Riemann wave description of erosional dam-break flows
This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and...
Saved in:
Published in | Journal of fluid mechanics Vol. 461; pp. 183 - 228 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.06.2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work examines the sudden erosional flow initiated by the release of a dam-break
wave over a loose sediment bed. Extended shallow-water equations are formulated to
describe the development of the surge. Accounting for bed material inertia, a transport
layer of finite thickness is introduced, and a sharp interface view of the
morphodynamic boundary is adopted. Approximations are sought for an intermediate range
of wave evolution, in which equilibration of the sediment load can be assumed
instantaneous but momentum loss due to bed friction has not yet been felt. The resulting
homogeneous hyperbolic equations are mathematically tractable using the Riemann
techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow
profiles. The wave structure features piecewise constant states, two smoothly varied
simple waves, and a special type of shock: an erosional bore forming at the forefront
of the wave. Profiles are constructed through a semi-analytical procedure, yielding
a geomorphic generalization of the Stoker solution for dam-break waves over rigid
bed. For most flow properties, the predictions of the theoretical treatment compare
favourably with experimental tests visualized using particle imaging techniques. |
---|---|
AbstractList | This work examines the sudden erosional flow initiated by the release of a dam-break
wave over a loose sediment bed. Extended shallow-water equations are formulated to
describe the development of the surge. Accounting for bed material inertia, a transport
layer of finite thickness is introduced, and a sharp interface view of the
morphodynamic boundary is adopted. Approximations are sought for an intermediate range
of wave evolution, in which equilibration of the sediment load can be assumed
instantaneous but momentum loss due to bed friction has not yet been felt. The resulting
homogeneous hyperbolic equations are mathematically tractable using the Riemann
techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow
profiles. The wave structure features piecewise constant states, two smoothly varied
simple waves, and a special type of shock: an erosional bore forming at the forefront
of the wave. Profiles are constructed through a semi-analytical procedure, yielding
a geomorphic generalization of the Stoker solution for dam-break waves over rigid
bed. For most flow properties, the predictions of the theoretical treatment compare
favourably with experimental tests visualized using particle imaging techniques. This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and a sharp interface view of the morphodynamic boundary is adopted. Approximations are sought for an intermediate range of wave evolution, in which equilibration of the sediment load can be assumed instantaneous but momentum loss due to bed friction has not yet been felt. The resulting homogeneous hyperbolic equations are mathematically tractable using the Riemann techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow profiles. The wave structure features piecewise constant states, two smoothly varied simple waves, and a special type of shock: an erosional bore forming at the forefront of the wave. Profiles are constructed through a semi-analytical procedure, yielding a geomorphic generalization of the Stoker solution for dam-break waves over rigid bed. For most flow properties, the predictions of the theoretical treatment compare favourably with experimental tests visualized using particle imaging techniques. [PUBLICATION ABSTRACT] This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and a sharp interface view of the morphodynamic boundary is adopted. Approximations are sought for an intermediate range of wave evolution, in which equilibration of the sediment load can be assumed instantaneous but momentum loss due to bed friction has not yet been felt. The resulting homogeneous hyperbolic equations are mathematically tractable using the Riemann techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow profiles. The wave structure features piecewise constant states, two smoothly varied simple waves, and a special type of shock: an erosional bore forming at the forefront of the wave. Profiles are constructed through a semi-analytical procedure, yielding a geomorphic generalization of the Stoker solution for dam-break waves over rigid bed. For most flow properties, the predictions of the theoretical treatment compare favourably with experimental tests visualized using particle imaging techniques. This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are formulated to describe the development of the surge. Accounting for bed material inertia, a transport layer of finite thickness is introduced, and a sharp interface view of the morpho-dynamic boundary is adopted. Approximations are sought for an intermediate range of wave evolution, in which equilibration of the sediment load can be assumed instantaneous but momentum loss due to bed friction has not yet been felt. The resulting homogeneous hyperbolic equations are mathematically tractable using the Riemann techniques of gas dynamics. Dam-break initial conditions give rise to self-similar flow profiles. The wave structure features piecewise constant states, two smoothly varied simple waves, and a special type of shock: an erosional bore forming at the forefront of the wave. Profiles are constructed through a semi-analytical procedure, yielding a geomorphic generalization of the Stoker solution for dam-break waves over rigid bed. For most flow properties, the predictions of the theoretical treatment compare favourably with experimental tests visualized using particle imaging techniques. |
Author | FRACCAROLLO, L. CAPART, H. |
Author_xml | – sequence: 1 givenname: L. surname: FRACCAROLLO fullname: FRACCAROLLO, L. organization: Dipartimento di Costruzioni e Tecnologia Avanzata, Università di Messina, and Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Trento, Italy – sequence: 2 givenname: H. surname: CAPART fullname: CAPART, H. organization: Department of Civil Engineering, Université catholique de Louvain, and Fonds National de la Recherche Scientifique, Belgium |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13731073$$DView record in Pascal Francis |
BookMark | eNqFkFtLJDEQhYMoOF5-gG8Ni_vWmupUks7jrqgrCOL1NaRzkda-jMmMrv9-08ywLivLPlXB-arq1Nkhm8M4eEIOgB4BBXl8S2lVAVS5UFoj5xtkBihUKQXyTTKb5HLSt8lOSk-UAqNKzgi_aX1vhqF4M6--cD7Z2M4X7TgUYyh8HFNuTVc405dN9Oa5CN34lvbIVjBd8vvrukvuz07vTn6Ul1fnFyffLkuLii1KwAaNrV1gjDKUyEFK8DVH54KRVFkv0YW6ohUIDM4x6oCpRqi6MahsxXbJ19XeeRxflj4tdN8m67vODH5cJl0JAcBV_V8wH64rFBP45S_waVzG_GJmEGpkEpBnClaUzQmk6IOex7Y38V0D1VPe-lPeeeZwvdkka7oQzWDb9DHIJAMqWebKFdemhf_5WzfxWQvJJNfi_FrfPQB-l2dKTzxbezF9E1v36P-w_E83vwASoZxk |
CODEN | JFLSA7 |
CitedBy_id | crossref_primary_10_1039_C9SM01372E crossref_primary_10_1061__ASCE_HY_1943_7900_0001418 crossref_primary_10_1016_j_compfluid_2015_08_001 crossref_primary_10_1016_j_enggeo_2020_105708 crossref_primary_10_4000_mediterranee_6277 crossref_primary_10_1016_S1001_6279_13_60001_3 crossref_primary_10_1016_j_ijsrc_2020_08_005 crossref_primary_10_1007_s12665_011_1025_9 crossref_primary_10_1061__ASCE_0733_9429_2003_129_9_743 crossref_primary_10_1016_j_advwatres_2024_104691 crossref_primary_10_1007_s11269_019_02480_9 crossref_primary_10_1061__ASCE_0733_9429_2007_133_1_48 crossref_primary_10_1103_PhysRevFluids_3_124302 crossref_primary_10_1007_s10346_018_0980_6 crossref_primary_10_1680_wama_2010_163_6_305 crossref_primary_10_1061__ASCE_0733_9429_2008_134_6_867 crossref_primary_10_1002_esp_5542 crossref_primary_10_1016_j_jhydrol_2018_06_038 crossref_primary_10_1016_S1001_6058_16_60658_3 crossref_primary_10_1142_S0129183121500984 crossref_primary_10_1016_j_sedgeo_2008_03_004 crossref_primary_10_1017_jfm_2013_489 crossref_primary_10_1029_2006JF000617 crossref_primary_10_1061__ASCE_0733_9429_2007_133_3_305 crossref_primary_10_1016_j_piutam_2014_01_031 crossref_primary_10_1002_fld_475 crossref_primary_10_1007_s10064_018_01447_1 crossref_primary_10_1111_j_1467_9590_2009_00453_x crossref_primary_10_1007_s10064_024_03556_6 crossref_primary_10_1103_PhysRevE_94_052904 crossref_primary_10_1016_j_apor_2011_07_004 crossref_primary_10_1061__ASCE_HY_1943_7900_0000473 crossref_primary_10_1016_j_compfluid_2008_09_011 crossref_primary_10_1061__ASCE_HY_1943_7900_0001206 crossref_primary_10_1155_2016_3818591 crossref_primary_10_1002_nag_3339 crossref_primary_10_1016_j_advwatres_2017_07_002 crossref_primary_10_1007_s12572_010_0006_7 crossref_primary_10_1016_j_jhydrol_2011_07_037 crossref_primary_10_1017_jfm_2021_122 crossref_primary_10_1080_00221686_2015_1085919 crossref_primary_10_1002_2017WR021340 crossref_primary_10_1016_j_jcp_2006_02_001 crossref_primary_10_1016_j_jhydrol_2010_05_023 crossref_primary_10_1016_j_oceaneng_2020_107459 crossref_primary_10_1061_JHEND8_HYENG_13518 crossref_primary_10_1142_S0217984920500517 crossref_primary_10_9753_icce_v33_sediment_7 crossref_primary_10_1142_S1793431118400079 crossref_primary_10_2166_nh_2016_139 crossref_primary_10_1061__ASCE_GM_1943_5622_0000981 crossref_primary_10_1016_j_geomorph_2021_107664 crossref_primary_10_1029_2023JF007275 crossref_primary_10_1016_j_coastaleng_2014_04_003 crossref_primary_10_1016_j_apples_2023_100167 crossref_primary_10_3390_w10050616 crossref_primary_10_1139_cjce_2014_0524 crossref_primary_10_1007_s10652_008_9056_9 crossref_primary_10_1029_2020JF005930 crossref_primary_10_1017_S0022112007008567 crossref_primary_10_1002_fld_3809 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103416 crossref_primary_10_1061__ASCE_0733_9429_2006_132_1_69 crossref_primary_10_3390_w15142576 crossref_primary_10_1016_j_jhydrol_2024_131173 crossref_primary_10_1038_s41467_021_26959_5 crossref_primary_10_1007_s11629_022_7365_y crossref_primary_10_1016_j_advwatres_2021_104097 crossref_primary_10_33430_V30N1THIE_2022_0039 crossref_primary_10_1016_j_oceaneng_2013_02_007 crossref_primary_10_1016_j_advwatres_2014_02_002 crossref_primary_10_1680_eacm_2009_162_2_57 crossref_primary_10_1002_esp_4791 crossref_primary_10_1002_fld_2392 crossref_primary_10_3390_ijerph16224384 crossref_primary_10_1007_s00445_014_0858_y crossref_primary_10_2478_johh_2023_0040 crossref_primary_10_1080_00221686_2013_857365 crossref_primary_10_1029_2020WR028515 crossref_primary_10_1016_j_advwatres_2005_06_011 crossref_primary_10_1080_19942060_2024_2367510 crossref_primary_10_1007_s10064_021_02202_9 crossref_primary_10_1016_j_advwatres_2015_04_009 crossref_primary_10_1029_2022JF006664 crossref_primary_10_1007_s10346_023_02174_9 crossref_primary_10_1061__ASCE_HY_1943_7900_0001518 crossref_primary_10_1016_j_advwatres_2011_07_009 crossref_primary_10_1061__ASCE_HY_1943_7900_0001519 crossref_primary_10_1080_00221686_2013_812047 crossref_primary_10_1017_jfm_2023_65 crossref_primary_10_1016_j_jhydrol_2011_05_010 crossref_primary_10_1080_00221686_2021_2001590 crossref_primary_10_1016_j_compfluid_2004_08_004 crossref_primary_10_1007_s10346_007_0102_3 crossref_primary_10_1017_jmech_2012_62 crossref_primary_10_2478_heem_2024_0001 crossref_primary_10_1061__ASCE_HY_1943_7900_0001082 crossref_primary_10_1002_jgrf_20148 crossref_primary_10_1007_s11269_019_02426_1 crossref_primary_10_1007_s10346_016_0677_7 crossref_primary_10_1680_eacm_2008_161_1_43 crossref_primary_10_1017_aog_2024_10 crossref_primary_10_2113_EEG_D_20_00106 crossref_primary_10_1016_j_earscirev_2022_104135 crossref_primary_10_1680_wama_2010_163_6_297 crossref_primary_10_1016_j_jhydrol_2015_09_062 crossref_primary_10_1016_j_advwatres_2023_104488 crossref_primary_10_3389_feart_2021_651887 crossref_primary_10_1002_fld_2129 crossref_primary_10_1007_s10346_024_02255_3 crossref_primary_10_1142_S0578563416500145 crossref_primary_10_1007_s10236_022_01497_w crossref_primary_10_1007_s10596_015_9533_4 crossref_primary_10_1111_jfr3_12051 crossref_primary_10_1016_j_cma_2021_113684 crossref_primary_10_1002_fld_5076 crossref_primary_10_1029_2010WR009751 crossref_primary_10_1080_00221686_2006_9521699 crossref_primary_10_1007_s10652_017_9551_y crossref_primary_10_1016_S1001_6058_16_60604_2 crossref_primary_10_1080_00221686_2017_1313321 crossref_primary_10_1017_jfm_2017_794 crossref_primary_10_1016_j_advwatres_2013_01_008 crossref_primary_10_1016_j_oceaneng_2019_03_004 crossref_primary_10_1098_rsos_172018 crossref_primary_10_1063_1_2967534 crossref_primary_10_1016_j_compfluid_2021_105284 crossref_primary_10_1016_j_compstruc_2010_12_005 crossref_primary_10_1061__ASCE_HY_1943_7900_0000298 crossref_primary_10_1061__ASCE_HY_1943_7900_0001024 crossref_primary_10_1007_s10346_019_01230_7 crossref_primary_10_1016_j_powtec_2022_118015 crossref_primary_10_1016_j_jcp_2008_08_007 crossref_primary_10_37394_232013_2022_17_19 crossref_primary_10_1061_JHEND8_HYENG_13697 crossref_primary_10_1016_j_coastaleng_2014_09_006 crossref_primary_10_1364_OL_44_003542 crossref_primary_10_1016_j_enggeo_2023_107310 crossref_primary_10_1080_02286203_2010_11442583 crossref_primary_10_3741_JKWRA_2014_47_11_1061 crossref_primary_10_1016_j_enggeo_2022_106767 crossref_primary_10_2139_ssrn_4184204 crossref_primary_10_1061__ASCE_HY_1943_7900_0000986 crossref_primary_10_1061__ASCE_HY_1943_7900_0000860 crossref_primary_10_1016_j_advwatres_2017_09_020 crossref_primary_10_1080_00221686_2007_9521766 crossref_primary_10_1080_10618562_2017_1422731 crossref_primary_10_1061__ASCE_HY_1943_7900_0000861 crossref_primary_10_1002_esp_3750 crossref_primary_10_1016_j_amc_2022_127676 crossref_primary_10_1017_jfm_2015_369 crossref_primary_10_1029_2006RG000215 crossref_primary_10_1364_OE_411736 crossref_primary_10_1016_j_camwa_2017_09_005 crossref_primary_10_1061__ASCE_HY_1943_7900_0000997 crossref_primary_10_1016_j_apm_2020_06_052 crossref_primary_10_1016_j_advwatres_2009_11_004 crossref_primary_10_1016_j_advwatres_2011_12_003 crossref_primary_10_1007_s11629_017_4458_0 crossref_primary_10_1080_00221686_2008_9521846 crossref_primary_10_1051_lhb_2013014 crossref_primary_10_1007_s10915_010_9457_z crossref_primary_10_1007_s12665_024_11510_8 crossref_primary_10_1016_j_jcp_2015_01_011 crossref_primary_10_1016_j_euromechflu_2021_11_007 crossref_primary_10_1016_j_ijsrc_2020_03_001 crossref_primary_10_1002_esp_4283 crossref_primary_10_1007_s10652_016_9483_y crossref_primary_10_1080_00221686_2017_1289264 crossref_primary_10_1186_s40677_015_0027_4 crossref_primary_10_1061__ASCE_HY_1943_7900_0000645 crossref_primary_10_1007_s11629_012_2252_6 crossref_primary_10_1016_j_jhydrol_2018_12_059 crossref_primary_10_1108_EC_01_2016_0026 crossref_primary_10_1002_wrcr_20138 crossref_primary_10_1016_j_advwatres_2017_12_017 crossref_primary_10_1016_j_ijsrc_2015_04_004 crossref_primary_10_1061__ASCE_0733_9429_2004_130_7_689 crossref_primary_10_1029_2022WR033754 crossref_primary_10_1080_00221686_2010_507005 crossref_primary_10_1029_2019WR025274 crossref_primary_10_1002_gete_201400027 crossref_primary_10_1016_j_jhydrol_2009_11_009 crossref_primary_10_1029_2005WR004707 crossref_primary_10_1139_L09_033 crossref_primary_10_1016_j_oceaneng_2021_108978 crossref_primary_10_1016_j_advwatres_2018_04_011 crossref_primary_10_1007_s42967_021_00162_1 crossref_primary_10_3390_w13020232 crossref_primary_10_1016_j_advwatres_2019_103387 crossref_primary_10_1007_s10346_020_01618_w crossref_primary_10_1016_j_enggeo_2019_105287 crossref_primary_10_1080_00221686_2008_9521854 crossref_primary_10_1016_j_geomorph_2018_09_003 crossref_primary_10_1080_00221686_2007_9521834 crossref_primary_10_1061__ASCE_HY_1943_7900_0000498 crossref_primary_10_1002_2013RG000447 crossref_primary_10_1016_j_geomorph_2017_02_008 crossref_primary_10_1029_2003JF000052 crossref_primary_10_1061__ASCE_WW_1943_5460_0000510 crossref_primary_10_1016_j_jnnfm_2017_03_005 crossref_primary_10_1515_ijnsns_2021_0273 crossref_primary_10_1029_2010JF001722 crossref_primary_10_1016_j_oceaneng_2022_111569 crossref_primary_10_1007_s11431_016_0205_5 crossref_primary_10_1061__ASCE_HY_1943_7900_0000821 crossref_primary_10_1016_j_enggeo_2024_107495 crossref_primary_10_1016_S1001_6279_14_60049_4 crossref_primary_10_1016_j_jcp_2006_05_012 crossref_primary_10_1016_j_jhydrol_2015_12_054 crossref_primary_10_1063_5_0140599 crossref_primary_10_5269_bspm_66942 crossref_primary_10_1007_s11629_020_6164_6 crossref_primary_10_1061__ASCE_HY_1943_7900_0000947 crossref_primary_10_1080_00221686_2013_798891 crossref_primary_10_1029_2021WR030688 crossref_primary_10_3389_feart_2022_1059525 crossref_primary_10_1016_S1001_6279_13_60039_6 crossref_primary_10_1103_PhysRevE_85_051308 crossref_primary_10_1007_s40430_015_0339_z crossref_primary_10_1016_j_coastaleng_2015_02_002 crossref_primary_10_1016_j_compfluid_2017_11_008 crossref_primary_10_1007_s10346_020_01448_w crossref_primary_10_1017_jfm_2013_227 crossref_primary_10_1080_00221686_2020_1744746 crossref_primary_10_1016_j_advwatres_2020_103575 crossref_primary_10_1029_2011JF002189 crossref_primary_10_1016_j_jcp_2013_08_020 crossref_primary_10_1063_1_4898563 crossref_primary_10_1016_S1001_6279_09_60006_8 crossref_primary_10_1016_j_compgeo_2023_105944 crossref_primary_10_1016_j_advwatres_2016_04_009 crossref_primary_10_1061__ASCE_0733_9429_2008_134_10_1539 crossref_primary_10_1016_j_compgeo_2020_103541 crossref_primary_10_1061__ASCE_0733_9429_2008_134_10_1536 crossref_primary_10_5194_gmd_10_553_2017 crossref_primary_10_1016_j_cageo_2007_11_008 crossref_primary_10_1016_j_ijsrc_2014_12_001 |
ContentType | Journal Article |
Copyright | 2002 Cambridge University Press 2002 INIST-CNRS Copyright Cambridge University Press Jun 2002 |
Copyright_xml | – notice: 2002 Cambridge University Press – notice: 2002 INIST-CNRS – notice: Copyright Cambridge University Press Jun 2002 |
DBID | BSCLL IQODW AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PQEST PQQKQ PQUKI PTHSS Q9U S0W H97 |
DOI | 10.1017/S0022112002008455 |
DatabaseName | Istex Pascal-Francis CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Research Library ProQuest Science Journals Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1469-7645 |
EndPage | 228 |
ExternalDocumentID | 3039534731 10_1017_S0022112002008455 13731073 ark_67375_6GQ_TV14B7F9_3 |
Genre | Feature |
GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 3V. 4.4 5GY 5VS 6TJ 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 8WZ A6W AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKAW ABKKG ABMWE ABQTM ABQWD ABROB ABTAH ABTCQ ABUWG ABVZP ABZCX ABZUI ACBEA ACBMC ACGFO ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AHQXX AHRGI AI. AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BPHCQ BQFHP C0O CAG CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC COF CS3 D-I DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ H~9 I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LHUNA LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RIG RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 VH1 VOH WFFJZ WH7 WQ3 WXU WYP ZE2 ZY4 ZYDXJ ~02 ABXAU BSCLL -1F -2P -2V -~6 -~N 08R 6~7 9M5 AAEED AANRG ABBJB ABDMP ABFSI ABTRL ABVFV ACCHT ACETC ACKIV ACQFJ ACREK ACUYZ ACWGA ADGEJ ADOCW ADOVH AEBPU AENCP AFKSM AGLWM AGOOT ALEEW BESQT BMAJL CCUQV CDIZJ DC4 G8K I.7 I.9 IOO IQODW KAFGG KC5 NMFBF WXY ZJOSE ZMEZD ~V1 AAYXX CITATION 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PQEST PQUKI Q9U H97 |
ID | FETCH-LOGICAL-c493t-14b4ac8df330347451771e854ddfa709ce74df8202164fdd30d139b698ba49c23 |
IEDL.DBID | 8FG |
ISSN | 0022-1120 |
IngestDate | Fri Oct 25 22:05:11 EDT 2024 Fri Oct 25 09:52:46 EDT 2024 Thu Oct 10 20:59:00 EDT 2024 Thu Sep 26 15:47:00 EDT 2024 Sun Oct 29 17:07:41 EDT 2023 Wed Oct 30 09:47:30 EDT 2024 Thu Sep 12 10:40:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dam Sediment water interaction Approximation Wave propagation Riemann problem Granular material Rupture Theoretical study Free surface flow Experimental study Shallow-water equations Erosion |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-14b4ac8df330347451771e854ddfa709ce74df8202164fdd30d139b698ba49c23 |
Notes | istex:B5B80F632C453850E2173CFFF268556D99000F98 ark:/67375/6GQ-TV14B7F9-3 PII:S0022112002008455 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1418437145 |
PQPubID | 34769 |
PageCount | 46 |
ParticipantIDs | proquest_miscellaneous_26611598 proquest_miscellaneous_17782468 proquest_journals_1418437145 crossref_primary_10_1017_S0022112002008455 pascalfrancis_primary_13731073 istex_primary_ark_67375_6GQ_TV14B7F9_3 cambridge_journals_10_1017_S0022112002008455 |
PublicationCentury | 2000 |
PublicationDate | 2002-06-25 |
PublicationDateYYYYMMDD | 2002-06-25 |
PublicationDate_xml | – month: 06 year: 2002 text: 2002-06-25 day: 25 |
PublicationDecade | 2000 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2002 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
SSID | ssj0013097 |
Score | 2.2651758 |
Snippet | This work examines the sudden erosional flow initiated by the release of a dam-break
wave over a loose sediment bed. Extended shallow-water equations are... This work examines the sudden erosional flow initiated by the release of a dam-break wave over a loose sediment bed. Extended shallow-water equations are... |
SourceID | proquest crossref pascalfrancis istex cambridge |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 183 |
SubjectTerms | Applied sciences Bed load Buildings. Public works Dam failure Dams and subsidiary installations Exact sciences and technology Finite element analysis Flow profiles Hydraulic constructions Interfaces Sediment load Sediments Shallow water Soil erosion Wave power |
Title | Riemann wave description of erosional dam-break flows |
URI | https://www.cambridge.org/core/product/identifier/S0022112002008455/type/journal_article https://api.istex.fr/ark:/67375/6GQ-TV14B7F9-3/fulltext.pdf https://www.proquest.com/docview/1418437145 https://search.proquest.com/docview/17782468 https://search.proquest.com/docview/26611598 |
Volume | 461 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLcGJyR4GNsxxA245WHiAVGtadImfUKAONCkoQ0B4q3KVyUEtIwegz8fJ9frgdB4Ta22smP759ixAb7HhmeMahk5FkaY5TqSjGZR4rE3enBqtb_v_OskOz7nPy_Ty_bArWnLKqc2MRhqWxt_Rv6Dcj-ZRFCe7t79jfzUKJ9dbUdozEGPJkL44EuOjmZZhDgX027hiCu6rGZoGY2Lfi32BQDc3_Sb9VZ45aN6nt1PvmZSNci2cjLv4o3pDv5o9Ak-tkCS7E0k_xk-uKoPyy2oJK3KNn1YetFxsA8LoeLTNCuQnl65W1VV5FH9c8S6znyQuiQO_yucERKrbiOMmtU1KW_qx-YLnI8Ozw6Oo3aGQmR4zsYR5ZorI23J0FdxwVMqBHUy5daWSsS5cYLbEmFAgnFTaS2LLWJCneVSK56bhK3CfFVXbg1IZqTUTMUaIQwGkVRnVjInY5tjhJ0YOoCdjoNFqwlNMakiE8Ubhg9ge8rk4m7SWeM94q0gho5S3V_7kjSRFtnRn-LsgvJ9McoLNoDhKznNXs0EIlmBBBtTwb34yW5zDeBb9xgVzWdPVOXqB6QRCKZ4Jv9P4bEOokP59f1PrMNiGCkTo0akGzA_vn9wm4hsxnoYtu8QevuHJ79PnwHqxO_c |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9wwDLe2Q9PggbEbiAMGeZj2MK2iuaRN-oS2acexAdKmY-KtylclBLRwPT7-fJxcrwdC4zW12sqO7Z9jxwb4FBueMqpl5FgYYZbpSDKaRn2PvdGDU6v9feej43R4wn-dJqfNgVvdlFXObGIw1LYy_ox8l3I_mURQnuxdXUd-apTPrjYjNF7DAmfoq_1N8cH-PIsQZ2LWLRxxRZvVDC2jcdGvxb4AgPubfvPeCk981IJn972vmVQ1sq2Yzrt4ZrqDPxqswHIDJMm3qeTfwytXduFdAypJo7J1F5YedRzswptQ8WnqD5D8PXOXqizJnbp1xLrWfJCqIA7_K5wREqsuI4ya1TkpLqq7ehVOBj9HP4ZRM0MhMjxjk4hyzZWRtmDoq7jgCRWCOplwawsl4sw4wW2BMKCPcVNhLYstYkKdZlIrnpk-W4NOWZVuHUhqpNRMxRohDAaRVKdWMidjm2GE3Te0B19bDuaNJtT5tIpM5M8Y3oMvMybnV9POGi8Rfw5iaCnV-NyXpIkkT_f_5KN_lH8XgyxnPdh-Iqf5q5lAJCuQYGsmuEc_2W6uHuy0j1HRfPZEla66QRqBYIqn8v8UHusgOpQbL39iB94OR0eH-eHB8e9NWAzjZWLUjmQLOpPxjfuIKGeit8NWfgCqEfEk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riemann+wave+description+of+erosional+dam-break+flows&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Fraccarollo%2C+L&rft.au=Capart%2C+H&rft.date=2002-06-25&rft.issn=0022-1120&rft.volume=461&rft.spage=183&rft.epage=228&rft_id=info:doi/10.1017%2FS0022112002008455&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |