Longitudinal Reproducibility of Neurite Orientation Dispersion and Density Imaging (NODDI) Derived Metrics in the White Matter
•We analyzed absolute (CV) and relative (ICC) reproducibility of NODDI metrics.•Reproducibility of ROI-based, "VBM-style" and TBSS analysis was compared.•Reproducibility of NODDI metrics was generally high.•Reproducibility of NODDI metrics depends on SNR and choice of analysis approach.•Im...
Saved in:
Published in | Neuroscience Vol. 457; pp. 165 - 185 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We analyzed absolute (CV) and relative (ICC) reproducibility of NODDI metrics.•Reproducibility of ROI-based, "VBM-style" and TBSS analysis was compared.•Reproducibility of NODDI metrics was generally high.•Reproducibility of NODDI metrics depends on SNR and choice of analysis approach.•Implications of these results for common research designs are discussed.
Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing [“VBM-style”], ROI-based analysis). We observed high test–retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field. |
---|---|
AbstractList | Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing ["VBM-style"], ROI-based analysis). We observed high test-retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field.Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing ["VBM-style"], ROI-based analysis). We observed high test-retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field. Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CV ), between-subject coefficient of variation (CV ) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing ["VBM-style"], ROI-based analysis). We observed high test-retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CV mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field. •We analyzed absolute (CV) and relative (ICC) reproducibility of NODDI metrics.•Reproducibility of ROI-based, "VBM-style" and TBSS analysis was compared.•Reproducibility of NODDI metrics was generally high.•Reproducibility of NODDI metrics depends on SNR and choice of analysis approach.•Implications of these results for common research designs are discussed. Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A recent methodological advancement is Neurite Orientation Dispersion and Density Imaging (NODDI), a histologically validated multi-compartment model to yield microstructural features of brain tissue such as geometric complexity and neurite packing density, which are especially useful in imaging the white matter. Since NODDI is increasingly popular in clinical research and fields such as developmental neuroscience and neuroplasticity, it is of vast importance to characterize its reproducibility (or reliability). We acquired multi-shell DWI data in 29 healthy young subjects twice over a rescan interval of 4 weeks to assess the within-subject coefficient of variation (CVWS), between-subject coefficient of variation (CVBS) and the intraclass correlation coefficient (ICC), respectively. Using these metrics, we compared regional and voxel-by-voxel reproducibility of the most common image analysis approaches (tract-based spatial statistics [TBSS], voxel-based analysis with different extents of smoothing [“VBM-style”], ROI-based analysis). We observed high test–retest reproducibility for the orientation dispersion index (ODI) and slightly worse results for the neurite density index (NDI). Our findings also suggest that the choice of analysis approach might have significant consequences for the results of a study. Collectively, the voxel-based approach with Gaussian smoothing kernels of ≥4 mm FWHM and ROI-averaging yielded the highest reproducibility across NDI and ODI maps (CVWS mostly ≤3%, ICC mostly ≥0.8), respectively, whilst smaller kernels and TBSS performed consistently worse. Furthermore, we demonstrate that image quality (signal-to-noise ratio [SNR]) is an important determinant of NODDI metric reproducibility. We discuss the implications of these results for longitudinal and cross-sectional research designs commonly employed in the neuroimaging field. |
Author | Aye, Norman Taubert, Marco Kaufmann, Jörn Ziegler, Gabriel Lehmann, Nico Heinze, Hans-Jochen Düzel, Emrah |
Author_xml | – sequence: 1 givenname: Nico surname: Lehmann fullname: Lehmann, Nico email: nico1.lehmann@ovgu.de organization: Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany – sequence: 2 givenname: Norman surname: Aye fullname: Aye, Norman organization: Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany – sequence: 3 givenname: Jörn surname: Kaufmann fullname: Kaufmann, Jörn organization: Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany – sequence: 4 givenname: Hans-Jochen surname: Heinze fullname: Heinze, Hans-Jochen organization: Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany – sequence: 5 givenname: Emrah surname: Düzel fullname: Düzel, Emrah organization: Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany – sequence: 6 givenname: Gabriel surname: Ziegler fullname: Ziegler, Gabriel organization: Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany – sequence: 7 givenname: Marco surname: Taubert fullname: Taubert, Marco organization: Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33465411$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1v0zAUhi00xLrBX0AWV-MixV9JGq6AZUClbpUQiEvLcU66U1Kn2M6k3uy346oFoV3VOpIt6_Fz5PNekDM3OCDkDWdTznjxbj11MPohWARnYSqY4FOWiuXPyITPSpmVuVJnZMIkKzKVC3FOLkJYs7RyJV-QcylVkSvOJ-RxMbgVxrFFZ3r6DbZ-aEeLDfYYd3To6F1qhRHo0qdu0UQcHK0xbMGH_dG4ltbgwp6eb8wK3Ype3S3rev423Xt8gJbeQvRoA0VH4z3Qn_d7362JEfxL8rwzfYBXx_2S_Ph88_36a7ZYfplff1xkVlUyZlyUwlSqaTuohG1y0RSSKdkJKQohTGG4tIpZ3tmqtYZBYSXMGOR5KbqiLRt5Sa4O3vS_3yOEqDcYLPS9cTCMQQtVVkrIalYl9PURHZsNtHrrcWP8Tv-dWQLeHwCbMggeun8IZ3ofkF7r_wPS-4A0S8Xy9PjDk8cWD1ON3mB_mqI-KCAN7AHB6yPVogcbdTvgaZpPTzS2R4fW9L9gd6rkD7-Lzeg |
CitedBy_id | crossref_primary_10_1002_hbm_26310 crossref_primary_10_1038_s42003_024_06309_z crossref_primary_10_1002_hbm_25775 crossref_primary_10_1007_s10334_021_00985_2 crossref_primary_10_1523_JNEUROSCI_0537_23_2023 crossref_primary_10_1016_j_neuroimage_2022_119249 crossref_primary_10_1016_j_neuroimage_2022_119439 crossref_primary_10_1016_j_nicl_2023_103427 crossref_primary_10_1162_netn_a_00330 crossref_primary_10_1038_s41598_024_57561_6 crossref_primary_10_1111_jon_13125 crossref_primary_10_1007_s00429_024_02854_9 crossref_primary_10_3389_fnins_2022_866312 crossref_primary_10_1002_hbm_70128 crossref_primary_10_1016_j_mri_2024_110234 crossref_primary_10_1093_braincomms_fcae323 crossref_primary_10_1002_jmri_29192 crossref_primary_10_1007_s42235_024_00557_9 crossref_primary_10_1016_j_crneur_2023_100089 crossref_primary_10_1093_braincomms_fcab112 crossref_primary_10_1093_braincomms_fcad210 crossref_primary_10_3389_fnagi_2022_995425 |
Cites_doi | 10.1016/j.neuroimage.2007.10.024 10.1007/s00429-019-01877-x 10.1016/j.mri.2010.06.027 10.22237/jmasm/1446350640 10.1016/j.neuroimage.2014.06.021 10.1016/j.neuroscience.2014.06.058 10.1126/science.aal3618 10.1038/s41562-019-0655-x 10.7554/eLife.35718 10.1016/j.neuroimage.2004.07.051 10.1016/j.mri.2018.03.004 10.1016/j.neuroimage.2015.10.068 10.1136/jnnp-2018-318830 10.1371/journal.pone.0137905 10.1016/j.neuroimage.2015.01.010 10.1038/nn1516 10.1016/j.neuroimage.2013.01.044 10.1117/12.2216517 10.1002/hbm.10062 10.1002/nbm.782 10.1002/hbm.20848 10.1016/j.neuroimage.2012.06.081 10.2165/00007256-200030010-00001 10.1002/jmri.21053 10.1016/j.neulet.2018.12.007 10.1016/j.neuroimage.2013.05.057 10.1002/hbm.22493 10.1002/mrm.1910360612 10.1016/j.neuroimage.2012.02.084 10.1016/j.neuroimage.2016.11.020 10.1038/nrn3475 10.1016/j.pscychresns.2006.01.008 10.1016/j.neuroimage.2015.10.019 10.1002/acn3.445 10.1371/journal.pone.0167884 10.1016/j.neuroimage.2018.01.046 10.1016/j.neuroimage.2011.11.094 10.1523/JNEUROSCI.2310-19.2020 10.1152/jn.00221.2016 10.1037/0033-2909.86.2.420 10.1002/mrm.27101 10.1002/mrm.26575 10.1177/1094428113493929 10.1016/j.neuroimage.2006.02.024 10.1002/hbm.22119 10.1109/42.796284 10.2147/RMI.S194083 10.1002/nbm.3998 10.1016/j.neuroscience.2017.12.040 10.1016/j.neuroimage.2016.11.068 10.1016/j.neuroimage.2009.02.032 10.1136/bmj.298.6689.1659 10.1002/jmri.22554 10.3758/s13423-018-1451-8 10.1002/mrm.24736 10.1002/hbm.21370 10.1002/hbm.22872 10.1016/j.neuroimage.2012.03.072 10.1016/j.jesp.2013.03.013 10.1016/j.neuroimage.2007.02.049 10.1371/journal.pone.0217118 10.1016/j.neuroimage.2013.03.015 10.1016/j.nicl.2020.102168 10.1002/hbm.23115 10.1016/j.jclinepi.2014.12.014 10.1016/j.neuron.2017.11.026 10.1093/schbul/17.3.483 10.22237/jmasm/1177992480 10.1002/ana.25309 10.1006/jmrb.1996.0086 10.1007/978-3-540-75759-7_26 10.1038/nrn.2016.167 10.1016/j.tics.2018.03.003 10.1038/s41598-019-48671-7 10.1016/j.neuroimage.2015.12.033 10.1006/nimg.2002.1040 10.1002/nbm.3778 10.1007/s00234-014-1342-2 10.1007/s00234-019-02350-6 10.1006/nimg.2002.1132 10.1109/42.906424 10.1002/mrm.20033 10.1007/BF00145808 10.1016/j.neuroimage.2017.10.034 10.1016/j.neuroimage.2009.06.060 10.1002/nbm.3841 10.1016/j.neuroimage.2009.08.053 10.1016/j.neuroimage.2005.02.013 10.1038/nn.2412 10.1016/j.neuroimage.2016.06.058 10.1016/j.neuroimage.2020.117164 10.1016/j.neuroimage.2007.07.053 10.1111/j.0956-7976.2004.01503003.x 10.1002/hbm.24500 10.1002/mrm.21890 10.1016/j.neuroimage.2010.03.046 10.1002/hbm.23328 10.3174/ajnr.A6484 10.1016/j.neuroimage.2006.07.021 10.1016/j.mri.2011.02.009 10.1016/j.neuroimage.2014.03.026 10.1016/S1053-8119(03)00336-7 10.1016/j.neuroimage.2014.10.026 10.1016/S0006-3495(94)80775-1 10.1016/j.neurobiolaging.2015.02.029 10.1016/j.neuroimage.2017.06.001 10.1148/radiol.2015142202 10.1016/j.neuroimage.2016.07.044 10.1016/j.neuroimage.2017.10.046 10.1093/brain/awx247 10.1017/S1041610213002482 10.1038/s41386-019-0427-3 |
ContentType | Journal Article |
Copyright | 2021 IBRO Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 IBRO – notice: Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neuroscience.2021.01.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1873-7544 |
EndPage | 185 |
ExternalDocumentID | 33465411 10_1016_j_neuroscience_2021_01_005 S0306452221000105 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -DZ -~X .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABTEW ACDAQ ACGFO ACGFS ACIUM ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMQ IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K UNMZH Z5R ~G- AACTN AADPK AAIAV ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG .55 .GJ 29N 53G 5VS AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AHHHB ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M YYP ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c493t-1272a94bdfe92cb52b63043f232622a6a13c40c1fc9dca0e6c3e80e5572f6d7b3 |
IEDL.DBID | .~1 |
ISSN | 0306-4522 1873-7544 |
IngestDate | Fri Jul 11 11:46:35 EDT 2025 Thu Apr 03 06:52:59 EDT 2025 Tue Jul 01 02:21:51 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Fri Feb 23 02:41:40 EST 2024 Tue Aug 26 17:31:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MRI CVWS SD NDI BBR DW ODI SNR WM CSF DWI MD NODDI CVBS FSL BMI ISO CI GM ICC TBSS Neurite Orientation Dispersion and Density Imaging (NODDI) ROI CV diffusion-weighted imaging Reproducibility Precision FWHM RM-ANOVA FA T1w Reliability EPI |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2021 IBRO. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c493t-1272a94bdfe92cb52b63043f232622a6a13c40c1fc9dca0e6c3e80e5572f6d7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33465411 |
PQID | 2479423989 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2479423989 pubmed_primary_33465411 crossref_primary_10_1016_j_neuroscience_2021_01_005 crossref_citationtrail_10_1016_j_neuroscience_2021_01_005 elsevier_sciencedirect_doi_10_1016_j_neuroscience_2021_01_005 elsevier_clinicalkey_doi_10_1016_j_neuroscience_2021_01_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neuroscience |
PublicationTitleAlternate | Neuroscience |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Brandmaier AM, Wenger E, Bodammer NC, Kühn S, Raz N, Lindenberger U (2018) Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED). Elife 7:e35718. Lehmann, Villringer, Taubert (b0315) 2020; 40 Poldrack, Baker, Durnez, Gorgolewski, Matthews, Munafò, Nichols, Poline, Vul, Yarkoni (b0405) 2017; 18 Lawrence, Nabulsi, Santhalingam, Abaryan, Villalon-Reina, Nir, Ba Gari, Zhu, Haddad, Muir, Jahanshad, Thompson (b0295) 2020 Barrio-Arranz G, Luis-García R de, Tristán-Vega A, Martín-Fernández M, Aja-Fernández S (2015) Impact of MR acquisition parameters on DTI scalar indexes: A tractography based approach. PLoS ONE 10:e0137905. Cohen (b0140) 1988 R Development Core Team (b0410) 2013 Torchiano M (2016) Effsize - A Package For Efficient Effect Size Computation. R package version 0.8.0. Hopkins (b0225) 2000; 30 Schilling, Janve, Gao, Stepniewska, Landman, Anderson (b0445) 2018; 165 Grussu, Schneider, Tur, Yates, Tachrount, Ianuş, Yiannakas, Newcombe, Zhang, Alexander, DeLuca, Gandini Wheeler-Kingshott (b0215) 2017; 4 Wickham (b0600) 2016 Andersson, Sotiropoulos (b0030) 2016; 125 Kanyongo, Brook, Kyei-Blankson, Gocmen (b0265) 2007; 6 Polders, Leemans, Hendrikse, Donahue, Luijten, Hoogduin (b0400) 2011; 33 Bengtsson, Nagy, Skare, Forsman, Forssberg, Ullén (b0075) 2005; 8 Lebel, Gee, Camicioli, Wieler, Martin, Beaulieu (b0300) 2012; 60 Guerrero JM, Adluru N, Bendlin BB, Goldsmith HH, Schaefer SM, Davidson RJ, Kecskemeti SR, Zhang H, Alexander AL (2019) Optimizing the intrinsic parallel diffusivity in NODDI: An extensive empirical evaluation. PLoS ONE 14:e0217118. Shrout, Fleiss (b0470) 1979; 86 Leemans, Jones (b0310) 2009; 61 Liu, Yang, Sun, Yu, Xu, Niu, Tian, Lin (b0335) 2014; 56 Andersson JLR, Jenkinson M, Smith SM (2007) Non-linear registration, aka spatial normalisation. Walhovd, Johansen-Berg, Káradóttir (b0585) 2014; 276 Tofts (b0540) 2018 Engvig, Fjell, Westlye, Moberget, Sundseth, Larsen, Walhovd (b0170) 2012; 33 Tariq M, Schneider T, Alexander DC, Wheeler-Kingshott CAM, Zhang H (2013) Assessing scan-rescan reproducibility of the parameter estimates from NODDI. In: Proceedings of the 21st Annual Meeting of the ISMRM, Salt Lake City, Utah, USA, 20-26 April 2013 (Gold GE, ed), p 3187. Salt Lake City, UT: International Society for Magnetic Resonance in Medicine. Alexander, Dyrby, Nilsson, Zhang (b0005) 2019; 32 Zhang H, Yushkevich PA, Rueckert D, Gee JC (2007) Unbiased white matter atlas construction using diffusion tensor images. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2007: 10th International Conference, Brisbane, Australia, October 29 - November 2, 2007, Proceedings, Part II, vol. 4792 (Ayache N, Ourselin S, Maeder A, eds), pp 211–218. Berlin, Heidelberg: Springer. . Fraser, Fogarty (b0190) 1989; 298 Marenco, Rawlings, Rohde, Barnett, Honea, Pierpaoli, Weinberger (b0360) 2006; 147 Chang, Argyelan, Aggarwal, Chandon, Karlsgodt, Mori, Malhotra (b0110) 2017; 147 Granberg, Fan, Treaba, Ouellette, Herranz, Mangeat, Louapre, Cohen-Adad, Klawiter, Sloane, Mainero (b0205) 2017; 140 Luque Laguna, Combes, Streffer, Einstein, Timmers, Williams, Dell'Acqua (b0345) 2020; 26 Greve, Fischl (b0210) 2009; 48 Pierpaoli, Basser (b0395) 1996; 36 Zhang, Gregory, Scahill, Durr, Thomas, Lehericy, Rees, Tabrizi, Zhang (b0635) 2018; 84 Jones, Symms, Cercignani, Howard (b0260) 2005; 26 Roalf, Quarmley, Elliott, Satterthwaite, Vandekar, Ruparel, Gennatas, Calkins, Moore, Hopson, Prabhakaran, Jackson, Verma, Hakonarson, Gur, Gur (b0430) 2016; 125 Snook, Plewes, Beaulieu (b0500) 2007; 34 Bach, Laun, Leemans, Tax, Biessels, Stieltjes, Maier-Hein (b0045) 2014; 100 Farrell, Landman, Jones, Smith, Prince, van Zijl, Mori (b0180) 2007; 26 Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, de Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, de Stefano, Brady, Matthews (b0490) 2004; 23 Leming M, Steiner R, Styner M (2016) A framework for incorporating DTI Atlas Builder registration into Tract-Based Spatial Statistics and a simulated comparison to standard TBSS. Proc SPIE Int Soc Opt Eng 9788. Sone (b0505) 2019; 12 Caruyer, Lenglet, Sapiro, Deriche (b0105) 2013; 69 Andersson, Graham, Zsoldos, Sotiropoulos (b0015) 2016; 141 Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (b0095) 2013; 14 Austin, Steyerberg (b0040) 2015; 68 Van Hecke, Sijbers, De Backer, Poot, Parizel, Leemans (b0565) 2009; 46 Loken, Gelman (b0340) 2017; 355 Seghier, Price (b0460) 2018; 22 Szucs D, Ioannidis JP (2020) Sample size evolution in neuroimaging research: an evaluation of highly-cited studies (1990-2012) and of latest practices (2017-2018) in high-impact journals. Neuroimage:117164. Froeling, Pullens, Leemans (b0195) 2016 Churchill, Caverzasi, Graham, Hutchison, Schweizer (b0130) 2019; 40 Daducci, Canales-Rodríguez, Zhang, Dyrby, Alexander, Thiran (b0150) 2015; 105 Basser, Pierpaoli (b0065) 1996; 111 Scholz, Klein, Behrens, Johansen-Berg (b0450) 2009; 12 Basser, Mattiello, LeBihan (b0060) 1994; 66 Wang, Zhang, Cofer, Qi, Anderson, White, Allan Johnson (b0590) 2019; 224 Wakana, Caprihan, Panzenboeck, Fallon, Perry, Gollub, Hua, Zhang, Jiang, Dubey, Blitz, van Zijl, Mori (b0580) 2007; 36 Cabeen, Bastin, Laidlaw (b0100) 2017; 146 Ridgway, Leung, Ashburner (b0425) 2015 Kraguljac, Anthony, Monroe, Skidmore, Morgan, White, Patel, Lahti (b0285) 2019; 44 Zalesky (b0620) 2011; 29 Sotiropoulos, Jbabdi, Xu, Andersson, Moeller, Auerbach, Glasser, Hernandez, Sapiro, Jenkinson, Feinberg, Yacoub, Lenglet, Van Essen, Ugurbil, Behrens (b0510) 2013; 80 Zhang, Brady, Smith (b0645) 2001; 20 Kodiweera, Alexander, Harezlak, McAllister, Wu (b0280) 2016; 128 Dowell, Bouyagoub, Tibble, Voon, Cercignani, Harrison (b0160) 2019; 403 Sepehrband, Clark, Ullmann, Kurniawan, Leanage, Reutens, Yang (b0465) 2015; 36 Fukutomi, Glasser, Murata, Akasaka, Fujimoto, Yamamoto, Autio, Okada, Togashi, Zhang, van Essen, Hayashi (b0200) 2019; 9 Smith, Jenkinson, Johansen-Berg, Rueckert, Nichols, Mackay, Watkins, Ciccarelli, Cader, Matthews, Behrens (b0485) 2006; 31 Zhang, Arfanakis (b0640) 2018; 172 Cliff (b0135) 1996 Jones (b0250) 2004; 51 Timmers, Roebroeck, Bastiani, Jansma, Rubio-Gozalbo, Zhang, Yap (b0535) 2016; 11 Filley, Fields (b0185) 2016; 116 Mollink, Kleinnijenhuis, Cappellen van Walsum, Sotiropoulos, Cottaar, Mirfin, Heinrich, Jenkinson, Pallebage-Gamarallage, Ansorge, Jbabdi, Miller (b0370) 2017; 157 Reuter, Schmansky, Rosas, Fischl (b0420) 2012; 61 Mills, Goddings, Herting, Meuwese, Blakemore, Crone, Dahl, Güroğlu, Raznahan, Sowell, Tamnes (b0365) 2016; 141 King, Rosopa, Minium (b0275) 2011 Chen, Tymofiyeva, Hess, Xu (b0115) 2015; 109 Valkanova, Eguia Rodriguez, Ebmeier (b0555) 2014; 26 Beaulieu (b0070) 2002; 15 Andersson, Skare, Ashburner (b0025) 2003; 20 Jenkinson, Bannister, Brady, Smith (b0240) 2002; 17 Choi, Cunningham, Aguila, Corrigan, Bogner, Mysiw, Knopp, Schmalbrock (b0120) 2011; 29 Sullivan, Obuchowski, Kessler, Raunig, Gatsonis, Huang, Kondratovich, McShane, Reeves, Barboriak, Guimaraes, Wahl (b0515) 2015; 277 Eklund A (2016) beeswarm. The Bee Swarm Plot, an Alternative to Stripchart. R package version 0.2.3. Novikov, Fieremans, Jespersen, Kiselev (b0380) 2019; 32 Tabelow, Polzehl, Spokoiny, Voss (b0525) 2008; 39 Raja, Rosenberg, Caprihan (b0415) 2019; 694 Parvathaneni, Nath, Blaber, Schilling, Hainline, Mojahed, Anderson, Landman (b0390) 2018; 50 Alfaro-Almagro, Jenkinson, Bangerter, Andersson, Griffanti, Douaud, Sotiropoulos, Jbabdi, Hernandez-Fernandez, Vallee, Vidaurre, Webster, McCarthy, Rorden, Daducci, Alexander, Zhang, Dragonu, Matthews, Miller, Smith (b0010) 2018; 166 Novikov, Kiselev, Jespersen (b0385) 2018; 79 Jones, Knösche, Turner (b0255) 2013; 73 Chung, Seunarine, Clark (b0125) 2016; 37 Billiet, Vandenbulcke, Mädler, Peeters, Dhollander, Zhang, Deprez, Van den Bergh, Sunaert, Emsell (b0080) 2015; 36 Lakhani, Schilling, Xu, Bagnato (b0290) 2020; 41 Zuo, Xu, Milham (b0655) 2019; 3 Cook, Bai, Nedjati-Gilani, Seunarine, Hall, Parker, Alexander (b0145) 2006 Hua, Zhang, Wakana, Jiang, Li, Reich, Calabresi, Pekar, van Zijl, Mori (b0230) 2008; 39 Lebel, Treit, Beaulieu (b0305) 2019; 32 Wilcox RR, Schönbrodt FD (2019) WRS: A package of R.R. Wilcox' robust statistics functions. R package version 0.36. Keihaninejad, Zhang, Ryan, Malone, Modat, Cardoso, Cash, Fox, Ourselin (b0270) 2013; 72 Smith, Zhang, Jenkinson, Chen, Matthews, Federico, De Stefano (b0495) 2002; 17 Zhang, Schneider, Wheeler-Kingshott, Alexander (b0625) 2012; 61 de Groot, Vernooij, Klein, Ikram, Vos, Smith, Niessen, Andersson (b0155) 2013; 76 Wilcox (b0605) 2017 Schwarz, Reid, Gunter, Senjem, Przybelski, Zuk, Whitwell, Vemuri, Josephs, Kantarci, Thompson, Petersen, Jack (b0455) 2014; 94 Smith (b0480) 2002; 17 Smith, Little (b0475) 2018; 25 Vollmar, O'Muircheartaigh, Barker, Symms, Thompson, Kumari, Duncan, Richardson, Koepp (b0570) 2010; 51 Voss, Heo, Prakash, Erickson, Alves, Chaddock, Szabo, Mailey, Wójcicki, White, Gothe, McAuley, Sutton, Kramer (b0575) 2013; 34 Leys, Ley, Klein, Bernard, Licata (b0325) 2013; 49 Sampaio-Baptista, Johansen-Berg (b0440) 2017; 96 Rueckert, Sonoda, Hayes, Hill, Leach, Hawkes (b0435) 1999; 18 Andica, Kamagata, Hayashi, Hagiwara, Uchida, Saito, Kamiya, Fujita, Akashi, Wada, Abe, Kusahara, Hori, Aoki (b0035) 2020; 62 Hutchinson, Avram, Irfanoglu, Koay, Barnett, Komlosh, Özarslan, Schwerin, Juliano, Pierpaoli (b0235) 2017; 78 Zimmerman, Zumbo (b0650) 2015; 14 van Hecke, Leemans, de Backer, Jeurissen, Parizel, Sijbers (b0560) 2010; 31 Jespersen, Bjarkam, Nyengaard, Chakravarty, Hansen, Vosegaard, Østergaard, Yablonskiy, Nielsen, Vestergaard-Poulsen (b0245) 2010; 49 Broad, Gabel, Dowell, Schwartzman, Seth, Zhang, Alexander, Cercignani, Leigh (b0090) 2019; 90 Fabbris (b0175) 1980; 14 Li, Lindenberger, Hommel, Aschersleben, Prinz, Baltes (b0330) 2004; 15 Mangiafico (b0355) 2020; 2 Nimon, Oswald (b0375) 2013; 16 Tofts (b0545) 2018 Bartko (b0055) 1991; 17 Madhyastha, Mérillat, Hirsiger, Bezzola, Liem, Grabowski, Jäncke (b0350) 2014; 35 Winkler, Webster, Brooks, Tracey, Smith, Nichols (b0615) 2016; 37 Chen (10.1016/j.neuroscience.2021.01.005_b0115) 2015; 109 Cabeen (10.1016/j.neuroscience.2021.01.005_b0100) 2017; 146 Hua (10.1016/j.neuroscience.2021.01.005_b0230) 2008; 39 Greve (10.1016/j.neuroscience.2021.01.005_b0210) 2009; 48 Button (10.1016/j.neuroscience.2021.01.005_b0095) 2013; 14 Snook (10.1016/j.neuroscience.2021.01.005_b0500) 2007; 34 Billiet (10.1016/j.neuroscience.2021.01.005_b0080) 2015; 36 Hutchinson (10.1016/j.neuroscience.2021.01.005_b0235) 2017; 78 10.1016/j.neuroscience.2021.01.005_b0085 Kodiweera (10.1016/j.neuroscience.2021.01.005_b0280) 2016; 128 Jenkinson (10.1016/j.neuroscience.2021.01.005_b0240) 2002; 17 Andersson (10.1016/j.neuroscience.2021.01.005_b0025) 2003; 20 Valkanova (10.1016/j.neuroscience.2021.01.005_b0555) 2014; 26 Jones (10.1016/j.neuroscience.2021.01.005_b0260) 2005; 26 Froeling (10.1016/j.neuroscience.2021.01.005_b0195) 2016 R Development Core Team (10.1016/j.neuroscience.2021.01.005_b0410) 2013 10.1016/j.neuroscience.2021.01.005_b0520 Reuter (10.1016/j.neuroscience.2021.01.005_b0420) 2012; 61 Walhovd (10.1016/j.neuroscience.2021.01.005_b0585) 2014; 276 Zhang (10.1016/j.neuroscience.2021.01.005_b0625) 2012; 61 Chang (10.1016/j.neuroscience.2021.01.005_b0110) 2017; 147 Daducci (10.1016/j.neuroscience.2021.01.005_b0150) 2015; 105 Wilcox (10.1016/j.neuroscience.2021.01.005_b0605) 2017 Alexander (10.1016/j.neuroscience.2021.01.005_b0005) 2019; 32 Poldrack (10.1016/j.neuroscience.2021.01.005_b0405) 2017; 18 Smith (10.1016/j.neuroscience.2021.01.005_b0490) 2004; 23 Rueckert (10.1016/j.neuroscience.2021.01.005_b0435) 1999; 18 Smith (10.1016/j.neuroscience.2021.01.005_b0485) 2006; 31 Engvig (10.1016/j.neuroscience.2021.01.005_b0170) 2012; 33 Shrout (10.1016/j.neuroscience.2021.01.005_b0470) 1979; 86 King (10.1016/j.neuroscience.2021.01.005_b0275) 2011 Mangiafico (10.1016/j.neuroscience.2021.01.005_b0355) 2020; 2 Kraguljac (10.1016/j.neuroscience.2021.01.005_b0285) 2019; 44 Fraser (10.1016/j.neuroscience.2021.01.005_b0190) 1989; 298 Novikov (10.1016/j.neuroscience.2021.01.005_b0380) 2019; 32 10.1016/j.neuroscience.2021.01.005_b0530 Jones (10.1016/j.neuroscience.2021.01.005_b0250) 2004; 51 Winkler (10.1016/j.neuroscience.2021.01.005_b0615) 2016; 37 Jespersen (10.1016/j.neuroscience.2021.01.005_b0245) 2010; 49 Filley (10.1016/j.neuroscience.2021.01.005_b0185) 2016; 116 Leys (10.1016/j.neuroscience.2021.01.005_b0325) 2013; 49 Lebel (10.1016/j.neuroscience.2021.01.005_b0300) 2012; 60 Mollink (10.1016/j.neuroscience.2021.01.005_b0370) 2017; 157 van Hecke (10.1016/j.neuroscience.2021.01.005_b0560) 2010; 31 Alfaro-Almagro (10.1016/j.neuroscience.2021.01.005_b0010) 2018; 166 Sepehrband (10.1016/j.neuroscience.2021.01.005_b0465) 2015; 36 10.1016/j.neuroscience.2021.01.005_b0020 Bach (10.1016/j.neuroscience.2021.01.005_b0045) 2014; 100 Wang (10.1016/j.neuroscience.2021.01.005_b0590) 2019; 224 Zhang (10.1016/j.neuroscience.2021.01.005_b0640) 2018; 172 Leemans (10.1016/j.neuroscience.2021.01.005_b0310) 2009; 61 Wickham (10.1016/j.neuroscience.2021.01.005_b0600) 2016 Jones (10.1016/j.neuroscience.2021.01.005_b0255) 2013; 73 Lebel (10.1016/j.neuroscience.2021.01.005_b0305) 2019; 32 Zhang (10.1016/j.neuroscience.2021.01.005_b0635) 2018; 84 Zhang (10.1016/j.neuroscience.2021.01.005_b0645) 2001; 20 Churchill (10.1016/j.neuroscience.2021.01.005_b0130) 2019; 40 Granberg (10.1016/j.neuroscience.2021.01.005_b0205) 2017; 140 Scholz (10.1016/j.neuroscience.2021.01.005_b0450) 2009; 12 Zimmerman (10.1016/j.neuroscience.2021.01.005_b0650) 2015; 14 Marenco (10.1016/j.neuroscience.2021.01.005_b0360) 2006; 147 Austin (10.1016/j.neuroscience.2021.01.005_b0040) 2015; 68 Schilling (10.1016/j.neuroscience.2021.01.005_b0445) 2018; 165 Pierpaoli (10.1016/j.neuroscience.2021.01.005_b0395) 1996; 36 10.1016/j.neuroscience.2021.01.005_b0550 Broad (10.1016/j.neuroscience.2021.01.005_b0090) 2019; 90 Andica (10.1016/j.neuroscience.2021.01.005_b0035) 2020; 62 Li (10.1016/j.neuroscience.2021.01.005_b0330) 2004; 15 Schwarz (10.1016/j.neuroscience.2021.01.005_b0455) 2014; 94 Zalesky (10.1016/j.neuroscience.2021.01.005_b0620) 2011; 29 Smith (10.1016/j.neuroscience.2021.01.005_b0480) 2002; 17 Nimon (10.1016/j.neuroscience.2021.01.005_b0375) 2013; 16 Roalf (10.1016/j.neuroscience.2021.01.005_b0430) 2016; 125 Sullivan (10.1016/j.neuroscience.2021.01.005_b0515) 2015; 277 Fabbris (10.1016/j.neuroscience.2021.01.005_b0175) 1980; 14 Raja (10.1016/j.neuroscience.2021.01.005_b0415) 2019; 694 Smith (10.1016/j.neuroscience.2021.01.005_b0495) 2002; 17 Caruyer (10.1016/j.neuroscience.2021.01.005_b0105) 2013; 69 10.1016/j.neuroscience.2021.01.005_b0165 Grussu (10.1016/j.neuroscience.2021.01.005_b0215) 2017; 4 Sone (10.1016/j.neuroscience.2021.01.005_b0505) 2019; 12 Timmers (10.1016/j.neuroscience.2021.01.005_b0535) 2016; 11 Andersson (10.1016/j.neuroscience.2021.01.005_b0030) 2016; 125 Seghier (10.1016/j.neuroscience.2021.01.005_b0460) 2018; 22 10.1016/j.neuroscience.2021.01.005_b0320 Fukutomi (10.1016/j.neuroscience.2021.01.005_b0200) 2019; 9 Madhyastha (10.1016/j.neuroscience.2021.01.005_b0350) 2014; 35 Cliff (10.1016/j.neuroscience.2021.01.005_b0135) 1996 Zuo (10.1016/j.neuroscience.2021.01.005_b0655) 2019; 3 de Groot (10.1016/j.neuroscience.2021.01.005_b0155) 2013; 76 Bartko (10.1016/j.neuroscience.2021.01.005_b0055) 1991; 17 Farrell (10.1016/j.neuroscience.2021.01.005_b0180) 2007; 26 Lehmann (10.1016/j.neuroscience.2021.01.005_b0315) 2020; 40 Mills (10.1016/j.neuroscience.2021.01.005_b0365) 2016; 141 10.1016/j.neuroscience.2021.01.005_b0050 Chung (10.1016/j.neuroscience.2021.01.005_b0125) 2016; 37 Tabelow (10.1016/j.neuroscience.2021.01.005_b0525) 2008; 39 Tofts (10.1016/j.neuroscience.2021.01.005_b0540) 2018 10.1016/j.neuroscience.2021.01.005_b0610 Basser (10.1016/j.neuroscience.2021.01.005_b0065) 1996; 111 Luque Laguna (10.1016/j.neuroscience.2021.01.005_b0345) 2020; 26 Voss (10.1016/j.neuroscience.2021.01.005_b0575) 2013; 34 Dowell (10.1016/j.neuroscience.2021.01.005_b0160) 2019; 403 10.1016/j.neuroscience.2021.01.005_b0220 Keihaninejad (10.1016/j.neuroscience.2021.01.005_b0270) 2013; 72 Choi (10.1016/j.neuroscience.2021.01.005_b0120) 2011; 29 Cook (10.1016/j.neuroscience.2021.01.005_b0145) 2006 Basser (10.1016/j.neuroscience.2021.01.005_b0060) 1994; 66 Andersson (10.1016/j.neuroscience.2021.01.005_b0015) 2016; 141 Sampaio-Baptista (10.1016/j.neuroscience.2021.01.005_b0440) 2017; 96 Sotiropoulos (10.1016/j.neuroscience.2021.01.005_b0510) 2013; 80 Cohen (10.1016/j.neuroscience.2021.01.005_b0140) 1988 Beaulieu (10.1016/j.neuroscience.2021.01.005_b0070) 2002; 15 Parvathaneni (10.1016/j.neuroscience.2021.01.005_b0390) 2018; 50 Lakhani (10.1016/j.neuroscience.2021.01.005_b0290) 2020; 41 Lawrence (10.1016/j.neuroscience.2021.01.005_b0295) 2020 Van Hecke (10.1016/j.neuroscience.2021.01.005_b0565) 2009; 46 Vollmar (10.1016/j.neuroscience.2021.01.005_b0570) 2010; 51 Kanyongo (10.1016/j.neuroscience.2021.01.005_b0265) 2007; 6 Polders (10.1016/j.neuroscience.2021.01.005_b0400) 2011; 33 Liu (10.1016/j.neuroscience.2021.01.005_b0335) 2014; 56 Novikov (10.1016/j.neuroscience.2021.01.005_b0385) 2018; 79 Ridgway (10.1016/j.neuroscience.2021.01.005_b0425) 2015 Tofts (10.1016/j.neuroscience.2021.01.005_b0545) 2018 Wakana (10.1016/j.neuroscience.2021.01.005_b0580) 2007; 36 Bengtsson (10.1016/j.neuroscience.2021.01.005_b0075) 2005; 8 Loken (10.1016/j.neuroscience.2021.01.005_b0340) 2017; 355 Smith (10.1016/j.neuroscience.2021.01.005_b0475) 2018; 25 10.1016/j.neuroscience.2021.01.005_b0630 Hopkins (10.1016/j.neuroscience.2021.01.005_b0225) 2000; 30 |
References_xml | – volume: 277 start-page: 813 year: 2015 end-page: 825 ident: b0515 article-title: Metrology standards for quantitative imaging biomarkers publication-title: Radiology – year: 2017 ident: b0605 article-title: Introduction to robust estimation and hypothesis testing – volume: 36 start-page: 2107 year: 2015 end-page: 2121 ident: b0080 article-title: Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI publication-title: Neurobiol Aging – volume: 60 start-page: 340 year: 2012 end-page: 352 ident: b0300 article-title: Diffusion tensor imaging of white matter tract evolution over the lifespan publication-title: Neuroimage – volume: 15 start-page: 435 year: 2002 end-page: 455 ident: b0070 article-title: The basis of anisotropic water diffusion in the nervous system - a technical review publication-title: NMR Biomed – volume: 44 start-page: 1932 year: 2019 end-page: 1939 ident: b0285 article-title: A longitudinal neurite and free water imaging study in patients with a schizophrenia spectrum disorder publication-title: Neuropsychopharmacology – volume: 22 start-page: 517 year: 2018 end-page: 530 ident: b0460 article-title: Interpreting and utilising intersubject variability in brain function publication-title: Trends Cogn Sci – volume: 25 start-page: 2083 year: 2018 end-page: 2101 ident: b0475 article-title: Small is beautiful: In defense of the small-N design publication-title: Psychon Bull Rev – volume: 69 start-page: 1534 year: 2013 end-page: 1540 ident: b0105 article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI publication-title: Magn Reson Med – volume: 12 start-page: 1370 year: 2009 end-page: 1371 ident: b0450 article-title: Training induces changes in white-matter architecture publication-title: Nat Neurosci – volume: 14 start-page: 9 year: 2015 end-page: 26 ident: b0650 article-title: Resolving the issue of how reliability is related to statistical power: adhering to mathematical definitions publication-title: J Mod App Stat Meth – start-page: 13 year: 2018 end-page: 31 ident: b0540 article-title: Measurement Process: MR data collection and image analysis publication-title: Quantitative MRI of the brain: principles of physical measurement – volume: 141 start-page: 556 year: 2016 end-page: 572 ident: b0015 article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images publication-title: Neuroimage – volume: 14 start-page: 787 year: 1980 end-page: 792 ident: b0175 article-title: Measures of predictor variable importance in multiple regression: An additional suggestion publication-title: Qual Quant – volume: 31 start-page: 98 year: 2010 end-page: 114 ident: b0560 article-title: Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: A simulation study publication-title: Hum Brain Mapp – volume: 116 start-page: 2093 year: 2016 end-page: 2104 ident: b0185 article-title: White matter and cognition: making the connection publication-title: J Neurophysiol – volume: 20 start-page: 45 year: 2001 end-page: 57 ident: b0645 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans Med Imaging – reference: Andersson JLR, Jenkinson M, Smith SM (2007) Non-linear registration, aka spatial normalisation. – volume: 72 start-page: 153 year: 2013 end-page: 163 ident: b0270 article-title: An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer’s disease publication-title: Neuroimage – year: 2011 ident: b0275 article-title: Statistical reasoning in the behavioral sciences – volume: 33 start-page: 1456 year: 2011 end-page: 1463 ident: b0400 article-title: Signal to noise ratio and uncertainty in diffusion tensor imaging at 1.5, 3.0, and 7.0 Tesla publication-title: J Magn Reson Imaging – volume: 105 start-page: 32 year: 2015 end-page: 44 ident: b0150 article-title: Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data publication-title: Neuroimage – volume: 79 start-page: 3172 year: 2018 end-page: 3193 ident: b0385 article-title: On modeling publication-title: Magn Reson Med – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: b0480 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp – volume: 694 start-page: 198 year: 2019 end-page: 207 ident: b0415 article-title: Review of diffusion MRI studies in chronic white matter diseases publication-title: Neurosci Lett – volume: 80 start-page: 125 year: 2013 end-page: 143 ident: b0510 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: Neuroimage – volume: 76 start-page: 400 year: 2013 end-page: 411 ident: b0155 article-title: Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration publication-title: Neuroimage – year: 2013 ident: b0410 article-title: R: A language and environment for statistical computing – volume: 31 start-page: 1487 year: 2006 end-page: 1505 ident: b0485 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage – volume: 36 start-page: 630 year: 2007 end-page: 644 ident: b0580 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – volume: 4 start-page: 663 year: 2017 end-page: 679 ident: b0215 article-title: Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? publication-title: Ann Clin Transl Neurol – volume: 26 year: 2020 ident: b0345 article-title: Reproducibility, reliability and variability of FA and MD in the older healthy population: A test-retest multiparametric analysis publication-title: Neuroimage Clin – reference: Szucs D, Ioannidis JP (2020) Sample size evolution in neuroimaging research: an evaluation of highly-cited studies (1990-2012) and of latest practices (2017-2018) in high-impact journals. Neuroimage:117164. – volume: 147 start-page: 253 year: 2017 end-page: 261 ident: b0110 article-title: The role of myelination in measures of white matter integrity: Combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains publication-title: Neuroimage – volume: 78 start-page: 1767 year: 2017 end-page: 1780 ident: b0235 article-title: Analysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models publication-title: Magn Reson Med – volume: 165 start-page: 200 year: 2018 end-page: 221 ident: b0445 article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion publication-title: Neuroimage – volume: 34 start-page: 2972 year: 2013 end-page: 2985 ident: b0575 article-title: The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention publication-title: Hum Brain Mapp – volume: 96 start-page: 1239 year: 2017 end-page: 1251 ident: b0440 article-title: White matter plasticity in the adult brain publication-title: Neuron – year: 1988 ident: b0140 article-title: Statistical power analysis for the behavioral sciences – volume: 14 start-page: 365 year: 2013 end-page: 376 ident: b0095 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat Rev Neurosci – volume: 61 start-page: 1336 year: 2009 end-page: 1349 ident: b0310 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn Reson Med – start-page: 33 year: 2018 end-page: 53 ident: b0545 article-title: Quality assurance: accuracy, precision, controls and phantoms publication-title: Quantitative MRI of the brain: principles of physical measurement – volume: 62 start-page: 483 year: 2020 end-page: 494 ident: b0035 article-title: Scan-rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics publication-title: Neuroradiology – volume: 172 start-page: 40 year: 2018 end-page: 50 ident: b0640 article-title: Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences publication-title: Neuroimage – volume: 147 start-page: 69 year: 2006 end-page: 78 ident: b0360 article-title: Regional distribution of measurement error in diffusion tensor imaging publication-title: Psychiatry Res – volume: 84 start-page: 497 year: 2018 end-page: 504 ident: b0635 article-title: In vivo characterization of white matter pathology in premanifest huntington’s disease publication-title: Ann Neurol – year: 1996 ident: b0135 article-title: Ordinal methods for behavioral data analysis – volume: 48 start-page: 63 year: 2009 end-page: 72 ident: b0210 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: Neuroimage – volume: 68 start-page: 627 year: 2015 end-page: 636 ident: b0040 article-title: The number of subjects per variable required in linear regression analyses publication-title: J Clin Epidemiol – volume: 355 start-page: 584 year: 2017 end-page: 585 ident: b0340 article-title: Measurement error and the replication crisis publication-title: Science – volume: 23 start-page: S208 year: 2004 end-page: 19 ident: b0490 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage – volume: 66 start-page: 259 year: 1994 end-page: 267 ident: b0060 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys J – year: 2016 ident: b0600 article-title: ggplot2: Elegant graphics for data analysis – reference: Torchiano M (2016) Effsize - A Package For Efficient Effect Size Computation. R package version 0.8.0. – volume: 8 start-page: 1148 year: 2005 end-page: 1150 ident: b0075 article-title: Extensive piano practicing has regionally specific effects on white matter development publication-title: Nat Neurosci – volume: 146 start-page: 100 year: 2017 end-page: 112 ident: b0100 article-title: A comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging publication-title: Neuroimage – volume: 18 start-page: 115 year: 2017 end-page: 126 ident: b0405 article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research publication-title: Nat Rev Neurosci – volume: 18 start-page: 712 year: 1999 end-page: 721 ident: b0435 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans Med Imaging – reference: Eklund A (2016) beeswarm. The Bee Swarm Plot, an Alternative to Stripchart. R package version 0.2.3. – volume: 276 start-page: 2 year: 2014 end-page: 13 ident: b0585 article-title: Unraveling the secrets of white matter—bridging the gap between cellular, animal and human imaging studies publication-title: Neuroscience – volume: 51 start-page: 807 year: 2004 end-page: 815 ident: b0250 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study publication-title: Magn Reson Med – volume: 61 start-page: 1402 year: 2012 end-page: 1418 ident: b0420 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage – volume: 34 start-page: 243 year: 2007 end-page: 252 ident: b0500 article-title: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment publication-title: Neuroimage – volume: 49 start-page: 764 year: 2013 end-page: 766 ident: b0325 article-title: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median publication-title: J Exp Soc Psychol – volume: 3 start-page: 768 year: 2019 end-page: 771 ident: b0655 article-title: Harnessing reliability for neuroscience research publication-title: Nat Hum Behav – volume: 46 start-page: 692 year: 2009 end-page: 707 ident: b0565 article-title: On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods publication-title: Neuroimage – volume: 40 start-page: 1908 year: 2019 end-page: 1918 ident: b0130 article-title: White matter during concussion recovery: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) publication-title: Hum Brain Mapp – volume: 37 start-page: 1486 year: 2016 end-page: 1511 ident: b0615 article-title: Non-parametric combination and related permutation tests for neuroimaging publication-title: Hum Brain Mapp – volume: 56 start-page: 497 year: 2014 end-page: 510 ident: b0335 article-title: Reproducibility of diffusion tensor imaging in normal subjects: an evaluation of different gradient sampling schemes and registration algorithm publication-title: Neuroradiology – volume: 109 start-page: 160 year: 2015 end-page: 170 ident: b0115 article-title: Effects of rejecting diffusion directions on tensor-derived parameters publication-title: Neuroimage – volume: 29 start-page: 739 year: 2011 end-page: 751 ident: b0120 article-title: DTI at 7 and 3 T: systematic comparison of SNR and its influence on quantitative metrics publication-title: Magn Reson Imaging – start-page: 417 year: 2015 end-page: 428 ident: b0425 article-title: Computing brain change over time publication-title: Brain mapping: an encyclopedic reference – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: b0025 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 36 start-page: 893 year: 1996 end-page: 906 ident: b0395 article-title: Toward a quantitative assessment of diffusion anisotropy publication-title: Magn Reson Med – volume: 90 start-page: 404 year: 2019 end-page: 411 ident: b0090 article-title: Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS publication-title: J Neurol Neurosurg Psychiatry – volume: 16 start-page: 650 year: 2013 end-page: 674 ident: b0375 article-title: Understanding the results of multiple linear regression publication-title: Organ Res Methods – volume: 40 start-page: 2416 year: 2020 end-page: 2429 ident: b0315 article-title: Colocalized white matter plasticity and increased cerebral blood flow mediate the beneficial effect of cardiovascular exercise on long-term motor learning publication-title: J Neurosci – volume: 32 start-page: e3998 year: 2019 ident: b0380 article-title: Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation publication-title: NMR Biomed – volume: 30 start-page: 1 year: 2000 end-page: 15 ident: b0225 article-title: Measures of reliability in sports medicine and science publication-title: Sports Med – volume: 39 start-page: 1763 year: 2008 end-page: 1773 ident: b0525 article-title: Diffusion tensor imaging: structural adaptive smoothing publication-title: Neuroimage – volume: 298 start-page: 1659 year: 1989 end-page: 1660 ident: b0190 article-title: Interpreting laboratory results publication-title: BMJ – volume: 35 start-page: 4544 year: 2014 end-page: 4555 ident: b0350 article-title: Longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging publication-title: Hum Brain Mapp – reference: Wilcox RR, Schönbrodt FD (2019) WRS: A package of R.R. Wilcox' robust statistics functions. R package version 0.36. – volume: 15 start-page: 155 year: 2004 end-page: 163 ident: b0330 article-title: Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span publication-title: Psychol Sci – volume: 36 start-page: 3687 year: 2015 end-page: 3702 ident: b0465 article-title: Brain tissue compartment density estimated using diffusion-weighted MRI yields tissue parameters consistent with histology publication-title: Hum Brain Mapp – reference: Brandmaier AM, Wenger E, Bodammer NC, Kühn S, Raz N, Lindenberger U (2018) Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED). Elife 7:e35718. – reference: Zhang H, Yushkevich PA, Rueckert D, Gee JC (2007) Unbiased white matter atlas construction using diffusion tensor images. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2007: 10th International Conference, Brisbane, Australia, October 29 - November 2, 2007, Proceedings, Part II, vol. 4792 (Ayache N, Ourselin S, Maeder A, eds), pp 211–218. Berlin, Heidelberg: Springer. – reference: Barrio-Arranz G, Luis-García R de, Tristán-Vega A, Martín-Fernández M, Aja-Fernández S (2015) Impact of MR acquisition parameters on DTI scalar indexes: A tractography based approach. PLoS ONE 10:e0137905. – start-page: 28 year: 2020 ident: b0295 article-title: Advanced diffusion-weighted MRI metrics detect sex differences in aging among 15,000 adults in the UK Biobank publication-title: The 16th international symposium on medical information processing and analysis, 2020, Lima, Peru – volume: 128 start-page: 180 year: 2016 end-page: 192 ident: b0280 article-title: Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study publication-title: Neuroimage – reference: Leming M, Steiner R, Styner M (2016) A framework for incorporating DTI Atlas Builder registration into Tract-Based Spatial Statistics and a simulated comparison to standard TBSS. Proc SPIE Int Soc Opt Eng 9788. – volume: 2 start-page: 25 year: 2020 ident: b0355 article-title: rcompanion: Functions to support extension education program evaluation publication-title: R package version – volume: 29 start-page: 111 year: 2011 end-page: 125 ident: b0620 article-title: Moderating registration misalignment in voxelwise comparisons of DTI data: a performance evaluation of skeleton projection publication-title: Magn Reson Imaging – reference: Guerrero JM, Adluru N, Bendlin BB, Goldsmith HH, Schaefer SM, Davidson RJ, Kecskemeti SR, Zhang H, Alexander AL (2019) Optimizing the intrinsic parallel diffusivity in NODDI: An extensive empirical evaluation. PLoS ONE 14:e0217118. – volume: 140 start-page: 2912 year: 2017 end-page: 2926 ident: b0205 article-title: In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis publication-title: Brain – volume: 49 start-page: 205 year: 2010 end-page: 216 ident: b0245 article-title: Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy publication-title: Neuroimage – volume: 50 start-page: 96 year: 2018 end-page: 109 ident: b0390 article-title: Empirical reproducibility, sensitivity, and optimization of acquisition protocol, for Neurite Orientation Dispersion and Density Imaging using AMICO publication-title: Magn Reson Imaging – volume: 224 start-page: 1797 year: 2019 end-page: 1813 ident: b0590 article-title: Neurite orientation dispersion and density imaging of mouse brain microstructure publication-title: Brain Struct Funct – volume: 61 start-page: 1000 year: 2012 end-page: 1016 ident: b0625 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage – volume: 403 start-page: 111 year: 2019 end-page: 117 ident: b0160 article-title: Interferon-alpha-induced changes in NODDI predispose to the development of fatigue publication-title: Neuroscience – volume: 86 start-page: 420 year: 1979 end-page: 428 ident: b0470 article-title: Intraclass correlations: Uses in assessing rater reliability publication-title: Psychol Bull – volume: 73 start-page: 239 year: 2013 end-page: 254 ident: b0255 article-title: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI publication-title: Neuroimage – volume: 26 start-page: 756 year: 2007 end-page: 767 ident: b0180 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T publication-title: J Magn Reson Imaging – volume: 51 start-page: 1384 year: 2010 end-page: 1394 ident: b0570 article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: Neuroimage – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: b0240 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage – volume: 166 start-page: 400 year: 2018 end-page: 424 ident: b0010 article-title: Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank publication-title: Neuroimage – volume: 32 start-page: e3841 year: 2019 ident: b0005 article-title: Imaging brain microstructure with diffusion MRI: practicality and applications publication-title: NMR Biomed – volume: 100 start-page: 358 year: 2014 end-page: 369 ident: b0045 article-title: Methodological considerations on tract-based spatial statistics (TBSS) publication-title: Neuroimage – volume: 125 start-page: 903 year: 2016 end-page: 919 ident: b0430 article-title: The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort publication-title: Neuroimage – volume: 111 start-page: 209 year: 1996 end-page: 219 ident: b0065 article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI publication-title: J Magn Reson B – volume: 17 start-page: 483 year: 1991 end-page: 489 ident: b0055 article-title: Measurement and reliability: statistical thinking considerations publication-title: Schizophr Bull – volume: 141 start-page: 273 year: 2016 end-page: 281 ident: b0365 article-title: Structural brain development between childhood and adulthood: Convergence across four longitudinal samples publication-title: Neuroimage – volume: 37 start-page: 4550 year: 2016 end-page: 4565 ident: b0125 article-title: NODDI reproducibility and variability with magnetic field strength: A comparison between 1.5 T and 3 T publication-title: Hum Brain Mapp – volume: 41 start-page: 751 year: 2020 end-page: 757 ident: b0290 article-title: Advanced multicompartment diffusion MRI models and their application in multiple sclerosis publication-title: AJNR Am J Neuroradiol – start-page: 175 year: 2016 end-page: 182 ident: b0195 article-title: DTI analysis methods: region of interest analysis publication-title: Diffusion tensor imaging – volume: 9 start-page: 12246 year: 2019 ident: b0200 article-title: Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter publication-title: Sci Rep – volume: 39 start-page: 336 year: 2008 end-page: 347 ident: b0230 article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification publication-title: Neuroimage – volume: 125 start-page: 1063 year: 2016 end-page: 1078 ident: b0030 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage – volume: 26 start-page: 546 year: 2005 end-page: 554 ident: b0260 article-title: The effect of filter size on VBM analyses of DT-MRI data publication-title: Neuroimage – volume: 33 start-page: 2390 year: 2012 end-page: 2406 ident: b0170 article-title: Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study publication-title: Hum Brain Mapp – volume: 26 start-page: 891 year: 2014 end-page: 909 ident: b0555 article-title: Mind over matter—what do we know about neuroplasticity in adults? publication-title: Int Psychogeriatr – reference: . – volume: 157 start-page: 561 year: 2017 end-page: 574 ident: b0370 article-title: Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging publication-title: Neuroimage – start-page: 2759 year: 2006 ident: b0145 article-title: Camino: open-source diffusion-MRI reconstruction and processing publication-title: 14th scientific meeting of the international society for magnetic resonance in medicine, Seattle, WA, USA – volume: 12 start-page: 17 year: 2019 end-page: 29 ident: b0505 article-title: Neurite orientation and dispersion density imaging: clinical utility, efficacy, and role in therapy publication-title: Rep Medical Imaging – volume: 17 start-page: 479 year: 2002 end-page: 489 ident: b0495 article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis publication-title: Neuroimage – volume: 32 start-page: e3778 year: 2019 ident: b0305 article-title: A review of diffusion MRI of typical white matter development from early childhood to young adulthood publication-title: NMR Biomed – reference: Tariq M, Schneider T, Alexander DC, Wheeler-Kingshott CAM, Zhang H (2013) Assessing scan-rescan reproducibility of the parameter estimates from NODDI. In: Proceedings of the 21st Annual Meeting of the ISMRM, Salt Lake City, Utah, USA, 20-26 April 2013 (Gold GE, ed), p 3187. Salt Lake City, UT: International Society for Magnetic Resonance in Medicine. – volume: 6 start-page: 81 year: 2007 end-page: 90 ident: b0265 article-title: Reliability and statistical power: how measurement fallibility affects power and required sample sizes for several parametric and nonparametric statistics publication-title: J Mod App Stat Meth – volume: 11 start-page: e0167884 year: 2016 ident: b0535 article-title: Assessing microstructural substrates of white matter abnormalities: A comparative study using DTI and NODDI publication-title: PLoS ONE – volume: 94 start-page: 65 year: 2014 end-page: 78 ident: b0455 article-title: Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics publication-title: Neuroimage – volume: 39 start-page: 1763 year: 2008 ident: 10.1016/j.neuroscience.2021.01.005_b0525 article-title: Diffusion tensor imaging: structural adaptive smoothing publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.10.024 – volume: 224 start-page: 1797 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0590 article-title: Neurite orientation dispersion and density imaging of mouse brain microstructure publication-title: Brain Struct Funct doi: 10.1007/s00429-019-01877-x – volume: 29 start-page: 111 year: 2011 ident: 10.1016/j.neuroscience.2021.01.005_b0620 article-title: Moderating registration misalignment in voxelwise comparisons of DTI data: a performance evaluation of skeleton projection publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2010.06.027 – volume: 14 start-page: 9 year: 2015 ident: 10.1016/j.neuroscience.2021.01.005_b0650 article-title: Resolving the issue of how reliability is related to statistical power: adhering to mathematical definitions publication-title: J Mod App Stat Meth doi: 10.22237/jmasm/1446350640 – volume: 100 start-page: 358 year: 2014 ident: 10.1016/j.neuroscience.2021.01.005_b0045 article-title: Methodological considerations on tract-based spatial statistics (TBSS) publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.021 – ident: 10.1016/j.neuroscience.2021.01.005_b0610 – volume: 276 start-page: 2 year: 2014 ident: 10.1016/j.neuroscience.2021.01.005_b0585 article-title: Unraveling the secrets of white matter—bridging the gap between cellular, animal and human imaging studies publication-title: Neuroscience doi: 10.1016/j.neuroscience.2014.06.058 – volume: 355 start-page: 584 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0340 article-title: Measurement error and the replication crisis publication-title: Science doi: 10.1126/science.aal3618 – volume: 3 start-page: 768 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0655 article-title: Harnessing reliability for neuroscience research publication-title: Nat Hum Behav doi: 10.1038/s41562-019-0655-x – ident: 10.1016/j.neuroscience.2021.01.005_b0085 doi: 10.7554/eLife.35718 – start-page: 2759 year: 2006 ident: 10.1016/j.neuroscience.2021.01.005_b0145 article-title: Camino: open-source diffusion-MRI reconstruction and processing – volume: 23 start-page: S208 year: 2004 ident: 10.1016/j.neuroscience.2021.01.005_b0490 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 50 start-page: 96 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0390 article-title: Empirical reproducibility, sensitivity, and optimization of acquisition protocol, for Neurite Orientation Dispersion and Density Imaging using AMICO publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2018.03.004 – year: 2011 ident: 10.1016/j.neuroscience.2021.01.005_b0275 – volume: 125 start-page: 903 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0430 article-title: The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.068 – volume: 90 start-page: 404 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0090 article-title: Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp-2018-318830 – ident: 10.1016/j.neuroscience.2021.01.005_b0050 doi: 10.1371/journal.pone.0137905 – ident: 10.1016/j.neuroscience.2021.01.005_b0550 – start-page: 417 year: 2015 ident: 10.1016/j.neuroscience.2021.01.005_b0425 article-title: Computing brain change over time – volume: 109 start-page: 160 year: 2015 ident: 10.1016/j.neuroscience.2021.01.005_b0115 article-title: Effects of rejecting diffusion directions on tensor-derived parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.010 – volume: 8 start-page: 1148 year: 2005 ident: 10.1016/j.neuroscience.2021.01.005_b0075 article-title: Extensive piano practicing has regionally specific effects on white matter development publication-title: Nat Neurosci doi: 10.1038/nn1516 – volume: 72 start-page: 153 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0270 article-title: An unbiased longitudinal analysis framework for tracking white matter changes using diffusion tensor imaging with application to Alzheimer’s disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.044 – ident: 10.1016/j.neuroscience.2021.01.005_b0320 doi: 10.1117/12.2216517 – ident: 10.1016/j.neuroscience.2021.01.005_b0530 – volume: 17 start-page: 143 year: 2002 ident: 10.1016/j.neuroscience.2021.01.005_b0480 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp doi: 10.1002/hbm.10062 – start-page: 13 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0540 article-title: Measurement Process: MR data collection and image analysis – volume: 15 start-page: 435 year: 2002 ident: 10.1016/j.neuroscience.2021.01.005_b0070 article-title: The basis of anisotropic water diffusion in the nervous system - a technical review publication-title: NMR Biomed doi: 10.1002/nbm.782 – year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0410 – volume: 31 start-page: 98 year: 2010 ident: 10.1016/j.neuroscience.2021.01.005_b0560 article-title: Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: A simulation study publication-title: Hum Brain Mapp doi: 10.1002/hbm.20848 – volume: 73 start-page: 239 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0255 article-title: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.06.081 – year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0605 – volume: 30 start-page: 1 year: 2000 ident: 10.1016/j.neuroscience.2021.01.005_b0225 article-title: Measures of reliability in sports medicine and science publication-title: Sports Med doi: 10.2165/00007256-200030010-00001 – volume: 26 start-page: 756 year: 2007 ident: 10.1016/j.neuroscience.2021.01.005_b0180 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21053 – volume: 694 start-page: 198 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0415 article-title: Review of diffusion MRI studies in chronic white matter diseases publication-title: Neurosci Lett doi: 10.1016/j.neulet.2018.12.007 – volume: 80 start-page: 125 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0510 article-title: Advances in diffusion MRI acquisition and processing in the Human Connectome Project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.057 – volume: 35 start-page: 4544 year: 2014 ident: 10.1016/j.neuroscience.2021.01.005_b0350 article-title: Longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging publication-title: Hum Brain Mapp doi: 10.1002/hbm.22493 – volume: 36 start-page: 893 year: 1996 ident: 10.1016/j.neuroscience.2021.01.005_b0395 article-title: Toward a quantitative assessment of diffusion anisotropy publication-title: Magn Reson Med doi: 10.1002/mrm.1910360612 – volume: 61 start-page: 1402 year: 2012 ident: 10.1016/j.neuroscience.2021.01.005_b0420 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – year: 1988 ident: 10.1016/j.neuroscience.2021.01.005_b0140 – volume: 146 start-page: 100 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0100 article-title: A comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.020 – volume: 14 start-page: 365 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0095 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat Rev Neurosci doi: 10.1038/nrn3475 – volume: 147 start-page: 69 year: 2006 ident: 10.1016/j.neuroscience.2021.01.005_b0360 article-title: Regional distribution of measurement error in diffusion tensor imaging publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2006.01.008 – volume: 125 start-page: 1063 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0030 article-title: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.10.019 – ident: 10.1016/j.neuroscience.2021.01.005_b0020 – volume: 4 start-page: 663 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0215 article-title: Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? publication-title: Ann Clin Transl Neurol doi: 10.1002/acn3.445 – volume: 11 start-page: e0167884 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0535 article-title: Assessing microstructural substrates of white matter abnormalities: A comparative study using DTI and NODDI publication-title: PLoS ONE doi: 10.1371/journal.pone.0167884 – volume: 172 start-page: 40 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0640 article-title: Evaluation of standardized and study-specific diffusion tensor imaging templates of the adult human brain: Template characteristics, spatial normalization accuracy, and detection of small inter-group FA differences publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.01.046 – volume: 60 start-page: 340 year: 2012 ident: 10.1016/j.neuroscience.2021.01.005_b0300 article-title: Diffusion tensor imaging of white matter tract evolution over the lifespan publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.094 – volume: 40 start-page: 2416 year: 2020 ident: 10.1016/j.neuroscience.2021.01.005_b0315 article-title: Colocalized white matter plasticity and increased cerebral blood flow mediate the beneficial effect of cardiovascular exercise on long-term motor learning publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2310-19.2020 – volume: 116 start-page: 2093 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0185 article-title: White matter and cognition: making the connection publication-title: J Neurophysiol doi: 10.1152/jn.00221.2016 – volume: 86 start-page: 420 year: 1979 ident: 10.1016/j.neuroscience.2021.01.005_b0470 article-title: Intraclass correlations: Uses in assessing rater reliability publication-title: Psychol Bull doi: 10.1037/0033-2909.86.2.420 – volume: 79 start-page: 3172 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0385 article-title: On modeling publication-title: Magn Reson Med doi: 10.1002/mrm.27101 – volume: 78 start-page: 1767 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0235 article-title: Analysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models publication-title: Magn Reson Med doi: 10.1002/mrm.26575 – volume: 16 start-page: 650 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0375 article-title: Understanding the results of multiple linear regression publication-title: Organ Res Methods doi: 10.1177/1094428113493929 – volume: 31 start-page: 1487 year: 2006 ident: 10.1016/j.neuroscience.2021.01.005_b0485 article-title: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.02.024 – ident: 10.1016/j.neuroscience.2021.01.005_b0165 – volume: 34 start-page: 2972 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0575 article-title: The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention publication-title: Hum Brain Mapp doi: 10.1002/hbm.22119 – volume: 18 start-page: 712 year: 1999 ident: 10.1016/j.neuroscience.2021.01.005_b0435 article-title: Nonrigid registration using free-form deformations: application to breast MR images publication-title: IEEE Trans Med Imaging doi: 10.1109/42.796284 – volume: 12 start-page: 17 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0505 article-title: Neurite orientation and dispersion density imaging: clinical utility, efficacy, and role in therapy publication-title: Rep Medical Imaging doi: 10.2147/RMI.S194083 – volume: 32 start-page: e3998 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0380 article-title: Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation publication-title: NMR Biomed doi: 10.1002/nbm.3998 – volume: 403 start-page: 111 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0160 article-title: Interferon-alpha-induced changes in NODDI predispose to the development of fatigue publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.12.040 – volume: 147 start-page: 253 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0110 article-title: The role of myelination in measures of white matter integrity: Combination of diffusion tensor imaging and two-photon microscopy of CLARITY intact brains publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.11.068 – volume: 46 start-page: 692 year: 2009 ident: 10.1016/j.neuroscience.2021.01.005_b0565 article-title: On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.032 – volume: 298 start-page: 1659 year: 1989 ident: 10.1016/j.neuroscience.2021.01.005_b0190 article-title: Interpreting laboratory results publication-title: BMJ doi: 10.1136/bmj.298.6689.1659 – volume: 33 start-page: 1456 year: 2011 ident: 10.1016/j.neuroscience.2021.01.005_b0400 article-title: Signal to noise ratio and uncertainty in diffusion tensor imaging at 1.5, 3.0, and 7.0 Tesla publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22554 – volume: 25 start-page: 2083 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0475 article-title: Small is beautiful: In defense of the small-N design publication-title: Psychon Bull Rev doi: 10.3758/s13423-018-1451-8 – volume: 69 start-page: 1534 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0105 article-title: Design of multishell sampling schemes with uniform coverage in diffusion MRI publication-title: Magn Reson Med doi: 10.1002/mrm.24736 – volume: 33 start-page: 2390 year: 2012 ident: 10.1016/j.neuroscience.2021.01.005_b0170 article-title: Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study publication-title: Hum Brain Mapp doi: 10.1002/hbm.21370 – start-page: 175 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0195 article-title: DTI analysis methods: region of interest analysis – volume: 36 start-page: 3687 year: 2015 ident: 10.1016/j.neuroscience.2021.01.005_b0465 article-title: Brain tissue compartment density estimated using diffusion-weighted MRI yields tissue parameters consistent with histology publication-title: Hum Brain Mapp doi: 10.1002/hbm.22872 – volume: 61 start-page: 1000 year: 2012 ident: 10.1016/j.neuroscience.2021.01.005_b0625 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 49 start-page: 764 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0325 article-title: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median publication-title: J Exp Soc Psychol doi: 10.1016/j.jesp.2013.03.013 – year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0600 – volume: 36 start-page: 630 year: 2007 ident: 10.1016/j.neuroscience.2021.01.005_b0580 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.049 – ident: 10.1016/j.neuroscience.2021.01.005_b0220 doi: 10.1371/journal.pone.0217118 – volume: 76 start-page: 400 year: 2013 ident: 10.1016/j.neuroscience.2021.01.005_b0155 article-title: Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.015 – volume: 26 year: 2020 ident: 10.1016/j.neuroscience.2021.01.005_b0345 article-title: Reproducibility, reliability and variability of FA and MD in the older healthy population: A test-retest multiparametric analysis publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2020.102168 – volume: 37 start-page: 1486 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0615 article-title: Non-parametric combination and related permutation tests for neuroimaging publication-title: Hum Brain Mapp doi: 10.1002/hbm.23115 – volume: 68 start-page: 627 year: 2015 ident: 10.1016/j.neuroscience.2021.01.005_b0040 article-title: The number of subjects per variable required in linear regression analyses publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2014.12.014 – year: 1996 ident: 10.1016/j.neuroscience.2021.01.005_b0135 – volume: 96 start-page: 1239 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0440 article-title: White matter plasticity in the adult brain publication-title: Neuron doi: 10.1016/j.neuron.2017.11.026 – volume: 17 start-page: 483 year: 1991 ident: 10.1016/j.neuroscience.2021.01.005_b0055 article-title: Measurement and reliability: statistical thinking considerations publication-title: Schizophr Bull doi: 10.1093/schbul/17.3.483 – volume: 6 start-page: 81 year: 2007 ident: 10.1016/j.neuroscience.2021.01.005_b0265 article-title: Reliability and statistical power: how measurement fallibility affects power and required sample sizes for several parametric and nonparametric statistics publication-title: J Mod App Stat Meth doi: 10.22237/jmasm/1177992480 – volume: 84 start-page: 497 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0635 article-title: In vivo characterization of white matter pathology in premanifest huntington’s disease publication-title: Ann Neurol doi: 10.1002/ana.25309 – volume: 111 start-page: 209 year: 1996 ident: 10.1016/j.neuroscience.2021.01.005_b0065 article-title: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI publication-title: J Magn Reson B doi: 10.1006/jmrb.1996.0086 – ident: 10.1016/j.neuroscience.2021.01.005_b0630 doi: 10.1007/978-3-540-75759-7_26 – volume: 18 start-page: 115 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0405 article-title: Scanning the horizon: towards transparent and reproducible neuroimaging research publication-title: Nat Rev Neurosci doi: 10.1038/nrn.2016.167 – volume: 22 start-page: 517 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0460 article-title: Interpreting and utilising intersubject variability in brain function publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2018.03.003 – volume: 9 start-page: 12246 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0200 article-title: Diffusion tensor model links to neurite orientation dispersion and density imaging at high b-value in cerebral cortical gray matter publication-title: Sci Rep doi: 10.1038/s41598-019-48671-7 – volume: 128 start-page: 180 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0280 article-title: Age effects and sex differences in human brain white matter of young to middle-aged adults: A DTI, NODDI, and q-space study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.12.033 – volume: 17 start-page: 479 year: 2002 ident: 10.1016/j.neuroscience.2021.01.005_b0495 article-title: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis publication-title: Neuroimage doi: 10.1006/nimg.2002.1040 – volume: 32 start-page: e3778 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0305 article-title: A review of diffusion MRI of typical white matter development from early childhood to young adulthood publication-title: NMR Biomed doi: 10.1002/nbm.3778 – volume: 56 start-page: 497 year: 2014 ident: 10.1016/j.neuroscience.2021.01.005_b0335 article-title: Reproducibility of diffusion tensor imaging in normal subjects: an evaluation of different gradient sampling schemes and registration algorithm publication-title: Neuroradiology doi: 10.1007/s00234-014-1342-2 – volume: 62 start-page: 483 year: 2020 ident: 10.1016/j.neuroscience.2021.01.005_b0035 article-title: Scan-rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics publication-title: Neuroradiology doi: 10.1007/s00234-019-02350-6 – volume: 17 start-page: 825 year: 2002 ident: 10.1016/j.neuroscience.2021.01.005_b0240 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: Neuroimage doi: 10.1006/nimg.2002.1132 – volume: 20 start-page: 45 year: 2001 ident: 10.1016/j.neuroscience.2021.01.005_b0645 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906424 – volume: 51 start-page: 807 year: 2004 ident: 10.1016/j.neuroscience.2021.01.005_b0250 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study publication-title: Magn Reson Med doi: 10.1002/mrm.20033 – volume: 14 start-page: 787 year: 1980 ident: 10.1016/j.neuroscience.2021.01.005_b0175 article-title: Measures of predictor variable importance in multiple regression: An additional suggestion publication-title: Qual Quant doi: 10.1007/BF00145808 – volume: 166 start-page: 400 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0010 article-title: Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.034 – volume: 48 start-page: 63 year: 2009 ident: 10.1016/j.neuroscience.2021.01.005_b0210 article-title: Accurate and robust brain image alignment using boundary-based registration publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.06.060 – volume: 32 start-page: e3841 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0005 article-title: Imaging brain microstructure with diffusion MRI: practicality and applications publication-title: NMR Biomed doi: 10.1002/nbm.3841 – start-page: 33 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0545 article-title: Quality assurance: accuracy, precision, controls and phantoms – volume: 49 start-page: 205 year: 2010 ident: 10.1016/j.neuroscience.2021.01.005_b0245 article-title: Neurite density from magnetic resonance diffusion measurements at ultrahigh field: comparison with light microscopy and electron microscopy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.08.053 – volume: 26 start-page: 546 year: 2005 ident: 10.1016/j.neuroscience.2021.01.005_b0260 article-title: The effect of filter size on VBM analyses of DT-MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.013 – volume: 12 start-page: 1370 year: 2009 ident: 10.1016/j.neuroscience.2021.01.005_b0450 article-title: Training induces changes in white-matter architecture publication-title: Nat Neurosci doi: 10.1038/nn.2412 – volume: 141 start-page: 556 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0015 article-title: Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.058 – ident: 10.1016/j.neuroscience.2021.01.005_b0520 doi: 10.1016/j.neuroimage.2020.117164 – volume: 39 start-page: 336 year: 2008 ident: 10.1016/j.neuroscience.2021.01.005_b0230 article-title: Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.053 – start-page: 28 year: 2020 ident: 10.1016/j.neuroscience.2021.01.005_b0295 article-title: Advanced diffusion-weighted MRI metrics detect sex differences in aging among 15,000 adults in the UK Biobank – volume: 15 start-page: 155 year: 2004 ident: 10.1016/j.neuroscience.2021.01.005_b0330 article-title: Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span publication-title: Psychol Sci doi: 10.1111/j.0956-7976.2004.01503003.x – volume: 40 start-page: 1908 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0130 article-title: White matter during concussion recovery: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) publication-title: Hum Brain Mapp doi: 10.1002/hbm.24500 – volume: 61 start-page: 1336 year: 2009 ident: 10.1016/j.neuroscience.2021.01.005_b0310 article-title: The B-matrix must be rotated when correcting for subject motion in DTI data publication-title: Magn Reson Med doi: 10.1002/mrm.21890 – volume: 51 start-page: 1384 year: 2010 ident: 10.1016/j.neuroscience.2021.01.005_b0570 article-title: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.046 – volume: 37 start-page: 4550 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0125 article-title: NODDI reproducibility and variability with magnetic field strength: A comparison between 1.5 T and 3 T publication-title: Hum Brain Mapp doi: 10.1002/hbm.23328 – volume: 41 start-page: 751 year: 2020 ident: 10.1016/j.neuroscience.2021.01.005_b0290 article-title: Advanced multicompartment diffusion MRI models and their application in multiple sclerosis publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6484 – volume: 34 start-page: 243 year: 2007 ident: 10.1016/j.neuroscience.2021.01.005_b0500 article-title: Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.07.021 – volume: 29 start-page: 739 year: 2011 ident: 10.1016/j.neuroscience.2021.01.005_b0120 article-title: DTI at 7 and 3 T: systematic comparison of SNR and its influence on quantitative metrics publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2011.02.009 – volume: 94 start-page: 65 year: 2014 ident: 10.1016/j.neuroscience.2021.01.005_b0455 article-title: Improved DTI registration allows voxel-based analysis that outperforms tract-based spatial statistics publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.026 – volume: 20 start-page: 870 year: 2003 ident: 10.1016/j.neuroscience.2021.01.005_b0025 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – volume: 105 start-page: 32 year: 2015 ident: 10.1016/j.neuroscience.2021.01.005_b0150 article-title: Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.026 – volume: 66 start-page: 259 year: 1994 ident: 10.1016/j.neuroscience.2021.01.005_b0060 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys J doi: 10.1016/S0006-3495(94)80775-1 – volume: 36 start-page: 2107 year: 2015 ident: 10.1016/j.neuroscience.2021.01.005_b0080 article-title: Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2015.02.029 – volume: 157 start-page: 561 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0370 article-title: Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.001 – volume: 277 start-page: 813 year: 2015 ident: 10.1016/j.neuroscience.2021.01.005_b0515 article-title: Metrology standards for quantitative imaging biomarkers publication-title: Radiology doi: 10.1148/radiol.2015142202 – volume: 141 start-page: 273 year: 2016 ident: 10.1016/j.neuroscience.2021.01.005_b0365 article-title: Structural brain development between childhood and adulthood: Convergence across four longitudinal samples publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.07.044 – volume: 165 start-page: 200 year: 2018 ident: 10.1016/j.neuroscience.2021.01.005_b0445 article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.046 – volume: 140 start-page: 2912 year: 2017 ident: 10.1016/j.neuroscience.2021.01.005_b0205 article-title: In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis publication-title: Brain doi: 10.1093/brain/awx247 – volume: 26 start-page: 891 year: 2014 ident: 10.1016/j.neuroscience.2021.01.005_b0555 article-title: Mind over matter—what do we know about neuroplasticity in adults? publication-title: Int Psychogeriatr doi: 10.1017/S1041610213002482 – volume: 44 start-page: 1932 year: 2019 ident: 10.1016/j.neuroscience.2021.01.005_b0285 article-title: A longitudinal neurite and free water imaging study in patients with a schizophrenia spectrum disorder publication-title: Neuropsychopharmacology doi: 10.1038/s41386-019-0427-3 – volume: 2 start-page: 25 year: 2020 ident: 10.1016/j.neuroscience.2021.01.005_b0355 article-title: rcompanion: Functions to support extension education program evaluation publication-title: R package version |
SSID | ssj0000543 |
Score | 2.4642196 |
Snippet | •We analyzed absolute (CV) and relative (ICC) reproducibility of NODDI metrics.•Reproducibility of ROI-based, "VBM-style" and TBSS analysis was... Diffusion-weighted magnetic resonance imaging (DWI) is undergoing constant evolution with the ambitious goal of developing in-vivo histology of the brain. A... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 165 |
SubjectTerms | Benchmarking Brain - diagnostic imaging Cross-Sectional Studies Diffusion Magnetic Resonance Imaging Diffusion Tensor Imaging diffusion-weighted imaging Humans Neurite Orientation Dispersion and Density Imaging (NODDI) Neurites Precision Reliability Reproducibility Reproducibility of Results White Matter - diagnostic imaging |
Title | Longitudinal Reproducibility of Neurite Orientation Dispersion and Density Imaging (NODDI) Derived Metrics in the White Matter |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0306452221000105 https://dx.doi.org/10.1016/j.neuroscience.2021.01.005 https://www.ncbi.nlm.nih.gov/pubmed/33465411 https://www.proquest.com/docview/2479423989 |
Volume | 457 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5CeumltE3Tuo-wgRDSg2rtQ6uKkIOJE-y0dg5tILdlXwKFRg6Ofcglv70zK8lJoAVDQBeJHfSY0ey3u7PfR8hergK41fpECVaihBlLCmVVAtjZ2tw7Fwrc7zyZqtGFPLvMLjfIcbcXBssq29zf5PSYrdsr_fZr9m-qqv8L0S7ygXOcomaRx1TKHKP82_1DmQdAkkYiGUbO2LojHo01Xo84I5Eyk7NI4YlSdv_upP4HQmNndPqavGpRJB00D_qGbIT6Ldka1DCCvr6j-zTWdcYJ8y1y_3OGmkRLj_pXFAB35HhtimLv6KykyM8BwJOez6t2I1JNhxUyiONMGjW1p0Msc4fW4-soakQPpufD4fgrXJ9DtvR0grpc7pZWNQVASaPqHp1E6s535OL05PfxKGlVFxInC7FIGM-5KaT1ZSi4sxm3SqRSlAC9FOdGGSacTB0rXeGdSYNyInxPQ5blvFQ-t2KbbNazOnwgNOAyYGrAO0ZKK4wBG4gNq3KbM5_KHim6z6xdS0mOyhh_dFd7dqUfu0iji3QKR5r1iFjZ3jTEHGtZHXbe1N3WU0iWGvqPtayPVtZPgnRt-90ugDT8xbg0Y-owW95qjkT_SMVY9Mj7JrJWbyUEct4x9vGZd_9EXuJZU0D3mWwu5svwBRDVwu7EX2aHvBiMf4ymfwGisyOq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBYlPWyX0a7rlv7YNBilO5hYki3XlB1Cs5KsSXpYC70J_TJ4rE5Jk0Mv_dv7nmxnLWwQGPgk62FbT3r6LD19HyFfMunBrcZFUrACJcxYlEsjI8DOxmTOWp_jeefJVA6vkx836c0GOWvPwmBaZRP765geonVT0mtas3dXlr2fiHaRD5zjEjVDHtNNZKdKO2SzP7oYTv8E5LROnoP6ERq03KMhzesZbSSyZnIWWDxRze7v89S_cGiYj863yJsGSNJ-_a7bZMNXb8lOv4Kf6NsHekRDamdYM98hj-MZyhItHUpgUcDcgea1zot9oLOCIkUHYE96OS-bs0gVHZRIIo6LaVRXjg4w0x1qj26DrhE9nl4OBqOvUD6HgOnoBKW57D0tKwqYkgbhPToJ7J3vyPX596uzYdQIL0Q2ycUiYjzjOk-MK3zOrUm5kSJORAHoS3KupWbCJrFlhc2d1bGXVviT2KdpxgvpMiN2SaeaVf4DoR53AmMNDtJJYoTWYAPdw8jMZMzFSZfkbTMr27CSozjGb9Wmn_1Sz12k0EUqhitOu0SsbO9qbo61rE5bb6r29CnESwVTyFrW31bWL_rp2vaf2w6kYCDj7oyu_Gx5rzhy_SMbY94l7-uetfoqIZD2jrG9_3z6J_JqeDUZq_FoerFPXuOdOp_ugHQW86U_BIC1MB-bAfQEg38mWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+Reproducibility+of+Neurite+Orientation+Dispersion+and+Density+Imaging+%28NODDI%29+Derived+Metrics+in+the+White+Matter&rft.jtitle=Neuroscience&rft.au=Lehmann%2C+Nico&rft.au=Aye%2C+Norman&rft.au=Kaufmann%2C+J%C3%B6rn&rft.au=Heinze%2C+Hans-Jochen&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4522&rft.volume=457&rft.spage=165&rft.epage=185&rft_id=info:doi/10.1016%2Fj.neuroscience.2021.01.005&rft.externalDocID=S0306452221000105 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4522&client=summon |