selective laser sintering
Gas foaming
Cryogelation
Selective laser melting
Tissue engineering
Binder jetting
Bone scaffolds
Electrospinning
Additive manufacturing
Vat photoplymerization
Language English
License Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-2318041e2b0b5152e7d176b38e03cb094a706772b6979c3aaf3fd27732f4db3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 30248515
PQID 2131831426
PQPubID 2045286
PageCount 30
ParticipantIDs proquest_miscellaneous_2112189441
proquest_journals_2131831426
pubmed_primary_30248515
crossref_primary_10_1016_j_actbio_2018_09_031
crossref_citationtrail_10_1016_j_actbio_2018_09_031
elsevier_sciencedirect_doi_10_1016_j_actbio_2018_09_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lukasiewicz, Basnett, Nigmatullin, Matharu, Knowles, Roy (b0395) 2018; 71
Bergmann, Lindner, Zhang, Koczur, Kirsten, Telle, Fischer (b0180) 2010; 30
Salerno, Oliviero, Di Maio, Iannace, Netti (b0280) 2009; 20
Van Rie, Declercq, Van Hoorick, Dierick, Van Hoorebeke, Cornelissen, Thienpont, Dubruel, Van Vlierberghe (b0620) 2015; 26
Malikmammadov, Tanir, Kiziltay, Hasirci, Hasirci (b1345) 2018; 29
Scalera, Esposito Corcione, Montagna, Sannino, Maffezzoli (b1435) 2014; 40
M.M. Savalani, C.C. Ng, H.C. Man, Selective Laser Melting of Magnesium for Future Applications in Medicine, 2010 Int. Conf. Manuf. Autom. (2010) 50–54. doi:10.1109/ICMA.2010.45.
Shakir, Jolly, Khan, Rauf, Kazmi (b0340) 2016; 93
Zhou, Wang, Cheung, Ip (b1095) 2010
Szlazak, Jaroszewicz, Ostrowska, Jaroszewicz, Nabiałek, Szota, Swieszkowski (b1195) 2016; 61
Yarin, Koombhongse, Reneker (b1595) 2001; 90
C. Mota, D. Puppi, D. Dinucci, M. Gazzarri, F. Chiellini, Additive manufacturing of star poly (ε -caprolactone) wet- spun scaffolds for bone tissue engineering applications, (2013). doi:10.1177/0883911513490341.
Bignon, Chouteau, Chevalier, Fantozzi, Carret, Chavassieux, Boivin, Melin, Hartmann (b0295) 2003; 14
Kumaresan, Gandhinathan, Ramu, Ananthasubramanian, Pradheepa (b1115) 2016; 30
Yao, Bastiaansen, Peijs (b1490) 2014; 2
Poursamar, Hatami, Lehner, Da Silva, Ferreira, Antunes (b1730) 2015; 48
B. Leukers, H. Gulkan, S.H. Irsen, S. Milz, C. Tille, H. Seitz, M. Schieker, Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing, Materwiss. Werksttech. 36 (2005) 781–787. doi:10.1002/mawe.200500968.
Melchels, Feijen, Grijpma (b1475) 2010; 31
Zhang, Fang, Zhou (b0235) 2017
Singh, Pandey, Verma (b1015) 2016; 22
Lv, Xiu, Tan, Jia, Cai, Liu (b1280) 2015; 10
Saijo, Fujihara, Kanno, Hoshi, Hikita (b1690) 2016; 5
Mancuso, Alharbi, Bretcanu, Marshall, Birch, McCaskie, Dalgarno (b0955) 2017; 231
Yang, Jia, Liu, Li, Hou, Wang, Guan (b1565) 2008; 103
Hochleitner, Kessler, Schmitz, Boccaccini, Teβmar, Groll (b1605) 2017; 205
R. do V. Pereira, G.V. Salmoria, M.O.C. de Moura, Á. Aragones, M.C. Fredel, Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering, Mater. Res. 17 (2014) 33–38. doi:10.1590/S1516-14392014005000075.
Li, Jiang, Deng, Li, Li, Peng, Wang (b1205) 2017; 7
Kim, Kim, Koh, Shim, Lee, Kim, Hwang (b0695) 2017
Butscher, Bohner, Doebelin, Hofmann, Müller (b0810) 2013; 9
Kinstlinger, Bastian, Paulsen, Hwang, Ta, Yalacki, Schmidt, Miller (b0975) 2016; 11
Mota, Wang, Puppi, Gazzarri, Migone, Chiellini, Chen, Chiellini (b1330) 2017; 11
.
Siddiqui, Partridge (b0160) 2016; 31
M. Castilho, C. Moseke, A. Ewald, U. Gbureck, Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects, (n.d.). doi:10.1088/1758-5082/6/1/015006.
A. Singh, A.K. Gaharwar, Microscale technologies for cell engineering, Microscale Technol. Cell Eng. (2015) 1–318. doi:10.1007/978-3-319-20726-1.
Demir, Monguzzi, Previtali (b1245) 2017; 15
Kim, Amirthalingam, Kim, Lee, Rangasamy, Hwang (b0215) 2017; 1700612
S. Provided, I.S.O. No, I.H.S. Licensee, INTERNATIONAL STANDARD Additive manufacturing — General, 2014 (2014).
D. Liu, J. Zhuang, C. Shuai, S. Peng, Mechanical properties’ improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering., Biofabrication. 5 (2013) 025005 (10pp). doi:10.1088/1758-5082/5/2/025005.
Kumar, Mishra, Reinwald, Bhat (b0590) 2010; 13
Moghadam, Hassanajili, Esmaeilzadeh, Ayatollahi, Ahmadi (b0540) 2017; 69
Puppi, Mota, Gazzarri, Dinucci, Gloria, Myrzabekova, Ambrosio, Chiellini (b1335) 2012; 14
Dalton, Vaquette, Farrugia, Dargaville, Brown, Hutmacher (b1405) 2013; 1
Dimitriou, Tsiridis, Giannoudis (b0060) 2005
O. Suzuki, T. Anada, Octacalcium Phosphate: A Potential Scaffold Material for Controlling Activity of Bone-Related Cells &lt;i∗gt;In Vitro&lt;/i&gt;, Mater. Sci. Forum. 783–786 (2014) 1366–1371. doi:10.4028/www.scientific.net/MSF.783-786.1366.
Khalyfa, Vogt, Weisser, Grimm, Rechtenbach, Meyer, Schnabelrauch (b0895) 2007; 18
Shuai, Feng, Zhang, Gao, Hu, Peng, Min (b0995) 2013; 14
Jackson, Patrick, Page, Powell, Lythgoe, Miodownik, Parkin, Carmalt, Kalber, Bear (b1140) 2018; 3
B.H. Moghadam, A.K. Haghi, S. Kasaei, Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods computational-based approach for predicting porosity of electrospun nanofiber mats using response S, 2348 (2015). doi:10.1080/00222348.2015.1090654.
R. Smeets, M. Barbeck, H. Hanken, H. Fischer, M. Lindner, M. Heiland, M. Wöltje, S. Ghanaati, A. Kolk, Selective laser-melted fully biodegradable scaffold composed of poly(d, l-lactide) and ??-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: In vitro and in vivo results, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2016) 1–16. doi:10.1002/jbm.b.33660.
P.S.M. S, Tissue engineering and regenerative medicine Concise Review: Bioprinting of stem cells for transplantable tissue fabrication, (2017) 1940–1948. doi:10.1002/sctm.17-0148.
Kolar, Schmidt-Bleek, Schell, Gaber, Toben, Schmidmaier, Perka, Buttgereit, Duda (b0120) 2010; 16
Gardan (b0480) 2015; 7543
Rodrigues, Leonor, Gröen, Viegas, Dias, Caridade, Mano, Gomes, Reis (b1355) 2014; 10
J. Gilmore, T. Burg, R.E. Groff, K.J.L. Burg, Design and optimization of a novel bio-loom to weave melt-spun absorbable polymers for bone tissue engineering, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2017) 1342–1351. doi:10.1002/jbm.b.33700.
He, Xia, Li (b1645) 2016; 8
Tan, Chua, Leong, Cheah, Gui, Tan, Wiria (b1020) 2005; 15
Yang, Mun, Kim (b1775) 2016; 288
Lam, Mo, Teoh, Hutmacher (b0935) 2002; 20
D.L. Alge, J. Bennett, T. Treasure, S. Voytik-Harbin, W.S. Goebel, T.M.G. Chu, Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering, J. Biomed. Mater. Res. - Part A. 100 A (2012) 1792–1802. doi:10.1002/jbm.a.34130.
Yang, Du, Wang, Yang, Zhang (b0510) 2016; 173
P.H. Warnke, H. Seitz, F. Warnke, S.T. Becker, S. Sivananthan, E. Sherry, Q. Liu, J. Wiltfang, T. Douglas, Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations, J. Biomed. Mater. Res. - Part B Appl. Biomater. 93 (2010) 212–217. doi:10.1002/jbm.b.31577.
Wang, Xu, Zhou, Xu, Leary, Choong, Qian, Brandt, Xie (b0230) 2016; 83
Cavo, Scaglione (b1305) 2016; 68
Oropallo, Piegl (b0475) 2016; 32
Dávila, Freitas, Neto, Silveira, Silva, d’Ávila (b0750) 2016; 84
H. Shao, M. Sun, F. Zhang, A. Liu, Y. He, J. Fu, X. Yang, H. Wang, Z. Gou, Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds, J. Dent. Res. (2017) 002203451773484. doi:10.1177/0022034517734846.
G. Vozzi, a Previti, D. De Rossi, a Ahluwalia, Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering., Tissue Eng. 8 (2002) 1089–1098. doi:10.1089/107632702320934182.
M. Sc, Y. Yang, M. Sc, D. Ph, P. Korkusuz, N. Bo, E. Gu, Three-Dimensional Ingrowth of Bone Cells Within Biodegradable, 14 (2008). doi:10.1089/ten.tea.2007.0277.
Jia, Li, Xiu, Xu, Cheng, Zheng, Xi, Wei, Liu (b1275) 2015; 157
Han, Li, Wang, Wen, Wei, Yan, Hao, Liu, Shi (b0755) 2018; 80
Gobal, Ravani (b0980) 2016; 17
Shuai, Mao, Lu, Nie, Hu, Peng (b1010) 2013; 5
Eqtesadi, Motealleh, Miranda, Pajares, Lemos, Ferreira (b1385) 2014; 34
Yang, Choi, Leung, Curtin, Du, Zhang, Chen, Su (b1715) 2018; 78
Naga, Awaad, El-Maghraby, El-Kady (b0890) 2014; 11
Tesavibul, Chantaweroad, Laohaprapanon, Channasanon, Uppanan, Tanodekaew, Chalermkarnnon, Sitthiseripratip (b1450) 2015; 26
Li, Liu, Peng, Ma, Fong (b1630) 2016; 176
Zhang, Mao, Zhao, Jiang, Du, Li, Jiang, Han (b1200) 2017; 7
Izquierdo-Barba (b1425) 2014; 9781118406
Torres, Nazhat, Sheikh Md Fadzullah, Maquet, Boccaccini (b0270) 2007; 67
Partee, Hollister, Das (b0990) 2006; 128
Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang, S. Peng, Novel biomaterial strategies for controlled growth factor delivery for biomedical applications, (2017). doi:10.1038/am.2017.171.
Vasireddi, Basu (b0800) 2015; 21
N. Kemençe, N. Bölgen, Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility, (2017) 20–33. doi:10.1002/term.1813.
L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung, Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials: techniques and applications, n.d.
(accessed June 19, 2017).
Eshraghi, Das (b1085) 2012; 8
D. Puppi, A. Morelli, F. Bello, S. Valentini, F. Chiellini, Additive Manufacturing of Poly (Methyl Methacrylate) Biomedical Implants with Dual-Scale Porosity, 1800247 (2018) 1–9. doi:10.1002/mame.201800247.
Tan, Chua, Leong, Cheah, Cheang, Abu Bakar, Cha (b1025) 2003; 24
Webler, Rodrigues, Silva, Silva, Fonseca, Degenhardt, Oliveira, Otubo, Barros Filho (b0375) 2017; 436
Srivas, Kapat, Dadhich, Pal, Dutta, Datta, Dhara (b1150) 2017; 6
Cadafalch Gazquez, Chen, Moroni, Boukamp, ten Elshof (b0835) 2017; 208
Wallace, Wang, Thompson, Busso, Belle, Mammoser, Kim, Fisher, Siblani, Xu, Welter, Lennon, Sun, Caplan, Dean (b1455) 2014; 6
Youssef, Hollister, Dalton (b1780) 2017; 09
D. Puppi, A. Pirosa, A. Morelli, F. Chiellini, D. Puppi, A. Pirosa, A. Morelli, F. Chiellini, Design, fabrication and characterization of tailored poly [(R) -3-hydroxybutyrate-co- (R) -3- hydroxyexanoate ] scaffolds by computer-aided wet-spinning, (2018). doi:10.1108/RPJ-03-2016-0037.
Bohner, Baumgart Robert (b0275) 2004; 25
Misra, Valappil, Roy, Boccaccini (b0410) 2006; 7
Hendriks, Riesle, van Blitterswijk (b0650) 2010; 4
H. Liu, W. Li, C. Liu, J. Tan, H. Wang, B. Hai, H. Cai, H. Leng, Incorporating simvastatin / poloxamer 407 hydrogel into 3D-printed porous Ti 6 Al 4 V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth Incorporating simvastatin / poloxamer 407 hydrogel into 3D-pri
Zhang (10.1016/j.actbio.2018.09.031_b0235) 2017
Barui (10.1016/j.actbio.2018.09.031_b1225) 2017; 70
Saijo (10.1016/j.actbio.2018.09.031_b1690) 2016; 5
Savalani (10.1016/j.actbio.2018.09.031_b1250) 2016; 22
Crockett (10.1016/j.actbio.2018.09.031_b0095) 2011; 124
10.1016/j.actbio.2018.09.031_b0185
Siddiqui (10.1016/j.actbio.2018.09.031_b0160) 2016; 31
10.1016/j.actbio.2018.09.031_b0860
Miranda (10.1016/j.actbio.2018.09.031_b1390) 2008; 85
10.1016/j.actbio.2018.09.031_b0730
Wei (10.1016/j.actbio.2018.09.031_b0815) 2017; 43
10.1016/j.actbio.2018.09.031_b1700
Bohner (10.1016/j.actbio.2018.09.031_b0275) 2004; 25
10.1016/j.actbio.2018.09.031_b0735
Ozturk (10.1016/j.actbio.2018.09.031_b0660) 2013; 23
10.1016/j.actbio.2018.09.031_b1705
Miranda (10.1016/j.actbio.2018.09.031_b1395) 2006; 2
Shuai (10.1016/j.actbio.2018.09.031_b0995) 2013; 14
Armentano (10.1016/j.actbio.2018.09.031_b0310) 2010; 95
Xia (10.1016/j.actbio.2018.09.031_b1045) 2013; 8
Vasireddi (10.1016/j.actbio.2018.09.031_b0800) 2015; 21
Naghieh (10.1016/j.actbio.2018.09.031_b1290) 2016; 59
Pereira (10.1016/j.actbio.2018.09.031_b1090) 2012; 7
10.1016/j.actbio.2018.09.031_b0070
10.1016/j.actbio.2018.09.031_b1040
10.1016/j.actbio.2018.09.031_b1285
Misra (10.1016/j.actbio.2018.09.031_b0410) 2006; 7
Zhmayev (10.1016/j.actbio.2018.09.031_b1555) 2008; 153
10.1016/j.actbio.2018.09.031_b1710
Yang (10.1016/j.actbio.2018.09.031_b1715) 2018; 78
Cama (10.1016/j.actbio.2018.09.031_b0390) 2014
Singh (10.1016/j.actbio.2018.09.031_b1015) 2016; 22
Lichte (10.1016/j.actbio.2018.09.031_b0195) 2011; 42
Bandyopadhyay (10.1016/j.actbio.2018.09.031_b1105) 2015; 40
Tesavibul (10.1016/j.actbio.2018.09.031_b1450) 2015; 26
Carvalho (10.1016/j.actbio.2018.09.031_b0585) 2014; 43
Boccaccini (10.1016/j.actbio.2018.09.031_b0535) 2003; 63
Marques (10.1016/j.actbio.2018.09.031_b1400) 2017; 37
An (10.1016/j.actbio.2018.09.031_b1235) 2015; 1
10.1016/j.actbio.2018.09.031_b1370
Venugopal (10.1016/j.actbio.2018.09.031_b1515) 2007; 18
Bignon (10.1016/j.actbio.2018.09.031_b0295) 2003; 14
10.1016/j.actbio.2018.09.031_b1130
10.1016/j.actbio.2018.09.031_b1375
10.1016/j.actbio.2018.09.031_b0045
10.1016/j.actbio.2018.09.031_b1255
10.1016/j.actbio.2018.09.031_b0710
Wang (10.1016/j.actbio.2018.09.031_b0250) 2017
Torres (10.1016/j.actbio.2018.09.031_b0270) 2007; 67
Seidenstuecker (10.1016/j.actbio.2018.09.031_b0830) 2017; 11
Naga (10.1016/j.actbio.2018.09.031_b0890) 2014; 11
Komárek (10.1016/j.actbio.2018.09.031_b1550) 2010
Liao (10.1016/j.actbio.2018.09.031_b0950) 2013; 4
Nam (10.1016/j.actbio.2018.09.031_b0570) 2000; 53
Bose (10.1016/j.actbio.2018.09.031_b0005) 2013; 16
White (10.1016/j.actbio.2018.09.031_b1485) 2015; 2
Salerno (10.1016/j.actbio.2018.09.031_b0545) 2015; 496
10.1016/j.actbio.2018.09.031_b0290
Nommeots-Nomm (10.1016/j.actbio.2018.09.031_b1315) 2018; 38
Hutmacher (10.1016/j.actbio.2018.09.031_b0300) 2000; 21
Skwarek (10.1016/j.actbio.2018.09.031_b0335) 2017; 12
10.1016/j.actbio.2018.09.031_b1260
10.1016/j.actbio.2018.09.031_b0175
Yang (10.1016/j.actbio.2018.09.031_b0515) 2015; 37
10.1016/j.actbio.2018.09.031_b0970
Warnke (10.1016/j.actbio.2018.09.031_b1030) 2009; 15
Yarin (10.1016/j.actbio.2018.09.031_b1595) 2001; 90
Kim (10.1016/j.actbio.2018.09.031_b0695) 2017
10.1016/j.actbio.2018.09.031_b0600
10.1016/j.actbio.2018.09.031_b0720
10.1016/j.actbio.2018.09.031_b0965
Gardan (10.1016/j.actbio.2018.09.031_b0480) 2015; 7543
Dias (10.1016/j.actbio.2018.09.031_b0495) 2014; 36
Comlekci (10.1016/j.actbio.2018.09.031_b1505) 2013; 103
Van Rie (10.1016/j.actbio.2018.09.031_b0620) 2015; 26
10.1016/j.actbio.2018.09.031_b0725
Yao (10.1016/j.actbio.2018.09.031_b1490) 2014; 2
10.1016/j.actbio.2018.09.031_b0845
Mumtaz (10.1016/j.actbio.2018.09.031_b1230) 2007; 42
Nidhi (10.1016/j.actbio.2018.09.031_b1535) 2011; 3
Mancuso (10.1016/j.actbio.2018.09.031_b0955) 2017; 231
Calignano (10.1016/j.actbio.2018.09.031_b1745) 2017; 105
Brunello (10.1016/j.actbio.2018.09.031_b0210) 2016; 34
Doyle (10.1016/j.actbio.2018.09.031_b1065) 2014; 42
Muerza-Cascante (10.1016/j.actbio.2018.09.031_b1615) 2017; 52
Sarkar (10.1016/j.actbio.2018.09.031_b0355) 2018; 53
Li (10.1016/j.actbio.2018.09.031_b1630) 2016; 176
Shapiro (10.1016/j.actbio.2018.09.031_b0075) 2008; 15
de Peppo (10.1016/j.actbio.2018.09.031_b1270) 2012; 2012
Mondschein (10.1016/j.actbio.2018.09.031_b1465) 2017; 140
Inzana (10.1016/j.actbio.2018.09.031_b0780) 2014; 35
Puppi (10.1016/j.actbio.2018.09.031_b1335) 2012; 14
Zhou (10.1016/j.actbio.2018.09.031_b0785) 2014; 38
10.1016/j.actbio.2018.09.031_b0265
Eshraghi (10.1016/j.actbio.2018.09.031_b1085) 2012; 8
Lv (10.1016/j.actbio.2018.09.031_b1280) 2015; 10
10.1016/j.actbio.2018.09.031_b0135
Shakir (10.1016/j.actbio.2018.09.031_b0340) 2016; 93
10.1016/j.actbio.2018.09.031_b0930
Nyary (10.1016/j.actbio.2018.09.031_b0110) 2017
Guillaume (10.1016/j.actbio.2018.09.031_b1430) 2017; 28
Butscher (10.1016/j.actbio.2018.09.031_b0810) 2013; 9
Gobal (10.1016/j.actbio.2018.09.031_b0980) 2016; 17
Youssef (10.1016/j.actbio.2018.09.031_b1780) 2017; 09
Qi (10.1016/j.actbio.2018.09.031_b0910) 2017; 7
Auyson (10.1016/j.actbio.2018.09.031_b1575) 2014
Vetrik (10.1016/j.actbio.2018.09.031_b0715) 2018
Jia (10.1016/j.actbio.2018.09.031_b1275) 2015; 157
Hendriks (10.1016/j.actbio.2018.09.031_b0650) 2010; 4
Thompson (10.1016/j.actbio.2018.09.031_b1570) 2007; 48
Kim (10.1016/j.actbio.2018.09.031_b1760) 2008; 4
Zhang (10.1016/j.actbio.2018.09.031_b1200) 2017; 7
Srivas (10.1016/j.actbio.2018.09.031_b1150) 2017; 6
Lee (10.1016/j.actbio.2018.09.031_b1635) 2012; 28
Soliman (10.1016/j.actbio.2018.09.031_b1650) 2010; 6
10.1016/j.actbio.2018.09.031_b1360
Singh (10.1016/j.actbio.2018.09.031_b0610) 2011; 22
Yang (10.1016/j.actbio.2018.09.031_b1775) 2016; 288
10.1016/j.actbio.2018.09.031_b0155
Bhat (10.1016/j.actbio.2018.09.031_b0625) 2012; 114
Zhou (10.1016/j.actbio.2018.09.031_b0325) 2011; 7
10.1016/j.actbio.2018.09.031_b0940
10.1016/j.actbio.2018.09.031_b0700
10.1016/j.actbio.2018.09.031_b0945
Yan (10.1016/j.actbio.2018.09.031_b1325) 2003; 57
Lam (10.1016/j.actbio.2018.09.031_b0935) 2002; 20
10.1016/j.actbio.2018.09.031_b0825
Kolan (10.1016/j.actbio.2018.09.031_b1135) 2011; 3
Qin (10.1016/j.actbio.2018.09.031_b0055) 2014; 90
Grau (10.1016/j.actbio.2018.09.031_b1145) 2017; 10
Karatay (10.1016/j.actbio.2018.09.031_b1495) 2011; 6
Lim (10.1016/j.actbio.2018.09.031_b0245) 2017; 79
Wallace (10.1016/j.actbio.2018.09.031_b1455) 2014; 6
Deng (10.1016/j.actbio.2018.09.031_b0840) 2017; 7
Malikmammadov (10.1016/j.actbio.2018.09.031_b1345) 2018; 29
Zhang (10.1016/j.actbio.2018.09.031_b1675) 2016; 181
Yang (10.1016/j.actbio.2018.09.031_b0510) 2016; 173
Dean (10.1016/j.actbio.2018.09.031_b1445) 2014; 9
Partee (10.1016/j.actbio.2018.09.031_b0990) 2006; 128
Shuai (10.1016/j.actbio.2018.09.031_b1215) 2018; 68
Cavo (10.1016/j.actbio.2018.09.031_b1305) 2016; 68
Joguet (10.1016/j.actbio.2018.09.031_b1170) 2016; 22
D’Amato (10.1016/j.actbio.2018.09.031_b1510) 2017; 18
Hutmacher (10.1016/j.actbio.2018.09.031_b0315) 2011; 6
Jazayeri (10.1016/j.actbio.2018.09.031_b0740) 2018; 44
Tang (10.1016/j.actbio.2018.09.031_b0365) 2016; 83
10.1016/j.actbio.2018.09.031_b1210
Zhou (10.1016/j.actbio.2018.09.031_b1545) 2006; 47
Bölgen (10.1016/j.actbio.2018.09.031_b0605) 2014; 42
Han (10.1016/j.actbio.2018.09.031_b0630) 2016; 93
10.1016/j.actbio.2018.09.031_b1695
Kolan (10.1016/j.actbio.2018.09.031_b1125) 2015; 21
Li (10.1016/j.actbio.2018.09.031_b1180) 2018; 67
Raina (10.1016/j.actbio.2018.09.031_b0640) 2016; 235
Zouhary (10.1016/j.actbio.2018.09.031_b0170) 2010; 22
Li (10.1016/j.actbio.2018.09.031_b1205) 2017; 7
Dini (10.1016/j.actbio.2018.09.031_b1380) 2016
Dirckx (10.1016/j.actbio.2018.09.031_b0130) 2013; 99
10.1016/j.actbio.2018.09.031_b0915
Shuai (10.1016/j.actbio.2018.09.031_b1010) 2013; 5
Abarrategi (10.1016/j.actbio.2018.09.031_b1785) 2012; 7
Pal (10.1016/j.actbio.2018.09.031_b0020) 2014; 9781461462
Butscher (10.1016/j.actbio.2018.09.031_b0040) 2011; 7
Tan (10.1016/j.actbio.2018.09.031_b1020) 2005; 15
van Bochove (10.1016/j.actbio.2018.09.031_b1420) 2016
Yang (10.1016/j.actbio.2018.09.031_b1565) 2008; 103
Vaquette (10.1016/j.actbio.2018.09.031_b1725) 2013; 9
Kumaresan (10.1016/j.actbio.2018.09.031_b1115) 2016; 30
10.1016/j.actbio.2018.09.031_b1580
10.1016/j.actbio.2018.09.031_b0010
Kang (10.1016/j.actbio.2018.09.031_b1680) 2015; 16
10.1016/j.actbio.2018.09.031_b0255
Zhou (10.1016/j.actbio.2018.09.031_b0380) 2017; 12
Belinha (10.1016/j.actbio.2018.09.031_b0030) 2014; 8
10.1016/j.actbio.2018.09.031_b1585
Will (10.1016/j.actbio.2018.09.031_b0770) 2008; 19
Hochleitner (10.1016/j.actbio.2018.09.031_b1605) 2017; 205
Zhang (10.1016/j.actbio.2018.09.031_b1220) 2016
Bushan (10.1016/j.actbio.2018.09.031_b1740) 2018; 272
Shakir (10.1016/j.actbio.2018.09.031_b0345) 2015; 26
Rodrigues (10.1016/j.actbio.2018.09.031_b1355) 2014; 10
10.1016/j.actbio.2018.09.031_b0925
Thavornyutikarn (10.1016/j.actbio.2018.09.031_b1480) 2017; 75
Zhmayev (10.1016/j.actbio.2018.09.031_b1590) 2010; 51
Wei (10.1016/j.actbio.2018.09.031_b0820) 2016; 57
Mishra (10.1016/j.actbio.2018.09.031_b0615) 2011; 22
Kolar (10.1016/j.actbio.2018.09.031_b0120) 2010; 16
Gong (10.1016/j.actbio.2018.09.031_b0920) 2017; 28
Shuai (10.1016/j.actbio.2018.09.031_b1100) 2014; 20
Nair (10.1016/j.actbio.2018.09.031_b0305) 2007; 32
Do (10.1016/j.actbio.2018.09.031_b0745) 2015; 4
Vlasea (10.1016/j.actbio.2018.09.031_b0035) 2015
Hadjidakis (10.1016/j.actbio.2018.09.031_b0100) 2006; 1092
Torkkeli (10.1016/j.actbio.2018.09.031_b0795) 2003; 63
Du (10.1016/j.actbio.2018.09.031_b1075) 2017; 137
10.1016/j.actbio.2018.09.031_b1670
10.1016/j.actbio.2018.09.031_b0220
Nik (10.1016/j.actbio.2018.09.031_b0760) 2015
Okamoto (10.1016/j.actbio.2018.09.031_b0425) 2013; 38
10.1016/j.actbio.2018.09.031_b1310
Aghazadeh (10.1016/j.actbio.2018.09.031_b1770) 2017; 18
10.1016/j.actbio.2018.09.031_b0455
Chen (10.1016/j.actbio.2018.09.031_b0790) 2017; 123
Li (10.1016/j.actbio.2018.09.031_b1000) 2015; 21
10.1016/j.actbio.2018.09.031_b1665
Hong (10.1016/j.actbio.2018.09.031_b0960) 2016; 45
Hollister (10.1016/j.actbio.2018.09.031_b0490) 2002; 23
Merceron (10.1016/j.actbio.2018.09.031_b0145) 2018
Azidin (10.1016/j.actbio.2018.09.031_b1175) 2015; 100
Paskiabi (10.1016/j.actbio.2018.09.0
References_xml – reference: B. Aldemİr, S. Dİkİcİ, Ş. Öztürk, O. Karaman, A.Ş. Ürkmez, 3D Tissue Scaffold Printing On Custom Artificial Bone Applications Kişiye Özel Yapay Kemik Uygulamaları için 3B Yazdırma Tekniği Kullanılarak Doku İskelesi Oluşturulması, 18 (2014) 1–9.
– volume: 49
  start-page: 58
  year: 2013
  end-page: 71
  ident: b0885
  article-title: Octacalcium phosphate (OCP)-based bone substitute materials
  publication-title: Jpn. Dent. Sci. Rev.
– reference: a. Salerno, P. a. A. Netti, E. Di Maio, S. Iannace, Engineering of Foamed Structures for Biomedical Application, J. Cell. Plast. 45 (2009) 103–117. doi:10.1177/0021955X08099929.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 6
  ident: b1525
  article-title: Bioactivity assessment of poly(ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application
  publication-title: J. Nanomater.
– volume: 43
  start-page: 502
  year: 2014
  end-page: 505
  ident: b0505
  article-title: Effective method for multi-scale gradient porous scaffold design and fabrication
  publication-title: Mater. Sci. Eng. C
– reference: L. Yin, S. Yang, M. He, Y. Chang, K. Wang, Y. Zhu, Y. Liu, Y. Chang, Z. Yu, Physicochemical and biological characteristics of BMP-2 / IGF-1- loaded three-dimensional coaxial electrospun fi brous membranes for bone defect repair, (2017). doi:10.1007/s10856-017-5898-3.
– volume: 15
  start-page: 113
  year: 2005
  end-page: 124
  ident: b1020
  article-title: Selective laser sintering of biocompatible polymers for applications in tissue engineering
  publication-title: Biomed. Mater. Eng.
– reference: G. Vozzi, a Previti, D. De Rossi, a Ahluwalia, Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering., Tissue Eng. 8 (2002) 1089–1098. doi:10.1089/107632702320934182.
– volume: 51
  start-page: 274
  year: 2010
  end-page: 290
  ident: b1590
  article-title: Modeling of melt electrospinning for semi-crystalline polymers
  publication-title: Polymer (Guildf)
– reference: S. Tunchel, A. Blay, R. Kolerman, E. Mijiritsky, J.A. Shibli, 3D printing/additive manufacturing single titanium dental implants : a prospective multicenter study with 3 years of follow-up, 2016 (2016).
– volume: 2
  start-page: 277
  year: 2006
  end-page: 286
  ident: b0350
  article-title: Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications
  publication-title: Acta Biomater.
– volume: 68
  start-page: 872
  year: 2016
  end-page: 879
  ident: b1305
  article-title: Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications
  publication-title: Mater. Sci. Eng. C
– volume: 68
  start-page: 27
  year: 2018
  end-page: 33
  ident: b1215
  article-title: Positive feedback effects of Mg on the hydrolysis of poly-l-lactic acid (PLLA): promoted degradation of PLLA scaffolds
  publication-title: Polym. Test.
– volume: 24
  start-page: 1
  year: 2015
  end-page: 11
  ident: b1410
  article-title: Combined additive manufacturing approaches in tissue engineering
  publication-title: Acta Biomater.
– volume: 7
  start-page: 035002
  year: 2015
  ident: b1560
  article-title: Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing
  publication-title: Biofabrication
– volume: 1
  start-page: 93
  year: 2016
  end-page: 108
  ident: b0420
  article-title: Bioactive polymeric scaffolds for tissue engineering
  publication-title: Bioact. Mater.
– volume: 193
  start-page: 175
  year: 2018
  end-page: 184
  ident: b0360
  article-title: Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
– volume: 48
  start-page: 63
  year: 2015
  end-page: 70
  ident: b1730
  article-title: Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment
  publication-title: Mater. Sci. Eng. C
– volume: 128
  start-page: 47
  year: 2017
  end-page: 56
  ident: b0645
  article-title: Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures
  publication-title: Polym. (United Kingdom)
– volume: 21
  start-page: 1255
  year: 2010
  end-page: 1262
  ident: b0190
  article-title: Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering
  publication-title: J. Mater. Sci. Mater. Med.
– reference: M.A. Liebert, H. Fetal, B. Cells, M. Montjovent, L. Mathieu, D. Ph, B. Hinz, L.E.E.L. Applegate, P. Bourban, P. Zambelli, Biocompatibility of Bioresorbable Poly(, 11 (2005) 1640–1649.
– year: 2014
  ident: b0595
  publication-title: Polymeric cryogels macroporous gels with remarkable properties
– volume: 7
  start-page: 2769
  year: 2011
  end-page: 2781
  ident: b0325
  article-title: Nanoscale hydroxyapatite particles for bone tissue engineering
  publication-title: Acta Biomater.
– reference: DRAFT INTERNATIONAL STANDARD ISO/DIS 17296–1 Additive manufacturing — General principles — Part 1 : Terminology, 2014 (2017).
– volume: 14
  start-page: 1115
  year: 2012
  end-page: 1127
  ident: b1335
  article-title: Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering
  publication-title: Biomed. Microdev.
– volume: 1092
  start-page: 385
  year: 2006
  end-page: 396
  ident: b0100
  article-title: Bone remodeling
  publication-title: Ann. N. Y. Acad. Sci.
– reference: P.M. Mountziaris, A.G. Mikos, D. Ph, Modulation of the Inflammatory Response for Enhanced Bone Tissue Regeneration, 14 (2008). doi:10.1089/ten.teb.2008.0038.
– reference: Z. Wang, Z. Wang, W.W. Lu, W. Zhen, D. Yang, S. Peng, Novel biomaterial strategies for controlled growth factor delivery for biomedical applications, (2017). doi:10.1038/am.2017.171.
– volume: 11
  start-page: 1
  year: 2016
  end-page: 29
  ident: b0900
  article-title: Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing
  publication-title: PLoS One
– volume: 2
  start-page: 158
  year: 2014
  end-page: 186
  ident: b1490
  article-title: High strength and high modulus electrospun nanofibers
  publication-title: Fibers
– volume: 75
  start-page: 1299
  year: 2018
  end-page: 1309
  ident: b1110
  article-title: Properties of PLDLA/bioglass scaffolds produced by selective laser sintering
  publication-title: Polym. Bull.
– reference: M.M. Savalani, C.C. Ng, H.C. Man, Selective Laser Melting of Magnesium for Future Applications in Medicine, 2010 Int. Conf. Manuf. Autom. (2010) 50–54. doi:10.1109/ICMA.2010.45.
– volume: 13
  start-page: 42
  year: 2010
  end-page: 44
  ident: b0590
  article-title: Cryogels: Freezing unveiled by thawing
  publication-title: Mater. Today.
– volume: 45
  start-page: 1
  year: 2016
  end-page: 22
  ident: b0850
  article-title: 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery
  publication-title: Ann. Biomed. Eng.
– volume: 18
  start-page: 055101
  year: 2007
  ident: b1515
  article-title: Biocomposite nanofibres and osteoblasts for bone tissue engineering
  publication-title: Nanotechnology
– reference: P.H. Warnke, H. Seitz, F. Warnke, S.T. Becker, S. Sivananthan, E. Sherry, Q. Liu, J. Wiltfang, T. Douglas, Ceramic scaffolds produced by computer-assisted 3D printing and sintering: Characterization and biocompatibility investigations, J. Biomed. Mater. Res. - Part B Appl. Biomater. 93 (2010) 212–217. doi:10.1002/jbm.b.31577.
– volume: 25
  start-page: 3569
  year: 2004
  end-page: 3582
  ident: b0275
  article-title: Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes
  publication-title: Biomaterials
– volume: 26
  start-page: 6099
  year: 2005
  end-page: 6105
  ident: b0285
  article-title: Synthesis and characterization of porous b-tricalcium phosphate blocks
  publication-title: Biomaterials
– volume: 11
  start-page: 175
  year: 2017
  end-page: 186
  ident: b1330
  article-title: Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 14
  start-page: 055002
  year: 2013
  ident: b0995
  article-title: Correlation between properties and microstructure of laser sintered porous β-tricalcium phosphate bone scaffolds
  publication-title: Sci. Technol. Adv. Mater.
– volume: 21
  start-page: 747
  year: 2015
  end-page: 762
  ident: b1000
  article-title: Current status of additive manufacturing for tissue engineering scaffold
  publication-title: Rapid Prototyp. J.
– volume: 10
  start-page: 1344
  year: 2017
  ident: b1145
  article-title: In vitro evaluation of PCL and P(3HB) as coating materials for selective laser melted porous titanium implants
  publication-title: Materials (Basel)
– volume: 11
  start-page: 13
  year: 2017
  ident: b0830
  article-title: 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds
  publication-title: Materials (Basel)
– start-page: 1853
  year: 2016
  end-page: 1863
  ident: b1420
  article-title: Preparation of designed poly(trimethylene carbonate) meniscus implants by stereolithography: challenges in stereolithography
  publication-title: Macromol. Biosci.
– volume: 20
  start-page: 2043
  year: 2009
  end-page: 2051
  ident: b0280
  article-title: Design of porous polymeric scaffolds by gas foaming of heterogeneous blends
  publication-title: J. Mater. Sci. Mater. Med.
– year: 2017
  ident: b0695
  publication-title: Enhanced osteogenic commitment of human mesenchymal stem cells on polyethylene glycol-based cryogel with graphene oxide substrate
– volume: 27
  start-page: 1
  year: 2016
  end-page: 11
  ident: b1340
  article-title: Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 2
  start-page: 457
  year: 2006
  end-page: 466
  ident: b1395
  article-title: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications
  publication-title: Acta Biomater.
– volume: 55
  start-page: 401
  year: 2001
  end-page: 408
  ident: b0530
  article-title: Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts
  publication-title: J. Biomed. Mater. Res.
– reference: Z. Wang, X. Zhu, W. Wang, The use of 3D-printed titanium mesh tray in treating complex comminuted mandibular fractures, (n.d.) 1–5.
– volume: 16
  start-page: 427
  year: 2010
  end-page: 434
  ident: b0120
  article-title: The early fracture hematoma and its potential role in fracture healing
  publication-title: Tissue Eng. Part B Rev.
– volume: 205
  start-page: 257
  year: 2017
  end-page: 260
  ident: b1605
  article-title: Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles
  publication-title: Mater. Lett.
– volume: 40
  start-page: 46
  year: 2008
  end-page: 62
  ident: b0090
  article-title: Endochondral ossification: How cartilage is converted into bone in the developing skeleton
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 128
  start-page: 531
  year: 2006
  ident: b0990
  article-title: Selective laser sintering process optimization for layered manufacturing of CAPA[sup ®] 6501 polycaprolactone bone tissue engineering scaffolds
  publication-title: J. Manuf. Sci. Eng.
– year: 2018
  ident: b0715
  article-title: Porous heat-treated polyacrylonitrile scaffolds for bone
  publication-title: Tissue Eng.
– volume: 30
  start-page: 5305
  year: 2016
  end-page: 5312
  ident: b1115
  article-title: Design, analysis and fabrication of polyamide/ hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications
  publication-title: J. Mech. Sci. Technol.
– volume: 3
  start-page: 26
  year: 2011
  end-page: 33
  ident: b1535
  article-title: Hydrotropy: a promising tool for solubility enhancement: a review
  publication-title: Int. J. Drug Dev. Res.
– year: 2010
  ident: b0025
  publication-title: Fundament. Biomech. Bone Tissue Eng.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 10
  ident: b1005
  article-title: A review of additive manufacturing
  publication-title: ISRN Mech. Eng.
– volume: 6
  start-page: 8
  year: 2017
  end-page: 17
  ident: b1150
  article-title: Osseointegration assessment of extrusion printed Ti6Al4V scaffold towards accelerated skeletal defect healing via tissue in-growth
  publication-title: Bioprinting
– volume: 17
  start-page: 479
  year: 2011
  end-page: 490
  ident: b1240
  article-title: Fabrication of magnesium using selective laser melting technique
  publication-title: Rapid Prototyp. J.
– volume: 30
  start-page: 2563
  year: 2010
  end-page: 2567
  ident: b0180
  article-title: 3D printing of bone substitute implants using calcium phosphate and bioactive glasses
  publication-title: J. Eur. Ceram. Soc.
– volume: 34
  start-page: 740
  year: 2016
  end-page: 753
  ident: b0210
  article-title: Powder-based 3D printing for bone tissue engineering
  publication-title: Biotechnol. Adv.
– volume: 22
  start-page: 1733
  year: 2011
  end-page: 1751
  ident: b0610
  article-title: Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 31
  start-page: 233
  year: 2016
  end-page: 245
  ident: b0160
  article-title: Physiological bone remodeling: systemic regulation and growth factor involvement
  publication-title: Physiology
– volume: 100
  start-page: 012033
  year: 2015
  ident: b1175
  article-title: Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 240–242
  start-page: 111
  year: 2003
  end-page: 142
  ident: b0330
  article-title: Tailoring the bioactivity of natural origin inorganic – Polymeric based systems
  publication-title: Key Eng. Mater.
– volume: 365
  start-page: 247
  year: 2015
  end-page: 264
  ident: b0150
  article-title: Oxygen as a critical determinant of bone fracture healing — A multiscale model
  publication-title: J. Theor. Biol.
– volume: 82
  start-page: 559
  year: 2016
  end-page: 571
  ident: b0260
  article-title: 3D printing-assisted design of scaffold structures
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 35
  start-page: 4026
  year: 2014
  end-page: 4034
  ident: b0780
  article-title: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
  publication-title: Biomaterials
– volume: 7
  start-page: 2
  year: 2017
  end-page: 13
  ident: b0910
  article-title: Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
  publication-title: Sci. Rep.
– reference: H. Liu, W. Li, C. Liu, J. Tan, H. Wang, B. Hai, H. Cai, H. Leng, Incorporating simvastatin / poloxamer 407 hydrogel into 3D-printed porous Ti 6 Al 4 V scaffolds for the promotion of angiogenesis, osseointegration and bone ingrowth Incorporating simvastatin / poloxamer 407 hydrogel into 3D-printed porous Ti 6 Al 4 V sc, (n.d.).
– volume: 10
  year: 2017
  ident: b1155
  article-title: Mesoporous bioactive glass functionalized 3D Ti-6Al-4V Scaffolds with improved surface bioactivity
  publication-title: Materials (Basel)
– volume: 7
  start-page: 1
  year: 2017
  end-page: 13
  ident: b1200
  article-title: Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an in vivo bioreactor model
  publication-title: Sci. Rep.
– volume: 45
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0205
  article-title: Additive biomanufacturing: an advanced approach for periodontal tissue regeneration
  publication-title: Ann. Biomed. Eng.
– reference: K.R. Hixon, C.T. Eberlin, T. Lu, S.M. Neal, N.D. Case, S.H. Mcbride-gagyi, S.A. Sell, The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration The calci fi cation potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration, (2017).
– start-page: 25
  year: 2015
  end-page: 27
  ident: b0760
  article-title: The effect of bone scaffold gradient architecture design on stem cell mechanical modulation: a computational study
  publication-title: Proceedings of the 22nd Iranian Conference on Biomedical Engineering (ICBME)
– volume: 7
  start-page: 035004
  year: 2015
  ident: b0320
  article-title: Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair
  publication-title: Biofabrication
– volume: 9781461462
  start-page: 1
  year: 2014
  end-page: 419
  ident: b0020
  article-title: Design of artificial human joints & organs
  publication-title: Des. Artif. Hum. Joints Organs.
– reference: K. Aktories, M. Fakultät, K. Pharmakologie, A.I. Albert-, L. Freiburg, R.W. Compans, M.D. Cooper, New Perspectives in Regeneration Responsible series editor : Hilary Kropowski, n.d.
– start-page: 846
  year: 2013
  end-page: 849
  ident: b0665
  publication-title: Ultrasound stimulus to enhance the bone regeneration capability of gelatin cryogels
– volume: 87
  start-page: 4531
  year: 2000
  end-page: 4547
  ident: b1600
  article-title: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning
  publication-title: J. Appl. Phys.
– reference: S. Tarafder, W.S. Dernell, A. Bandyopadhyay, S. Bose, SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: Mechanical properties and in vivo osteogenesis in a rabbit model, J. Biomed. Mater. Res. - Part B Appl. Biomater. 103 (2015) 679–690. doi:10.1002/jbm.b.33239.
– volume: 38
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0785
  article-title: Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique
  publication-title: Mater. Sci. Eng. C
– volume: 9
  start-page: 1
  year: 2016
  end-page: 15
  ident: b1620
  article-title: Poly(ε-caprolactone) scaffolds fabricated by melt electrospinning for bone tissue engineering
  publication-title: Materials (Basel).
– volume: 117
  start-page: 10212
  year: 2017
  end-page: 10290
  ident: b1735
  article-title: Polymers for 3D printing and customized additive manufacturing
  publication-title: Chem. Rev.
– volume: 37
  start-page: 767
  year: 2015
  end-page: 776
  ident: b1060
  article-title: Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials
  publication-title: Med. Eng. Phys.
– reference: D. Liu, J. Zhuang, C. Shuai, S. Peng, Mechanical properties’ improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering., Biofabrication. 5 (2013) 025005 (10pp). doi:10.1088/1758-5082/5/2/025005.
– volume: 9
  start-page: 5369
  year: 2013
  end-page: 5378
  ident: b0430
  article-title: Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering
  publication-title: Acta Biomater.
– reference: M. Castilho, C. Moseke, A. Ewald, U. Gbureck, Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects, (n.d.). doi:10.1088/1758-5082/6/1/015006.
– volume: 24
  start-page: 3115
  year: 2003
  end-page: 3123
  ident: b1025
  article-title: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends
  publication-title: Biomaterials
– volume: 1
  start-page: 261
  year: 2015
  end-page: 268
  ident: b1235
  article-title: Design and 3D printing of scaffolds and tissues
  publication-title: Engineering
– reference: O. Suzuki, T. Anada, Octacalcium Phosphate: A Potential Scaffold Material for Controlling Activity of Bone-Related Cells &lt;i∗gt;In Vitro&lt;/i&gt;, Mater. Sci. Forum. 783–786 (2014) 1366–1371. doi:10.4028/www.scientific.net/MSF.783-786.1366.
– volume: 11
  start-page: 1
  year: 2016
  end-page: 25
  ident: b0975
  article-title: Open-Source Selective Laser Sintering (OpenSLS) of nylon and biocompatible polycaprolactone
  publication-title: PLoS One
– volume: 50
  start-page: 7182
  year: 2015
  end-page: 7191
  ident: b0870
  article-title: Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting
  publication-title: J. Mater. Sci.
– volume: 231
  start-page: 575
  year: 2017
  end-page: 585
  ident: b0955
  article-title: Three-dimensional printing of porous load-bearing bioceramic scaffolds
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
– volume: 6
  start-page: 858
  year: 2011
  ident: b1495
  article-title: Modelling of electrospinning process at various electric fields
  publication-title: Micro Nano Lett.
– volume: 23
  year: 2012
  ident: b0655
  article-title: Mechanical properties and in vitro behavior of nanofiberhydrogel composites for tissue engineering applications
  publication-title: Nanotechnology
– volume: 9781118406
  start-page: 291
  year: 2014
  end-page: 313
  ident: b1425
  article-title: Scaffold designing
  publication-title: Bio-Ceram. Clin. Appl.
– reference: D. Steffens, R. Alvarenga Rezende, B. Santi, F.D. Alencar de Sena Pereira, P. Inforçatti Neto, J.V. Lopes da Silva, P. Pranke, 3D-printed PCL scaffolds for the cultivation of mesenchymal stem cells, J. Appl. Biomater. Funct. Mater. 14 (2016) 0–0. doi:10.5301/jabfm.5000252.
– volume: 95
  start-page: 2126
  year: 2010
  end-page: 2146
  ident: b0310
  article-title: Biodegradable polymer matrix nanocomposites for tissue engineering: a review
  publication-title: Polym. Degrad. Stab.
– volume: 7
  start-page: 13
  year: 2012
  end-page: 24
  ident: b1460
  article-title: Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds
  publication-title: Virtual Phys. Prototyp.
– year: 2016
  ident: b1380
  publication-title: Tailored star poly scaffolds for in vivo regeneration of long bone critical size defects
– volume: 104
  start-page: 57
  year: 2016
  end-page: 70
  ident: b0635
  article-title: Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration
  publication-title: J. Biomed. Mater. Res. – Part A.
– reference: Y. Huang, X. Zhang, G. Gao, T. Yonezawa, X. Cui, 3D bioprinting and the current applications in tissue engineering, 1600734 (2017). doi:10.1002/biot.201600734.
– volume: 6
  start-page: 4495
  year: 2010
  end-page: 4505
  ident: b1050
  article-title: Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering
  publication-title: Acta Biomater.
– volume: 3
  start-page: 8348
  year: 2015
  end-page: 8358
  ident: b1415
  article-title: Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography
  publication-title: J. Mater. Chem. B
– reference: Y. Su, Q. Su, W. Liu, M. Lim, J. Reddy, X. Mo, Acta Biomaterialia Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core – shell PLLACL – collagen fibers for use in bone tissue engineering, 8 (2012) 763–771. doi:10.1016/j.actbio.2011.11.002.
– volume: 26
  start-page: 41
  year: 2015
  end-page: 48
  ident: b0345
  article-title: Synthesis and characterization of a nano-hydroxyapatite/chitosan/polyethylene glycol nanocomposite for bone tissue engineering
  publication-title: Polym. Adv. Technol.
– reference: F. Luongo, F.G. Mangano, A. Macchi, G. Luongo, C. Mangano, Custom-Made Synthetic Scaffolds for Bone Reconstruction : A Retrospective, Multicenter Clinical Study on 15 Patients, 2016 (2016).
– volume: 37
  start-page: 359
  year: 2017
  end-page: 368
  ident: b1400
  article-title: Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties
  publication-title: J. Eur. Ceram. Soc.
– reference: M. Lindner, S. Hoeges, W. Meiners, K. Wissenbach, R. Smeets, R. Telle, R. Poprawe, H. Fischer, Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique, J. Biomed. Mater. Res. - Part A. 97 A (2011) 466–471. doi:10.1002/jbm.a.33058.
– reference: B. Sez, O. Pediatrica, I.S. Matteo, F.S. Maugeri, D. Smec, S. Ortopedia, I.S. Matteo, T. Engineering, effects of electromagnetic stimulation on osteogenic differentiation of human mesenchymal stromal cells seeded onto gelatin cryogel, 24 (2011) 1–6. doi:10.1177/03946320110241S201.
– volume: 70
  start-page: 812
  year: 2017
  end-page: 823
  ident: b1225
  article-title: Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis
  publication-title: Mater. Sci. Eng. C
– reference: F. Obregon, C. Vaquette, S. Ivanovski, D.W. Hutmacher, L.E. Bertassoni, Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering, 94 (n.d.) 143–152.
– volume: 23
  start-page: 5651
  year: 2011
  end-page: 5657
  ident: b1640
  article-title: Direct writing by way of melt electrospinning
  publication-title: Adv. Mater.
– volume: 7543
  start-page: 1
  year: 2015
  end-page: 15
  ident: b0480
  article-title: Additive manufacturing technologies: state of the art and trends
  publication-title: Int. J. Prod. Res.
– volume: 83
  start-page: 127
  year: 2016
  end-page: 141
  ident: b0230
  article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review
  publication-title: Biomaterials
– volume: 6
  start-page: 5398
  year: 2013
  end-page: 5409
  ident: b1160
  article-title: Comparative analysis of the oxygen supply and viability of human osteoblasts in three-dimensional titanium scaffolds produced by laser-beam or electron-beam melting
  publication-title: Materials (Basel)
– volume: 40
  start-page: 108
  year: 2015
  end-page: 114
  ident: b1105
  article-title: 3D printing of biomaterials
  publication-title: MRS Bull.
– volume: 16
  start-page: 103
  year: 2015
  end-page: 116
  ident: b1680
  article-title: Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors
  publication-title: Acta Biomater.
– volume: 79
  start-page: 917
  year: 2017
  end-page: 929
  ident: b0245
  article-title: Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds
  publication-title: Mater. Sci. Eng. C.
– volume: 22
  start-page: 243
  year: 2018
  end-page: 255
  ident: b0465
  article-title: Accuracy in dental surgical guide fabrication using different 3-D printing techniques
  publication-title: Addit. Manuf.
– reference: A. Golunova, J. Jaroš, V. Jurtíková, I. Kotelnikov, J. Kotek, N - (2-Hydroxypropyl) Methacrylamide Based Cryogels – Synthesis and Biomimetic Modification for Stem Cell Applications, 64 (2015).
– volume: 2012
  year: 2012
  ident: b1540
  article-title: Needleless melt-electrospinning of polypropylene nanofibres
  publication-title: J. Nanomater.
– volume: 103
  start-page: 149
  year: 2013
  end-page: 151
  ident: b1505
  article-title: Electrostatic field considerations related force effect on electrospinning
  publication-title: IEEE Trans. Nanotechnol.
– volume: 54
  start-page: 351
  year: 2013
  end-page: 360
  ident: b1265
  article-title: Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting
  publication-title: Connect. Tissue Res.
– volume: 27
  start-page: 3413
  year: 2006
  end-page: 3431
  ident: b0370
  article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
– volume: 22
  start-page: 20
  year: 2016
  end-page: 30
  ident: b1170
  article-title: Porosity content control of CoCrMo and titanium parts by Taguchi method applied to selective laser melting process parameter
  publication-title: Rapid Prototyp. J.
– volume: 83
  start-page: 363
  year: 2016
  end-page: 382
  ident: b0365
  article-title: Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration
  publication-title: Biomaterials
– volume: 42
  start-page: 569
  year: 2011
  end-page: 573
  ident: b0195
  article-title: Scaffolds for bone healing: Concepts, materials and evidence
  publication-title: Injury
– volume: 56
  start-page: 363
  year: 2013
  end-page: 374
  ident: b0445
  article-title: Micro-CT finite element model and experimental validation of trabecular bone damage and fracture
  publication-title: Bone
– volume: 22
  start-page: 752
  year: 2016
  end-page: 765
  ident: b1015
  article-title: Fabrication of three dimensional open porous regular structure of PA-2200 for enhanced strength of scaffold using selective laser sintering
  publication-title: Rapid Prototyp. J.
– start-page: 10
  year: 2010
  end-page: 15
  ident: b1550
  article-title: Design and evaluation of melt-electrospinning electrodes nanofiber production without need for solvent recuperation is one of the possible ways to transform the laboratory scale electrospinning technique to high productivity process
  publication-title: Melt-Electrospinning
– volume: 42
  start-page: 70
  year: 2014
  end-page: 77
  ident: b0605
  article-title: Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects
  publication-title: Artif. Cells, Nanomed. Biotechnol.
– volume: 40
  start-page: 15455
  year: 2014
  end-page: 15462
  ident: b1435
  article-title: Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering
  publication-title: Ceram. Int.
– reference: B.H. Moghadam, A.K. Haghi, S. Kasaei, Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods computational-based approach for predicting porosity of electrospun nanofiber mats using response S, 2348 (2015). doi:10.1080/00222348.2015.1090654.
– reference: S.C. Rodrigues, C.L. Salgado, A. Sahu, M.P. Garcia, M.H. Fernandes, F.J. Monteiro, Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications, J. Biomed. Mater. Res. - Part A. 101 A (2013) 1080–1094. doi:10.1002/jbm.a.34394.
– volume: 22
  start-page: 2107
  year: 2011
  end-page: 2126
  ident: b0615
  article-title: Inorganic/organic biocomposite cryogels for regeneration of bony tissues
  publication-title: J. Biomater. Sci. Polym. Ed.
– reference: M.N. Oliveira, L.H. Rau, R.D.S. Magini, Ridge Preservation After Maxillary Third Molar Extraction Using 30% Porosity PLGA/HA/b-TCP Scaffolds With and Without Simvastatin: A Pilot Randomized Controlled Clinical Trial, (2017) 832–840. doi:10.1097/ID.0000000000000655.
– volume: 13
  start-page: 101
  year: 2014
  end-page: 108
  ident: b1500
  article-title: An alternative electrospinning approach with varying electric field for 2-D-aligned nanofibers
  publication-title: IEEE Trans. Nanotechnol.
– volume: 47
  start-page: 533
  year: 2014
  end-page: 539
  ident: b0415
  article-title: Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering
  publication-title: Brazilian J. Med. Biol. Res.
– volume: 18
  start-page: 9
  year: 2015
  end-page: 20
  ident: b1470
  article-title: Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds
  publication-title: Acta Biomater.
– start-page: 231
  year: 2015
  end-page: 263
  ident: b0035
  article-title: Additive manufacturing for bone load bearing applications
  publication-title: 3D Bioprint. Nanotechnol. Tissue Eng. Regen. Med.
– volume: 93
  start-page: 276
  year: 2016
  end-page: 289
  ident: b0340
  article-title: Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 102
  start-page: 4317
  year: 2014
  end-page: 4325
  ident: b0805
  article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
  publication-title: J. Biomed. Mater. Res. – Part A
– volume: 31
  start-page: 6121
  year: 2010
  end-page: 6130
  ident: b1475
  article-title: A review on stereolithography and its applications in biomedical engineering
  publication-title: Biomaterials
– volume: 62
  start-page: 668
  year: 2016
  end-page: 677
  ident: b0565
  article-title: Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds
  publication-title: Mater. Sci. Eng. C
– volume: 80
  start-page: 119
  year: 2018
  end-page: 127
  ident: b0755
  article-title: Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 5
  start-page: 1082
  year: 2009
  end-page: 1093
  ident: b0560
  article-title: Engineered μ-bimodal poly(ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation
  publication-title: Acta Biomater.
– reference: H. Shao, M. Sun, F. Zhang, A. Liu, Y. He, J. Fu, X. Yang, H. Wang, Z. Gou, Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds, J. Dent. Res. (2017) 002203451773484. doi:10.1177/0022034517734846.
– volume: 9
  start-page: 9149
  year: 2013
  end-page: 9158
  ident: b0810
  article-title: New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes
  publication-title: Acta Biomater.
– reference: B. Holmes, K. Bulusu, M. Plesniak, A. Di Luca, A. Longoni, G. Criscenti, G. Criscenti, A. Longoni, A. Di Luca, A. Lode, M. Meyer, S. Brüggemeier, A. Di Luca, A. Longoni, G. Criscenti, porosity gradient 3D printing of novel osteochondral scaffolds with graded microstructure, (n.d.).
– reference: J. Li, X. Liu, B. zuo, L. Zhang, The Role of Bone Marrow Microenvironment in Governing the Balance between Osteoblastogenesis and Adipogenesis, Aging Dis. 7 (2016) 514. doi:10.14336/AD.2015.1206.
– year: 2014
  ident: b0390
  article-title: 1 – Calcium Phosphate Cements for Bone Regeneration
  publication-title: Woodhead Publishing Limited
– volume: 2014
  year: 2014
  ident: b0580
  article-title: Biological effect of gas plasma treatment on CO2 gas foaming/salt leaching fabricated porous polycaprolactone scaffolds in bone tissue engineering
  publication-title: J. Nanomater.
– reference: 6.4 Bone Formation and Development | Anatomy and Physiology, (n.d.).
– volume: 31
  start-page: 132
  year: 2016
  end-page: 139
  ident: b1120
  article-title: Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells
  publication-title: J. Biomater. Appl.
– volume: 7
  year: 2012
  ident: b1785
  article-title: Biological properties of solid free form designed ceramic scaffolds with bmp-2: In vitro and in vivo evaluation
  publication-title: PLoS One
– volume: 53
  start-page: 1
  year: 2000
  end-page: 7
  ident: b0570
  article-title: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive
  publication-title: J. Biomed. Mater. Res.
– reference: D. Ben, P. Tan, Novel 3D polycaprolactone scaffold for ridge preservation – a pilot randomised controlled clinical trial, (2014) 271–277. doi:10.1111/clr.12486.
– volume: 81
  start-page: 1089
  year: 2015
  end-page: 1097
  ident: b1765
  article-title: Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach
  publication-title: Int. J. Biol. Macromol.
– reference: A.L. Hong, B.T. Newman, A. Khalid, O.M. Teter, E.A. Kobe, M. Shukurova, R. Shinde, D. Sipzner, R.J. Pignolo, J.K. Udupa, C.S. Rajapakse, Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging, (2017) 101380O. doi:10.1117/12.2254475.
– volume: 29
  start-page: 805
  year: 2018
  end-page: 824
  ident: b1345
  article-title: PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering
  publication-title: J. Biomater. Sci. Polym. Ed.
– volume: 23
  start-page: 767
  year: 2013
  end-page: 774
  ident: b0660
  article-title: The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (VEGF)-loaded gelatin/hydroxyapatite “cryogel” scaffold
  publication-title: Eur. J. Orthop. Surg. Traumatol.
– volume: 4
  start-page: 1742
  year: 2015
  end-page: 1762
  ident: b0745
  article-title: 3D Printing of scaffolds for tissue regeneration applications
  publication-title: Adv. Healthc. Mater.
– reference: .
– reference: J.B. Vella, R.P. Trombetta, M.D. Hoffman, J. Inzana, H. Awad, D.S.W. Benoit, Three dimensional printed calcium phosphate and poly (caprolactone) composites with improved mechanical properties and preserved microstructure, (2017) 663–672. doi:10.1002/jbm.a.36270.
– year: 2017
  ident: b0235
  publication-title: Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical
– volume: 38
  start-page: 1487
  year: 2013
  end-page: 1503
  ident: b0425
  article-title: Synthetic biopolymer nanocomposites for tissue engineering scaffolds
  publication-title: Prog. Polym. Sci.
– volume: 109
  start-page: 415
  year: 2016
  end-page: 424
  ident: b0555
  article-title: Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds
  publication-title: Mater. Des.
– volume: 8
  start-page: 035008
  year: 2016
  ident: b1645
  article-title: Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds
  publication-title: Biofabrication
– volume: 4
  start-page: 1611
  year: 2008
  end-page: 1619
  ident: b1760
  article-title: Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles
  publication-title: Acta Biomater.
– volume: 26
  year: 2015
  ident: b0620
  article-title: Cryogel-PCL combination scaffolds for bone tissue repair
  publication-title: J. Mater. Sci. Mater. Med.
– reference: P. Fernandes, B. Gouveia, J. Rodrigues, Fabrication of computationally designed scaffolds by low temperature 3D printing, (n.d.). doi:10.1088/1758-5082/5/3/035012.
– volume: 90
  start-page: 4836
  year: 2001
  end-page: 4846
  ident: b1595
  article-title: Taylor cone and jetting from liquid droplets in electrospinning of nanofibers
  publication-title: J. Appl. Phys.
– volume: 78
  start-page: 31
  year: 2018
  end-page: 36
  ident: b1715
  article-title: Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: a prospective pilot study
  publication-title: Oral Oncol.
– volume: 10
  start-page: 4175
  year: 2014
  end-page: 4185
  ident: b1355
  article-title: Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: the effect of silanol groups
  publication-title: Acta Biomater.
– reference: C. Mota, D. Puppi, D. Dinucci, M. Gazzarri, F. Chiellini, Additive manufacturing of star poly (ε -caprolactone) wet- spun scaffolds for bone tissue engineering applications, (2013). doi:10.1177/0883911513490341.
– volume: 6
  start-page: 015003
  year: 2014
  ident: b1455
  article-title: Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package
  publication-title: Biofabrication
– volume: 15
  start-page: 115
  year: 2009
  end-page: 124
  ident: b1030
  article-title: Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering
  publication-title: Tissue Eng. Part C-Methods
– start-page: 355
  year: 2018
  end-page: 364
  ident: b0145
  publication-title: Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells
– year: 2014
  ident: b1530
  article-title: 5 – Multifunctional Scaffolds For Bone Regeneration
  publication-title: Woodhead Publishing Limited
– volume: 3
  year: 2018
  ident: b1140
  article-title: Chemically treated 3D printed polymer scaffolds for biomineral formation
  publication-title: ACS Omega
– reference: International Standard Additive manufacturing — General Overview of process categories and 2015 (2015).
– volume: 5
  start-page: 015014
  year: 2013
  ident: b1010
  article-title: Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering
  publication-title: Biofabrication
– volume: 44
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0740
  article-title: The cross-disciplinary emergence of 3D printed bioceramic scaffolds in orthopedic bioengineering
  publication-title: Ceram. Int.
– volume: 6
  start-page: 2467
  year: 2010
  end-page: 2476
  ident: b1070
  article-title: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering
  publication-title: Acta Biomater.
– volume: 89
  start-page: 3176
  year: 2006
  end-page: 3181
  ident: b0865
  article-title: Internal structure evaluation of three-dimensional calcium phosphate bone scaffolds: a micro-computed tomographic study
  publication-title: J. Am. Ceram. Soc.
– volume: 181
  start-page: 119
  year: 2016
  end-page: 122
  ident: b1675
  article-title: The controlled release of growth factor via modified coaxial electrospun fibres with emulsion or hydrogel as the core
  publication-title: Mater. Lett.
– reference: A. Rodriguez-Palomo, D. Monopoli, H. Afonso, I. Izquierdo-Barba, M. Vallet-Regí, Surface zwitterionization of customized 3D Ti6Al4V scaffolds: a promising alternative to eradicate bone infection, J. Mater. Chem. B. (2016) 4356–4365. doi:10.1039/C6TB00675B.
– volume: 57
  start-page: 2623
  year: 2003
  end-page: 2628
  ident: b1325
  article-title: Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition
  publication-title: Mater. Lett.
– volume: 16
  start-page: 496
  year: 2013
  end-page: 504
  ident: b0005
  article-title: Bone tissue engineering using 3D printing
  publication-title: Mater. Today.
– volume: 42
  start-page: 7647
  year: 2007
  end-page: 7656
  ident: b1230
  article-title: Laser melting functionally graded composition of Waspaloy® and Zirconia powders
  publication-title: J. Mater. Sci.
– volume: 10
  start-page: 035013
  year: 2015
  ident: b1280
  article-title: Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti 6 Al 4 V scaffolds incorporating growth factor-doped fibrin glue
  publication-title: Biomed. Mater.
– reference: A. Mazzoli, C. Ferretti, a Gigante, E. Salvolini, M. Mattioli-Belmonte, Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering, Rapid Prototyp. J. 21 (2015) 386–392. doi:10.1108/RPJ-04-2013-0040.
– start-page: 7
  year: 2017
  end-page: 14
  ident: b0110
  publication-title: Principles Bone Joint Res.
– volume: 63
  start-page: 3
  year: 2003
  end-page: 194
  ident: b0795
  article-title: Droplet microfluidics on a planar surface
  publication-title: VTT Publ.
– volume: 42
  start-page: 661
  year: 2014
  end-page: 677
  ident: b1065
  article-title: Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling
  publication-title: Ann. Biomed. Eng.
– reference: N. Kemençe, N. Bölgen, Gelatin- and hydroxyapatite-based cryogels for bone tissue engineering: synthesis, characterization, in vitro and in vivo biocompatibility, (2017) 20–33. doi:10.1002/term.1813.
– volume: 23
  start-page: 4095
  year: 2002
  end-page: 4103
  ident: b0490
  article-title: Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
  publication-title: Biomaterials
– volume: 71
  start-page: 225
  year: 2018
  end-page: 234
  ident: b0395
  article-title: Binary polyhydroxyalkanoate systems for soft tissue engineering
  publication-title: Acta Biomater.
– volume: 21
  start-page: 716
  year: 2015
  end-page: 724
  ident: b0800
  article-title: Conceptual design of three-dimensional scaffolds of powder-based materials for bone tissue engineering applications
  publication-title: Rapid Prototyp. J.
– volume: 82
  start-page: 163
  year: 2018
  end-page: 181
  ident: b0855
  article-title: Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application
  publication-title: Mater. Sci. Eng. C
– volume: 31
  start-page: 304
  year: 2015
  end-page: 319
  ident: b1350
  article-title: Modified chitosan scaffolds: Proliferative, cytotoxic, apoptotic, and necrotic effects on Saos-2 cells and antimicrobial effect on
  publication-title: J. Bioact. Compat. Polym.
– year: 2010
  ident: b0065
  article-title: Developmental biology
– volume: 124
  start-page: 991
  year: 2011
  end-page: 998
  ident: b0095
  article-title: Bone remodelling at a glance
  publication-title: J. Cell Sci.
– volume: 18
  start-page: 483
  year: 2017
  end-page: 492
  ident: b1510
  article-title: Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal
  publication-title: Fibers Polym.
– volume: 24
  start-page: S36
  year: 2010
  end-page: S40
  ident: b0165
  article-title: Autologous bone graft: properties and techniques
  publication-title: J. Orthop. Trauma
– volume: 114
  start-page: 663
  year: 2012
  end-page: 670
  ident: b0625
  article-title: Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications
  publication-title: J. Biosci. Bioeng.
– volume: 1700612
  start-page: 1
  year: 2017
  end-page: 18
  ident: b0215
  article-title: Biomimetic materials and fabrication approaches for bone
  publication-title: Tissue Eng.
– volume: 18
  start-page: 909
  year: 2007
  end-page: 916
  ident: b0895
  article-title: Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants
  publication-title: J. Mater. Sci. Mater. Med.
– reference: D. Puppi, A. Pirosa, A. Morelli, F. Chiellini, D. Puppi, A. Pirosa, A. Morelli, F. Chiellini, Design, fabrication and characterization of tailored poly [(R) -3-hydroxybutyrate-co- (R) -3- hydroxyexanoate ] scaffolds by computer-aided wet-spinning, (2018). doi:10.1108/RPJ-03-2016-0037.
– volume: 32
  start-page: 135
  year: 2016
  end-page: 148
  ident: b0475
  article-title: Ten challenges in 3D printing
  publication-title: Eng. Comput.
– volume: 103
  start-page: 1
  year: 2008
  end-page: 12
  ident: b1565
  article-title: Effect of electric field distribution uniformity on electrospinning
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 328
  year: 2014
  ident: b0030
  article-title: Meshless methods in biomechanics: bone tissue remodelling analysis
  publication-title: Lect. Notes Comput. Vis. Biomech.
– volume: 22
  start-page: 115
  year: 2016
  end-page: 122
  ident: b1250
  article-title: Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium
  publication-title: Rapid Prototyp. J.
– volume: 14
  start-page: 1089
  year: 2003
  end-page: 1097
  ident: b0295
  article-title: Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 111
  start-page: 255
  year: 2018
  end-page: 272
  ident: b0765
  article-title: Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading
  publication-title: Exp. Int. J. Impact Eng.
– volume: 15
  start-page: 2117
  year: 2014
  end-page: 2126
  ident: b0485
  article-title: Advanced projection image generation algorithm for fabrication of a tissue scaffold using volumetric distance field
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 37
  start-page: 1037
  year: 2015
  end-page: 1046
  ident: b0515
  article-title: Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering
  publication-title: Med. Eng. Phys.
– year: 2017
  ident: b0250
  article-title: Principal theories of electrospinning
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 11
  start-page: 1
  year: 2014
  end-page: 11
  ident: b0890
  article-title: Biological performance of calcium pyrophosphate-coated porous alumina scaffolds
  publication-title: Int. J. Appl. Ceram. Technol.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0840
  article-title: 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation
  publication-title: Sci. Rep.
– volume: 45
  start-page: 375
  year: 2016
  end-page: 386
  ident: b0960
  article-title: Acta Biomaterialia Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys
  publication-title: Acta Biomater.
– volume: 72
  start-page: 53
  year: 2017
  end-page: 61
  ident: b0575
  article-title: Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming
  publication-title: Mater. Sci. Eng. C
– volume: 84
  start-page: 1671
  year: 2016
  end-page: 1677
  ident: b0750
  article-title: Software to generate 3-D continuous printing paths for the fabrication of tissue engineering scaffolds
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: B. Leukers, H. Gulkan, S.H. Irsen, S. Milz, C. Tille, H. Seitz, M. Schieker, Biocompatibility of ceramic scaffolds for bone replacement made by 3D printing, Materwiss. Werksttech. 36 (2005) 781–787. doi:10.1002/mawe.200500968.
– volume: 8
  start-page: 4197
  year: 2013
  end-page: 4213
  ident: b1045
  article-title: Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications
  publication-title: Int. J. Nanomed.
– volume: 4
  start-page: 1198
  year: 2008
  end-page: 1207
  ident: b1520
  article-title: Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration
  publication-title: Acta Biomater.
– reference: A. Barba, A. Diez-Escudero, Y. Maazouz, K. Rappe, M. Espanol, E.B. Montufar, M. Bonany, J.M. Sadowska, J. Guillem-Marti, C. Öhman-Mägi, C. Persson, M.-C. Manzanares, J. Franch, M.-P. Ginebra, Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture, ACS Appl. Mater. Interfaces. (2017) acsami.7b14175. doi:10.1021/acsami.7b14175.
– reference: Z. Huan, H.K. Chu, H. Liu, J. Yang, D. Sun, Engineered bone scaffolds with Dielectrophoresis-based patterning using 3D printing, (2017) 1–9.
– volume: 107
  start-page: 228
  year: 2016
  end-page: 246
  ident: b0240
  article-title: Polylactides in additive biomanufacturing
  publication-title: Adv. Drug Deliv. Rev.
– volume: 173
  start-page: 136
  year: 2016
  end-page: 140
  ident: b0510
  article-title: Mathematically defined gradient porous materials
  publication-title: Mater. Lett.
– reference: C. Shuai, C. Shuai, P. Feng, C. Gao, S. Peng, Y. Yang, Antibacterial Capability, Physicochemical Properties, and Biocompatibility of nTiO2 Incorporated Polymeric Scaffolds, (2018). doi:10.3390/polym10030328.
– reference: S. Mohammadzadehmoghadam, Y. Dong, I.J. Davies, International Journal of Polymeric Materials and Modeling electrospun nanofibers : An overview from theoretical, empirical, and numerical approaches, 4037 (2016). doi:10.1080/00914037.2016.1180617.
– volume: 28
  start-page: 2196
  year: 2017
  end-page: 2204
  ident: b0920
  article-title: Strain-controlled fatigue behaviors of porous PLA-based scaffolds by 3D-printing technology
  publication-title: J. Biomater. Sci. Polym. Ed.
– start-page: 12
  year: 2010
  end-page: 27
  ident: b0140
  article-title: Vascularization in bone tissue engineering: physiology, current strategies
  publication-title: Major Hurdles Future Challenges
– volume: 61
  start-page: 645
  year: 2016
  end-page: 649
  ident: b1195
  article-title: , , , Characterization of three-dimensional printed composite scaffolds prepared with different fabrication methods
  publication-title: Arch. Metall. Mater.
– volume: 19
  start-page: 2781
  year: 2008
  end-page: 2790
  ident: b0770
  article-title: Porous ceramic bone scaffolds for vascularized bone tissue regeneration
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 53
  start-page: 230
  year: 2018
  end-page: 246
  ident: b0355
  article-title: Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application
  publication-title: J. Mater. Sci.
– volume: 19
  start-page: 459
  year: 2008
  end-page: 466
  ident: b0115
  article-title: Bone remodeling during fracture repair: the cellular picture
  publication-title: Semin. Cell Dev. Biol.
– volume: 208
  start-page: 118
  year: 2017
  end-page: 121
  ident: b0835
  article-title: β-Tricalcium phosphate nanofiber scaffolds with fine unidirectional grains
  publication-title: Mater. Lett.
– start-page: 1
  year: 2016
  end-page: 17
  ident: b1220
  publication-title: Additive manufacturing of functionally graded objects: a review
– volume: 21
  start-page: 152
  year: 2015
  end-page: 158
  ident: b1125
  article-title: assessment of laser sintered bioactive glass scaffolds with different pore geometries
  publication-title: Rapid Prototyp. J.
– volume: 67
  start-page: 378
  year: 2018
  end-page: 392
  ident: b1180
  article-title: Additively manufactured biodegradable porous magnesium
  publication-title: Acta Biomater.
– volume: 59
  start-page: 241
  year: 2016
  end-page: 250
  ident: b1290
  article-title: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 137
  start-page: 37
  year: 2017
  end-page: 48
  ident: b1075
  article-title: Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits
  publication-title: Biomaterials
– volume: 2012
  start-page: 646417
  year: 2012
  ident: b1270
  article-title: Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors
  publication-title: Sci. World J.
– reference: M. Asadi-Eydivand, M. Solati-Hashjin, A. Farzad, N.A. Abu Osman, Effect of technical parameters on porous structure and strength of 3D printed calcium sulfate prototypes, Robot. Comput. Integr. Manuf. 37 (2016) 57–67. doi:10.1016/j.rcim.2015.06.005.
– start-page: 1392
  year: 2005
  end-page: 1404
  ident: b0060
  publication-title: Current concepts of molecular aspects of bone healing
– volume: 43
  start-page: 13702
  year: 2017
  end-page: 13709
  ident: b0815
  article-title: Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds
  publication-title: Ceram. Int.
– reference: R. Smeets, M. Barbeck, H. Hanken, H. Fischer, M. Lindner, M. Heiland, M. Wöltje, S. Ghanaati, A. Kolk, Selective laser-melted fully biodegradable scaffold composed of poly(d, l-lactide) and ??-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: In vitro and in vivo results, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2016) 1–16. doi:10.1002/jbm.b.33660.
– volume: 12
  start-page: 220
  year: 2015
  end-page: 228
  ident: b0520
  article-title: Osteochondral integrated scaffolds with gradient structure by 3D printing forming
  publication-title: Int. J. Autom. Comput.
– volume: 32
  start-page: 762
  year: 2007
  end-page: 798
  ident: b0305
  article-title: Biodegradable polymers as biomaterials
  publication-title: Prog. Polym. Sci.
– volume: 135
  start-page: 81
  year: 2015
  end-page: 89
  ident: b1080
  article-title: Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility
  publication-title: Colloids Surfaces B Biointerfaces
– volume: 288
  start-page: 648
  year: 2016
  end-page: 658
  ident: b1775
  article-title: Direct electrospinning writing for producing 3D hybrid constructs consisting of microfibers and macro-struts for tissue engineering
  publication-title: Chem. Eng. J.
– reference: T. Lu, A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration, (n.d.).
– volume: 37
  start-page: 1151
  year: 2005
  end-page: 1161
  ident: b0460
  article-title: Application of micro CT and computation modeling in bone tissue engineering
  publication-title: CAD Comput. Aided Des.
– reference: R. do V. Pereira, G.V. Salmoria, M.O.C. de Moura, Á. Aragones, M.C. Fredel, Scaffolds of PDLLA/bioglass 58S produced via selective laser sintering, Mater. Res. 17 (2014) 33–38. doi:10.1590/S1516-14392014005000075.
– reference: L. Fassinai, E. Sain, L. Visap, J. Schelfhoup, M. Dierick, L.V.A.N. Hoorebeke, P. Dubruel, F. Benazz, G. Magenesl, S.V.A.N. Vlierberghe, Electromagnetic stimulation to optimize the bone regeneration capacity of gelatin-based cryogels, Department of Computer Engineering and Systems Science, University of Pavia, Italy; Centre for, 25 (2012) 165–174. doi:10.1177/039463201202500119.
– volume: 1
  start-page: 1
  year: 2013
  end-page: 27
  ident: b1405
  article-title: Electrospinning and additive manufacturing: converging technologies
  publication-title: Biomater. Sci.
– volume: 140
  start-page: 170
  year: 2017
  end-page: 188
  ident: b1465
  article-title: Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds
  publication-title: Biomaterials
– volume: 8
  start-page: 5490
  year: 2015
  end-page: 5507
  ident: b1165
  article-title: Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations
  publication-title: Materials (Basel)
– volume: 93
  start-page: 1410
  year: 2016
  end-page: 1419
  ident: b0630
  article-title: Extracellular matrix-based cryogels for cartilage tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 47
  start-page: 7497
  year: 2006
  end-page: 7505
  ident: b1545
  article-title: The thermal effects on electrospinning of polylactic acid melts
  publication-title: Polymer (Guildf)
– reference: D. Puppi, A. Morelli, F. Bello, S. Valentini, F. Chiellini, Additive Manufacturing of Poly (Methyl Methacrylate) Biomedical Implants with Dual-Scale Porosity, 1800247 (2018) 1–9. doi:10.1002/mame.201800247.
– volume: 12
  start-page: 7577
  year: 2017
  end-page: 7588
  ident: b0380
  article-title: Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation
  publication-title: Int. J. Nanomed.
– volume: 3
  year: 2011
  ident: b1135
  article-title: Fabrication of 13–93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering
  publication-title: Biofabrication
– reference: A. Singh, A.K. Gaharwar, Microscale technologies for cell engineering, Microscale Technol. Cell Eng. (2015) 1–318. doi:10.1007/978-3-319-20726-1.
– volume: 12
  start-page: 155
  year: 2017
  ident: b0335
  article-title: Synthesis, structural, and adsorption properties and thermal stability of nanohydroxyapatite/polysaccharide composites
  publication-title: Nanoscale Res. Lett.
– reference: A. Mazzoli, Selective laser sintering in biomedical engineering., Med. & Biol. Eng. & Comput. 51 (2013) 245–256. doi:10.1007/s11517-012-1001-x.
– volume: 17
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0980
  article-title: Physical modeling for selective laser sintering (SLS) process
  publication-title: J. Comput. Inf. Sci. Eng.
– volume: 90
  start-page: 643
  year: 2014
  end-page: 647
  ident: b0055
  article-title: Mesenchymal stem cells: Mechanisms and role in bone regeneration
  publication-title: Postgrad. Med. J.
– reference: J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Ga Llur, M. De, S. Mps, B. Thierry, Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo, J. MATE RIALS Sci. Mater. Medicine. 10 (1999) 111–120.
– volume: 5
  start-page: 20227
  year: 2015
  end-page: 20233
  ident: b0705
  article-title: RSC advances application in bone tissue engineering
  publication-title: RSC Adv.
– volume: 28
  start-page: 1219
  year: 2017
  end-page: 1225
  ident: b1430
  article-title: Poly(trimethylene carbonate) and nano-hydroxyapatite porous scaffolds manufactured by stereolithography
  publication-title: Polym. Adv. Technol.
– reference: A. Grémare, V. Guduric, R. Bareille, V. Heroguez, S. Latour, N. L’heureux, J.C. Fricain, S. Catros, D. Le Nihouannen, Characterization of printed PLA scaffolds for bone tissue engineering, J. Biomed. Mater. Res. - Part A. (2017) 1–8. doi:10.1002/jbm.a.36289.
– reference: D.L. Alge, J. Bennett, T. Treasure, S. Voytik-Harbin, W.S. Goebel, T.M.G. Chu, Poly(propylene fumarate) reinforced dicalcium phosphate dihydrate cement composites for bone tissue engineering, J. Biomed. Mater. Res. - Part A. 100 A (2012) 1792–1802. doi:10.1002/jbm.a.34130.
– volume: 57
  start-page: 190
  year: 2016
  end-page: 200
  ident: b0820
  article-title: Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 31
  start-page: 15
  year: 2016
  end-page: 30
  ident: b1365
  article-title: Tailored star poly (ε-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects
  publication-title: J. Bioact. Compat. Polym.
– volume: 22
  start-page: 301
  year: 2010
  end-page: 316
  ident: b0170
  article-title: Bone graft harvesting from distant sites: concepts and techniques
  publication-title: Oral Maxillofac. Surg. Clin. North Am.
– volume: 157
  start-page: 143
  year: 2015
  end-page: 146
  ident: b1275
  article-title: A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles
  publication-title: Mater. Lett.
– volume: 36
  start-page: 448
  year: 2014
  end-page: 457
  ident: b0495
  article-title: Optimization of scaffold design for bone tissue engineering: a computational and experimental study
  publication-title: Med. Eng. Phys.
– reference: (accessed June 19, 2017).
– volume: 126
  start-page: 45
  year: 2018
  end-page: 56
  ident: b0400
  article-title: Polyhydroxyalkanoates: characteristics, production, recent developments and applications
  publication-title: Int. Biodeterior. Biodegrad.
– reference: S. Provided, I.S.O. No, I.H.S. Licensee, INTERNATIONAL STANDARD Additive manufacturing — General, 2014 (2014).
– volume: 116
  start-page: 452
  year: 2017
  end-page: 461
  ident: b0435
  article-title: Synthesis and characterisation of β-TCP/bioglass/zirconia scaffolds
  publication-title: Adv. Appl. Ceram.
– volume: 46
  start-page: 1021
  year: 2010
  end-page: 1033
  ident: b0470
  article-title: Recommended slicing positions for adaptive direct slicing by image processing technique
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 15
  start-page: 53
  year: 2008
  end-page: 76
  ident: b0075
  article-title: Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts
  publication-title: Eur. Cells Mater.
– volume: 34
  start-page: 107
  year: 2014
  end-page: 118
  ident: b1385
  article-title: Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering
  publication-title: J. Eur. Ceram. Soc.
– volume: 9
  start-page: 3
  year: 2014
  end-page: 9
  ident: b1445
  article-title: Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds
  publication-title: Virtual Phys. Prototyp.
– volume: 153
  start-page: 95
  year: 2008
  end-page: 108
  ident: b1555
  article-title: Modeling of non-isothermal polymer jets in melt electrospinning
  publication-title: J. Nonnewton. Fluid Mech.
– reference: L. Qin, H.K. Genant, J.F. Griffith, K.S. Leung, Advanced bioimaging technologies in assessment of the quality of bone and scaffold materials: techniques and applications, n.d.
– volume: 99
  start-page: 170
  year: 2013
  end-page: 191
  ident: b0130
  article-title: Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration
  publication-title: Birth Defects Res. Part C – Embryo Today Rev.
– volume: 24
  start-page: 297
  year: 2013
  end-page: 310
  ident: b0125
  article-title: Angiogenic factors in bone local environment
  publication-title: Cytokine Growth Factor Rev.
– volume: 64
  start-page: 278
  year: 1997
  end-page: 294
  ident: b0050
  article-title: Growth kinetics, self-renewal, and the Osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation
  publication-title: J. Cell. Biochem.
– volume: 123
  start-page: 146
  year: 2017
  end-page: 159
  ident: b0790
  article-title: Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 67
  start-page: 1139
  year: 2007
  end-page: 1147
  ident: b0270
  article-title: Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds
  publication-title: Compos. Sci. Technol.
– volume: 89
  start-page: 265
  year: 2018
  end-page: 273
  ident: b0405
  article-title: Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering
  publication-title: Mater. Sci. Eng. C.
– volume: 6
  start-page: 2511
  year: 2010
  end-page: 2517
  ident: b0985
  article-title: Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds
  publication-title: Acta Biomater.
– volume: 6
  start-page: 1227
  year: 2010
  end-page: 1237
  ident: b1650
  article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning
  publication-title: Acta Biomater.
– reference: M.Á. Brennan, A. Renaud, A. Gamblin, C.D. Arros, S. Nedellec, 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet- sprayed or electrospun micro-fiber scaffolds 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or el, (n.d.). doi:10.1088/1748-6041/10/4/045019.
– volume: 436
  start-page: 141
  year: 2017
  end-page: 151
  ident: b0375
  article-title: Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method
  publication-title: Appl. Surf. Sci.
– volume: 235
  start-page: 365
  year: 2016
  end-page: 378
  ident: b0640
  article-title: Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration
  publication-title: J. Control. Release
– reference: G. Rasperini, S.P. Pilipchuk, C.L. Flanagan, C.H. Park, G. Pagni, S.J. Hollister, W. V Giannobile, 3D-printed Bioresorbable Scaffold for Periodontal Repair, 94 (2014) 153–157. doi:10.1177/0022034515588303.
– reference: P.S.M. S, Tissue engineering and regenerative medicine Concise Review: Bioprinting of stem cells for transplantable tissue fabrication, (2017) 1940–1948. doi:10.1002/sctm.17-0148.
– volume: 52
  start-page: 145
  year: 2017
  end-page: 158
  ident: b1615
  article-title: Endosteal-like extracellular matrix expression on melt electrospun written scaffolds
  publication-title: Acta Biomater.
– volume: 5
  start-page: 72
  year: 2016
  end-page: 78
  ident: b1690
  publication-title: Clinical experience of full custom-made arti fi cial bones for the maxillofacial region
– start-page: 179
  year: 2010
  end-page: 204
  ident: b1095
  article-title: Selective laser sintering of poly (L-lactide)/ carbonated hydroxyapatite nanocomposite porous scaffolds for bone tissue engineering
  publication-title: Tissue Eng.
– start-page: 149
  year: 2014
  end-page: 154
  ident: b1575
  publication-title: Investigation of applying electrospinning in fused deposition modeling for scaffold fabrication
– volume: 38
  start-page: 837
  year: 2018
  end-page: 844
  ident: b1315
  article-title: Direct ink writing of highly bioactive glasses
  publication-title: J. Eur. Ceram. Soc.
– reference: J. Korpela, A. Kokkari, H. Korhonen, M. Malin, T. Narhi, J. Seppalea, Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling, J. Biomed. Mater. Res. - Part B Appl. Biomater. 101 (2013) 610–619. doi:10.1002/jbm.b.32863.
– volume: 75
  start-page: 1281
  year: 2017
  end-page: 1288
  ident: b1480
  article-title: Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds
  publication-title: Mater. Sci. Eng. C
– reference: J. Gilmore, T. Burg, R.E. Groff, K.J.L. Burg, Design and optimization of a novel bio-loom to weave melt-spun absorbable polymers for bone tissue engineering, J. Biomed. Mater. Res. - Part B Appl. Biomater. 105 (2017) 1342–1351. doi:10.1002/jbm.b.33700.
– volume: 69
  start-page: 115
  year: 2017
  end-page: 127
  ident: b0540
  article-title: Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2gas foaming method
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 6
  start-page: 44
  year: 2011
  end-page: 56
  ident: b0315
  article-title: Melt electrospinning
  publication-title: Chem. – An Asian J.
– volume: 196
  start-page: 2991
  year: 2007
  end-page: 2998
  ident: b0500
  article-title: Computational design of tissue engineering scaffolds
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 48
  start-page: 6913
  year: 2007
  end-page: 6922
  ident: b1570
  article-title: Effects of parameters on nanofiber diameter determined from electrospinning model
  publication-title: Polymer (Guildf)
– volume: 496
  start-page: 654
  year: 2015
  end-page: 663
  ident: b0545
  article-title: Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal
  publication-title: Int. J. Pharm.
– volume: 7
  start-page: 2249
  year: 2006
  end-page: 2258
  ident: b0410
  article-title: Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications
  publication-title: Biomacromolecules
– volume: 15
  start-page: 20
  year: 2017
  end-page: 28
  ident: b1245
  article-title: Selective laser melting of pure Zn with high density for biodegradable implant manufacturing
  publication-title: Addit. Manuf.
– reference: R. Mishra, D.B. Raina, M. Pelkonen, L. Lidgren, M. Tägil, Study of in Vitro and in Vivo Bone Formation in Compo- site Cryogels and the Influence of Electrical Stimulation, 11 (2015). doi:10.7150/ijbs.13139.
– volume: 272
  start-page: 83
  year: 2018
  end-page: 96
  ident: b1740
  article-title: Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties
  publication-title: J. Control. Release
– volume: 4
  start-page: 524
  year: 2010
  end-page: 531
  ident: b0650
  article-title: Co-culture in cartilage tissue engineering
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 32
  start-page: 161
  year: 2016
  end-page: 169
  ident: b1300
  article-title: Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation
  publication-title: Acta Biomater.
– volume: 7
  start-page: 275
  year: 2012
  end-page: 285
  ident: b1090
  article-title: Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering
  publication-title: Virtual Phys. Prototyp.
– volume: 20
  start-page: 49
  year: 2002
  end-page: 56
  ident: b0935
  article-title: Scaffold development using 3D printing with a starch-based
  publication-title: Polymer
– volume: 2
  start-page: 145
  year: 2015
  end-page: 149
  ident: b1485
  article-title: A novel approach to 3d-printed fabrics and garments
  publication-title: 3d Print. Addit. Manuf.
– volume: 09
  start-page: 012002
  year: 2017
  ident: b1780
  article-title: Additive manufacturing of polymer melts for implantable medical devices and scaffolds
  publication-title: Biofabrication
– year: 2015
  ident: b0385
  publication-title: Tissue Eng. Osteo. Tissue
– volume: 102
  start-page: 3140
  year: 2014
  end-page: 3153
  ident: b1625
  article-title: Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration
  publication-title: J. Biomed. Mater. Res. – Part A.
– reference: M. Castilho, M. Dias, E. Vorndran, U. Gbureck, B. Gouveia, H. Arm, Application of a 3D printed customized implant for canine cruciate ligament treatment by tibial tuberosity advancement, (n.d.). doi:10.1088/1758-5082/6/2/025005.
– volume: 19
  start-page: 2535
  year: 2008
  end-page: 2540
  ident: b1035
  article-title: Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 21
  start-page: 2529
  year: 2000
  end-page: 2543
  ident: b0300
  article-title: Sca!olds in tissue engineering bone and cartilage
  publication-title: Biomaterials
– volume: 85
  start-page: 218
  year: 2008
  end-page: 227
  ident: b1390
  article-title: Mechanical properties of calcium phosphate scaffolds fabricated by robocasting
  publication-title: J. Biomed. Mater. Res. – Part A
– volume: 6
  start-page: 12
  year: 2003
  end-page: 21
  ident: b0085
  article-title: Differential roles for small leucine-rich proteoglycans in bone formation
  publication-title: Eur. Cells Mater.
– volume: 20
  start-page: 369
  year: 2014
  end-page: 376
  ident: b1100
  article-title: Inhibition of phase transformation from β- to α-tricalcium phosphate with addition of poly (L-lactic acid) in selective laser sintering
  publication-title: Rapid Prototyp. J.
– volume: 103
  start-page: 1
  year: 2016
  end-page: 39
  ident: b0015
  article-title: Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment
  publication-title: Mater. Sci. Eng. R Reports.
– volume: 10
  start-page: 96
  year: 2008
  end-page: 104
  ident: b0775
  article-title: A review of process development steps for new material systems in three dimensional printing (3DP)
  publication-title: J. Manuf. Process.
– volume: 28
  start-page: 7267
  year: 2012
  end-page: 7275
  ident: b1635
  article-title: Fabrication of patterned nanofibrous mats using direct-write electrospinning
  publication-title: Langmuir
– volume: 105
  start-page: 593
  year: 2017
  end-page: 612
  ident: b1745
  article-title: Overview on additive manufacturing technologies
  publication-title: Proc. IEEE.
– volume: 26
  start-page: 31
  year: 2015
  end-page: 38
  ident: b1450
  article-title: Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing
  publication-title: Biomed. Mater. Eng.
– volume: 63
  start-page: 2417
  year: 2003
  end-page: 2429
  ident: b0535
  article-title: Bioresorbable and bioactive polymer/Bioglass?? composites with tailored pore structure for tissue engineering applications
  publication-title: Compos. Sci. Technol.
– volume: 4
  start-page: 524
  year: 2013
  end-page: 531
  ident: b0950
  article-title: Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: b1205
  article-title: RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties
  publication-title: Sci. Rep.
– volume: 43
  start-page: 241
  year: 2014
  end-page: 262
  ident: b0585
  article-title: Cryogel poly(acrylamide): Synthesis, structure and applications
  publication-title: Sep. Purif. Rev.
– volume: 8
  start-page: 3138
  year: 2012
  end-page: 3143
  ident: b1085
  article-title: Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering
  publication-title: Acta Biomater.
– reference: M. Sc, Y. Yang, M. Sc, D. Ph, P. Korkusuz, N. Bo, E. Gu, Three-Dimensional Ingrowth of Bone Cells Within Biodegradable, 14 (2008). doi:10.1089/ten.tea.2007.0277.
– volume: 7
  start-page: 907
  year: 2011
  end-page: 920
  ident: b0040
  article-title: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing
  publication-title: Acta Biomater.
– volume: 176
  start-page: 194
  year: 2016
  end-page: 198
  ident: b1630
  article-title: Effects of hot airflow on macromolecular orientation and crystallinity of melt electrospun poly(L-lactic acid) fibers
  publication-title: Mater. Lett.
– reference: OpenStax, Anatomy-and-Physiology, OpenStax CNX, 2016.
– reference: S. Sahoo, L.T. Ang, J.C. Goh, S. Toh, Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications, (2009). doi:10.1002/jbm.a.32645.
– volume: 68
  start-page: 9
  year: 2016
  end-page: 20
  ident: b0440
  article-title: Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model
  publication-title: Comput. Biol. Med.
– volume: 18
  start-page: 1468
  year: 2017
  end-page: 1477
  ident: b1770
  article-title: Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold
  publication-title: Fibers Polym.
– volume: 22
  start-page: 298
  year: 2016
  end-page: 310
  ident: b0200
  article-title: A review of three-dimensional printing in tissue engineering
  publication-title: Tissue Eng. Part B Rev.
– reference: P. Nooeaid, W. Li, J. a Roether, V. Mourino, O.-M. Goudouri, D.W. Schubert, A.R. Boccaccini, Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating., Biointerphases. 9 (2014) 41001. doi:10.1116/1.4897217.
– volume: 9
  start-page: 4599
  year: 2013
  end-page: 4608
  ident: b1725
  article-title: A simple method for fabricating 3-D multilayered composite scaffolds
  publication-title: Acta Biomater.
– volume: 50
  start-page: 2
  year: 2010
  end-page: 13
  ident: b0450
  article-title: Application of micro-CT in small animal imaging
  publication-title: Methods
– volume: 13
  start-page: 42
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0590
  article-title: Cryogels: Freezing unveiled by thawing
  publication-title: Mater. Today.
  doi: 10.1016/S1369-7021(10)70202-9
– volume: 82
  start-page: 559
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0260
  article-title: 3D printing-assisted design of scaffold structures
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-7386-6
– volume: 7
  start-page: 275
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1090
  article-title: Effect of process parameters on the properties of selective laser sintered Poly(3-hydroxybutyrate) scaffolds for bone tissue engineering
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2012.738551
– ident: 10.1016/j.actbio.2018.09.031_b0875
  doi: 10.1021/acsami.7b14175
– volume: 103
  start-page: 149
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b1505
  article-title: Electrostatic field considerations related force effect on electrospinning
  publication-title: IEEE Trans. Nanotechnol.
– year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0235
  publication-title: Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical
– volume: 208
  start-page: 118
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0835
  article-title: β-Tricalcium phosphate nanofiber scaffolds with fine unidirectional grains
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.05.038
– volume: 4
  start-page: 524
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0950
  article-title: Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I
  publication-title: J. Tissue Eng. Regen. Med.
– volume: 117
  start-page: 10212
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1735
  article-title: Polymers for 3D printing and customized additive manufacturing
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00074
– volume: 24
  start-page: S36
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0165
  article-title: Autologous bone graft: properties and techniques
  publication-title: J. Orthop. Trauma
  doi: 10.1097/BOT.0b013e3181cec4a1
– volume: 26
  start-page: 41
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0345
  article-title: Synthesis and characterization of a nano-hydroxyapatite/chitosan/polyethylene glycol nanocomposite for bone tissue engineering
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3417
– ident: 10.1016/j.actbio.2018.09.031_b0175
  doi: 10.1002/mawe.200500968
– volume: 22
  start-page: 1733
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b0610
  article-title: Proliferation of chondrocytes on a 3-d modelled macroporous poly(hydroxyethyl methacrylate)-gelatin cryogel
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/092050610X522486
– start-page: 355
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0145
  publication-title: Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells
– volume: 18
  start-page: 1468
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1770
  article-title: Towards osteogenic bioengineering of dental pulp stem induced by sodium fluoride on hydroxyapatite based biodegradable polymeric scaffold
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-017-7120-0
– volume: 8
  start-page: 5490
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1165
  article-title: Influence of different three-dimensional open porous titanium scaffold designs on human osteoblasts behavior in static and dynamic cell investigations
  publication-title: Materials (Basel)
  doi: 10.3390/ma8085259
– ident: 10.1016/j.actbio.2018.09.031_b0720
  doi: 10.1177/03946320110241S201
– volume: 2012
  start-page: 1
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1005
  article-title: A review of additive manufacturing
  publication-title: ISRN Mech. Eng.
  doi: 10.5402/2012/208760
– volume: 35
  start-page: 4026
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0780
  article-title: 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.01.064
– volume: 38
  start-page: 837
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b1315
  article-title: Direct ink writing of highly bioactive glasses
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2017.08.006
– volume: 2
  start-page: 145
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1485
  article-title: A novel approach to 3d-printed fabrics and garments
  publication-title: 3d Print. Addit. Manuf.
  doi: 10.1089/3dp.2015.0019
– year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0065
– volume: 21
  start-page: 152
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1125
  article-title: In vitro assessment of laser sintered bioactive glass scaffolds with different pore geometries
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-12-2014-0175
– volume: 42
  start-page: 7647
  year: 2007
  ident: 10.1016/j.actbio.2018.09.031_b1230
  article-title: Laser melting functionally graded composition of Waspaloy® and Zirconia powders
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-007-1661-3
– start-page: 10
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b1550
  article-title: Design and evaluation of melt-electrospinning electrodes nanofiber production without need for solvent recuperation is one of the possible ways to transform the laboratory scale electrospinning technique to high productivity process
  publication-title: Melt-Electrospinning
– ident: 10.1016/j.actbio.2018.09.031_b1440
  doi: 10.1007/978-3-319-20726-1
– volume: 20
  start-page: 369
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1100
  article-title: Inhibition of phase transformation from β- to α-tricalcium phosphate with addition of poly (L-lactic acid) in selective laser sintering
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-03-2013-0037
– volume: 67
  start-page: 1139
  year: 2007
  ident: 10.1016/j.actbio.2018.09.031_b0270
  article-title: Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2006.05.018
– volume: 6
  start-page: 5398
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b1160
  article-title: Comparative analysis of the oxygen supply and viability of human osteoblasts in three-dimensional titanium scaffolds produced by laser-beam or electron-beam melting
  publication-title: Materials (Basel)
  doi: 10.3390/ma6115398
– volume: 59
  start-page: 241
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1290
  article-title: Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.01.031
– year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0250
  article-title: Principal theories of electrospinning
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 32
  start-page: 135
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0475
  article-title: Ten challenges in 3D printing
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-015-0407-0
– volume: 107
  start-page: 228
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0240
  article-title: Polylactides in additive biomanufacturing
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2016.07.006
– volume: 7
  start-page: 2769
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b0325
  article-title: Nanoscale hydroxyapatite particles for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.03.019
– ident: 10.1016/j.actbio.2018.09.031_b0105
  doi: 10.14336/AD.2015.1206
– volume: 62
  start-page: 668
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0565
  article-title: Correlation between porous texture and cell seeding efficiency of gas foaming and microfluidic foaming scaffolds
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.02.010
– volume: 22
  start-page: 115
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1250
  article-title: Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-07-2013-0076
– ident: 10.1016/j.actbio.2018.09.031_b0185
  doi: 10.1089/ten.2005.11.1640
– volume: 34
  start-page: 740
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0210
  article-title: Powder-based 3D printing for bone tissue engineering
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.03.009
– year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0595
  publication-title: Polymeric cryogels macroporous gels with remarkable properties
  doi: 10.1007/978-3-319-05846-7
– volume: 61
  start-page: 645
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1195
  article-title: , , , Characterization of three-dimensional printed composite scaffolds prepared with different fabrication methods
  publication-title: Arch. Metall. Mater.
  doi: 10.1515/amm-2016-0110
– volume: 83
  start-page: 127
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0230
  article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.012
– volume: 135
  start-page: 81
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1080
  article-title: Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility
  publication-title: Colloids Surfaces B Biointerfaces
  doi: 10.1016/j.colsurfb.2015.06.074
– ident: 10.1016/j.actbio.2018.09.031_b0690
  doi: 10.1089/ten.tea.2007.0277
– volume: 23
  start-page: 767
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0660
  article-title: The treatment of segmental bone defects in rabbit tibiae with vascular endothelial growth factor (VEGF)-loaded gelatin/hydroxyapatite “cryogel” scaffold
  publication-title: Eur. J. Orthop. Surg. Traumatol.
  doi: 10.1007/s00590-012-1070-4
– volume: 30
  start-page: 5305
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1115
  article-title: Design, analysis and fabrication of polyamide/ hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-016-1049-x
– volume: 2012
  start-page: 646417
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1270
  article-title: Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors
  publication-title: Sci. World J.
  doi: 10.1100/2012/646417
– volume: 4
  start-page: 524
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0650
  article-title: Co-culture in cartilage tissue engineering
  publication-title: J. Tissue Eng. Regen. Med.
– ident: 10.1016/j.actbio.2018.09.031_b0700
  doi: 10.1002/term.1813
– ident: 10.1016/j.actbio.2018.09.031_b0940
– volume: 100
  start-page: 012033
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1175
  article-title: Investigation of mechanical properties for open cellular structure CoCrMo alloy fabricated by selective laser melting process
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/100/1/012033
– ident: 10.1016/j.actbio.2018.09.031_b0860
  doi: 10.1002/jbm.a.34130
– volume: 7
  start-page: 035002
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1560
  article-title: Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/3/035002
– ident: 10.1016/j.actbio.2018.09.031_b1320
– volume: 48
  start-page: 6913
  year: 2007
  ident: 10.1016/j.actbio.2018.09.031_b1570
  article-title: Effects of parameters on nanofiber diameter determined from electrospinning model
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2007.09.017
– volume: 28
  start-page: 7267
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1635
  article-title: Fabrication of patterned nanofibrous mats using direct-write electrospinning
  publication-title: Langmuir
  doi: 10.1021/la3009249
– volume: 42
  start-page: 70
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0605
  article-title: Stem cell suspension injected HEMA-lactate-dextran cryogels for regeneration of critical sized bone defects
  publication-title: Artif. Cells, Nanomed. Biotechnol.
  doi: 10.3109/21691401.2013.775578
– ident: 10.1016/j.actbio.2018.09.031_b1190
  doi: 10.1002/jbm.b.32863
– volume: 93
  start-page: 1410
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0630
  article-title: Extracellular matrix-based cryogels for cartilage tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.05.024
– volume: 12
  start-page: 155
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0335
  article-title: Synthesis, structural, and adsorption properties and thermal stability of nanohydroxyapatite/polysaccharide composites
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-1911-5
– volume: 8
  start-page: 3138
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1085
  article-title: Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.04.022
– volume: 3
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b1135
  article-title: Fabrication of 13–93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/3/2/025004
– volume: 68
  start-page: 27
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b1215
  article-title: Positive feedback effects of Mg on the hydrolysis of poly-l-lactic acid (PLLA): promoted degradation of PLLA scaffolds
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2018.03.042
– volume: 79
  start-page: 917
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0245
  article-title: Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds
  publication-title: Mater. Sci. Eng. C.
  doi: 10.1016/j.msec.2017.05.132
– volume: 43
  start-page: 13702
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0815
  article-title: Molecular dynamics simulation and experimental study of the bonding properties of polymer binders in 3D powder printed hydroxyapatite bioceramic bone scaffolds
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.07.082
– volume: 63
  start-page: 3
  year: 2003
  ident: 10.1016/j.actbio.2018.09.031_b0795
  article-title: Droplet microfluidics on a planar surface
  publication-title: VTT Publ.
– volume: 28
  start-page: 2196
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0920
  article-title: Strain-controlled fatigue behaviors of porous PLA-based scaffolds by 3D-printing technology
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2017.1388993
– volume: 75
  start-page: 1281
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1480
  article-title: Porous 45S5 Bioglass®-based scaffolds using stereolithography: Effect of partial pre-sintering on structural and mechanical properties of scaffolds
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.03.001
– ident: 10.1016/j.actbio.2018.09.031_b1665
  doi: 10.1007/s10856-017-5898-3
– volume: 63
  start-page: 2417
  year: 2003
  ident: 10.1016/j.actbio.2018.09.031_b0535
  article-title: Bioresorbable and bioactive polymer/Bioglass?? composites with tailored pore structure for tissue engineering applications
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(03)00275-6
– volume: 157
  start-page: 143
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1275
  article-title: A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.05.084
– volume: 26
  start-page: 31
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1450
  article-title: Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing
  publication-title: Biomed. Mater. Eng.
– volume: 19
  start-page: 2781
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b0770
  article-title: Porous ceramic bone scaffolds for vascularized bone tissue regeneration
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-007-3346-5
– volume: 50
  start-page: 7182
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0870
  article-title: Fabrication of mesoporous calcium silicate/calcium phosphate cement scaffolds with high mechanical strength by freeform fabrication system with micro-droplet jetting
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9244-1
– volume: 75
  start-page: 1299
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b1110
  article-title: Properties of PLDLA/bioglass scaffolds produced by selective laser sintering
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-017-2093-0
– volume: 1
  start-page: 93
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0420
  article-title: Bioactive polymeric scaffolds for tissue engineering
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2016.11.001
– ident: 10.1016/j.actbio.2018.09.031_b1310
  doi: 10.1089/107632702320934182
– volume: 137
  start-page: 37
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1075
  article-title: Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.05.021
– volume: 7
  start-page: 2249
  year: 2006
  ident: 10.1016/j.actbio.2018.09.031_b0410
  article-title: Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications
  publication-title: Biomacromolecules
  doi: 10.1021/bm060317c
– volume: 23
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b0655
  article-title: Mechanical properties and in vitro behavior of nanofiberhydrogel composites for tissue engineering applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/9/095705
– volume: 44
  start-page: 1
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0740
  article-title: The cross-disciplinary emergence of 3D printed bioceramic scaffolds in orthopedic bioengineering
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.09.095
– volume: 9
  start-page: 9149
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0810
  article-title: New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.07.019
– volume: 90
  start-page: 4836
  year: 2001
  ident: 10.1016/j.actbio.2018.09.031_b1595
  article-title: Taylor cone and jetting from liquid droplets in electrospinning of nanofibers
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1408260
– start-page: 1853
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1420
  article-title: Preparation of designed poly(trimethylene carbonate) meniscus implants by stereolithography: challenges in stereolithography
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201600290
– volume: 1
  start-page: 1
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b1405
  article-title: Electrospinning and additive manufacturing: converging technologies
  publication-title: Biomater. Sci.
  doi: 10.1039/C2BM00039C
– volume: 31
  start-page: 15
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1365
  article-title: Tailored star poly (ε-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects
  publication-title: J. Bioact. Compat. Polym.
  doi: 10.1177/0883911515597928
– ident: 10.1016/j.actbio.2018.09.031_b1750
  doi: 10.1088/1758-5082/6/2/025005
– volume: 67
  start-page: 378
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b1180
  article-title: Additively manufactured biodegradable porous magnesium
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.12.008
– volume: 26
  start-page: 6099
  year: 2005
  ident: 10.1016/j.actbio.2018.09.031_b0285
  article-title: Synthesis and characterization of porous b-tricalcium phosphate blocks
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.03.026
– volume: 15
  start-page: 113
  year: 2005
  ident: 10.1016/j.actbio.2018.09.031_b1020
  article-title: Selective laser sintering of biocompatible polymers for applications in tissue engineering
  publication-title: Biomed. Mater. Eng.
– volume: 42
  start-page: 661
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1065
  article-title: Predicting the elastic properties of selective laser sintered PCL/β-TCP bone scaffold materials using computational modelling
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0913-4
– start-page: 179
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b1095
  article-title: Selective laser sintering of poly (L-lactide)/ carbonated hydroxyapatite nanocomposite porous scaffolds for bone tissue engineering
  publication-title: Tissue Eng.
– volume: 14
  start-page: 1115
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1335
  article-title: Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering
  publication-title: Biomed. Microdev.
  doi: 10.1007/s10544-012-9677-0
– volume: 7
  start-page: 907
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b0040
  article-title: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.09.039
– start-page: 1392
  year: 2005
  ident: 10.1016/j.actbio.2018.09.031_b0060
  publication-title: Current concepts of molecular aspects of bone healing
– ident: 10.1016/j.actbio.2018.09.031_b0525
  doi: 10.1117/12.2254475
– volume: 31
  start-page: 132
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1120
  article-title: Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells
  publication-title: J. Biomater. Appl.
  doi: 10.1177/0885328216638636
– volume: 8
  start-page: 035008
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1645
  article-title: Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/3/035008
– volume: 45
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0850
  article-title: 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery
  publication-title: Ann. Biomed. Eng.
– volume: 116
  start-page: 452
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0435
  article-title: Synthesis and characterisation of β-TCP/bioglass/zirconia scaffolds
  publication-title: Adv. Appl. Ceram.
  doi: 10.1080/17436753.2017.1356043
– volume: 09
  start-page: 012002
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1780
  article-title: Additive manufacturing of polymer melts for implantable medical devices and scaffolds
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa5766
– volume: 21
  start-page: 1255
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0190
  article-title: Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-009-3878-y
– volume: 18
  start-page: 055101
  year: 2007
  ident: 10.1016/j.actbio.2018.09.031_b1515
  article-title: Biocomposite nanofibres and osteoblasts for bone tissue engineering
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/5/055101
– volume: 37
  start-page: 1037
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0515
  article-title: Novel real function based method to construct heterogeneous porous scaffolds and additive manufacturing for use in medical engineering
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.08.006
– volume: 11
  start-page: 13
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0830
  article-title: 3D powder printed bioglass and β-tricalcium phosphate bone scaffolds
  publication-title: Materials (Basel)
  doi: 10.3390/ma11010013
– volume: 38
  start-page: 1487
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0425
  article-title: Synthetic biopolymer nanocomposites for tissue engineering scaffolds
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2013.06.001
– volume: 16
  start-page: 427
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0120
  article-title: The early fracture hematoma and its potential role in fracture healing
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2009.0687
– ident: 10.1016/j.actbio.2018.09.031_b0730
– start-page: 149
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1575
  publication-title: Investigation of applying electrospinning in fused deposition modeling for scaffold fabrication
– ident: 10.1016/j.actbio.2018.09.031_b0455
– volume: 45
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0205
  article-title: Additive biomanufacturing: an advanced approach for periodontal tissue regeneration
  publication-title: Ann. Biomed. Eng.
– volume: 40
  start-page: 108
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1105
  article-title: 3D printing of biomaterials
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2015.3
– volume: 20
  start-page: 2043
  year: 2009
  ident: 10.1016/j.actbio.2018.09.031_b0280
  article-title: Design of porous polymeric scaffolds by gas foaming of heterogeneous blends
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-009-3767-4
– volume: 103
  start-page: 1
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b1565
  article-title: Effect of electric field distribution uniformity on electrospinning
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2924439
– volume: 56
  start-page: 363
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0445
  article-title: Micro-CT finite element model and experimental validation of trabecular bone damage and fracture
  publication-title: Bone
  doi: 10.1016/j.bone.2013.06.028
– ident: 10.1016/j.actbio.2018.09.031_b0825
  doi: 10.1177/0022034517734846
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0900
  article-title: Structure, properties, and in vitro behavior of heat-treated calcium sulfate scaffolds fabricated by 3D printing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0151216
– year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0390
  article-title: 1 – Calcium Phosphate Cements for Bone Regeneration
  publication-title: Woodhead Publishing Limited
– volume: 53
  start-page: 230
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0355
  article-title: Synthesis and characterization of mechanically strong carboxymethyl cellulose–gelatin–hydroxyapatite nanocomposite for load-bearing orthopedic application
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1528-1
– volume: 87
  start-page: 4531
  year: 2000
  ident: 10.1016/j.actbio.2018.09.031_b1600
  article-title: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.373532
– volume: 6
  start-page: 4495
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b1050
  article-title: Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.06.024
– ident: 10.1016/j.actbio.2018.09.031_b0220
  doi: 10.1002/sctm.17-0148
– volume: 15
  start-page: 2117
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0485
  article-title: Advanced projection image generation algorithm for fabrication of a tissue scaffold using volumetric distance field
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-014-0571-y
– volume: 25
  start-page: 3569
  year: 2004
  ident: 10.1016/j.actbio.2018.09.031_b0275
  article-title: Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.10.032
– volume: 104
  start-page: 57
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0635
  article-title: Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration
  publication-title: J. Biomed. Mater. Res. – Part A.
  doi: 10.1002/jbm.a.35540
– volume: 240–242
  start-page: 111
  year: 2003
  ident: 10.1016/j.actbio.2018.09.031_b0330
  article-title: Tailoring the bioactivity of natural origin inorganic – Polymeric based systems
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.240-242.111
– ident: 10.1016/j.actbio.2018.09.031_b1705
  doi: 10.1177/0022034515588303
– volume: 47
  start-page: 533
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0415
  article-title: Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering
  publication-title: Brazilian J. Med. Biol. Res.
  doi: 10.1590/1414-431X20143930
– ident: 10.1016/j.actbio.2018.09.031_b1360
  doi: 10.1002/mame.201800247
– volume: 83
  start-page: 363
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0365
  article-title: Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.024
– volume: 78
  start-page: 31
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b1715
  article-title: Three-dimensional printing of patient-specific surgical plates in head and neck reconstruction: a prospective pilot study
  publication-title: Oral Oncol.
  doi: 10.1016/j.oraloncology.2018.01.005
– volume: 6
  start-page: 858
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b1495
  article-title: Modelling of electrospinning process at various electric fields
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2011.0440
– volume: 40
  start-page: 15455
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1435
  article-title: Development and characterization of UV curable epoxy/hydroxyapatite suspensions for stereolithography applied to bone tissue engineering
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.06.117
– volume: 69
  start-page: 115
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0540
  article-title: Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2gas foaming method
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.12.014
– volume: 365
  start-page: 247
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0150
  article-title: Oxygen as a critical determinant of bone fracture healing — A multiscale model
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2014.10.012
– volume: 23
  start-page: 4095
  year: 2002
  ident: 10.1016/j.actbio.2018.09.031_b0490
  article-title: Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(02)00148-5
– volume: 10
  start-page: 035013
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1280
  article-title: Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti 6 Al 4 V scaffolds incorporating growth factor-doped fibrin glue
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/10/3/035013
– volume: 176
  start-page: 194
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1630
  article-title: Effects of hot airflow on macromolecular orientation and crystallinity of melt electrospun poly(L-lactic acid) fibers
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.04.070
– volume: 34
  start-page: 107
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1385
  article-title: Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2013.08.003
– year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0025
  publication-title: Fundament. Biomech. Bone Tissue Eng.
  doi: 10.1007/978-3-031-02579-2
– volume: 12
  start-page: 7577
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0380
  article-title: Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S146679
– volume: 6
  start-page: 015003
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1455
  article-title: Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/6/1/015003
– volume: 4
  start-page: 1742
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0745
  article-title: 3D Printing of scaffolds for tissue regeneration applications
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500168
– ident: 10.1016/j.actbio.2018.09.031_b1260
  doi: 10.1109/ICMA.2010.45
– ident: 10.1016/j.actbio.2018.09.031_b1375
  doi: 10.1108/RPJ-03-2016-0037
– volume: 2
  start-page: 158
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1490
  article-title: High strength and high modulus electrospun nanofibers
  publication-title: Fibers
  doi: 10.3390/fib2020158
– volume: 68
  start-page: 9
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0440
  article-title: Computer modelling integrated with micro-CT and material testing provides additional insight to evaluate bone treatments: Application to a beta-glycan derived whey protein mice model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.10.017
– volume: 2
  start-page: 277
  year: 2006
  ident: 10.1016/j.actbio.2018.09.031_b0350
  article-title: Chemical synthesis of poly(lactic-co-glycolic acid)/hydroxyapatite composites for orthopaedic applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2005.12.004
– start-page: 25
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0760
  article-title: The effect of bone scaffold gradient architecture design on stem cell mechanical modulation: a computational study
– volume: 11
  start-page: 1
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0890
  article-title: Biological performance of calcium pyrophosphate-coated porous alumina scaffolds
  publication-title: Int. J. Appl. Ceram. Technol.
  doi: 10.1111/ijac.12076
– volume: 90
  start-page: 643
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0055
  article-title: Mesenchymal stem cells: Mechanisms and role in bone regeneration
  publication-title: Postgrad. Med. J.
  doi: 10.1136/postgradmedj-2013-132387
– ident: 10.1016/j.actbio.2018.09.031_b0970
  doi: 10.1007/s11517-012-1001-x
– ident: 10.1016/j.actbio.2018.09.031_b1130
  doi: 10.1590/S1516-14392014005000075
– ident: 10.1016/j.actbio.2018.09.031_b0930
  doi: 10.1007/s10544-017-0245-5
– volume: 46
  start-page: 1021
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0470
  article-title: Recommended slicing positions for adaptive direct slicing by image processing technique
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2162-0
– ident: 10.1016/j.actbio.2018.09.031_b1210
  doi: 10.3390/polym10030328
– volume: 109
  start-page: 415
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0555
  article-title: Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.07.094
– volume: 29
  start-page: 805
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b1345
  article-title: PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2017.1354671
– volume: 95
  start-page: 2126
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0310
  article-title: Biodegradable polymer matrix nanocomposites for tissue engineering: a review
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.06.007
– volume: 24
  start-page: 1
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1410
  article-title: Combined additive manufacturing approaches in tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.06.032
– volume: 5
  start-page: 72
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1690
  publication-title: Clinical experience of full custom-made arti fi cial bones for the maxillofacial region
– start-page: 231
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0035
  article-title: Additive manufacturing for bone load bearing applications
  publication-title: 3D Bioprint. Nanotechnol. Tissue Eng. Regen. Med.
  doi: 10.1016/B978-0-12-800547-7.00011-4
– volume: 30
  start-page: 2563
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0180
  article-title: 3D printing of bone substitute implants using calcium phosphate and bioactive glasses
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2010.04.037
– year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0695
  publication-title: Enhanced osteogenic commitment of human mesenchymal stem cells on polyethylene glycol-based cryogel with graphene oxide substrate
– ident: 10.1016/j.actbio.2018.09.031_b0710
  doi: 10.7150/ijbs.13139
– volume: 36
  start-page: 448
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0495
  article-title: Optimization of scaffold design for bone tissue engineering: a computational and experimental study
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.02.010
– volume: 196
  start-page: 2991
  year: 2007
  ident: 10.1016/j.actbio.2018.09.031_b0500
  article-title: Computational design of tissue engineering scaffolds
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.09.023
– volume: 43
  start-page: 241
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0585
  article-title: Cryogel poly(acrylamide): Synthesis, structure and applications
  publication-title: Sep. Purif. Rev.
  doi: 10.1080/15422119.2013.795902
– volume: 288
  start-page: 648
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1775
  article-title: Direct electrospinning writing for producing 3D hybrid constructs consisting of microfibers and macro-struts for tissue engineering
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.12.047
– ident: 10.1016/j.actbio.2018.09.031_b0070
– volume: 21
  start-page: 716
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0800
  article-title: Conceptual design of three-dimensional scaffolds of powder-based materials for bone tissue engineering applications
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-12-2013-0123
– volume: 57
  start-page: 2623
  year: 2003
  ident: 10.1016/j.actbio.2018.09.031_b1325
  article-title: Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(02)01339-3
– volume: 193
  start-page: 175
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0360
  article-title: Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength
  publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2017.12.008
– volume: 51
  start-page: 274
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b1590
  article-title: Modeling of melt electrospinning for semi-crystalline polymers
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2009.11.025
– volume: 105
  start-page: 593
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1745
  article-title: Overview on additive manufacturing technologies
  publication-title: Proc. IEEE.
  doi: 10.1109/JPROC.2016.2625098
– ident: 10.1016/j.actbio.2018.09.031_b0135
– ident: 10.1016/j.actbio.2018.09.031_b1700
  doi: 10.1111/clr.12486
– volume: 1
  start-page: 261
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1235
  article-title: Design and 3D printing of scaffolds and tissues
  publication-title: Engineering
  doi: 10.15302/J-ENG-2015061
– ident: 10.1016/j.actbio.2018.09.031_b0290
  doi: 10.1023/A:1008973120918
– volume: 7
  start-page: 035004
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0320
  article-title: Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/3/035004
– ident: 10.1016/j.actbio.2018.09.031_b1255
  doi: 10.1002/jbm.a.33058
– ident: 10.1016/j.actbio.2018.09.031_b1655
  doi: 10.1038/am.2017.171
– volume: 42
  start-page: 569
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b0195
  article-title: Scaffolds for bone healing: Concepts, materials and evidence
  publication-title: Injury
  doi: 10.1016/j.injury.2011.03.033
– volume: 49
  start-page: 58
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0885
  article-title: Octacalcium phosphate (OCP)-based bone substitute materials
  publication-title: Jpn. Dent. Sci. Rev.
  doi: 10.1016/j.jdsr.2013.01.001
– ident: 10.1016/j.actbio.2018.09.031_b1720
  doi: 10.1155/2016/8590971
– volume: 153
  start-page: 95
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b1555
  article-title: Modeling of non-isothermal polymer jets in melt electrospinning
  publication-title: J. Nonnewton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2007.11.011
– volume: 28
  start-page: 1219
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1430
  article-title: Poly(trimethylene carbonate) and nano-hydroxyapatite porous scaffolds manufactured by stereolithography
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3892
– volume: 181
  start-page: 119
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1675
  article-title: The controlled release of growth factor via modified coaxial electrospun fibres with emulsion or hydrogel as the core
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.05.146
– volume: 21
  start-page: 2529
  year: 2000
  ident: 10.1016/j.actbio.2018.09.031_b0300
  article-title: Sca!olds in tissue engineering bone and cartilage
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(00)00121-6
– ident: 10.1016/j.actbio.2018.09.031_b0735
– ident: 10.1016/j.actbio.2018.09.031_b0255
  doi: 10.1177/0022034515588885
– volume: 6
  start-page: 8
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1150
  article-title: Osseointegration assessment of extrusion printed Ti6Al4V scaffold towards accelerated skeletal defect healing via tissue in-growth
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2017.04.002
– ident: 10.1016/j.actbio.2018.09.031_b1185
  doi: 10.1002/jbm.b.33660
– ident: 10.1016/j.actbio.2018.09.031_b1585
  doi: 10.1080/00222348.2015.1090654
– volume: 14
  start-page: 055002
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0995
  article-title: Correlation between properties and microstructure of laser sintered porous β-tricalcium phosphate bone scaffolds
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1088/1468-6996/14/5/055002
– ident: 10.1016/j.actbio.2018.09.031_b0925
  doi: 10.1002/jbm.a.36289
– volume: 9
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1620
  article-title: Poly(ε-caprolactone) scaffolds fabricated by melt electrospinning for bone tissue engineering
  publication-title: Materials (Basel).
  doi: 10.3390/ma9040232
– volume: 82
  start-page: 163
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0855
  article-title: Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.08.040
– ident: 10.1016/j.actbio.2018.09.031_b0880
  doi: 10.4028/www.scientific.net/MSF.783-786.1366
– start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1220
  publication-title: Additive manufacturing of functionally graded objects: a review
– volume: 21
  start-page: 747
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1000
  article-title: Current status of additive manufacturing for tissue engineering scaffold
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-03-2014-0029
– volume: 11
  start-page: 175
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1330
  article-title: Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development
  publication-title: J. Tissue Eng. Regen. Med.
  doi: 10.1002/term.1897
– ident: 10.1016/j.actbio.2018.09.031_b0915
  doi: 10.1088/1758-5082/6/1/015006
– volume: 22
  start-page: 20
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1170
  article-title: Porosity content control of CoCrMo and titanium parts by Taguchi method applied to selective laser melting process parameter
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-09-2013-0092
– ident: 10.1016/j.actbio.2018.09.031_b1710
  doi: 10.1097/ID.0000000000000655
– volume: 18
  start-page: 909
  year: 2007
  ident: 10.1016/j.actbio.2018.09.031_b0895
  article-title: Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-006-0073-2
– ident: 10.1016/j.actbio.2018.09.031_b1580
  doi: 10.1080/00914037.2016.1180617
– start-page: 7
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0110
  publication-title: Principles Bone Joint Res.
– volume: 5
  start-page: 1082
  year: 2009
  ident: 10.1016/j.actbio.2018.09.031_b0560
  article-title: Engineered μ-bimodal poly(ε-caprolactone) porous scaffold for enhanced hMSC colonization and proliferation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.10.012
– ident: 10.1016/j.actbio.2018.09.031_b0905
  doi: 10.1016/j.rcim.2015.06.005
– volume: 235
  start-page: 365
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0640
  article-title: Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2016.05.061
– volume: 27
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1340
  article-title: Levofloxacin-loaded star poly(ε-caprolactone) scaffolds by additive manufacturing
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-015-5658-1
– volume: 84
  start-page: 1671
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0750
  article-title: Software to generate 3-D continuous printing paths for the fabrication of tissue engineering scaffolds
  publication-title: Int. J. Adv. Manuf. Technol.
– ident: 10.1016/j.actbio.2018.09.031_b1370
  doi: 10.1177/0883911513490341
– volume: 2
  start-page: 457
  year: 2006
  ident: 10.1016/j.actbio.2018.09.031_b1395
  article-title: Sintering and robocasting of β-tricalcium phosphate scaffolds for orthopaedic applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2006.02.004
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0980
  article-title: Physical modeling for selective laser sintering (SLS) process
  publication-title: J. Comput. Inf. Sci. Eng.
– volume: 5
  start-page: 20227
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0705
  article-title: RSC advances application in bone tissue engineering
  publication-title: RSC Adv.
  doi: 10.1039/C4RA15893H
– ident: 10.1016/j.actbio.2018.09.031_b0945
  doi: 10.1116/1.4897217
– volume: 32
  start-page: 161
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1300
  article-title: Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.01.007
– volume: 8
  start-page: 328
  issue: 2
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0030
  article-title: Meshless methods in biomechanics: bone tissue remodelling analysis
  publication-title: Lect. Notes Comput. Vis. Biomech.
– ident: 10.1016/j.actbio.2018.09.031_b1685
– volume: 2012
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1540
  article-title: Needleless melt-electrospinning of polypropylene nanofibres
  publication-title: J. Nanomater.
  doi: 10.1155/2012/382639
– ident: 10.1016/j.actbio.2018.09.031_b1695
  doi: 10.1155/2016/5862586
– volume: 37
  start-page: 767
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1060
  article-title: Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.05.009
– year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0385
  publication-title: Tissue Eng. Osteo. Tissue
– ident: 10.1016/j.actbio.2018.09.031_b1670
  doi: 10.1002/jbm.a.32645
– volume: 26
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0620
  article-title: Cryogel-PCL combination scaffolds for bone tissue repair
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-015-5465-8
– volume: 10
  start-page: 1344
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1145
  article-title: In vitro evaluation of PCL and P(3HB) as coating materials for selective laser melted porous titanium implants
  publication-title: Materials (Basel)
  doi: 10.3390/ma10121344
– volume: 7
  start-page: 13
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1460
  article-title: Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2012.673152
– volume: 3
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b1140
  article-title: Chemically treated 3D printed polymer scaffolds for biomineral formation
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00219
– volume: 6
  start-page: 12
  year: 2003
  ident: 10.1016/j.actbio.2018.09.031_b0085
  article-title: Differential roles for small leucine-rich proteoglycans in bone formation
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v006a02
– volume: 31
  start-page: 233
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0160
  article-title: Physiological bone remodeling: systemic regulation and growth factor involvement
  publication-title: Physiology
  doi: 10.1152/physiol.00061.2014
– start-page: 846
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0665
  publication-title: Ultrasound stimulus to enhance the bone regeneration capability of gelatin cryogels
– volume: 10
  start-page: 96
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b0775
  article-title: A review of process development steps for new material systems in three dimensional printing (3DP)
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2009.03.002
– volume: 123
  start-page: 146
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0790
  article-title: Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2017.08.004
– volume: 54
  start-page: 351
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b1265
  article-title: Maintenance of a bone collagen phenotype by osteoblast-like cells in 3D periodic porous titanium (Ti-6Al-4 V) structures fabricated by selective electron beam melting
  publication-title: Connect. Tissue Res.
  doi: 10.3109/03008207.2013.822864
– volume: 22
  start-page: 752
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1015
  article-title: Fabrication of three dimensional open porous regular structure of PA-2200 for enhanced strength of scaffold using selective laser sintering
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-11-2014-0148
– volume: 9781461462
  start-page: 1
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0020
  article-title: Design of artificial human joints & organs
  publication-title: Des. Artif. Hum. Joints Organs.
– volume: 128
  start-page: 531
  year: 2006
  ident: 10.1016/j.actbio.2018.09.031_b0990
  article-title: Selective laser sintering process optimization for layered manufacturing of CAPA[sup ®] 6501 polycaprolactone bone tissue engineering scaffolds
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.2162589
– volume: 173
  start-page: 136
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0510
  article-title: Mathematically defined gradient porous materials
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.03.021
– volume: 72
  start-page: 53
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0575
  article-title: Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.11.049
– volume: 9
  start-page: 4599
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b1725
  article-title: A simple method for fabricating 3-D multilayered composite scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.08.015
– volume: 436
  start-page: 141
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0375
  article-title: Use of micrometric latex beads to improve the porosity of hydroxyapatite obtained by chemical coprecipitation method
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.11.218
– volume: 6
  start-page: 2511
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0985
  article-title: Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.07.018
– volume: 99
  start-page: 170
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0130
  article-title: Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration
  publication-title: Birth Defects Res. Part C – Embryo Today Rev.
  doi: 10.1002/bdrc.21047
– volume: 16
  start-page: 103
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1680
  article-title: Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.12.028
– volume: 20
  start-page: 49
  year: 2002
  ident: 10.1016/j.actbio.2018.09.031_b0935
  article-title: Scaffold development using 3D printing with a starch-based
  publication-title: Polymer
– volume: 205
  start-page: 257
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1605
  article-title: Melt electrospinning writing of defined scaffolds using polylactide-poly(ethylene glycol) blends with 45S5 bioactive glass particles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.06.096
– volume: 55
  start-page: 401
  year: 2001
  ident: 10.1016/j.actbio.2018.09.031_b0530
  article-title: Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/1097-4636(20010605)55:3<401::AID-JBM1029>3.0.CO;2-H
– volume: 89
  start-page: 265
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0405
  article-title: Three-dimensional printing and in vitro evaluation of poly(3-hydroxybutyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering
  publication-title: Mater. Sci. Eng. C.
  doi: 10.1016/j.msec.2018.04.016
– volume: 15
  start-page: 20
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1245
  article-title: Selective laser melting of pure Zn with high density for biodegradable implant manufacturing
  publication-title: Addit. Manuf.
– volume: 50
  start-page: 2
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0450
  article-title: Application of micro-CT in small animal imaging
  publication-title: Methods
  doi: 10.1016/j.ymeth.2009.08.007
– volume: 6
  start-page: 2467
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b1070
  article-title: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.02.002
– volume: 7
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b1785
  article-title: Biological properties of solid free form designed ceramic scaffolds with bmp-2: In vitro and in vivo evaluation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0034117
– ident: 10.1016/j.actbio.2018.09.031_b0080
– volume: 81
  start-page: 1089
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1765
  article-title: Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.10.040
– volume: 64
  start-page: 278
  year: 1997
  ident: 10.1016/j.actbio.2018.09.031_b0050
  article-title: Growth kinetics, self-renewal, and the Osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation
  publication-title: J. Cell. Biochem.
  doi: 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F
– volume: 15
  start-page: 53
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b0075
  article-title: Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts
  publication-title: Eur. Cells Mater.
  doi: 10.22203/eCM.v015a05
– volume: 6
  start-page: 44
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b0315
  article-title: Melt electrospinning
  publication-title: Chem. – An Asian J.
  doi: 10.1002/asia.201000436
– ident: 10.1016/j.actbio.2018.09.031_b1055
  doi: 10.1088/1758-5082/5/2/025005
– volume: 114
  start-page: 663
  year: 2012
  ident: 10.1016/j.actbio.2018.09.031_b0625
  article-title: Cell proliferation on three-dimensional chitosan-agarose-gelatin cryogel scaffolds for tissue engineering applications
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2012.07.005
– volume: 12
  start-page: 220
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0520
  article-title: Osteochondral integrated scaffolds with gradient structure by 3D printing forming
  publication-title: Int. J. Autom. Comput.
  doi: 10.1007/s11633-014-0853-y
– ident: 10.1016/j.actbio.2018.09.031_b0685
– volume: 80
  start-page: 119
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0755
  article-title: Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.01.013
– volume: 68
  start-page: 872
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1305
  article-title: Scaffold microstructure effects on functional and mechanical performance: Integration of theoretical and experimental approaches for bone tissue engineering applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.07.041
– ident: 10.1016/j.actbio.2018.09.031_b0725
– year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0715
  article-title: Porous heat-treated polyacrylonitrile scaffolds for bone
  publication-title: Tissue Eng.
– ident: 10.1016/j.actbio.2018.09.031_b1040
  doi: 10.1108/RPJ-04-2013-0040
– volume: 111
  start-page: 255
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0765
  article-title: Additively-manufactured functionally graded Ti-6Al-4V lattice structures with high strength under static and dynamic loading
  publication-title: Exp. Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2017.09.018
– ident: 10.1016/j.actbio.2018.09.031_b0225
  doi: 10.1002/biot.201600734
– volume: 496
  start-page: 654
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0545
  article-title: Supercritical CO2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.11.012
– volume: 11
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0975
  article-title: Open-Source Selective Laser Sintering (OpenSLS) of nylon and biocompatible polycaprolactone
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0147399
– ident: 10.1016/j.actbio.2018.09.031_b1755
  doi: 10.1088/1748-6041/10/4/045019
– volume: 272
  start-page: 83
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b1740
  article-title: Gelatin- hydroxyapatite- calcium sulphate based biomaterial for long term sustained delivery of bone morphogenic protein-2 and zoledronic acid for increased bone formation: In-vitro and in-vivo carrier properties
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.01.006
– volume: 231
  start-page: 575
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0955
  article-title: Three-dimensional printing of porous load-bearing bioceramic scaffolds
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411916682984
– volume: 89
  start-page: 3176
  year: 2006
  ident: 10.1016/j.actbio.2018.09.031_b0865
  article-title: Internal structure evaluation of three-dimensional calcium phosphate bone scaffolds: a micro-computed tomographic study
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2006.01143.x
– start-page: 12
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0140
  article-title: Vascularization in bone tissue engineering: physiology, current strategies
  publication-title: Major Hurdles Future Challenges
– volume: 9
  start-page: 3
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1445
  article-title: Multiple initiators and dyes for continuous Digital Light Processing (cDLP) additive manufacture of resorbable bone tissue engineering scaffolds
  publication-title: Virtual Phys. Prototyp.
  doi: 10.1080/17452759.2013.873337
– volume: 3
  start-page: 26
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b1535
  article-title: Hydrotropy: a promising tool for solubility enhancement: a review
  publication-title: Int. J. Drug Dev. Res.
– volume: 18
  start-page: 9
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1470
  article-title: Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.12.024
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1525
  article-title: Bioactivity assessment of poly(ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application
  publication-title: J. Nanomater.
– volume: 40
  start-page: 46
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b0090
  article-title: Endochondral ossification: How cartilage is converted into bone in the developing skeleton
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2007.06.009
– volume: 102
  start-page: 4317
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0805
  article-title: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
  publication-title: J. Biomed. Mater. Res. – Part A
– volume: 45
  start-page: 375
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0960
  article-title: Acta Biomaterialia Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.08.032
– volume: 17
  start-page: 479
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b1240
  article-title: Fabrication of magnesium using selective laser melting technique
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552541111184206
– volume: 9781118406
  start-page: 291
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1425
  article-title: Scaffold designing
  publication-title: Bio-Ceram. Clin. Appl.
  doi: 10.1002/9781118406748.ch10
– volume: 43
  start-page: 502
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0505
  article-title: Effective method for multi-scale gradient porous scaffold design and fabrication
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.07.052
– volume: 4
  start-page: 1611
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b1760
  article-title: Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.06.008
– volume: 124
  start-page: 991
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b0095
  article-title: Bone remodelling at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.063032
– volume: 22
  start-page: 243
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0465
  article-title: Accuracy in dental surgical guide fabrication using different 3-D printing techniques
  publication-title: Addit. Manuf.
– volume: 47
  start-page: 7497
  year: 2006
  ident: 10.1016/j.actbio.2018.09.031_b1545
  article-title: The thermal effects on electrospinning of polylactic acid melts
  publication-title: Polymer (Guildf)
  doi: 10.1016/j.polymer.2006.08.042
– volume: 23
  start-page: 5651
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b1640
  article-title: Direct writing by way of melt electrospinning
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201103482
– volume: 85
  start-page: 218
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b1390
  article-title: Mechanical properties of calcium phosphate scaffolds fabricated by robocasting
  publication-title: J. Biomed. Mater. Res. – Part A
  doi: 10.1002/jbm.a.31587
– volume: 1700612
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0215
  article-title: Biomimetic materials and fabrication approaches for bone
  publication-title: Tissue Eng.
– ident: 10.1016/j.actbio.2018.09.031_b1285
  doi: 10.1039/C6TB00675B
– volume: 22
  start-page: 298
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0200
  article-title: A review of three-dimensional printing in tissue engineering
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2015.0464
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0840
  article-title: 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation
  publication-title: Sci. Rep.
– volume: 2014
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0580
  article-title: Biological effect of gas plasma treatment on CO2 gas foaming/salt leaching fabricated porous polycaprolactone scaffolds in bone tissue engineering
  publication-title: J. Nanomater.
  doi: 10.1155/2014/657542
– volume: 4
  start-page: 1198
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b1520
  article-title: Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.03.019
– volume: 126
  start-page: 45
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0400
  article-title: Polyhydroxyalkanoates: characteristics, production, recent developments and applications
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2017.10.001
– volume: 24
  start-page: 297
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0125
  article-title: Angiogenic factors in bone local environment
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2013.03.008
– ident: 10.1016/j.actbio.2018.09.031_b0670
  doi: 10.1177/039463201202500119
– volume: 128
  start-page: 47
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0645
  article-title: Cryogelation within cryogels: Silk fibroin scaffolds with single-, double- and triple-network structures
  publication-title: Polym. (United Kingdom)
– volume: 3
  start-page: 8348
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1415
  article-title: Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB01468A
– ident: 10.1016/j.actbio.2018.09.031_b0155
  doi: 10.1089/teb.2008.0038
– ident: 10.1016/j.actbio.2018.09.031_b0675
  doi: 10.33549/physiolres.933134
– volume: 32
  start-page: 762
  year: 2007
  ident: 10.1016/j.actbio.2018.09.031_b0305
  article-title: Biodegradable polymers as biomaterials
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2007.05.017
– volume: 31
  start-page: 6121
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b1475
  article-title: A review on stereolithography and its applications in biomedical engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.04.050
– volume: 6
  start-page: 1227
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b1650
  article-title: Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.10.051
– ident: 10.1016/j.actbio.2018.09.031_b0010
  doi: 10.1002/jbm.b.33239
– volume: 71
  start-page: 225
  year: 2018
  ident: 10.1016/j.actbio.2018.09.031_b0395
  article-title: Binary polyhydroxyalkanoate systems for soft tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.02.027
– year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1530
  article-title: 5 – Multifunctional Scaffolds For Bone Regeneration
  publication-title: Woodhead Publishing Limited
– volume: 15
  start-page: 115
  year: 2009
  ident: 10.1016/j.actbio.2018.09.031_b1030
  article-title: Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering
  publication-title: Tissue Eng. Part C-Methods
  doi: 10.1089/ten.tec.2008.0288
– year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b1380
  publication-title: Tailored star poly scaffolds for in vivo regeneration of long bone critical size defects
– ident: 10.1016/j.actbio.2018.09.031_b0045
– volume: 53
  start-page: 1
  year: 2000
  ident: 10.1016/j.actbio.2018.09.031_b0570
  article-title: A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/(SICI)1097-4636(2000)53:1<1::AID-JBM1>3.0.CO;2-R
– volume: 57
  start-page: 190
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0820
  article-title: Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.12.007
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1205
  article-title: RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties
  publication-title: Sci. Rep.
– ident: 10.1016/j.actbio.2018.09.031_b0845
  doi: 10.1088/1758-5082/5/3/035012
– volume: 140
  start-page: 170
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1465
  article-title: Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.06.005
– volume: 19
  start-page: 2535
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b1035
  article-title: Selective laser sintering of porous tissue engineering scaffolds from poly(L-lactide)/carbonated hydroxyapatite nanocomposite microspheres
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-007-3089-3
– volume: 10
  start-page: 4175
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1355
  article-title: Bone marrow stromal cells on a three-dimensional bioactive fiber mesh undergo osteogenic differentiation in the absence of osteogenic media supplements: the effect of silanol groups
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.05.026
– volume: 52
  start-page: 145
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1615
  article-title: Endosteal-like extracellular matrix expression on melt electrospun written scaffolds
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.12.040
– ident: 10.1016/j.actbio.2018.09.031_b0265
  doi: 10.1002/jbm.b.31577
– volume: 9
  start-page: 5369
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0430
  article-title: Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.10.009
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1200
  article-title: Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an in vivo bioreactor model
  publication-title: Sci. Rep.
– volume: 14
  start-page: 1089
  year: 2003
  ident: 10.1016/j.actbio.2018.09.031_b0295
  article-title: Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1023/B:JMSM.0000004006.90399.b4
– volume: 37
  start-page: 1151
  year: 2005
  ident: 10.1016/j.actbio.2018.09.031_b0460
  article-title: Application of micro CT and computation modeling in bone tissue engineering
  publication-title: CAD Comput. Aided Des.
  doi: 10.1016/j.cad.2005.02.006
– volume: 48
  start-page: 63
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1730
  article-title: Gelatin porous scaffolds fabricated using a modified gas foaming technique: Characterisation and cytotoxicity assessment
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.10.074
– volume: 38
  start-page: 1
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b0785
  article-title: Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.01.027
– volume: 31
  start-page: 304
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b1350
  article-title: Modified chitosan scaffolds: Proliferative, cytotoxic, apoptotic, and necrotic effects on Saos-2 cells and antimicrobial effect on Escherichia coli
  publication-title: J. Bioact. Compat. Polym.
  doi: 10.1177/0883911515627471
– volume: 102
  start-page: 3140
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1625
  article-title: Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration
  publication-title: J. Biomed. Mater. Res. – Part A.
  doi: 10.1002/jbm.a.34985
– ident: 10.1016/j.actbio.2018.09.031_b0550
  doi: 10.1177/0021955X08099929
– ident: 10.1016/j.actbio.2018.09.031_b0680
  doi: 10.1088/1748-605X/aa5d76
– volume: 10
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1155
  article-title: Mesoporous bioactive glass functionalized 3D Ti-6Al-4V Scaffolds with improved surface bioactivity
  publication-title: Materials (Basel)
  doi: 10.3390/ma10111244
– volume: 93
  start-page: 276
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0340
  article-title: Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.08.046
– volume: 27
  start-page: 3413
  year: 2006
  ident: 10.1016/j.actbio.2018.09.031_b0370
  article-title: Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.039
– ident: 10.1016/j.actbio.2018.09.031_b1295
  doi: 10.5301/jabfm.5000252
– ident: 10.1016/j.actbio.2018.09.031_b0965
  doi: 10.1002/jbm.a.36270
– volume: 103
  start-page: 1
  year: 2016
  ident: 10.1016/j.actbio.2018.09.031_b0015
  article-title: Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment
  publication-title: Mater. Sci. Eng. R Reports.
  doi: 10.1016/j.mser.2016.01.001
– ident: 10.1016/j.actbio.2018.09.031_b1660
  doi: 10.1016/j.actbio.2011.11.002
– volume: 1092
  start-page: 385
  year: 2006
  ident: 10.1016/j.actbio.2018.09.031_b0100
  article-title: Bone remodeling
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1365.035
– volume: 37
  start-page: 359
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1400
  article-title: Biphasic calcium phosphate scaffolds fabricated by direct write assembly: Mechanical, anti-microbial and osteoblastic properties
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.08.018
– volume: 24
  start-page: 3115
  year: 2003
  ident: 10.1016/j.actbio.2018.09.031_b1025
  article-title: Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00131-5
– ident: 10.1016/j.actbio.2018.09.031_b0600
  doi: 10.1002/jbm.a.34394
– volume: 8
  start-page: 4197
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b1045
  article-title: Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications
  publication-title: Int. J. Nanomed.
– volume: 16
  start-page: 496
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b0005
  article-title: Bone tissue engineering using 3D printing
  publication-title: Mater. Today.
  doi: 10.1016/j.mattod.2013.11.017
– volume: 18
  start-page: 483
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1510
  article-title: Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-017-1061-5
– volume: 22
  start-page: 301
  year: 2010
  ident: 10.1016/j.actbio.2018.09.031_b0170
  article-title: Bone graft harvesting from distant sites: concepts and techniques
  publication-title: Oral Maxillofac. Surg. Clin. North Am.
  doi: 10.1016/j.coms.2010.04.007
– volume: 22
  start-page: 2107
  year: 2011
  ident: 10.1016/j.actbio.2018.09.031_b0615
  article-title: Inorganic/organic biocomposite cryogels for regeneration of bony tissues
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1163/092050610X534230
– volume: 5
  start-page: 015014
  year: 2013
  ident: 10.1016/j.actbio.2018.09.031_b1010
  article-title: Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering
  publication-title: Biofabrication
  doi: 10.1088/1758-5082/5/1/015014
– volume: 7543
  start-page: 1
  year: 2015
  ident: 10.1016/j.actbio.2018.09.031_b0480
  article-title: Additive manufacturing technologies: state of the art and trends
  publication-title: Int. J. Prod. Res.
– volume: 13
  start-page: 101
  year: 2014
  ident: 10.1016/j.actbio.2018.09.031_b1500
  article-title: An alternative electrospinning approach with varying electric field for 2-D-aligned nanofibers
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2013.2293704
– volume: 19
  start-page: 459
  year: 2008
  ident: 10.1016/j.actbio.2018.09.031_b0115
  article-title: Bone remodeling during fracture repair: the cellular picture
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2008.07.004
– ident: 10.1016/j.actbio.2018.09.031_b1610
  doi: 10.1002/jbm.b.33700
– volume: 7
  start-page: 2
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b0910
  article-title: Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
  publication-title: Sci. Rep.
– volume: 70
  start-page: 812
  year: 2017
  ident: 10.1016/j.actbio.2018.09.031_b1225
  article-title: Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: experimental and computational analysis
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.09.040
SSID ssj0038128
Score 2.6698475
SecondaryResourceType review_article
Snippet [Display omitted] A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in...
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Additive manufacturing
Binder jetting
Biocompatibility
Biodegradability
Biodegradable materials
Biodegradation
Biological activity
Biomaterials
Biomedical materials
Bone scaffolds
Bones
Commercialization
Cryogelation
Electrospinning
Fabrication
Freeform fabrication
Gas foaming
Material extrusion
Material properties
Materials selection
Repair
Scaffolds
Selective laser melting
Selective laser sintering
Surgical implants
Tissue engineering
Vat photoplymerization
Title Current state of fabrication technologies and materials for bone tissue engineering
URI https://dx.doi.org/10.1016/j.actbio.2018.09.031
https://www.ncbi.nlm.nih.gov/pubmed/30248515
https://www.proquest.com/docview/2131831426
https://www.proquest.com/docview/2112189441
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEB9EL3oQP566fhHBa942SbvZHEWUVdGLCt5Ckqawj0d30Xr1b3emTVc9iOCxbdKGyWTml3TmNwCncRRiXkTBjckNz10IfKxKz3EllcJnPpiMspFv70aTx_z6qXhagvM-F4bCKpPt72x6a63TnWGS5nA-nQ7vEUtLje4IlTIjXjHKYM81afnft0WYBzqktr4qNebUuk-fa2O8XGj8lFIAxbhjOxXfuafv4Gfrhi43YD3hR3bWDXETlmK9BWufWAW34T5xLrE2WYjNKlY5_5zO5ljTn6XjFpm5umQIWTstZIhfmZ_VkTXtbLD48dY_8Hh58XA-4al2Ag-5UQ1H2EbMQlGivBGyyKhLoUdejWOmgsc9ndPEHSf9yGgTlHOVqkqptZJVXnrl1Q4s1_jFPWBCl6qsVIFdcXvj3DjKKlIlwCC1DL4YgOpFZkMiFqf6Fv9tH0H2z3aCtiRomxmLgh4AX_Sad8QaP7TX_WzYLwpi0fb_0POwnzybFuiLlYKMmUB8MoCTxWNcWvS_xNVx9kptBAIgg4BxALvdpC-GqlouOFHs_3pYB7BKV-QHRXEIy83zazxCgNP441aDj2Hl7OpmcvcOoIL6Vg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6x8sB4QGwDVgabJ-3Vamwndf2IEFXLj74AEm-W7ThSEUorFv5_7hKn2x4Q0l5jX2Ldne8-O77PAL_iOMS8iIIbkxueuxD4RJWe40wqhc98MBlVI98sxrP7_PKheNiC874Who5VptjfxfQ2Wqcno6TN0Xq5HN0ilpYa0xE6ZUa8Yh9gm9ipigFsn82vZos-IGNOaq9Ypf6cBPoKuvaYlwuNX1IVoJh0hKfirQz1FgJtM9F0H_YShGRn3Sg_wVasP8PuX8SCX-A20S6xtl6IrSpWOf-ctudY02-n4yqZubpkiFo7R2QIYZlf1ZE1rUFY_PPWA7ifXtydz3i6PoGH3KiGI3IjcqEoUeWIWmTUpdBjryYxU8Hjss5poo-Tfmy0Ccq5SlWl1FrJKi-98uoQBjV-8SswoUtVVqpAUVzhODeJsop0GWCQWgZfDEH1KrMhcYvTFRdPtj9E9mg7RVtStM2MRUUPgW-k1h23xjv9dW8N-4-PWAz_70ie9MazaY7-tlJQPBMIUYbwc9OMs4t-mbg6rl6oj0AMZBAzDuGoM_pmqKqlgxPF8X8P6wfszO5uru31fHH1DT5SC6VFUZzAoHl-iaeIdxr_PfnzKzUW_Qc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+state+of+fabrication+technologies+and+materials+for+bone+tissue+engineering&rft.jtitle=Acta+biomaterialia&rft.au=Wubneh%2C+Abiy&rft.au=Tsekoura%2C+Eleni+K.&rft.au=Ayranci%2C+Cagri&rft.au=Uluda%C4%9F%2C+Hasan&rft.date=2018-10-15&rft.pub=Elsevier+Ltd&rft.issn=1742-7061&rft.eissn=1878-7568&rft.volume=80&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1016%2Fj.actbio.2018.09.031&rft.externalDocID=S1742706118305518
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon