Effects of Habitat Fragmentation on Effective Population Size in the Endangered Rio Grande Silvery Minnow
We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over...
Saved in:
Published in | Conservation biology Vol. 19; no. 4; pp. 1138 - 1148 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK
Blackwell Publishing, Inc
01.08.2005
Blackwell Science Blackwell Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0888-8892 1523-1739 |
DOI | 10.1111/j.1523-1739.2005.00081.x |
Cover
Loading…
Abstract | We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size (NeV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers$(N_{eV}/N)$was$\sim 0.001$during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (NeI) that ranged between 105and 106. We propose that disparity between contemporary and historical estimates of Neand low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Neto critically low values over ecological time. |
---|---|
AbstractList | We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size (N sub(eV)) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers (N sub(eV)-N) was similar to 0.001 during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (N sub(eI) ) that ranged between 10 super(5) and 10 super(6). We propose that disparity between contemporary and historical estimates of N sub(e) and low contemporary N sub(e)-N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced N sub(e) to critically low values over ecological time.Original Abstract: Estimamos los patrones espaciales y temporales de diversidad genetica para evaluar los efectos de la fragmentacion del rio sobre poblaciones remanentes del pez Hybognathus amarus federalmente en peligro. El analisis de ADN microsatelite y mitocondrial detecto escasa estructura genetica espacial en su rango de distribucion actual, lo que es consistente con un alto flujo genico a pesar de la fragmentacion por presas. Sin embargo, los analisis de probabilidad maxima de datos geneticos temporales indicaron que el tamano poblacional efectivo actual (N sub(eV)) de la poblacion mas grande era 78 y la relacion tamano efectivo - numero de adultos (N sub(eV)-N) fue similar to 0.001 durante el periodo de estudio (1999 - 2001) Metodos analiticos coalescentes proporcionaron una estimacion del tamano efectivo historico (N sub(eI)) (la fragmentacion del rio termino en 1975) que vario entre 10 super(5) y 10 super(6). Proponemos que la disparidad entre las estimaciones historicas y contemporaneas de N sub(e) y la baja N sub(e)-N contemporanea resultan de cambios recientes en la demografia relacionados con la fragmentacion del rio. Hybognathus amarus produce huevos y larvas pelagicas que son transportadas rio abajo a traves de presas de desvio. Esta caracteristica de la historia de vida resulta en fuertes perdidas de esfuerzo reproductivo por emigracion y mortalidad, y en una varianza extremadamente amplia en el exito reproductivo entre individuos y sitios de desove. La interaccion de la historia de vida pelagica y la fragmentacion del rio ha alterado la dinamica demografica y genetica de las poblaciones remanentes y ha reducido a N sub(e) a valores criticamente bajos en tiempo ecologico. We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size ( NeV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers ( NeV/N) was ~ 0.001 during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size ( NeI ) that ranged between 105 and 106. We propose that disparity between contemporary and historical estimates of Neand low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Neto critically low values over ecological time. [PUBLICATION ABSTRACT] : We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum‐likelihood analysis of temporal genetic data indicated, however, that present‐day effective population size (NeV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers (NeV/N) was ∼ 0.001 during the study period (1999 to 2001). Coalescent‐based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (NeI ) that ranged between 105 and 106. We propose that disparity between contemporary and historical estimates of Neand low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life‐history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Neto critically low values over ecological time. Resumen: Estimamos los patrones espaciales y temporales de diversidad genética para evaluar los efectos de la fragmentación del río sobre poblaciones remanentes del pez Hybognathus amarus federalmente en peligro. El análisis de ADN microsatélite y mitocondrial detectó escasa estructura genética espacial en su rango de distribución actual, lo que es consistente con un alto flujo génico a pesar de la fragmentación por presas. Sin embargo, los análisis de probabilidad máxima de datos genéticos temporales indicaron que el tamaño poblacional efectivo actual (NeV) de la población más grande era 78 y la relación tamaño efectivo – número de adultos (NeV/N) fue ∼ 0.001 durante el período de estudio (1999 – 2001) Métodos analíticos coalescentes proporcionaron una estimación del tamaño efectivo histórico (NeI ) (la fragmentación del río terminó en 1975) que varió entre 105 y 106. Proponemos que la disparidad entre las estimaciones históricas y contemporáneas de Ney la baja Ne/N contemporánea resultan de cambios recientes en la demografía relacionados con la fragmentación del río. Hybognathus amarus produce huevos y larvas pelágicas que son transportadas río abajo a través de presas de desvío. Esta característica de la historia de vida resulta en fuertes pérdidas de esfuerzo reproductivo por emigración y mortalidad, y en una varianza extremadamente amplia en el éxito reproductivo entre individuos y sitios de desove. La interacción de la historia de vida pelágica y la fragmentación del río ha alterado la dinámica demográfica y genética de las poblaciones remanentes y ha reducido a Nea valores críticamente bajos en tiempo ecológico. We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum‐likelihood analysis of temporal genetic data indicated, however, that present‐day effective population size (NₑV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers (NₑV/N) was ∼ 0.001 during the study period (1999 to 2001). Coalescent‐based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (NₑI ) that ranged between 10⁵ and 10⁶. We propose that disparity between contemporary and historical estimates of Nₑand low contemporary Nₑ/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life‐history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Nₑto critically low values over ecological time. We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size (NeV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers$(N_{eV}/N)$was$\sim 0.001$during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (NeI) that ranged between 105and 106. We propose that disparity between contemporary and historical estimates of Neand low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Neto critically low values over ecological time. We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow ( Hybognathus amarus ). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum‐likelihood analysis of temporal genetic data indicated, however, that present‐day effective population size ( N eV ) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers ( N eV /N ) was ∼ 0.001 during the study period (1999 to 2001). Coalescent‐based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size ( N eI ) that ranged between 10 5 and 10 6 . We propose that disparity between contemporary and historical estimates of N e and low contemporary N e /N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life‐history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced N e to critically low values over ecological time. |
Author | ALÒ, DOMINIQUE TURNER, THOMAS F. |
Author_xml | – sequence: 1 givenname: DOMINIQUE surname: ALÒ fullname: ALÒ, DOMINIQUE organization: Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, U.S.A – sequence: 2 givenname: THOMAS F. surname: TURNER fullname: TURNER, THOMAS F. email: turnert@unm.edu organization: Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, U.S.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17042573$$DView record in Pascal Francis |
BookMark | eNqNkc1uEzEUhUeoSKSFN2BhIYHYTGqP_xcg0ZCmlVpaCgiJjeV4PMXpxA72pE369HiYKosuAMuSLd_vHNvn7hd7PnhbFADBMcrjcDFGtMIl4liOKwjpGEIo0HjzpBjtCnvFCAohSiFk9azYT2mRIUkRGRVu2jTWdAmEBpzouet0B46jvl5an7cueJDnwLhbCy7Dat0O51_cvQXOg-6nBVNfa39to63BlQtgFrWvbSbaWxu34Nx5H-6eF08b3Sb74mE9KL4dT79OTsqzi9np5MNZaYjEspwbyQmraW0aKjAhAlcSGkYYI1JYjLiurbVcCkYrziCiNZlTSStjEDeSYXxQvBl8VzH8WtvUqaVLxrat9jask8qBCIigzODbv4MUIkwlozyjrx6hi7COPn9DVRARyrhgGXr9AOlkdNvkEIxLahXdUsdtvheSKntl7v3AmRhSirZRxg1Zd1G7ViGo-s6qheob2L9Xqr6z6k9n1SYbiEcGuzv-LX03SO9ca7f_rVOTi6NTgvrMXg76RepC3OlzTKiSfbkcyi51drMr63ijGMecqu-fZop_vjz68fHqXM3wbzr3008 |
CODEN | CBIOEF |
CitedBy_id | crossref_primary_10_1007_s10592_012_0346_x crossref_primary_10_1111_j_1365_2427_2011_02682_x crossref_primary_10_1007_s10592_006_9181_2 crossref_primary_10_1111_mec_12321 crossref_primary_10_1894_F01_MP_05_1 crossref_primary_10_1029_2019WR026080 crossref_primary_10_1111_eva_12941 crossref_primary_10_1016_j_ecolmodel_2013_02_021 crossref_primary_10_1111_mec_13936 crossref_primary_10_1111_jfb_12892 crossref_primary_10_1111_j_1365_294X_2007_03453_x crossref_primary_10_1080_02755947_2017_1386144 crossref_primary_10_1093_jmammal_gyv061 crossref_primary_10_1111_faf_12254 crossref_primary_10_1002_aqc_3425 crossref_primary_10_1002_ece3_3229 crossref_primary_10_1007_s00338_014_1157_y crossref_primary_10_1002_tafs_10474 crossref_primary_10_1111_faf_12054 crossref_primary_10_1002_tafs_10398 crossref_primary_10_3390_d12040164 crossref_primary_10_1002_2017WR021919 crossref_primary_10_1073_pnas_1912776117 crossref_primary_10_1139_cjfas_2021_0343 crossref_primary_10_1080_02755947_2011_568864 crossref_primary_10_1093_jhered_esu008 crossref_primary_10_1643_CI_06_120 crossref_primary_10_1098_rspb_2006_3677 crossref_primary_10_3398_042_008_0101 crossref_primary_10_1007_s10641_016_0494_9 crossref_primary_10_1111_gcb_12578 crossref_primary_10_1111_eva_12255 crossref_primary_10_1111_j_1752_4571_2011_00235_x crossref_primary_10_1111_nyas_12853 crossref_primary_10_1016_j_ecolind_2023_111071 crossref_primary_10_1007_s10592_012_0374_6 crossref_primary_10_1061__ASCE_WR_1943_5452_0001335 crossref_primary_10_1007_s10592_015_0730_4 crossref_primary_10_1111_j_1365_2400_2011_00832_x crossref_primary_10_1080_02755947_2012_681013 crossref_primary_10_1111_j_1095_8649_2008_02048_x crossref_primary_10_1002_tafs_10362 crossref_primary_10_1111_j_1365_294X_2010_04695_x crossref_primary_10_1643_CE_07_002 crossref_primary_10_1002_rra_1454 crossref_primary_10_1656_045_027_0411 crossref_primary_10_1890_06_1252_1 crossref_primary_10_1577_M08_248_1 crossref_primary_10_1007_s10592_013_0548_x crossref_primary_10_1111_fwb_12079 crossref_primary_10_1139_cjfas_2016_0238 crossref_primary_10_1139_cjz_2012_0177 crossref_primary_10_1002_rra_3118 crossref_primary_10_1111_cobi_14154 crossref_primary_10_1111_fwb_13607 crossref_primary_10_1002_wat2_1565 crossref_primary_10_1080_03632415_2011_597666 crossref_primary_10_1093_biolinnean_blae081 crossref_primary_10_1007_s10528_009_9325_4 crossref_primary_10_1080_00028487_2014_952449 crossref_primary_10_1139_A09_008 crossref_primary_10_1111_j_1600_0633_2011_00485_x crossref_primary_10_1007_s10592_011_0235_8 crossref_primary_10_1016_j_ecolind_2017_03_053 crossref_primary_10_1007_s10641_017_0591_4 crossref_primary_10_1111_j_1095_8649_2007_01396_x crossref_primary_10_1007_s10641_020_00983_8 crossref_primary_10_1002_rra_2712 crossref_primary_10_1016_j_ecolind_2023_111136 crossref_primary_10_1111_mec_12970 crossref_primary_10_1643_i2023089 crossref_primary_10_1007_s11160_015_9395_9 crossref_primary_10_3390_su11102875 crossref_primary_10_1007_s10530_012_0213_1 crossref_primary_10_1061__ASCE_WR_1943_5452_0001511 crossref_primary_10_1577_T07_060_1 crossref_primary_10_1111_j_1600_0633_2009_00392_x crossref_primary_10_1080_10641260500341544 crossref_primary_10_1002_ece3_329 crossref_primary_10_1086_701598 crossref_primary_10_1016_j_oneear_2024_05_009 crossref_primary_10_1111_j_1752_4571_2009_00110_x crossref_primary_10_1656_058_019_0202 crossref_primary_10_1080_00028487_2012_670184 crossref_primary_10_1186_s40462_024_00490_w crossref_primary_10_3732_ajb_1100021 crossref_primary_10_1894_0038_4909_64_1_31 crossref_primary_10_1016_j_fishres_2023_106608 crossref_primary_10_1111_j_1365_2427_2008_02030_x crossref_primary_10_1016_j_gene_2023_148000 crossref_primary_10_7717_peerj_1694 crossref_primary_10_7717_peerj_6149 crossref_primary_10_1007_s00227_022_04149_1 |
Cites_doi | 10.1111/j.1558-5646.1988.tb04154.x 10.1046/j.1365-294X.2003.02063.x 10.2307/3671925 10.1046/j.1365-294X.2003.01731.x 10.1017/S0016672300034455 10.1146/annurev.ge.29.120195.001513 10.1126/science.282.5394.1658 10.1126/science.282.5394.1695 10.1126/science.3420403 10.1046/j.1523-1739.1995.09040782.x 10.1038/hdy.1994.174 10.1093/genetics/162.3.1329 10.1016/B978-012417540-2/50009-9 10.1006/tpbi.1993.1031 10.1111/j.1558-5646.1990.tb05244.x 10.2307/3671919 10.1093/genetics/98.3.625 10.1046/j.1365-294x.1998.00414.x 10.1046/j.1523-1739.1994.08010175.x 10.1073/pnas.76.4.1967 10.1111/j.1558-5646.1994.tb02218.x 10.1016/0304-4149(82)90011-4 10.1046/j.1365-2540.1999.00467.x 10.2307/1467936 10.1890/1051-0761(1999)009[0642:MSOBTI]2.0.CO;2 10.1093/genetics/146.1.427 10.1126/science.277.5325.494 10.3732/ajb.91.5.682 10.1093/oso/9780198540663.001.0001 10.1093/genetics/149.1.429 10.2307/1447786 10.1016/0040-5809(75)90020-9 10.1093/genetics/131.2.479 10.1111/j.1095-8649.2007.01398.x 10.1017/S1367943002002135 10.2307/1939348 10.1093/oxfordjournals.molbev.a025672 10.1093/oxfordjournals.jhered.a111573 10.2307/1447973 10.1046/j.1365-294x.2001.01194.x 10.1023/B:COGE.0000029998.11426.ab 10.2307/1440404 10.2307/2532296 10.1073/pnas.031358898 10.1046/j.1365-294x.2000.01084.x 10.1017/S0016672301005286 10.1017/CBO9780511623448 10.1126/science.266.5186.753 10.1111/j.1365-294X.2006.02908.x 10.1111/j.1365-294X.2005.02568.x 10.1086/286145 10.1023/A:1011036127663 10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2 10.1093/genetics/121.2.379 10.1111/j.1558-5646.1984.tb05657.x |
ContentType | Journal Article |
Copyright | Copyright 2005 Society for Conservation Biology 2005 Society for Conservation Biology 2005 INIST-CNRS |
Copyright_xml | – notice: Copyright 2005 Society for Conservation Biology – notice: 2005 Society for Conservation Biology – notice: 2005 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7S9 L.6 H97 |
DOI | 10.1111/j.1523-1739.2005.00081.x |
DatabaseName | Istex CrossRef Pascal-Francis Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | 1148 |
ExternalDocumentID | 893288131 17042573 10_1111_j_1523_1739_2005_00081_x COBI419 3591299 ark_67375_WNG_7QPBZDRM_G |
Genre | article Feature |
GeographicLocations | Rio Grande USA, New Mexico Brazil, Rio Grande do Sul, Rio Grande |
GeographicLocations_xml | – name: Rio Grande – name: Brazil, Rio Grande do Sul, Rio Grande – name: USA, New Mexico |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAUTI AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACPVT ACSCC ACSTJ ACXBN ACXQS ADACV ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADUKH ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AGUYK AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO ADXHL AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ - 02 08R 0R 31 3N 4 AAJUZ AAPBV ABCVL ABFLS ABHUG ABPTK ABWRO ACXME ADAWD ADDAD ADZLD AESBF AFFDN AFVGU AGJLS AIRJO CWIXF DWIUU DZ EQZMY GA HF HZ IA IPNFZ KM NF P4A PQEST RIG UMP WT Y3 AAYXX AGHNM CITATION IQODW 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7S9 L.6 H97 |
ID | FETCH-LOGICAL-c4939-bc9746d5dcf5834483290c6466498e317adeee79865276015d4b5952cc17c9633 |
IEDL.DBID | DR2 |
ISSN | 0888-8892 |
IngestDate | Fri Jul 11 11:21:38 EDT 2025 Fri Jul 11 18:29:36 EDT 2025 Fri Jul 25 10:45:16 EDT 2025 Mon Jul 21 09:13:56 EDT 2025 Tue Jul 01 02:25:05 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Sat Jul 09 15:13:05 EDT 2022 Thu Jul 03 21:31:56 EDT 2025 Wed Oct 30 09:58:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Endangered species downstream transport Population number Hybognathus amarus Genetic diversity Rivers Biodiversity Fragmentation Freshwater environment Vertebrata Pisces river fragmentation Phoxinus phoxinus Habitat Transport Downstream Environmental protection |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4939-bc9746d5dcf5834483290c6466498e317adeee79865276015d4b5952cc17c9633 |
Notes | ark:/67375/WNG-7QPBZDRM-G ArticleID:COBI419 istex:9612E0DCE0030B12D5EDF860DF86CF370CDEB109 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 201456786 |
PQPubID | 36794 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_17380109 proquest_miscellaneous_1501359657 proquest_journals_201456786 pascalfrancis_primary_17042573 crossref_citationtrail_10_1111_j_1523_1739_2005_00081_x crossref_primary_10_1111_j_1523_1739_2005_00081_x wiley_primary_10_1111_j_1523_1739_2005_00081_x_COBI419 jstor_primary_3591299 istex_primary_ark_67375_WNG_7QPBZDRM_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2005 |
PublicationDateYYYYMMDD | 2005-08-01 |
PublicationDate_xml | – month: 08 year: 2005 text: August 2005 |
PublicationDecade | 2000 |
PublicationPlace | 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK |
PublicationPlace_xml | – name: 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK – name: Malden, MA – name: Washington |
PublicationTitle | Conservation biology |
PublicationYear | 2005 |
Publisher | Blackwell Publishing, Inc Blackwell Science Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing, Inc – name: Blackwell Science – name: Blackwell – name: Blackwell Publishing Ltd |
References | Kingman , J. F. C. 1982 . The coalescent . Stochastic Processes and their Applications 13 : 235 - 248 . Lande , R. 1988 . Genetics and demography in biological conservation . Science 241 : 1455 - 1460 . Lavery , S. , C. Moritz , and D. R. Fielder . 1996 . Genetic patterns suggest exponential population growth in a declining species . Molecular Biology and Evolution 13 : 1106 - 1113 . Kuhner , M. K. , J. Yamato , and J. Felsenstein . 1998 . Maximum likelihood estimation of population growth rates based on the coalescent . Genetics 149 : 429 - 434 . Speirs , D. C. , and W. S. C. Gurney . 2001 . Population persistence in rivers and estuaries . Ecology 82 : 1219 - 1237 . Higgins , K. , and M. Lynch . 2001 . Metapopulation extinction caused by mutation accumulation . Proceedings of the National Academy of Sciences of the United States of America 98 : 2928 - 2933 . Turner , T. F. , J. P. Wares , and J. R. Gold . 2002 . Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus) . Genetics 162 : 1329 - 1339 . Weir , B. S. , and C. C. Cockerham . 1984 . Estimating F-statistics for the analysis of population structure . Evolution 38 : 1358 - 1370 . Dunham , J. B. , and B. E. Rieman . 1999 . Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics . Ecological Applications 9 : 642 - 655 . Westemeier R. L. , Brawn J. D. , Simpson S. A. , Esker T. L. , Jansen R. W. , Walk J. W. , Kershner E. L. , Bouzat J. L. , and K. N. Paige . 1998 . Tracking the long-term decline and recovery of an isolated population . Science 282 : 1695 - 1698 . Luttrell , G. R. , A. A. Echelle , W. L. Fisher , and D. J. Eisenhour . 1999 . Declining status of two species of the Macrhybopsis aestivalis complex (Teleostei: Cyprinidae) in the Arkansas River Basin and related effects of reservoirs as barriers to dispersal . Copeia 1999 : 981 - 989 . Avise , J. C. 2000 . Phylogeography: the history and formation of species . Harvard University Press , Cambridge , Massachusetts . Sunnucks , P. , A. C. C. Wilson , L. B. Beheregaray , K. Zenger , J. French , and A. C. Taylor . 2000 . SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology . Molecular Ecology 9 : 1699 - 1710 . Nei , M. , and F. Tajima . 1981 . Genetic drift and estimation of effective population size . Genetics 98 : 625 - 640 . Whitlock , M. C. , and N. H. Barton . 1997 . The effective size of a subdivided population . Genetics 146 : 427 - 441 . Platania , S. P. , and C. S. Altenbach . 1998 . Reproductive strategies and egg types of seven Rio Grande Basin cyprinids . Copeia 1998 : 559 - 569 . Raymond , M. , and F. Rousset . 1995 . Genepop (version 1.2)-population-genetics software for exact tests and ecumenicism . Journal of Heredity 86 : 248 - 249 . Waples , R. S. , 1989 . A generalized approach for estimating effective population size from temporal changes in allele frequency . Genetics 121 : 379 - 391 . Benke , A. C. 1990 . A perspective on America's vanishing streams . Journal of the North American Benthological Society 9 : 77 - 88 . Bestgen , K. R. , and S. P. Platania . 1991 . Status and conservation of the Rio Grande silvery minnow, Hybognathus amarus . Southwestern Naturalist 36 : 225 - 232 . Watterson , G. A. 1975 . On the number of segregating sites in genetical models without recombination . Theoretical Population Biology 7 : 256 - 276 . Frankham , R. 1995a . Conservation genetics . Annual Review of Genetics 29 : 305 - 327 . Ballard , J. W. O. , and M. C. Whitlock . 2004 . The incomplete natural history of mitochondria . Molecular Ecology 13 : 729 - 744 . Luikart , G. , W. B. Sherwin , B. M. Steele , and F. W. Allendorf . 1998 . Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change . Molecular Ecology 7 : 963 - 974 . Diffendorfer , J. E. , M. S. Gaines , and R. D. Holt . 1995 . Habitat fragmentation and movements of three small mammals (Sigmodon, Microtus, and Peromyscus) . Ecology 76 : 827 - 839 . Dynesius , M. , and C. Nilsson . 1994 . Fragmentation and flow regulation of river systems in the northern third of the world . Science 266 : 753 - 762 . Orive , M. E. 1993 . Effective population size in organisms with complex life histories . Theoretical Population Biology 44 : 316 - 340 . Bouzat , J. L. , H. A. Lewin , and K. N. Paige . 1998 . The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken . The American Naturalist 152 : 1 - 6 . Excoffier , L. , P. E. Smouse , and J. M. Quattro . 1992 . Analysis of molecular variance inferred from metric distances among DNA haplotypes-application to human mitochondrial-DNA restriction data . Genetics 131 : 479 - 491 . Nunney , L. , and D. R. Elam . 1994 . Estimating the effective size of conserved populations . Conservation Biology 8 : 175 - 184 . Sivasundar , A. , E. Bermingham , and G. Orti . 2001 . Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers . Molecular Ecology 10 : 407 - 417 . Wang , J. L. , and A. Caballero . 1999 . Developments in predicting the effective size of subdivided populations . Heredity 82 : 212 - 226 . Garrigan , D. , P. C. Marsh , and T. E. Dowling . 2002 . Long-term effective population size of three endangered Colorado River fishes . Animal Conservation 5 : 95 - 102 . Rousset , F. 1997 . Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance . Genetics 145 : 1219 - 1228 . Vitousek , P. M. , H. A. Mooney , J. Lubchenco , and J. M. Melillo . 1997 . Human domination of Earth's ecosystems . Science 277 : 494 - 499 . Hellberg , M. E. 1994 . Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans . Evolution 48 : 1829 - 1854 . Lynch , M. , and W. Gabriel . 1990 . Mutation load and the survival of small populations . Evolution 44 : 1725 - 1737 . Jager , H. I. , J. A. Chandler , K. B. Lepla , and W. Van Winkle . 2001 . A theoretical study of river fragmentation by dams and its effects on white sturgeon populations . Environmental Biology of Fishes 60 : 347 - 361 . Wright , S. 1943 . Isolation by distance . Genetics 28 : 139 - 156 . Brown , W. M. , M. George , and A. C. Wilson . 1979 . Rapid evolution of animal mitochondrial DNA . Proceedings of the National Academy of Sciences of the United States of America 76 : 1967 - 1971 Caballero , A. 1994 . Developments in the prediction of effective population size . Heredity 73 : 657 - 679 . Platania , S. P. , 1991 . Fishes of the Rio Chama and upper Rio Grande, New Mexico, with preliminary comments on their longitudinal distribution . Southwestern Naturalist 36 : 186 - 193 . Trevino-Robinson , D. 1959 . The ichthyofauna of the lower Rio Grande, Texas and Mexico . Copeia 1959 : 253 - 256 . Turner , T. F. , T. E. Dowling , R. E. Broughton , and J. R. Gold . 2004 . Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae) . Conservation Genetics 5 : 279 - 281 . Nei , M. 1987 . Molecular evolutionary genetics . Columbia University Press , New York . Wang , J. L. 2001 . A pseudo-likelihood method for estimating effective population size from temporally spaced samples . Genetical Research 78 : 243 - 257 . Lande , R. 1995 . Mutation and conservation . Conservation Biology 9 : 782 - 791 . Crow , J. F. , and C. Denniston . 1988 . Inbreeding and variance effective population numbers . Evolution 42 : 482 - 495 . Guo , S. W. , and E. A. Thompson . 1992 . Performing the exact test Hardy-Weinberg proportion for multiple alleles . Biometrics 48 : 361 - 372 . Young A. G. , and G. M. Clark . 2000 . Genetics, demography, and viability of fragmented populations . Cambridge University Press , Cambridge , United Kingdom . Hanski , I. 1999 . Metapopulation ecology . Oxford University Press , New York . Wang , J. L. , and M. C. Whitlock . 2003 . Estimating effective population size and migration rates from genetic samples over space and time . Genetics 163 : 429 - 446 . Frankham , R. 1995b . Effective population size/adult population size ratios in wildlife: a review . Genetical Research 66 : 95 - 107 . Soulé , M. E. , and L. S. Mills . 1998 . Population genetics: no need to isolate genetics . Science 282 : 1658 - 1659 . 1982; 13 1995a; 29 2000; 9 1995; 76 1997; 277 1995b; 66 2004; 5 1999; 82 1979; 76 1998; 152 1994; 266 1997; 146 2001; 60 1990; 44 1990 2000 1997; 145 1987 1992; 48 1988; 42 1975; 7 1994; 73 1998; 282 2001; 98 2001; 10 2003; 163 1998; 1998 1995; 9 1991; 36 2002; 5 1993; 44 1997 1994 2004 1994; 48 1988; 241 2002 1996; 13 1999; 9 1999 1995; 86 1994; 8 2001; 82 1992; 131 1959; 1959 2002; 162 1984; 38 1999; 1999 1989; 121 2004; 13 1943; 28 1998; 149 1998; 7 2001; 78 1990; 9 1981; 98 e_1_2_7_5_1 e_1_2_7_3_1 Waples R. S. (e_1_2_7_55_1) 2002 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 Chapman D. G. (e_1_2_7_10_1) 1990 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_35_1 e_1_2_7_56_1 Hanski I. (e_1_2_7_21_1) 1999 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Hedgecock D. (e_1_2_7_22_1) 1994 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – reference: Excoffier , L. , P. E. Smouse , and J. M. Quattro . 1992 . Analysis of molecular variance inferred from metric distances among DNA haplotypes-application to human mitochondrial-DNA restriction data . Genetics 131 : 479 - 491 . – reference: Garrigan , D. , P. C. Marsh , and T. E. Dowling . 2002 . Long-term effective population size of three endangered Colorado River fishes . Animal Conservation 5 : 95 - 102 . – reference: Watterson , G. A. 1975 . On the number of segregating sites in genetical models without recombination . Theoretical Population Biology 7 : 256 - 276 . – reference: Luikart , G. , W. B. Sherwin , B. M. Steele , and F. W. Allendorf . 1998 . Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change . Molecular Ecology 7 : 963 - 974 . – reference: Rousset , F. 1997 . Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance . Genetics 145 : 1219 - 1228 . – reference: Vitousek , P. M. , H. A. Mooney , J. Lubchenco , and J. M. Melillo . 1997 . Human domination of Earth's ecosystems . Science 277 : 494 - 499 . – reference: Ballard , J. W. O. , and M. C. Whitlock . 2004 . The incomplete natural history of mitochondria . Molecular Ecology 13 : 729 - 744 . – reference: Soulé , M. E. , and L. S. Mills . 1998 . Population genetics: no need to isolate genetics . Science 282 : 1658 - 1659 . – reference: Wang , J. L. 2001 . A pseudo-likelihood method for estimating effective population size from temporally spaced samples . Genetical Research 78 : 243 - 257 . – reference: Nunney , L. , and D. R. Elam . 1994 . Estimating the effective size of conserved populations . Conservation Biology 8 : 175 - 184 . – reference: Higgins , K. , and M. Lynch . 2001 . Metapopulation extinction caused by mutation accumulation . Proceedings of the National Academy of Sciences of the United States of America 98 : 2928 - 2933 . – reference: Raymond , M. , and F. Rousset . 1995 . Genepop (version 1.2)-population-genetics software for exact tests and ecumenicism . Journal of Heredity 86 : 248 - 249 . – reference: Sivasundar , A. , E. Bermingham , and G. Orti . 2001 . Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers . Molecular Ecology 10 : 407 - 417 . – reference: Waples , R. S. , 1989 . A generalized approach for estimating effective population size from temporal changes in allele frequency . Genetics 121 : 379 - 391 . – reference: Frankham , R. 1995b . Effective population size/adult population size ratios in wildlife: a review . Genetical Research 66 : 95 - 107 . – reference: Turner , T. F. , T. E. Dowling , R. E. Broughton , and J. R. Gold . 2004 . Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae) . Conservation Genetics 5 : 279 - 281 . – reference: Jager , H. I. , J. A. Chandler , K. B. Lepla , and W. Van Winkle . 2001 . A theoretical study of river fragmentation by dams and its effects on white sturgeon populations . Environmental Biology of Fishes 60 : 347 - 361 . – reference: Lavery , S. , C. Moritz , and D. R. Fielder . 1996 . Genetic patterns suggest exponential population growth in a declining species . Molecular Biology and Evolution 13 : 1106 - 1113 . – reference: Luttrell , G. R. , A. A. Echelle , W. L. Fisher , and D. J. Eisenhour . 1999 . Declining status of two species of the Macrhybopsis aestivalis complex (Teleostei: Cyprinidae) in the Arkansas River Basin and related effects of reservoirs as barriers to dispersal . Copeia 1999 : 981 - 989 . – reference: Lande , R. 1988 . Genetics and demography in biological conservation . Science 241 : 1455 - 1460 . – reference: Platania , S. P. , 1991 . Fishes of the Rio Chama and upper Rio Grande, New Mexico, with preliminary comments on their longitudinal distribution . Southwestern Naturalist 36 : 186 - 193 . – reference: Speirs , D. C. , and W. S. C. Gurney . 2001 . Population persistence in rivers and estuaries . Ecology 82 : 1219 - 1237 . – reference: Platania , S. P. , and C. S. Altenbach . 1998 . Reproductive strategies and egg types of seven Rio Grande Basin cyprinids . Copeia 1998 : 559 - 569 . – reference: Dunham , J. B. , and B. E. Rieman . 1999 . Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics . Ecological Applications 9 : 642 - 655 . – reference: Bouzat , J. L. , H. A. Lewin , and K. N. Paige . 1998 . The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken . The American Naturalist 152 : 1 - 6 . – reference: Dynesius , M. , and C. Nilsson . 1994 . Fragmentation and flow regulation of river systems in the northern third of the world . Science 266 : 753 - 762 . – reference: Nei , M. , and F. Tajima . 1981 . Genetic drift and estimation of effective population size . Genetics 98 : 625 - 640 . – reference: Hanski , I. 1999 . Metapopulation ecology . Oxford University Press , New York . – reference: Turner , T. F. , J. P. Wares , and J. R. Gold . 2002 . Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus) . Genetics 162 : 1329 - 1339 . – reference: Hellberg , M. E. 1994 . Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans . Evolution 48 : 1829 - 1854 . – reference: Wright , S. 1943 . Isolation by distance . Genetics 28 : 139 - 156 . – reference: Benke , A. C. 1990 . A perspective on America's vanishing streams . Journal of the North American Benthological Society 9 : 77 - 88 . – reference: Lande , R. 1995 . Mutation and conservation . Conservation Biology 9 : 782 - 791 . – reference: Trevino-Robinson , D. 1959 . The ichthyofauna of the lower Rio Grande, Texas and Mexico . Copeia 1959 : 253 - 256 . – reference: Bestgen , K. R. , and S. P. Platania . 1991 . Status and conservation of the Rio Grande silvery minnow, Hybognathus amarus . Southwestern Naturalist 36 : 225 - 232 . – reference: Kuhner , M. K. , J. Yamato , and J. Felsenstein . 1998 . Maximum likelihood estimation of population growth rates based on the coalescent . Genetics 149 : 429 - 434 . – reference: Lynch , M. , and W. Gabriel . 1990 . Mutation load and the survival of small populations . Evolution 44 : 1725 - 1737 . – reference: Brown , W. M. , M. George , and A. C. Wilson . 1979 . Rapid evolution of animal mitochondrial DNA . Proceedings of the National Academy of Sciences of the United States of America 76 : 1967 - 1971 – reference: Frankham , R. 1995a . Conservation genetics . Annual Review of Genetics 29 : 305 - 327 . – reference: Westemeier R. L. , Brawn J. D. , Simpson S. A. , Esker T. L. , Jansen R. W. , Walk J. W. , Kershner E. L. , Bouzat J. L. , and K. N. Paige . 1998 . Tracking the long-term decline and recovery of an isolated population . Science 282 : 1695 - 1698 . – reference: Wang , J. L. , and M. C. Whitlock . 2003 . Estimating effective population size and migration rates from genetic samples over space and time . Genetics 163 : 429 - 446 . – reference: Diffendorfer , J. E. , M. S. Gaines , and R. D. Holt . 1995 . Habitat fragmentation and movements of three small mammals (Sigmodon, Microtus, and Peromyscus) . Ecology 76 : 827 - 839 . – reference: Sunnucks , P. , A. C. C. Wilson , L. B. Beheregaray , K. Zenger , J. French , and A. C. Taylor . 2000 . SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology . Molecular Ecology 9 : 1699 - 1710 . – reference: Whitlock , M. C. , and N. H. Barton . 1997 . The effective size of a subdivided population . Genetics 146 : 427 - 441 . – reference: Orive , M. E. 1993 . Effective population size in organisms with complex life histories . Theoretical Population Biology 44 : 316 - 340 . – reference: Crow , J. F. , and C. Denniston . 1988 . Inbreeding and variance effective population numbers . Evolution 42 : 482 - 495 . – reference: Caballero , A. 1994 . Developments in the prediction of effective population size . Heredity 73 : 657 - 679 . – reference: Guo , S. W. , and E. A. Thompson . 1992 . Performing the exact test Hardy-Weinberg proportion for multiple alleles . Biometrics 48 : 361 - 372 . – reference: Young A. G. , and G. M. Clark . 2000 . Genetics, demography, and viability of fragmented populations . Cambridge University Press , Cambridge , United Kingdom . – reference: Avise , J. C. 2000 . Phylogeography: the history and formation of species . Harvard University Press , Cambridge , Massachusetts . – reference: Weir , B. S. , and C. C. Cockerham . 1984 . Estimating F-statistics for the analysis of population structure . Evolution 38 : 1358 - 1370 . – reference: Nei , M. 1987 . Molecular evolutionary genetics . Columbia University Press , New York . – reference: Kingman , J. F. C. 1982 . The coalescent . Stochastic Processes and their Applications 13 : 235 - 248 . – reference: Wang , J. L. , and A. Caballero . 1999 . Developments in predicting the effective size of subdivided populations . Heredity 82 : 212 - 226 . – volume: 7 start-page: 256 year: 1975 end-page: 276 article-title: On the number of segregating sites in genetical models without recombination publication-title: Theoretical Population Biology – volume: 149 start-page: 429 year: 1998 end-page: 434 article-title: Maximum likelihood estimation of population growth rates based on the coalescent publication-title: Genetics – volume: 60 start-page: 347 year: 2001 end-page: 361 article-title: A theoretical study of river fragmentation by dams and its effects on white sturgeon populations publication-title: Environmental Biology of Fishes – volume: 163 start-page: 429 year: 2003 end-page: 446 article-title: Estimating effective population size and migration rates from genetic samples over space and time publication-title: Genetics – volume: 9 start-page: 1699 year: 2000 end-page: 1710 article-title: SSCP is not so difficult: the application and utility of single‐stranded conformation polymorphism in evolutionary biology and molecular ecology publication-title: Molecular Ecology – volume: 73 start-page: 657 year: 1994 end-page: 679 article-title: Developments in the prediction of effective population size publication-title: Heredity – volume: 131 start-page: 479 year: 1992 end-page: 491 article-title: Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial‐DNA restriction data publication-title: Genetics – volume: 98 start-page: 2928 year: 2001 end-page: 2933 article-title: Metapopulation extinction caused by mutation accumulation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 162 start-page: 1329 year: 2002 end-page: 1339 article-title: Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine‐dependent marine fish ( ) publication-title: Genetics – volume: 86 start-page: 248 year: 1995 end-page: 249 article-title: Genepop (version 1.2)–population‐genetics software for exact tests and ecumenicism publication-title: Journal of Heredity – volume: 76 start-page: 1967 year: 1979 end-page: 1971 article-title: Rapid evolution of animal mitochondrial DNA publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 82 start-page: 1219 year: 2001 end-page: 1237 article-title: Population persistence in rivers and estuaries publication-title: Ecology – volume: 7 start-page: 963 year: 1998 end-page: 974 article-title: Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change publication-title: Molecular Ecology – volume: 282 start-page: 1658 year: 1998 end-page: 1659 article-title: Population genetics: no need to isolate genetics publication-title: Science – volume: 121 start-page: 379 year: 1989 end-page: 391 article-title: A generalized approach for estimating effective population size from temporal changes in allele frequency publication-title: Genetics – start-page: 81 year: 1990 end-page: 92 – volume: 9 start-page: 77 year: 1990 end-page: 88 article-title: A perspective on America's vanishing streams publication-title: Journal of the North American Benthological Society – volume: 266 start-page: 753 year: 1994 end-page: 762 article-title: Fragmentation and flow regulation of river systems in the northern third of the world publication-title: Science – volume: 36 start-page: 225 year: 1991 end-page: 232 article-title: Status and conservation of the Rio Grande silvery minnow, publication-title: Southwestern Naturalist – volume: 48 start-page: 1829 year: 1994 end-page: 1854 article-title: Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, publication-title: Evolution – volume: 78 start-page: 243 year: 2001 end-page: 257 article-title: A pseudo‐likelihood method for estimating effective population size from temporally spaced samples publication-title: Genetical Research – volume: 277 start-page: 494 year: 1997 end-page: 499 article-title: Human domination of Earth's ecosystems publication-title: Science – volume: 38 start-page: 1358 year: 1984 end-page: 1370 article-title: Estimating F‐statistics for the analysis of population structure publication-title: Evolution – volume: 82 start-page: 212 year: 1999 end-page: 226 article-title: Developments in predicting the effective size of subdivided populations publication-title: Heredity – year: 2004 – volume: 36 start-page: 186 year: 1991 end-page: 193 article-title: Fishes of the Rio Chama and upper Rio Grande, New Mexico, with preliminary comments on their longitudinal distribution publication-title: Southwestern Naturalist – volume: 145 start-page: 1219 year: 1997 end-page: 1228 article-title: Genetic differentiation and estimation of gene flow from F‐statistics under isolation by distance publication-title: Genetics – volume: 152 start-page: 1 year: 1998 end-page: 6 article-title: The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken publication-title: The American Naturalist – volume: 13 start-page: 235 year: 1982 end-page: 248 article-title: The coalescent publication-title: Stochastic Processes and their Applications – volume: 1998 start-page: 559 year: 1998 end-page: 569 article-title: Reproductive strategies and egg types of seven Rio Grande Basin cyprinids publication-title: Copeia – start-page: 122 year: 1994 end-page: 134 – volume: 42 start-page: 482 year: 1988 end-page: 495 article-title: Inbreeding and variance effective population numbers publication-title: Evolution – start-page: 113 year: 1997 end-page: 126 – volume: 29 start-page: 305 year: 1995a end-page: 327 article-title: Conservation genetics publication-title: Annual Review of Genetics – volume: 44 start-page: 1725 year: 1990 end-page: 1737 article-title: Mutation load and the survival of small populations publication-title: Evolution – volume: 5 start-page: 279 year: 2004 end-page: 281 article-title: Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae) publication-title: Conservation Genetics – year: 1987 – year: 2000 – volume: 1999 start-page: 981 year: 1999 end-page: 989 article-title: Declining status of two species of the complex (Teleostei: Cyprinidae) in the Arkansas River Basin and related effects of reservoirs as barriers to dispersal publication-title: Copeia – volume: 9 start-page: 642 year: 1999 end-page: 655 article-title: Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics publication-title: Ecological Applications – volume: 241 start-page: 1455 year: 1988 end-page: 1460 article-title: Genetics and demography in biological conservation publication-title: Science – start-page: 147 year: 2002 end-page: 168 – volume: 8 start-page: 175 year: 1994 end-page: 184 article-title: Estimating the effective size of conserved populations publication-title: Conservation Biology – volume: 10 start-page: 407 year: 2001 end-page: 417 article-title: Population structure and biogeography of migratory freshwater fishes ( : Characiformes) in major South American rivers publication-title: Molecular Ecology – volume: 76 start-page: 827 year: 1995 end-page: 839 article-title: Habitat fragmentation and movements of three small mammals ( , , and ) publication-title: Ecology – volume: 44 start-page: 316 year: 1993 end-page: 340 article-title: Effective population size in organisms with complex life histories publication-title: Theoretical Population Biology – volume: 146 start-page: 427 year: 1997 end-page: 441 article-title: The effective size of a subdivided population publication-title: Genetics – volume: 13 start-page: 1106 year: 1996 end-page: 1113 article-title: Genetic patterns suggest exponential population growth in a declining species publication-title: Molecular Biology and Evolution – volume: 66 start-page: 95 year: 1995b end-page: 107 article-title: Effective population size/adult population size ratios in wildlife: a review publication-title: Genetical Research – volume: 48 start-page: 361 year: 1992 end-page: 372 article-title: Performing the exact test Hardy‐Weinberg proportion for multiple alleles publication-title: Biometrics – volume: 1959 start-page: 253 year: 1959 end-page: 256 article-title: The ichthyofauna of the lower Rio Grande, Texas and Mexico publication-title: Copeia – volume: 5 start-page: 95 year: 2002 end-page: 102 article-title: Long‐term effective population size of three endangered Colorado River fishes publication-title: Animal Conservation – volume: 282 start-page: 1695 year: 1998 end-page: 1698 article-title: Tracking the long‐term decline and recovery of an isolated population publication-title: Science – volume: 13 start-page: 729 year: 2004 end-page: 744 article-title: The incomplete natural history of mitochondria publication-title: Molecular Ecology – volume: 98 start-page: 625 year: 1981 end-page: 640 article-title: Genetic drift and estimation of effective population size publication-title: Genetics – volume: 9 start-page: 782 year: 1995 end-page: 791 article-title: Mutation and conservation publication-title: Conservation Biology – volume: 28 start-page: 139 year: 1943 end-page: 156 article-title: Isolation by distance publication-title: Genetics – year: 1999 – ident: e_1_2_7_11_1 doi: 10.1111/j.1558-5646.1988.tb04154.x – start-page: 122 volume-title: Genetics and evolution of aquatic organisms year: 1994 ident: e_1_2_7_22_1 – ident: e_1_2_7_3_1 doi: 10.1046/j.1365-294X.2003.02063.x – ident: e_1_2_7_6_1 doi: 10.2307/3671925 – ident: e_1_2_7_2_1 doi: 10.1046/j.1365-294X.2003.01731.x – ident: e_1_2_7_18_1 doi: 10.1017/S0016672300034455 – ident: e_1_2_7_17_1 doi: 10.1146/annurev.ge.29.120195.001513 – ident: e_1_2_7_44_1 doi: 10.1126/science.282.5394.1658 – ident: e_1_2_7_58_1 doi: 10.1126/science.282.5394.1695 – start-page: 147 volume-title: Population viability analysis year: 2002 ident: e_1_2_7_55_1 – ident: e_1_2_7_28_1 doi: 10.1126/science.3420403 – ident: e_1_2_7_29_1 doi: 10.1046/j.1523-1739.1995.09040782.x – ident: e_1_2_7_9_1 doi: 10.1038/hdy.1994.174 – ident: e_1_2_7_13_1 – ident: e_1_2_7_48_1 doi: 10.1093/genetics/162.3.1329 – ident: e_1_2_7_5_1 doi: 10.1016/B978-012417540-2/50009-9 – ident: e_1_2_7_37_1 doi: 10.1006/tpbi.1993.1031 – ident: e_1_2_7_33_1 doi: 10.1111/j.1558-5646.1990.tb05244.x – ident: e_1_2_7_38_1 doi: 10.2307/3671919 – ident: e_1_2_7_35_1 doi: 10.1093/genetics/98.3.625 – ident: e_1_2_7_31_1 doi: 10.1046/j.1365-294x.1998.00414.x – ident: e_1_2_7_36_1 doi: 10.1046/j.1523-1739.1994.08010175.x – ident: e_1_2_7_8_1 doi: 10.1073/pnas.76.4.1967 – ident: e_1_2_7_23_1 doi: 10.1111/j.1558-5646.1994.tb02218.x – ident: e_1_2_7_26_1 doi: 10.1016/0304-4149(82)90011-4 – ident: e_1_2_7_52_1 doi: 10.1046/j.1365-2540.1999.00467.x – ident: e_1_2_7_4_1 doi: 10.2307/1467936 – ident: e_1_2_7_14_1 doi: 10.1890/1051-0761(1999)009[0642:MSOBTI]2.0.CO;2 – start-page: 81 volume-title: Writing for fishery journals year: 1990 ident: e_1_2_7_10_1 – ident: e_1_2_7_59_1 doi: 10.1093/genetics/146.1.427 – ident: e_1_2_7_50_1 doi: 10.1126/science.277.5325.494 – ident: e_1_2_7_60_1 doi: 10.3732/ajb.91.5.682 – volume-title: Metapopulation ecology year: 1999 ident: e_1_2_7_21_1 doi: 10.1093/oso/9780198540663.001.0001 – ident: e_1_2_7_27_1 doi: 10.1093/genetics/149.1.429 – ident: e_1_2_7_39_1 doi: 10.2307/1447786 – ident: e_1_2_7_56_1 doi: 10.1016/0040-5809(75)90020-9 – ident: e_1_2_7_16_1 doi: 10.1093/genetics/131.2.479 – ident: e_1_2_7_53_1 doi: 10.1111/j.1095-8649.2007.01398.x – ident: e_1_2_7_19_1 doi: 10.1017/S1367943002002135 – ident: e_1_2_7_12_1 doi: 10.2307/1939348 – ident: e_1_2_7_30_1 doi: 10.1093/oxfordjournals.molbev.a025672 – ident: e_1_2_7_40_1 doi: 10.1093/oxfordjournals.jhered.a111573 – ident: e_1_2_7_32_1 doi: 10.2307/1447973 – ident: e_1_2_7_43_1 doi: 10.1046/j.1365-294x.2001.01194.x – ident: e_1_2_7_49_1 doi: 10.1023/B:COGE.0000029998.11426.ab – ident: e_1_2_7_47_1 doi: 10.2307/1440404 – ident: e_1_2_7_20_1 doi: 10.2307/2532296 – ident: e_1_2_7_24_1 doi: 10.1073/pnas.031358898 – ident: e_1_2_7_46_1 doi: 10.1046/j.1365-294x.2000.01084.x – ident: e_1_2_7_51_1 doi: 10.1017/S0016672301005286 – ident: e_1_2_7_61_1 doi: 10.1017/CBO9780511623448 – ident: e_1_2_7_15_1 doi: 10.1126/science.266.5186.753 – ident: e_1_2_7_34_1 doi: 10.1111/j.1365-294X.2006.02908.x – ident: e_1_2_7_41_1 doi: 10.1111/j.1365-294X.2005.02568.x – ident: e_1_2_7_42_1 – ident: e_1_2_7_7_1 doi: 10.1086/286145 – ident: e_1_2_7_25_1 doi: 10.1023/A:1011036127663 – ident: e_1_2_7_45_1 doi: 10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2 – ident: e_1_2_7_54_1 doi: 10.1093/genetics/121.2.379 – ident: e_1_2_7_57_1 doi: 10.1111/j.1558-5646.1984.tb05657.x |
SSID | ssj0009514 |
Score | 2.1695843 |
Snippet | We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered... : We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered... |
SourceID | proquest pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1138 |
SubjectTerms | adults analytical methods Animal and plant ecology Animal populations Animal, plant and microbial ecology Applied ecology Biological and medical sciences Conservation biology Conservation, protection and management of environment and wildlife Demography Deoxyribonucleic acid diversidad genética Diversion dams DNA downstream transport Ecological genetics eggs Emigration Endangered & extinct species Evolutionary genetics Fish fragmentación del río Fresh water ecosystems Freshwater Fundamental and applied biological sciences. Psychology gene flow Genetic diversity Genetic structure genetic variation Habitat fragmentation Habitats Hybognathus amarus Larvae Life history microsatellite repeats Minnows Mitochondrial DNA mortality Parks, reserves, wildlife conservation. Endangered species: population survey and restocking Population estimates Population genetics Population number Population size Reproduction river fragmentation Rivers río abajo transporte Spawning Synecology variance |
Title | Effects of Habitat Fragmentation on Effective Population Size in the Endangered Rio Grande Silvery Minnow |
URI | https://api.istex.fr/ark:/67375/WNG-7QPBZDRM-G/fulltext.pdf https://www.jstor.org/stable/3591299 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1523-1739.2005.00081.x https://www.proquest.com/docview/201456786 https://www.proquest.com/docview/1501359657 https://www.proquest.com/docview/17380109 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamISReuA4RBsNIiLeU5mI7fmSja0HaGIWJiRcrdhwUDRLUi1j36znHTkI7gTQhpD5Uit3GJ8fH33E-f4eQFzrLeSGSKCxiwcI0zyEOyjILYS02mqUlYgBkWxzzyWn67oydbZFJdxbG60P0G244M1y8xgme6_mrNSYOpFBhJPxpE9wYgcVtgGgSiVuIjqbxmvquF_mGdC_MMnmF0vPHH9pYp26gyS86yiLyJ_M5mLD0tS82wOk6xHVr1OEdUnWj89SU88FyoQfm8orw4_8Y_l1yuwWy9LX3vHtky9b3yU1f2nIF30ZODnv1gFReIHlOm5JOco1n2ijA5a_f21NPNYWPbwORl570FcXox-rS0qqmgFHpqC7cCWVb0GnV0PEMN7-hBRK7V_Soquvm5w45PRx9OpiEbYGH0KQykaE2kM3wghWmZFjvA6KLHBqOivcys4Bs8sJaK2TGWYzcHVakmkkWGxMJA5EjeUi266a2jwi1w1iWvGRwCTIqw3VixVADeE2EtQDRAiK6x6lMq36ORTi-qbUsCEyq0KRYm5MpZ1J1EZCo7_nDK4Bco89L5zF9h3x2jgw6wdTn47ESH072v7yZHqlxQHacS_UNEyYBgcmA7G242O9_Fi7Kwnh2O59TbdSZwy1EgIdFxgPyvL8K4QLfAeW1bZZzuF_A_ExyJgLy7G9tRJLhG9OAcOeB1x62Oni__zaN5ON_7bhLbjlpXEewfEK2F7OlfQqgb6H33IT-BVzDQ9k |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Habitat+Fragmentation+on+Effective+Population+Size+in+the+Endangered+Rio+Grande+Silvery+Minnow&rft.jtitle=Conservation+biology&rft.au=AL%C3%92%2C+DOMINIQUE&rft.au=TURNER%2C+THOMAS+F.&rft.date=2005-08-01&rft.pub=Blackwell+Publishing%2C+Inc&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=19&rft.issue=4&rft.spage=1138&rft.epage=1148&rft_id=info:doi/10.1111%2Fj.1523-1739.2005.00081.x&rft.externalDocID=COBI419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |