Transcriptomic and proteomic strategies to reveal the mechanism of Gymnocypris przewalskii scale development

Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchioste...

Full description

Saved in:
Bibliographic Details
Published inBMC genomics Vol. 25; no. 1; pp. 140 - 19
Main Authors Xu, Baoke, Cui, Yanrong, A., Linlin, Zhang, Haichen, Ma, Qinghua, Wei, Fulei, Liang, Jian
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 03.02.2024
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways. The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway. This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
AbstractList Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways.BACKGROUNDFish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways.The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway.RESULTSThe results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway.This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.CONCLUSIONThis study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways. The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway. This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
Background Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways. Results The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway. Conclusion This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages. Keywords: Gymnocypris przewalskii, Scale development, Transcriptome, Proteome
Abstract Background Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways. Results The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway. Conclusion This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways. The results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway. This study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
BackgroundFish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii scales are highly specialized, with scales embedded in only specific parts of the dermis, such as the areas around the anal fin and branchiostegite, making G. przewalskii an ideal material for biomineralization research. In this study, we aimed to unveil genes and pathways controlling scale formation through an integrated analysis of both transcriptome and proteome, of which G. przewalskii tissues of the dorsal skin (no scales) and the rump side skin (with scales) were sequenced. The sequencing results were further combined with cellular experiments to clarify the relationship between genes and signaling pathways.ResultsThe results indicated the following: (1) a total of 4,904 differentially expressed genes were screened out, including 3,294 upregulated genes and 1,610 downregulated genes (with a filtering threshold of |log2Fold-Change|> 1 and p-adjust < 0.05). The identified differentially expressed genes contained family members such as FGF, EDAR, Wnt10, and bmp. (2) A total of 535 differentially expressed proteins (DEPs) were filtered out from the proteome, with 204 DEPs downregulated and 331 DEPs upregulated (with a filtering threshold of |Fold-Change|> 1.5 and p < 0.05). (3) Integrated analyses of transcriptome and proteome revealed that emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were important genes contributing to scale development and that PI3K-AKT was the most important signaling pathway involved. (4) With the use of the constructed G. przewalskii fibroblast cell line, emefp1, col1a1, col6a2, col16a1, krt8, and krt18 were confirmed to be positively regulated by the PI3K-AKT signaling pathway.ConclusionThis study provides experimental evidence for PI3K-AKT controlled scale development in G. przewalskii and would benefit further study on stress adaptation, scale biomineralization, and the development of skin appendages.
ArticleNumber 140
Audience Academic
Author Cui, Yanrong
Ma, Qinghua
Zhang, Haichen
Xu, Baoke
A., Linlin
Liang, Jian
Wei, Fulei
Author_xml – sequence: 1
  givenname: Baoke
  surname: Xu
  fullname: Xu, Baoke
– sequence: 2
  givenname: Yanrong
  surname: Cui
  fullname: Cui, Yanrong
– sequence: 3
  givenname: Linlin
  surname: A.
  fullname: A., Linlin
– sequence: 4
  givenname: Haichen
  surname: Zhang
  fullname: Zhang, Haichen
– sequence: 5
  givenname: Qinghua
  surname: Ma
  fullname: Ma, Qinghua
– sequence: 6
  givenname: Fulei
  surname: Wei
  fullname: Wei, Fulei
– sequence: 7
  givenname: Jian
  surname: Liang
  fullname: Liang, Jian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38310220$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNURD_gD3BAkbjAIcUeO-vkWFW0rFQJCcrZmjjjrZckXmwvdPn1eHdL1UXIB9vj5x2NZ97T4mjyExXFa87OOW9mHyKHZiYrBrLijElV8WfFCZeKV8Bn8ujJ-bg4jXHJGFcN1C-KY9EIzgDYSTHcBpyiCW6V_OhMiVNfroJPtLvFFDDRwlEsky8D_SQcynRH5UjmDicXx9Lb8nozTt5sVsHFrP1Nv3CI350ro8GByj6rBr8aaUovi-c2v9Grh_2s-Hb18fbyU3Xz-Xp-eXFTGdmKlCs2TWuYtNaKnqDrwLKuV8oYCb1VAGhA9nVrjUAmOO9UQ9zUqukkkrIozor5Pm_vcalzXSOGjfbo9C7gw0JjSM4MpJGYFdRKBYgSucJZrUQ7Q4Cut0xtc73b58pd-bGmmPTooqFhwIn8OmpoAaRsQNQZffsPuvTrMOWfbqm6blTLn1CL3B3tJutzk802qb7I4-FtA1Jl6vw_VF495cFkH1iX4weC9weCzCS6Twtcx6jnX78csm8eCl13I_WPHfpriwzAHjDBxxjIPiKc6a339N57OntP77ynufgDmGXK2w
Cites_doi 10.1186/s40643-022-00589-1
10.1038/s41598-018-37839-2
10.1016/j.fsi.2022.06.057
10.1002/dvdy.24120
10.1242/dev.01203
10.1093/molbev/msv208
10.1016/j.csbj.2020.07.014
10.1046/j.1469-7580.1997.19040545.x
10.3390/ijms19041022
10.1016/bs.ctdb.2014.11.013
10.1016/j.cell.2020.05.043
10.1016/j.bioadv.2022.212874
10.1074/jbc.M116.763342
10.1016/j.cub.2009.07.065
10.1111/joa.13428
10.1093/hmg/7.11.1661
10.3390/ijms20081803
10.1302/2046-3758.104.BJR-2020-0255.R2
10.1093/evolut/qpad043
10.1016/S0960-9822(01)00438-9
10.3389/fcell.2020.00433
10.1172/JCI82585
10.1038/nature10098
10.1101/gad.198945.112
10.1002/pmic.201600140
10.1016/j.gene.2023.147374
10.1016/j.scitotenv.2020.137568
10.1007/s11626-022-00729-z
10.1093/bioinformatics/bti430
10.1038/nature05659
10.1016/j.jds.2023.05.007
10.7554/eLife.37001
10.1016/j.bone.2021.116305
10.7150/thno.36930
10.1101/cshperspect.a004978
10.1096/fj.201900010RR
10.1016/j.fsi.2017.12.013
10.1002/jbmr.2197
10.1111/cpr.12735
10.1186/gb-2010-11-2-r14
10.1242/dev.00788
10.1016/j.bone.2012.10.007
10.5194/aab-63-461-2020
10.1016/j.cbpa.2013.04.023
10.1186/s12864-019-5749-3
10.1016/j.zool.2016.02.006
10.1016/S1534-5807(02)00167-3
10.1016/j.jphs.2020.02.011
10.1126/sciadv.1600708
10.3390/ijms22094321
10.1007/PL00000650
10.1002/jcp.26460
10.1016/j.jdsr.2023.06.005
10.3390/ijms23168911
10.1016/j.aquaculture.2023.740175
10.1186/s12864-017-4366-2
10.1096/fj.202200329RR
10.1016/j.bcab.2016.06.010
10.1038/nbt.1883
10.1016/j.isci.2018.07.019
10.1101/cshperspect.a023267
10.1387/ijdb.15272389
10.1016/j.gene.2016.11.010
10.1093/nar/gky869
10.1002/9780470513637.ch3
10.1016/j.bone.2010.12.017
10.1152/ajpendo.00562.2004
10.3390/jcm6030023
10.1038/383525a0
10.1093/nar/gkab1081
10.1111/exd.13391
10.3389/fphys.2022.1033130
10.3389/fcell.2022.826023
10.1371/journal.pgen.1000206
10.1186/s12862-022-01984-0
10.1038/s41576-020-0258-4
10.1002/mgg3.2119
10.1039/D2RA00032F
10.1002/mco2.363
10.1038/srep14408
ContentType Journal Article
Copyright 2024. The Author(s).
COPYRIGHT 2024 BioMed Central Ltd.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s).
– notice: COPYRIGHT 2024 BioMed Central Ltd.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
ISR
3V.
7QP
7QR
7SS
7TK
7U7
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
DOA
DOI 10.1186/s12864-024-10047-1
DatabaseName CrossRef
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Toxicology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2164
EndPage 19
ExternalDocumentID oai_doaj_org_article_ae0f3e9472aa4a17a657396a22bdf07a
A782198247
38310220
10_1186_s12864_024_10047_1
Genre Journal Article
GeographicLocations China
Qinghai Lake
GeographicLocations_xml – name: China
– name: Qinghai Lake
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31660745
GroupedDBID ---
0R~
23N
2WC
2XV
53G
5VS
6J9
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
U2A
UKHRP
W2D
WOQ
WOW
XSB
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7QP
7QR
7SS
7TK
7U7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c493t-21c89c04fff3de2bb2f0bd77cc42df722ac24d59fc3a0311b78e1c578b4ae7fa3
IEDL.DBID M48
ISSN 1471-2164
IngestDate Wed Aug 27 01:17:12 EDT 2025
Thu Jul 10 19:04:45 EDT 2025
Fri Jul 25 19:26:13 EDT 2025
Tue Jun 17 22:14:10 EDT 2025
Tue Jun 10 21:11:43 EDT 2025
Fri Jun 27 05:48:22 EDT 2025
Mon Jul 21 05:57:02 EDT 2025
Tue Jul 01 00:39:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Proteome
Scale development
Gymnocypris przewalskii
Transcriptome
Language English
License 2024. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-21c89c04fff3de2bb2f0bd77cc42df722ac24d59fc3a0311b78e1c578b4ae7fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12864-024-10047-1
PMID 38310220
PQID 2925587915
PQPubID 44682
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_ae0f3e9472aa4a17a657396a22bdf07a
proquest_miscellaneous_2922448235
proquest_journals_2925587915
gale_infotracmisc_A782198247
gale_infotracacademiconefile_A782198247
gale_incontextgauss_ISR_A782198247
pubmed_primary_38310220
crossref_primary_10_1186_s12864_024_10047_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-03
PublicationDateYYYYMMDD 2024-02-03
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-03
  day: 03
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC genomics
PublicationTitleAlternate BMC Genomics
PublicationYear 2024
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References M Takeo (10047_CR2) 2015; 5
M Mandler (10047_CR74) 2004; 131
F Diomede (10047_CR81) 2018; 19
MP Harris (10047_CR65) 2008; 4
RH Yang (10047_CR15) 2022; 23
D Yanan (10047_CR32) 2022; 224
CX Lin (10047_CR83) 2018; 233
N Di-Poï (10047_CR12) 2016; 2
CL Neben (10047_CR48) 2017; 612
G Papaioannou (10047_CR55) 2017; 292
10047_CR22
A Petiot (10047_CR76) 2003; 130
J Mondéjar-Fernández (10047_CR10) 2021; 239
MP Harris (10047_CR77) 2016; 33
JY Xu (10047_CR63) 2020; 182
FL Wei (10047_CR23) 2022; 9
M Wagner (10047_CR17) 2022; 22
YJ Ou (10047_CR9) 2016; 12
D Ayala-Barajas (10047_CR8) 2020; 2020
JS Moon (10047_CR46) 2014; 29
JH Wang (10047_CR62) 2017; 18
T Chen (10047_CR89) 2021; 50
B Schwanhäusser (10047_CR56) 2011; 473
F Cadete (10047_CR78) 2023; 77
TM Yan (10047_CR6) 2014; 38
T Andl (10047_CR70) 2002; 2
MY Bao (10047_CR42) 2020; 53
SJ Zhao (10047_CR82) 2020; 10
PT Sharpe (10047_CR13) 2001; 11
HT Nguyen (10047_CR64) 2020; 720
D Dhouailly (10047_CR71) 2019; 28
XN Zheng (10047_CR37) 2015; 5
JM Tao (10047_CR45) 2022; 36
S Ricard-Blum (10047_CR28) 2011; 3
X Chen (10047_CR84) 2021; 10
X Liu (10047_CR14) 2023; 11
N Rohner (10047_CR69) 2009; 19
10047_CR29
XN Li (10047_CR36) 2022; 127
JY Sire (10047_CR7) 1997; 190
FL Wei (10047_CR24) 2022; 58
RC Dai (10047_CR50) 2020; 8
TM Yan (10047_CR5) 2014; 49
ZH Wu (10047_CR68) 2020; 63
R Huang (10047_CR31) 2022; 12
MG Grabherr (10047_CR85) 2011; 29
N Michiko (10047_CR35) 2019; 9
CM Chuong (10047_CR11) 2000; 57
XD Xie (10047_CR80) 2022; 10
N Matsumoto (10047_CR51) 2005; 289
DK Wainwright (10047_CR4) 2016; 119
L Lieben (10047_CR52) 2013; 54
H Okamura (10047_CR53) 2017; 6
B Christopher (10047_CR58) 2020; 21
B Jochen (10047_CR57) 2019; 20
Y Iida (10047_CR16) 2014; 243
PK Bhagwat (10047_CR27) 2016; 7
GZ Wang (10047_CR61) 2020; 18
X Mao (10047_CR87) 2005; 21
SH Huh (10047_CR75) 2013; 27
LM Escobar (10047_CR47) 2023; 18
Y Ahn (10047_CR1) 2015; 111
J Liang (10047_CR20) 2015
A Rajesh (10047_CR33) 2019; 33
O Behar (10047_CR40) 1996; 383
L Horakova (10047_CR66) 2023; 13
M Bayés (10047_CR18) 1998; 7
K Kei-ichiro (10047_CR25) 2013; 166
JM Daane (10047_CR19) 2016; 33
S Yuichi (10047_CR26) 2020; 143
S Segeletz (10047_CR49) 2018; 6
E Fuchs (10047_CR72) 2007; 445
KM Kim (10047_CR54) 2019; 20
J Ma (10047_CR88) 2009; 47
N Yoshimitsu (10047_CR41) 2022; 157
Y Iida (10047_CR67) 2014; 243
X Yan (10047_CR30) 2023; 59
K Dhirendra (10047_CR59) 2016; 16
A Guasto (10047_CR79) 2021; 22
DV Erik (10047_CR39) 2011; 48
MD Young (10047_CR86) 2010; 11
YR Zhang (10047_CR43) 2023; 4
AJ Aman (10047_CR73) 2018; 7
ZH Xin (10047_CR34) 2015; 46
JY Sire (10047_CR21) 2004; 48
K Hu (10047_CR38) 2016; 126
HT Bai (10047_CR44) 2022; 138
D Qi (10047_CR3) 2018; 73
ZZ Wang (10047_CR60) 2023; 868
References_xml – volume: 9
  start-page: 104
  year: 2022
  ident: 10047_CR23
  publication-title: Bioresour Bioprocess
  doi: 10.1186/s40643-022-00589-1
– volume: 9
  start-page: 856
  issue: 1
  year: 2019
  ident: 10047_CR35
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-37839-2
– volume: 127
  start-page: 788
  year: 2022
  ident: 10047_CR36
  publication-title: Fish Shellfish Immunol
  doi: 10.1016/j.fsi.2022.06.057
– volume: 38
  start-page: 298
  issue: 2
  year: 2014
  ident: 10047_CR6
  publication-title: Acta Hydrobiol Sinica
– volume: 224
  start-page: 110196
  year: 2022
  ident: 10047_CR32
  publication-title: Compos Part B
– volume: 243
  start-page: 765
  issue: 6
  year: 2014
  ident: 10047_CR67
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.24120
– volume: 131
  start-page: 3333
  issue: 14
  year: 2004
  ident: 10047_CR74
  publication-title: Development
  doi: 10.1242/dev.01203
– volume: 33
  start-page: 162
  issue: 1
  year: 2016
  ident: 10047_CR77
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv208
– volume: 18
  start-page: 2081
  year: 2020
  ident: 10047_CR61
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.07.014
– volume: 190
  start-page: 545
  year: 1997
  ident: 10047_CR7
  publication-title: J Anat
  doi: 10.1046/j.1469-7580.1997.19040545.x
– volume: 19
  start-page: 1022
  issue: 4
  year: 2018
  ident: 10047_CR81
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19041022
– volume: 111
  start-page: 421
  year: 2015
  ident: 10047_CR1
  publication-title: Curr Top Dev Biol
  doi: 10.1016/bs.ctdb.2014.11.013
– volume: 182
  start-page: 245
  issue: 1
  year: 2020
  ident: 10047_CR63
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.043
– volume: 138
  start-page: 212874
  year: 2022
  ident: 10047_CR44
  publication-title: Biomater Adv
  doi: 10.1016/j.bioadv.2022.212874
– volume: 292
  start-page: 3164
  issue: 8
  year: 2017
  ident: 10047_CR55
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.763342
– volume: 19
  start-page: 1642
  issue: 19
  year: 2009
  ident: 10047_CR69
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2009.07.065
– volume: 239
  start-page: 451
  issue: 2
  year: 2021
  ident: 10047_CR10
  publication-title: J Anat
  doi: 10.1111/joa.13428
– volume: 7
  start-page: 1661
  issue: 11
  year: 1998
  ident: 10047_CR18
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/7.11.1661
– volume: 20
  start-page: 1803
  issue: 8
  year: 2019
  ident: 10047_CR54
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20081803
– volume: 10
  start-page: 237
  issue: 4
  year: 2021
  ident: 10047_CR84
  publication-title: Bone Joint Res
  doi: 10.1302/2046-3758.104.BJR-2020-0255.R2
– volume: 77
  start-page: 1262
  issue: 5
  year: 2023
  ident: 10047_CR78
  publication-title: Evolution
  doi: 10.1093/evolut/qpad043
– volume: 11
  start-page: R751
  issue: 18
  year: 2001
  ident: 10047_CR13
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(01)00438-9
– volume: 8
  start-page: 433
  year: 2020
  ident: 10047_CR50
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2020.00433
– volume: 126
  start-page: 509
  issue: 2
  year: 2016
  ident: 10047_CR38
  publication-title: J Clin Investig
  doi: 10.1172/JCI82585
– volume: 473
  start-page: 337
  issue: 7347
  year: 2011
  ident: 10047_CR56
  publication-title: Nature
  doi: 10.1038/nature10098
– volume: 27
  start-page: 450
  issue: 4
  year: 2013
  ident: 10047_CR75
  publication-title: Genes Dev
  doi: 10.1101/gad.198945.112
– volume: 16
  start-page: 2533
  issue: 19
  year: 2016
  ident: 10047_CR59
  publication-title: Proteomics
  doi: 10.1002/pmic.201600140
– volume: 868
  start-page: 147374
  year: 2023
  ident: 10047_CR60
  publication-title: Gene
  doi: 10.1016/j.gene.2023.147374
– volume: 720
  start-page: 137568
  year: 2020
  ident: 10047_CR64
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.137568
– volume: 58
  start-page: 970
  issue: 10
  year: 2022
  ident: 10047_CR24
  publication-title: In Vitro Cell Dev Biol Anim
  doi: 10.1007/s11626-022-00729-z
– volume: 21
  start-page: 3787
  issue: 19
  year: 2005
  ident: 10047_CR87
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti430
– volume-title: Functional studies of the lysine-rich matrix protein in pearl oyster, Pinctada fucata
  year: 2015
  ident: 10047_CR20
– volume: 445
  start-page: 834
  issue: 7130
  year: 2007
  ident: 10047_CR72
  publication-title: Nature
  doi: 10.1038/nature05659
– volume: 18
  start-page: 1786
  issue: 4
  year: 2023
  ident: 10047_CR47
  publication-title: J Dent Sci
  doi: 10.1016/j.jds.2023.05.007
– volume: 7
  start-page: e37001
  year: 2018
  ident: 10047_CR73
  publication-title: Elife
  doi: 10.7554/eLife.37001
– volume: 49
  start-page: 391
  issue: 3
  year: 2014
  ident: 10047_CR5
  publication-title: Chinese J Zoology
– volume: 157
  start-page: 116305
  year: 2022
  ident: 10047_CR41
  publication-title: Bone
  doi: 10.1016/j.bone.2021.116305
– volume: 10
  start-page: 17
  issue: 1
  year: 2020
  ident: 10047_CR82
  publication-title: Theranostics
  doi: 10.7150/thno.36930
– volume: 3
  start-page: a004978
  issue: 1
  year: 2011
  ident: 10047_CR28
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a004978
– volume: 33
  start-page: 9167
  issue: 8
  year: 2019
  ident: 10047_CR33
  publication-title: FASEB J
  doi: 10.1096/fj.201900010RR
– volume: 73
  start-page: 145
  year: 2018
  ident: 10047_CR3
  publication-title: Fish Shellfish Immunol
  doi: 10.1016/j.fsi.2017.12.013
– volume: 29
  start-page: 1586
  issue: 7
  year: 2014
  ident: 10047_CR46
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.2197
– volume: 53
  start-page: e12735
  issue: 2
  year: 2020
  ident: 10047_CR42
  publication-title: Cell prolif
  doi: 10.1111/cpr.12735
– volume: 11
  start-page: R14
  issue: 2
  year: 2010
  ident: 10047_CR86
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-2-r14
– volume: 130
  start-page: 5493
  issue: 22
  year: 2003
  ident: 10047_CR76
  publication-title: Development
  doi: 10.1242/dev.00788
– volume: 54
  start-page: 237
  issue: 2
  year: 2013
  ident: 10047_CR52
  publication-title: Bone
  doi: 10.1016/j.bone.2012.10.007
– volume: 63
  start-page: 461
  issue: 2
  year: 2020
  ident: 10047_CR68
  publication-title: Arch Anim Breed
  doi: 10.5194/aab-63-461-2020
– volume: 166
  start-page: 74
  issue: 1
  year: 2013
  ident: 10047_CR25
  publication-title: Comp Biochem Physiol A Mol Integr Physiol
  doi: 10.1016/j.cbpa.2013.04.023
– volume: 20
  start-page: 358
  issue: 1
  year: 2019
  ident: 10047_CR57
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5749-3
– volume: 119
  start-page: 182
  issue: 3
  year: 2016
  ident: 10047_CR4
  publication-title: Lepomis macrochirus Zoology (Jena)
  doi: 10.1016/j.zool.2016.02.006
– volume: 2
  start-page: 643
  issue: 5
  year: 2002
  ident: 10047_CR70
  publication-title: Dev Cell
  doi: 10.1016/S1534-5807(02)00167-3
– volume: 143
  start-page: 117
  issue: 2
  year: 2020
  ident: 10047_CR26
  publication-title: J Pharmacol Sci
  doi: 10.1016/j.jphs.2020.02.011
– volume: 2
  start-page: e1600708
  issue: 6
  year: 2016
  ident: 10047_CR12
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1600708
– volume: 22
  start-page: 4321
  issue: 9
  year: 2021
  ident: 10047_CR79
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22094321
– volume: 57
  start-page: 1672
  issue: 12
  year: 2000
  ident: 10047_CR11
  publication-title: Cell Mol Life Sci
  doi: 10.1007/PL00000650
– volume: 233
  start-page: 6135
  issue: 8
  year: 2018
  ident: 10047_CR83
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.26460
– volume: 59
  start-page: 181
  year: 2023
  ident: 10047_CR30
  publication-title: Jpn Dent Sci Rev
  doi: 10.1016/j.jdsr.2023.06.005
– volume: 23
  start-page: 8911
  issue: 16
  year: 2022
  ident: 10047_CR15
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23168911
– volume: 33
  start-page: 162
  issue: 1
  year: 2016
  ident: 10047_CR19
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msv208
– ident: 10047_CR22
  doi: 10.1016/j.aquaculture.2023.740175
– volume: 18
  start-page: 984
  issue: 1
  year: 2017
  ident: 10047_CR62
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4366-2
– volume: 36
  start-page: e22520
  issue: 10
  year: 2022
  ident: 10047_CR45
  publication-title: FASEB J
  doi: 10.1096/fj.202200329RR
– volume: 7
  start-page: 234
  year: 2016
  ident: 10047_CR27
  publication-title: Biocatal Agric Biotechnol
  doi: 10.1016/j.bcab.2016.06.010
– volume: 29
  start-page: 644
  issue: 7
  year: 2011
  ident: 10047_CR85
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1883
– volume: 6
  start-page: 199
  year: 2018
  ident: 10047_CR49
  publication-title: IScience
  doi: 10.1016/j.isci.2018.07.019
– volume: 5
  start-page: a023267
  issue: 1
  year: 2015
  ident: 10047_CR2
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a023267
– volume: 48
  start-page: 233
  issue: 2–3
  year: 2004
  ident: 10047_CR21
  publication-title: Int J Dev Biol
  doi: 10.1387/ijdb.15272389
– volume: 612
  start-page: 29
  year: 2017
  ident: 10047_CR48
  publication-title: Gene
  doi: 10.1016/j.gene.2016.11.010
– volume: 47
  start-page: D1211
  issue: D1
  year: 2009
  ident: 10047_CR88
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky869
– ident: 10047_CR29
  doi: 10.1002/9780470513637.ch3
– volume: 48
  start-page: 704
  issue: 4
  year: 2011
  ident: 10047_CR39
  publication-title: Bone
  doi: 10.1016/j.bone.2010.12.017
– volume: 289
  start-page: E123
  issue: 1
  year: 2005
  ident: 10047_CR51
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00562.2004
– volume: 6
  start-page: 23
  issue: 3
  year: 2017
  ident: 10047_CR53
  publication-title: J Clin Med
  doi: 10.3390/jcm6030023
– volume: 46
  start-page: 745
  year: 2015
  ident: 10047_CR34
  publication-title: Pinctada fucata martensii Aquaclture Res
– volume: 383
  start-page: 525
  issue: 6600
  year: 1996
  ident: 10047_CR40
  publication-title: Nature
  doi: 10.1038/383525a0
– volume: 50
  start-page: D1522
  issue: D1
  year: 2021
  ident: 10047_CR89
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab1081
– volume: 28
  start-page: 503
  issue: 4
  year: 2019
  ident: 10047_CR71
  publication-title: Exp Dermatol
  doi: 10.1111/exd.13391
– volume: 13
  start-page: 1033130
  year: 2023
  ident: 10047_CR66
  publication-title: Front Physiol
  doi: 10.3389/fphys.2022.1033130
– volume: 10
  start-page: 826023
  year: 2022
  ident: 10047_CR80
  publication-title: Front Cell Dev Biol
  doi: 10.3389/fcell.2022.826023
– volume: 243
  start-page: 765
  issue: 6
  year: 2014
  ident: 10047_CR16
  publication-title: Dev Dyn
  doi: 10.1002/dvdy.24120
– volume: 4
  start-page: e1000206
  issue: 10
  year: 2008
  ident: 10047_CR65
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000206
– volume: 22
  start-page: 28
  issue: 1
  year: 2022
  ident: 10047_CR17
  publication-title: BMC Ecol Evol
  doi: 10.1186/s12862-022-01984-0
– volume: 21
  start-page: 630
  issue: 10
  year: 2020
  ident: 10047_CR58
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-020-0258-4
– volume: 11
  start-page: e2119
  issue: 4
  year: 2023
  ident: 10047_CR14
  publication-title: Mol Genet Genomic Med
  doi: 10.1002/mgg3.2119
– volume: 12
  start-page: 20037
  issue: 31
  year: 2022
  ident: 10047_CR31
  publication-title: RSC Adv
  doi: 10.1039/D2RA00032F
– volume: 12
  start-page: 112
  issue: 5
  year: 2016
  ident: 10047_CR9
  publication-title: S China Fisheries Sci
– volume: 4
  start-page: e363
  issue: 5
  year: 2023
  ident: 10047_CR43
  publication-title: MedComm
  doi: 10.1002/mco2.363
– volume: 2020
  start-page: 2206
  year: 2020
  ident: 10047_CR8
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 5
  start-page: 14408
  year: 2015
  ident: 10047_CR37
  publication-title: Sci Rep
  doi: 10.1038/srep14408
SSID ssj0017825
Score 2.4203408
Snippet Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris przewalskii...
Background Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris...
BackgroundFish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The Gymnocypris...
Abstract Background Fish scales are typical products of biomineralization and play an important role in the adaptation of fish to their environment. The...
SourceID doaj
proquest
gale
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 140
SubjectTerms 1-Phosphatidylinositol 3-kinase
Adaptation
AKT protein
Biological research
Biology, Experimental
Biomineralization
Carp
Collagen
Collagen (type I)
Cyprinidae
Dermis
Down-regulation
Fibroblasts
Filtration
Fish
Fishes
Gene expression
Genes
Genetic aspects
Germplasm
Growth factors
Gymnocypris przewalskii
Mineralization
Morphogenesis
Morphology
Mutation
Physiological aspects
Proteins
Proteome
Proteomes
Proteomics
Scale development
Scale formation
Scales
Scales (Anatomy)
Signal transduction
Skin
Transcriptome
Transcriptomes
Transcriptomics
Zebrafish
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9UwEA6yIHgR15_VVaIIHiRsm6RNclzFdRX0oC7sLSRpIg99rdg-ludf70zaPn168OKptJmU5ptMZ0Im3xDylJvahNpwBq5VMhlCYib4moE3CW0tY-C5FsG7983ZuXx7UV_8VuoLc8ImeuAJuGMXyySikYo7J12lXFMrYRrHuW9TqXJoBD5vWUzN-wfg9-rliIxujgf4CzeSgT9iyJCmWLXnhjJb_9__5D8izexxTm-Q63OoSE-mTzwkV2J3k1ydikdub5Gv2c1ko8eTxdR1Lc2sC_luGBcOCDr2FHma4FUQ7NF1xLO-q2FN-0Rfb9ddH7bIhQh9f8RLmIxfVis6gOYibX8lFN0m56evPr08Y3PtBBakESNgHbQJpUwpiTZy73kqfatUCJK3SXHuApdtbVIQDuy68krHKoD5eumiSk7cIQdd38V7hCbc-UxC66RbWWrvK22wypX2Jgq4FOT5AqX9NlFk2Ly00I2dgLcAvM3A26ogLxDtnSTSW-cHoHQ7K93-S-kFeYK6skhg0WGGzGe3GQb75uMHewKqr4zmUhXk2SyUesA8uPnAAYwKOa_2JI_2JMHCwn7zMiXsbOGD5QYWY1qZqi7I410z9sSstS72mywD0ZPmAmTuTlNpN26BFd7AEO7_DzwekGscJzdmk4sjcjB-38SHECyN_lG2i59OKxDD
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgiftvzlCiCD1Jum6RN8iSneJ6CPqgH-xbyeSy67d21i6x_vTNpd49V8Km0maRkMpOZJJPfEPKS6Vr7WrMSTKsohfep1N7VJVgTH2oRPcu5CD5_aU5Oxad5PZ823PoprHIzJ-aJOnQe98gPmQbnV0ld1W_OL0rMGoWnq1MKjevkBkKXoVTL-XbBVYH1qzcXZVRz2MNc3IgSrFKJOGmyrHaMUcbs_3dm_svfzHbn-A65PTmM9Ggc4bvkWmzvkZtjCsn1ffIzG5us-ni_mNo20Iy9kN_6YYMEQYeOIloTNAUuH11GvPG76Je0S_TDetl2fo2IiFD3d_wFIvljsaA9jF-k4Sqs6AE5PX7__d1JOWVQKL3QfACOe6X9TKSUeIjMOZZmLkjpvWAhScasZyLUOnluQbsrJ1WsPCixEzbKZPlDstd2bXxMaMLzz8SVSiqImXKuUhpzXSmnI4dHQV5vWGnOR6AMkxcYqjEj4w0w3mTGm6ogb5HbW0oEuc4fusszM-mMsRF-GLWQzFphK2mbWnLdWMZcSDNpC_ICx8ogjEWLcTJndtX35uO3r-YIhr7SiglZkFcTUeqA595O1w6gV4h8tUN5sEMJeuZ3izciYSY9782VVBbk-bYYa2LsWhu7VaYBH0oxDjSPRlHa9ptjnjdQh_3_N_6E3GIothgtzg_I3nC5ik_BGRrcsyzxfwAPiAf7
  priority: 102
  providerName: ProQuest
Title Transcriptomic and proteomic strategies to reveal the mechanism of Gymnocypris przewalskii scale development
URI https://www.ncbi.nlm.nih.gov/pubmed/38310220
https://www.proquest.com/docview/2925587915
https://www.proquest.com/docview/2922448235
https://doaj.org/article/ae0f3e9472aa4a17a657396a22bdf07a
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiHdTysogJA4osLGd2D4g1KKWgtQKFVbam2U7drWim5RNVrD8esZOstVCL5yixJPX5xnPOPF8g9BLInNpc0lScK0sZdb6VFqTp-BNbJkzZ0msRXB6VpxM2OdpPt1CQ7mjHsDmxqldqCc1WVy--fVj9R4M_l00eFG8bWCMLVgK3iYN_Gc8hdnQDngmHioanLLrvwrgDfOYbcQzeJiCDUk0N15jw1FFPv9_R-2_YtHok47vobt9MIkPut6_j7Zc9QDd7spLrh6iy-iI4rAQco-xrkoceRniXtMOLBG4rXFgcoJLQTiI5y5kA8-aOa49_riaV7VdBbZEOPe3-wmwfZ_NcAN963B5veToEZocH337cJL21RVSyyRtAQArpB0z7z0tHTGG-LEpObeWkdJzQrQlrMylt1SD5WeGC5dZMHDDtONe08dou6ort4uwD_9GPRXCi5KNhTGZkKEOljDSUdgk6PUApbrqSDRUnHyIQnXAKwBeReBVlqDDgPZaMhBgxwP14kL19qS0gxs6yTjRmumM6yLnVBaaEFP6MdcJehH6SgWKiyqsobnQy6ZRn76eqwNQg0wKwniCXvVCvgbMre5TEuCtAivWhuT-hiTYoN1sHlRCDSqsiITpmuAyyxP0fN0czgzr2ipXL6MMxFeCUJB50qnS-r1pqAEHprL3X-g9RXdI0OKwsJzuo-12sXTPIG5qzQjd4lM-QjuHR2dfzkfx68MoGsgfsq8UGQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4s1CAYNAHFDUjePE9gGh8ii79HGAVtqbazt2tYImpdlVtfwofiMzTrLVgsStpyjJxEnGM_ONk3kQ8pKpXLlcsQSglSfcuZAoZ_ME0MSVOfeOxV4Ee_vF6JB_meSTNfK7z4XBsMreJkZDXdYOv5FvMgXOrxQqzd-d_kywaxT-Xe1baLRiseMX57Bka96OP8L8vmJs-9PBh1HSdRVIHFfZDJ7CSeWGPISQlZ5Zy8LQlkI4x1kZBGPGMV7mKrjMgMSnVkifOhBsy40XwWQw7hVyFYB3iIs9MVku8FJA27xPzJHFZgO2v-AJoGCCddlEkq6AX-wR8C8S_OXfRpzbvkVudg4q3Wol6jZZ89Udcq1tWbm4S35EcIumBvOZqalKGms9xL1m1leeoLOaYnUoGApcTHriMcN42pzQOtDPi5OqdguswAjX_vLnoALfp1PagLx4Wl6EMd0jh5fC2_tkvaor_5DQgP9bQyZlkCUfSmtTqbC3lrTKZ7AZkDc9K_VpW5hDxwWNLHTLeA2M15HxOh2Q98jtJSUW1Y4H6rNj3emoNh5u6BUXzBhuUmGKXGSqMIzZMgyFGZAXOFcay2ZUGJdzbOZNo8ffvuotmPpUScbFgLzuiEINPHemS3OAt8JKWyuUGyuUoNdu9XQvErqzK42-0IIBeb48jVdirFzl63mkAZ9NsgxoHrSitHzvDPvKgfo9-v_gz8j10cHert4d7-88JjcYijBGqmcbZH12NvdPwBGb2adR-ik5umx1-wMMHUbC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptomic+and+proteomic+strategies+to+reveal+the+mechanism+of+Gymnocypris+przewalskii+scale+development&rft.jtitle=BMC+genomics&rft.au=Xu%2C+Baoke&rft.au=Cui%2C+Yanrong&rft.au=A.%2C+Linlin&rft.au=Zhang%2C+Haichen&rft.date=2024-02-03&rft.issn=1471-2164&rft.eissn=1471-2164&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1186%2Fs12864-024-10047-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12864_024_10047_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2164&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2164&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2164&client=summon