Riemann wave description of erosional dam-break flows

This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 461; pp. 183 - 228
Main Authors FRACCAROLLO, L., CAPART, H.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.06.2002
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and a sharp interface view of the morphodynamic boundary is adopted. Approximations are sought for an intermediate range of wave evolution, in which equilibration of the sediment load can be assumed instantaneous but momentum loss due to bed friction has not yet been felt. The resulting homogeneous hyperbolic equations are mathematically tractable using the Riemann techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow profiles. The wave structure features piecewise constant states, two smoothly varied simple waves, and a special type of shock: an erosional bore forming at the forefront of the wave. Profiles are constructed through a semi-analytical procedure, yielding a geomorphic generalization of the Stoker solution for dam-break waves over rigid bed. For most flow properties, the predictions of the theoretical treatment compare favourably with experimental tests visualized using particle imaging techniques.
AbstractList This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and a sharp interface view of the morphodynamic boundary is adopted. Approximations are sought for an intermediate range of wave evolution, in which equilibration of the sediment load can be assumed instantaneous but momentum loss due to bed friction has not yet been felt. The resulting homogeneous hyperbolic equations are mathematically tractable using the Riemann techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow profiles. The wave structure features piecewise constant states, two smoothly varied simple waves, and a special type of shock: an erosional bore forming at the forefront of the wave. Profiles are constructed through a semi-analytical procedure, yielding a geomorphic generalization of the Stoker solution for dam-break waves over rigid bed. For most flow properties, the predictions of the theoretical treatment compare favourably with experimental tests visualized using particle imaging techniques.
This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and a sharp interface view of the morphodynamic boundary is adopted. Approximations are sought for an intermediate range of wave evolution, in which equilibration of the sediment load can be assumed instantaneous but momentum loss due to bed friction has not yet been felt. The resulting homogeneous hyperbolic equations are mathematically tractable using the Riemann techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow profiles. The wave structure features piecewise constant states, two smoothly varied simple waves, and a special type of shock: an erosional bore forming at the forefront of the wave. Profiles are constructed through a semi-analytical procedure, yielding a geomorphic generalization of the Stoker solution for dam-break waves over rigid bed. For most flow properties, the predictions of the theoretical treatment compare favourably with experimental tests visualized using particle imaging techniques. [PUBLICATION ABSTRACT]
This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and a sharp interface view of the morphodynamic boundary is adopted. Approximations are sought for an intermediate range of wave evolution, in which equilibration of the sediment load can be assumed instantaneous but momentum loss due to bed friction has not yet been felt. The resulting homogeneous hyperbolic equations are mathematically tractable using the Riemann techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow profiles. The wave structure features piecewise constant states, two smoothly varied simple waves, and a special type of shock: an erosional bore forming at the forefront of the wave. Profiles are constructed through a semi-analytical procedure, yielding a geomorphic generalization of the Stoker solution for dam-break waves over rigid bed. For most flow properties, the predictions of the theoretical treatment compare favourably with experimental tests visualized using particle imaging techniques.
This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and a sharp interface view of the morpho-dynamic boundary is adopted. Approximations are sought for an intermediate range of wave evolution, in which equilibration of the sediment load can be assumed instantaneous but momentum loss due to bed friction has not yet been felt. The resulting homogeneous hyperbolic equations are mathematically tractable using the Riemann techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow profiles. The wave structure features piecewise constant states, two smoothly varied simple waves, and a special type of shock: an erosional bore forming at the forefront of the wave. Profiles are constructed through a semi-analytical procedure, yielding a geomorphic generalization of the Stoker solution for dam-break waves over rigid bed. For most flow properties, the predictions of the theoretical treatment compare favourably with experimental tests visualized using particle imaging techniques.
Author FRACCAROLLO, L.
CAPART, H.
Author_xml – sequence: 1
  givenname: L.
  surname: FRACCAROLLO
  fullname: FRACCAROLLO, L.
  organization: Dipartimento di Costruzioni e Tecnologia Avanzata, Università di Messina, and Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Trento, Italy
– sequence: 2
  givenname: H.
  surname: CAPART
  fullname: CAPART, H.
  organization: Department of Civil Engineering, Université catholique de Louvain, and Fonds National de la Recherche Scientifique, Belgium
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13731073$$DView record in Pascal Francis
BookMark eNqFkFtLJDEQhYMoOF5-gG8Ni_vWmupUks7jrqgrCOL1NaRzkda-jMmMrv9-08ywLivLPlXB-arq1Nkhm8M4eEIOgB4BBXl8S2lVAVS5UFoj5xtkBihUKQXyTTKb5HLSt8lOSk-UAqNKzgi_aX1vhqF4M6--cD7Z2M4X7TgUYyh8HFNuTVc405dN9Oa5CN34lvbIVjBd8vvrukvuz07vTn6Ul1fnFyffLkuLii1KwAaNrV1gjDKUyEFK8DVH54KRVFkv0YW6ohUIDM4x6oCpRqi6MahsxXbJ19XeeRxflj4tdN8m67vODH5cJl0JAcBV_V8wH64rFBP45S_waVzG_GJmEGpkEpBnClaUzQmk6IOex7Y38V0D1VPe-lPeeeZwvdkka7oQzWDb9DHIJAMqWebKFdemhf_5WzfxWQvJJNfi_FrfPQB-l2dKTzxbezF9E1v36P-w_E83vwASoZxk
CODEN JFLSA7
CitedBy_id crossref_primary_10_1039_C9SM01372E
crossref_primary_10_1061__ASCE_HY_1943_7900_0001418
crossref_primary_10_1016_j_compfluid_2015_08_001
crossref_primary_10_1016_j_enggeo_2020_105708
crossref_primary_10_4000_mediterranee_6277
crossref_primary_10_1016_S1001_6279_13_60001_3
crossref_primary_10_1016_j_ijsrc_2020_08_005
crossref_primary_10_1007_s12665_011_1025_9
crossref_primary_10_1061__ASCE_0733_9429_2003_129_9_743
crossref_primary_10_1016_j_advwatres_2024_104691
crossref_primary_10_1007_s11269_019_02480_9
crossref_primary_10_1061__ASCE_0733_9429_2007_133_1_48
crossref_primary_10_1103_PhysRevFluids_3_124302
crossref_primary_10_1007_s10346_018_0980_6
crossref_primary_10_1680_wama_2010_163_6_305
crossref_primary_10_1061__ASCE_0733_9429_2008_134_6_867
crossref_primary_10_1002_esp_5542
crossref_primary_10_1016_j_jhydrol_2018_06_038
crossref_primary_10_1016_S1001_6058_16_60658_3
crossref_primary_10_1142_S0129183121500984
crossref_primary_10_1016_j_sedgeo_2008_03_004
crossref_primary_10_1017_jfm_2013_489
crossref_primary_10_1029_2006JF000617
crossref_primary_10_1061__ASCE_0733_9429_2007_133_3_305
crossref_primary_10_1016_j_piutam_2014_01_031
crossref_primary_10_1002_fld_475
crossref_primary_10_1007_s10064_018_01447_1
crossref_primary_10_1111_j_1467_9590_2009_00453_x
crossref_primary_10_1007_s10064_024_03556_6
crossref_primary_10_1103_PhysRevE_94_052904
crossref_primary_10_1016_j_apor_2011_07_004
crossref_primary_10_1061__ASCE_HY_1943_7900_0000473
crossref_primary_10_1016_j_compfluid_2008_09_011
crossref_primary_10_1061__ASCE_HY_1943_7900_0001206
crossref_primary_10_1155_2016_3818591
crossref_primary_10_1002_nag_3339
crossref_primary_10_1016_j_advwatres_2017_07_002
crossref_primary_10_1007_s12572_010_0006_7
crossref_primary_10_1016_j_jhydrol_2011_07_037
crossref_primary_10_1017_jfm_2021_122
crossref_primary_10_1080_00221686_2015_1085919
crossref_primary_10_1002_2017WR021340
crossref_primary_10_1016_j_jcp_2006_02_001
crossref_primary_10_1016_j_jhydrol_2010_05_023
crossref_primary_10_1016_j_oceaneng_2020_107459
crossref_primary_10_1061_JHEND8_HYENG_13518
crossref_primary_10_1142_S0217984920500517
crossref_primary_10_9753_icce_v33_sediment_7
crossref_primary_10_1142_S1793431118400079
crossref_primary_10_2166_nh_2016_139
crossref_primary_10_1061__ASCE_GM_1943_5622_0000981
crossref_primary_10_1016_j_geomorph_2021_107664
crossref_primary_10_1029_2023JF007275
crossref_primary_10_1016_j_coastaleng_2014_04_003
crossref_primary_10_1016_j_apples_2023_100167
crossref_primary_10_3390_w10050616
crossref_primary_10_1139_cjce_2014_0524
crossref_primary_10_1007_s10652_008_9056_9
crossref_primary_10_1029_2020JF005930
crossref_primary_10_1017_S0022112007008567
crossref_primary_10_1002_fld_3809
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416
crossref_primary_10_1061__ASCE_0733_9429_2006_132_1_69
crossref_primary_10_3390_w15142576
crossref_primary_10_1016_j_jhydrol_2024_131173
crossref_primary_10_1038_s41467_021_26959_5
crossref_primary_10_1007_s11629_022_7365_y
crossref_primary_10_1016_j_advwatres_2021_104097
crossref_primary_10_33430_V30N1THIE_2022_0039
crossref_primary_10_1016_j_oceaneng_2013_02_007
crossref_primary_10_1016_j_advwatres_2014_02_002
crossref_primary_10_1680_eacm_2009_162_2_57
crossref_primary_10_1002_esp_4791
crossref_primary_10_1002_fld_2392
crossref_primary_10_3390_ijerph16224384
crossref_primary_10_1007_s00445_014_0858_y
crossref_primary_10_2478_johh_2023_0040
crossref_primary_10_1080_00221686_2013_857365
crossref_primary_10_1029_2020WR028515
crossref_primary_10_1016_j_advwatres_2005_06_011
crossref_primary_10_1080_19942060_2024_2367510
crossref_primary_10_1007_s10064_021_02202_9
crossref_primary_10_1016_j_advwatres_2015_04_009
crossref_primary_10_1029_2022JF006664
crossref_primary_10_1007_s10346_023_02174_9
crossref_primary_10_1061__ASCE_HY_1943_7900_0001518
crossref_primary_10_1016_j_advwatres_2011_07_009
crossref_primary_10_1061__ASCE_HY_1943_7900_0001519
crossref_primary_10_1080_00221686_2013_812047
crossref_primary_10_1017_jfm_2023_65
crossref_primary_10_1016_j_jhydrol_2011_05_010
crossref_primary_10_1080_00221686_2021_2001590
crossref_primary_10_1016_j_compfluid_2004_08_004
crossref_primary_10_1007_s10346_007_0102_3
crossref_primary_10_1017_jmech_2012_62
crossref_primary_10_2478_heem_2024_0001
crossref_primary_10_1061__ASCE_HY_1943_7900_0001082
crossref_primary_10_1002_jgrf_20148
crossref_primary_10_1007_s11269_019_02426_1
crossref_primary_10_1007_s10346_016_0677_7
crossref_primary_10_1680_eacm_2008_161_1_43
crossref_primary_10_1017_aog_2024_10
crossref_primary_10_2113_EEG_D_20_00106
crossref_primary_10_1016_j_earscirev_2022_104135
crossref_primary_10_1680_wama_2010_163_6_297
crossref_primary_10_1016_j_jhydrol_2015_09_062
crossref_primary_10_1016_j_advwatres_2023_104488
crossref_primary_10_3389_feart_2021_651887
crossref_primary_10_1002_fld_2129
crossref_primary_10_1007_s10346_024_02255_3
crossref_primary_10_1142_S0578563416500145
crossref_primary_10_1007_s10236_022_01497_w
crossref_primary_10_1007_s10596_015_9533_4
crossref_primary_10_1111_jfr3_12051
crossref_primary_10_1016_j_cma_2021_113684
crossref_primary_10_1002_fld_5076
crossref_primary_10_1029_2010WR009751
crossref_primary_10_1080_00221686_2006_9521699
crossref_primary_10_1007_s10652_017_9551_y
crossref_primary_10_1016_S1001_6058_16_60604_2
crossref_primary_10_1080_00221686_2017_1313321
crossref_primary_10_1017_jfm_2017_794
crossref_primary_10_1016_j_advwatres_2013_01_008
crossref_primary_10_1016_j_oceaneng_2019_03_004
crossref_primary_10_1098_rsos_172018
crossref_primary_10_1063_1_2967534
crossref_primary_10_1016_j_compfluid_2021_105284
crossref_primary_10_1016_j_compstruc_2010_12_005
crossref_primary_10_1061__ASCE_HY_1943_7900_0000298
crossref_primary_10_1061__ASCE_HY_1943_7900_0001024
crossref_primary_10_1007_s10346_019_01230_7
crossref_primary_10_1016_j_powtec_2022_118015
crossref_primary_10_1016_j_jcp_2008_08_007
crossref_primary_10_37394_232013_2022_17_19
crossref_primary_10_1061_JHEND8_HYENG_13697
crossref_primary_10_1016_j_coastaleng_2014_09_006
crossref_primary_10_1364_OL_44_003542
crossref_primary_10_1016_j_enggeo_2023_107310
crossref_primary_10_1080_02286203_2010_11442583
crossref_primary_10_3741_JKWRA_2014_47_11_1061
crossref_primary_10_1016_j_enggeo_2022_106767
crossref_primary_10_2139_ssrn_4184204
crossref_primary_10_1061__ASCE_HY_1943_7900_0000986
crossref_primary_10_1061__ASCE_HY_1943_7900_0000860
crossref_primary_10_1016_j_advwatres_2017_09_020
crossref_primary_10_1080_00221686_2007_9521766
crossref_primary_10_1080_10618562_2017_1422731
crossref_primary_10_1061__ASCE_HY_1943_7900_0000861
crossref_primary_10_1002_esp_3750
crossref_primary_10_1016_j_amc_2022_127676
crossref_primary_10_1017_jfm_2015_369
crossref_primary_10_1029_2006RG000215
crossref_primary_10_1364_OE_411736
crossref_primary_10_1016_j_camwa_2017_09_005
crossref_primary_10_1061__ASCE_HY_1943_7900_0000997
crossref_primary_10_1016_j_apm_2020_06_052
crossref_primary_10_1016_j_advwatres_2009_11_004
crossref_primary_10_1016_j_advwatres_2011_12_003
crossref_primary_10_1007_s11629_017_4458_0
crossref_primary_10_1080_00221686_2008_9521846
crossref_primary_10_1051_lhb_2013014
crossref_primary_10_1007_s10915_010_9457_z
crossref_primary_10_1007_s12665_024_11510_8
crossref_primary_10_1016_j_jcp_2015_01_011
crossref_primary_10_1016_j_euromechflu_2021_11_007
crossref_primary_10_1016_j_ijsrc_2020_03_001
crossref_primary_10_1002_esp_4283
crossref_primary_10_1007_s10652_016_9483_y
crossref_primary_10_1080_00221686_2017_1289264
crossref_primary_10_1186_s40677_015_0027_4
crossref_primary_10_1061__ASCE_HY_1943_7900_0000645
crossref_primary_10_1007_s11629_012_2252_6
crossref_primary_10_1016_j_jhydrol_2018_12_059
crossref_primary_10_1108_EC_01_2016_0026
crossref_primary_10_1002_wrcr_20138
crossref_primary_10_1016_j_advwatres_2017_12_017
crossref_primary_10_1016_j_ijsrc_2015_04_004
crossref_primary_10_1061__ASCE_0733_9429_2004_130_7_689
crossref_primary_10_1029_2022WR033754
crossref_primary_10_1080_00221686_2010_507005
crossref_primary_10_1029_2019WR025274
crossref_primary_10_1002_gete_201400027
crossref_primary_10_1016_j_jhydrol_2009_11_009
crossref_primary_10_1029_2005WR004707
crossref_primary_10_1139_L09_033
crossref_primary_10_1016_j_oceaneng_2021_108978
crossref_primary_10_1016_j_advwatres_2018_04_011
crossref_primary_10_1007_s42967_021_00162_1
crossref_primary_10_3390_w13020232
crossref_primary_10_1016_j_advwatres_2019_103387
crossref_primary_10_1007_s10346_020_01618_w
crossref_primary_10_1016_j_enggeo_2019_105287
crossref_primary_10_1080_00221686_2008_9521854
crossref_primary_10_1016_j_geomorph_2018_09_003
crossref_primary_10_1080_00221686_2007_9521834
crossref_primary_10_1061__ASCE_HY_1943_7900_0000498
crossref_primary_10_1002_2013RG000447
crossref_primary_10_1016_j_geomorph_2017_02_008
crossref_primary_10_1029_2003JF000052
crossref_primary_10_1061__ASCE_WW_1943_5460_0000510
crossref_primary_10_1016_j_jnnfm_2017_03_005
crossref_primary_10_1515_ijnsns_2021_0273
crossref_primary_10_1029_2010JF001722
crossref_primary_10_1016_j_oceaneng_2022_111569
crossref_primary_10_1007_s11431_016_0205_5
crossref_primary_10_1061__ASCE_HY_1943_7900_0000821
crossref_primary_10_1016_j_enggeo_2024_107495
crossref_primary_10_1016_S1001_6279_14_60049_4
crossref_primary_10_1016_j_jcp_2006_05_012
crossref_primary_10_1016_j_jhydrol_2015_12_054
crossref_primary_10_1063_5_0140599
crossref_primary_10_5269_bspm_66942
crossref_primary_10_1007_s11629_020_6164_6
crossref_primary_10_1061__ASCE_HY_1943_7900_0000947
crossref_primary_10_1080_00221686_2013_798891
crossref_primary_10_1029_2021WR030688
crossref_primary_10_3389_feart_2022_1059525
crossref_primary_10_1016_S1001_6279_13_60039_6
crossref_primary_10_1103_PhysRevE_85_051308
crossref_primary_10_1007_s40430_015_0339_z
crossref_primary_10_1016_j_coastaleng_2015_02_002
crossref_primary_10_1016_j_compfluid_2017_11_008
crossref_primary_10_1007_s10346_020_01448_w
crossref_primary_10_1017_jfm_2013_227
crossref_primary_10_1080_00221686_2020_1744746
crossref_primary_10_1016_j_advwatres_2020_103575
crossref_primary_10_1029_2011JF002189
crossref_primary_10_1016_j_jcp_2013_08_020
crossref_primary_10_1063_1_4898563
crossref_primary_10_1016_S1001_6279_09_60006_8
crossref_primary_10_1016_j_compgeo_2023_105944
crossref_primary_10_1016_j_advwatres_2016_04_009
crossref_primary_10_1061__ASCE_0733_9429_2008_134_10_1539
crossref_primary_10_1016_j_compgeo_2020_103541
crossref_primary_10_1061__ASCE_0733_9429_2008_134_10_1536
crossref_primary_10_5194_gmd_10_553_2017
crossref_primary_10_1016_j_cageo_2007_11_008
crossref_primary_10_1016_j_ijsrc_2014_12_001
ContentType Journal Article
Copyright 2002 Cambridge University Press
2002 INIST-CNRS
Copyright Cambridge University Press Jun 2002
Copyright_xml – notice: 2002 Cambridge University Press
– notice: 2002 INIST-CNRS
– notice: Copyright Cambridge University Press Jun 2002
DBID BSCLL
IQODW
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
H97
DOI 10.1017/S0022112002008455
DatabaseName Istex
Pascal-Francis
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Research Library
ProQuest Science Journals
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 228
ExternalDocumentID 3039534731
10_1017_S0022112002008455
13731073
ark_67375_6GQ_TV14B7F9_3
Genre Feature
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
6TJ
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
8WZ
A6W
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKAW
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABVZP
ABZCX
ABZUI
ACBEA
ACBMC
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AI.
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
H~9
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
VH1
VOH
WFFJZ
WH7
WQ3
WXU
WYP
ZE2
ZY4
ZYDXJ
~02
ABXAU
BSCLL
-1F
-2P
-2V
-~6
-~N
08R
6~7
9M5
AAEED
AANRG
ABBJB
ABDMP
ABFSI
ABTRL
ABVFV
ACCHT
ACETC
ACKIV
ACQFJ
ACREK
ACUYZ
ACWGA
ADGEJ
ADOCW
ADOVH
AEBPU
AENCP
AFKSM
AGLWM
AGOOT
ALEEW
BESQT
BMAJL
CCUQV
CDIZJ
DC4
G8K
I.7
I.9
IOO
IQODW
KAFGG
KC5
NMFBF
WXY
ZJOSE
ZMEZD
~V1
AAYXX
CITATION
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PQEST
PQUKI
Q9U
H97
ID FETCH-LOGICAL-c493t-14b4ac8df330347451771e854ddfa709ce74df8202164fdd30d139b698ba49c23
IEDL.DBID 8FG
ISSN 0022-1120
IngestDate Fri Oct 25 22:05:11 EDT 2024
Fri Oct 25 09:52:46 EDT 2024
Thu Oct 10 20:59:00 EDT 2024
Thu Sep 26 15:47:00 EDT 2024
Sun Oct 29 17:07:41 EDT 2023
Wed Oct 30 09:47:30 EDT 2024
Thu Sep 12 10:40:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Dam
Sediment water interaction
Approximation
Wave propagation
Riemann problem
Granular material
Rupture
Theoretical study
Free surface flow
Experimental study
Shallow-water equations
Erosion
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c493t-14b4ac8df330347451771e854ddfa709ce74df8202164fdd30d139b698ba49c23
Notes istex:B5B80F632C453850E2173CFFF268556D99000F98
ark:/67375/6GQ-TV14B7F9-3
PII:S0022112002008455
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1418437145
PQPubID 34769
PageCount 46
ParticipantIDs proquest_miscellaneous_26611598
proquest_miscellaneous_17782468
proquest_journals_1418437145
crossref_primary_10_1017_S0022112002008455
pascalfrancis_primary_13731073
istex_primary_ark_67375_6GQ_TV14B7F9_3
cambridge_journals_10_1017_S0022112002008455
PublicationCentury 2000
PublicationDate 2002-06-25
PublicationDateYYYYMMDD 2002-06-25
PublicationDate_xml – month: 06
  year: 2002
  text: 2002-06-25
  day: 25
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2002
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0013097
Score 2.2651758
Snippet This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are...
This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are...
SourceID proquest
crossref
pascalfrancis
istex
cambridge
SourceType Aggregation Database
Index Database
Publisher
StartPage 183
SubjectTerms Applied sciences
Bed load
Buildings. Public works
Dam failure
Dams and subsidiary installations
Exact sciences and technology
Finite element analysis
Flow profiles
Hydraulic constructions
Interfaces
Sediment load
Sediments
Shallow water
Soil erosion
Wave power
Title Riemann wave description of erosional dam-break flows
URI https://www.cambridge.org/core/product/identifier/S0022112002008455/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-TV14B7F9-3/fulltext.pdf
https://www.proquest.com/docview/1418437145
https://search.proquest.com/docview/17782468
https://search.proquest.com/docview/26611598
Volume 461
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcGJyR4GNsxxA245WHiAVGtadImfUKAONCkoQ0B4q3KVyUEtIwegz8fJ9frgdB4Ta22smP759ixAb7HhmeMahk5FkaY5TqSjGZR4rE3enBqtb_v_OskOz7nPy_Ty_bArWnLKqc2MRhqWxt_Rv6Dcj-ZRFCe7t79jfzUKJ9dbUdozEGPJkL44EuOjmZZhDgX027hiCu6rGZoGY2Lfi32BQDc3_Sb9VZ45aN6nt1PvmZSNci2cjLv4o3pDv5o9Ak-tkCS7E0k_xk-uKoPyy2oJK3KNn1YetFxsA8LoeLTNCuQnl65W1VV5FH9c8S6znyQuiQO_yucERKrbiOMmtU1KW_qx-YLnI8Ozw6Oo3aGQmR4zsYR5ZorI23J0FdxwVMqBHUy5daWSsS5cYLbEmFAgnFTaS2LLWJCneVSK56bhK3CfFVXbg1IZqTUTMUaIQwGkVRnVjInY5tjhJ0YOoCdjoNFqwlNMakiE8Ubhg9ge8rk4m7SWeM94q0gho5S3V_7kjSRFtnRn-LsgvJ9McoLNoDhKznNXs0EIlmBBBtTwb34yW5zDeBb9xgVzWdPVOXqB6QRCKZ4Jv9P4bEOokP59f1PrMNiGCkTo0akGzA_vn9wm4hsxnoYtu8QevuHJ79PnwHqxO_c
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLe2Q9PggbEbiAMGeZj2MK2iuaRN-oS2acexAdKmY-KtylclBLRwPT7-fJxcrwdC4zW12sqO7Z9jxwb4FBueMqpl5FgYYZbpSDKaRn2PvdGDU6v9feej43R4wn-dJqfNgVvdlFXObGIw1LYy_ox8l3I_mURQnuxdXUd-apTPrjYjNF7DAmfoq_1N8cH-PIsQZ2LWLRxxRZvVDC2jcdGvxb4AgPubfvPeCk981IJn972vmVQ1sq2Yzrt4ZrqDPxqswHIDJMm3qeTfwytXduFdAypJo7J1F5YedRzswptQ8WnqD5D8PXOXqizJnbp1xLrWfJCqIA7_K5wREqsuI4ya1TkpLqq7ehVOBj9HP4ZRM0MhMjxjk4hyzZWRtmDoq7jgCRWCOplwawsl4sw4wW2BMKCPcVNhLYstYkKdZlIrnpk-W4NOWZVuHUhqpNRMxRohDAaRVKdWMidjm2GE3Te0B19bDuaNJtT5tIpM5M8Y3oMvMybnV9POGi8Rfw5iaCnV-NyXpIkkT_f_5KN_lH8XgyxnPdh-Iqf5q5lAJCuQYGsmuEc_2W6uHuy0j1HRfPZEla66QRqBYIqn8v8UHusgOpQbL39iB94OR0eH-eHB8e9NWAzjZWLUjmQLOpPxjfuIKGeit8NWfgCqEfEk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riemann+wave+description+of+erosional+dam-break+flows&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Fraccarollo%2C+L&rft.au=Capart%2C+H&rft.date=2002-06-25&rft.issn=0022-1120&rft.volume=461&rft.spage=183&rft.epage=228&rft_id=info:doi/10.1017%2FS0022112002008455&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon