Effects of Habitat Fragmentation on Effective Population Size in the Endangered Rio Grande Silvery Minnow

We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over...

Full description

Saved in:
Bibliographic Details
Published inConservation biology Vol. 19; no. 4; pp. 1138 - 1148
Main Authors ALÒ, DOMINIQUE, TURNER, THOMAS F.
Format Journal Article
LanguageEnglish
Published 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK Blackwell Publishing, Inc 01.08.2005
Blackwell Science
Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0888-8892
1523-1739
DOI10.1111/j.1523-1739.2005.00081.x

Cover

Loading…
Abstract We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size (NeV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers$(N_{eV}/N)$was$\sim 0.001$during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (NeI) that ranged between 105and 106. We propose that disparity between contemporary and historical estimates of Neand low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Neto critically low values over ecological time.
AbstractList We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size (N sub(eV)) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers (N sub(eV)-N) was similar to 0.001 during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (N sub(eI) ) that ranged between 10 super(5) and 10 super(6). We propose that disparity between contemporary and historical estimates of N sub(e) and low contemporary N sub(e)-N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced N sub(e) to critically low values over ecological time.Original Abstract: Estimamos los patrones espaciales y temporales de diversidad genetica para evaluar los efectos de la fragmentacion del rio sobre poblaciones remanentes del pez Hybognathus amarus federalmente en peligro. El analisis de ADN microsatelite y mitocondrial detecto escasa estructura genetica espacial en su rango de distribucion actual, lo que es consistente con un alto flujo genico a pesar de la fragmentacion por presas. Sin embargo, los analisis de probabilidad maxima de datos geneticos temporales indicaron que el tamano poblacional efectivo actual (N sub(eV)) de la poblacion mas grande era 78 y la relacion tamano efectivo - numero de adultos (N sub(eV)-N) fue similar to 0.001 durante el periodo de estudio (1999 - 2001) Metodos analiticos coalescentes proporcionaron una estimacion del tamano efectivo historico (N sub(eI)) (la fragmentacion del rio termino en 1975) que vario entre 10 super(5) y 10 super(6). Proponemos que la disparidad entre las estimaciones historicas y contemporaneas de N sub(e) y la baja N sub(e)-N contemporanea resultan de cambios recientes en la demografia relacionados con la fragmentacion del rio. Hybognathus amarus produce huevos y larvas pelagicas que son transportadas rio abajo a traves de presas de desvio. Esta caracteristica de la historia de vida resulta en fuertes perdidas de esfuerzo reproductivo por emigracion y mortalidad, y en una varianza extremadamente amplia en el exito reproductivo entre individuos y sitios de desove. La interaccion de la historia de vida pelagica y la fragmentacion del rio ha alterado la dinamica demografica y genetica de las poblaciones remanentes y ha reducido a N sub(e) a valores criticamente bajos en tiempo ecologico.
We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size ( NeV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers ( NeV/N) was ~ 0.001 during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size ( NeI ) that ranged between 105 and 106. We propose that disparity between contemporary and historical estimates of Neand low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Neto critically low values over ecological time. [PUBLICATION ABSTRACT]
:  We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum‐likelihood analysis of temporal genetic data indicated, however, that present‐day effective population size (NeV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers (NeV/N) was ∼ 0.001 during the study period (1999 to 2001). Coalescent‐based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (NeI ) that ranged between 105 and 106. We propose that disparity between contemporary and historical estimates of Neand low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life‐history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Neto critically low values over ecological time. Resumen:  Estimamos los patrones espaciales y temporales de diversidad genética para evaluar los efectos de la fragmentación del río sobre poblaciones remanentes del pez Hybognathus amarus federalmente en peligro. El análisis de ADN microsatélite y mitocondrial detectó escasa estructura genética espacial en su rango de distribución actual, lo que es consistente con un alto flujo génico a pesar de la fragmentación por presas. Sin embargo, los análisis de probabilidad máxima de datos genéticos temporales indicaron que el tamaño poblacional efectivo actual (NeV) de la población más grande era 78 y la relación tamaño efectivo – número de adultos (NeV/N) fue ∼ 0.001 durante el período de estudio (1999 – 2001) Métodos analíticos coalescentes proporcionaron una estimación del tamaño efectivo histórico (NeI ) (la fragmentación del río terminó en 1975) que varió entre 105 y 106. Proponemos que la disparidad entre las estimaciones históricas y contemporáneas de Ney la baja Ne/N contemporánea resultan de cambios recientes en la demografía relacionados con la fragmentación del río. Hybognathus amarus produce huevos y larvas pelágicas que son transportadas río abajo a través de presas de desvío. Esta característica de la historia de vida resulta en fuertes pérdidas de esfuerzo reproductivo por emigración y mortalidad, y en una varianza extremadamente amplia en el éxito reproductivo entre individuos y sitios de desove. La interacción de la historia de vida pelágica y la fragmentación del río ha alterado la dinámica demográfica y genética de las poblaciones remanentes y ha reducido a Nea valores críticamente bajos en tiempo ecológico.
We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum‐likelihood analysis of temporal genetic data indicated, however, that present‐day effective population size (NₑV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers (NₑV/N) was ∼ 0.001 during the study period (1999 to 2001). Coalescent‐based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (NₑI ) that ranged between 10⁵ and 10⁶. We propose that disparity between contemporary and historical estimates of Nₑand low contemporary Nₑ/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life‐history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Nₑto critically low values over ecological time.
We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow (Hybognathus amarus). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum-likelihood analysis of temporal genetic data indicated, however, that present-day effective population size (NeV) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers$(N_{eV}/N)$was$\sim 0.001$during the study period (1999 to 2001). Coalescent-based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size (NeI) that ranged between 105and 106. We propose that disparity between contemporary and historical estimates of Neand low contemporary Ne/N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life-history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced Neto critically low values over ecological time.
We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered Rio Grande silvery minnow ( Hybognathus amarus ). Analysis of microsatellite and mitochondrial DNA detected little spatial genetic structure over the current geographic range, consistent with high gene flow despite fragmentation by dams. Maximum‐likelihood analysis of temporal genetic data indicated, however, that present‐day effective population size ( N eV ) of the largest extant population of this species was 78 and the ratio of effective size to adult numbers ( N eV /N ) was ∼ 0.001 during the study period (1999 to 2001). Coalescent‐based analytical methods provided an estimate of historical (river fragmentation was completed in 1975) effective size ( N eI  ) that ranged between 10 5 and 10 6 . We propose that disparity between contemporary and historical estimates of N e and low contemporary N e /N result from recent changes in demography related to river fragmentation. Rio Grande silvery minnows produce pelagic eggs and larvae subject to downstream transport through diversion dams. This life‐history feature results in heavy losses of yearly reproductive effort to emigration and mortality, and extremely large variance in reproductive success among individuals and spawning localities. Interaction of pelagic early life history and river fragmentation has altered demographic and genetic dynamics of remnant populations and reduced N e to critically low values over ecological time.
Author ALÒ, DOMINIQUE
TURNER, THOMAS F.
Author_xml – sequence: 1
  givenname: DOMINIQUE
  surname: ALÒ
  fullname: ALÒ, DOMINIQUE
  organization: Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, U.S.A
– sequence: 2
  givenname: THOMAS F.
  surname: TURNER
  fullname: TURNER, THOMAS F.
  email: turnert@unm.edu
  organization: Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17042573$$DView record in Pascal Francis
BookMark eNqNkc1uEzEUhUeoSKSFN2BhIYHYTGqP_xcg0ZCmlVpaCgiJjeV4PMXpxA72pE369HiYKosuAMuSLd_vHNvn7hd7PnhbFADBMcrjcDFGtMIl4liOKwjpGEIo0HjzpBjtCnvFCAohSiFk9azYT2mRIUkRGRVu2jTWdAmEBpzouet0B46jvl5an7cueJDnwLhbCy7Dat0O51_cvQXOg-6nBVNfa39to63BlQtgFrWvbSbaWxu34Nx5H-6eF08b3Sb74mE9KL4dT79OTsqzi9np5MNZaYjEspwbyQmraW0aKjAhAlcSGkYYI1JYjLiurbVcCkYrziCiNZlTSStjEDeSYXxQvBl8VzH8WtvUqaVLxrat9jask8qBCIigzODbv4MUIkwlozyjrx6hi7COPn9DVRARyrhgGXr9AOlkdNvkEIxLahXdUsdtvheSKntl7v3AmRhSirZRxg1Zd1G7ViGo-s6qheob2L9Xqr6z6k9n1SYbiEcGuzv-LX03SO9ca7f_rVOTi6NTgvrMXg76RepC3OlzTKiSfbkcyi51drMr63ijGMecqu-fZop_vjz68fHqXM3wbzr3008
CODEN CBIOEF
CitedBy_id crossref_primary_10_1007_s10592_012_0346_x
crossref_primary_10_1111_j_1365_2427_2011_02682_x
crossref_primary_10_1007_s10592_006_9181_2
crossref_primary_10_1111_mec_12321
crossref_primary_10_1894_F01_MP_05_1
crossref_primary_10_1029_2019WR026080
crossref_primary_10_1111_eva_12941
crossref_primary_10_1016_j_ecolmodel_2013_02_021
crossref_primary_10_1111_mec_13936
crossref_primary_10_1111_jfb_12892
crossref_primary_10_1111_j_1365_294X_2007_03453_x
crossref_primary_10_1080_02755947_2017_1386144
crossref_primary_10_1093_jmammal_gyv061
crossref_primary_10_1111_faf_12254
crossref_primary_10_1002_aqc_3425
crossref_primary_10_1002_ece3_3229
crossref_primary_10_1007_s00338_014_1157_y
crossref_primary_10_1002_tafs_10474
crossref_primary_10_1111_faf_12054
crossref_primary_10_1002_tafs_10398
crossref_primary_10_3390_d12040164
crossref_primary_10_1002_2017WR021919
crossref_primary_10_1073_pnas_1912776117
crossref_primary_10_1139_cjfas_2021_0343
crossref_primary_10_1080_02755947_2011_568864
crossref_primary_10_1093_jhered_esu008
crossref_primary_10_1643_CI_06_120
crossref_primary_10_1098_rspb_2006_3677
crossref_primary_10_3398_042_008_0101
crossref_primary_10_1007_s10641_016_0494_9
crossref_primary_10_1111_gcb_12578
crossref_primary_10_1111_eva_12255
crossref_primary_10_1111_j_1752_4571_2011_00235_x
crossref_primary_10_1111_nyas_12853
crossref_primary_10_1016_j_ecolind_2023_111071
crossref_primary_10_1007_s10592_012_0374_6
crossref_primary_10_1061__ASCE_WR_1943_5452_0001335
crossref_primary_10_1007_s10592_015_0730_4
crossref_primary_10_1111_j_1365_2400_2011_00832_x
crossref_primary_10_1080_02755947_2012_681013
crossref_primary_10_1111_j_1095_8649_2008_02048_x
crossref_primary_10_1002_tafs_10362
crossref_primary_10_1111_j_1365_294X_2010_04695_x
crossref_primary_10_1643_CE_07_002
crossref_primary_10_1002_rra_1454
crossref_primary_10_1656_045_027_0411
crossref_primary_10_1890_06_1252_1
crossref_primary_10_1577_M08_248_1
crossref_primary_10_1007_s10592_013_0548_x
crossref_primary_10_1111_fwb_12079
crossref_primary_10_1139_cjfas_2016_0238
crossref_primary_10_1139_cjz_2012_0177
crossref_primary_10_1002_rra_3118
crossref_primary_10_1111_cobi_14154
crossref_primary_10_1111_fwb_13607
crossref_primary_10_1002_wat2_1565
crossref_primary_10_1080_03632415_2011_597666
crossref_primary_10_1093_biolinnean_blae081
crossref_primary_10_1007_s10528_009_9325_4
crossref_primary_10_1080_00028487_2014_952449
crossref_primary_10_1139_A09_008
crossref_primary_10_1111_j_1600_0633_2011_00485_x
crossref_primary_10_1007_s10592_011_0235_8
crossref_primary_10_1016_j_ecolind_2017_03_053
crossref_primary_10_1007_s10641_017_0591_4
crossref_primary_10_1111_j_1095_8649_2007_01396_x
crossref_primary_10_1007_s10641_020_00983_8
crossref_primary_10_1002_rra_2712
crossref_primary_10_1016_j_ecolind_2023_111136
crossref_primary_10_1111_mec_12970
crossref_primary_10_1643_i2023089
crossref_primary_10_1007_s11160_015_9395_9
crossref_primary_10_3390_su11102875
crossref_primary_10_1007_s10530_012_0213_1
crossref_primary_10_1061__ASCE_WR_1943_5452_0001511
crossref_primary_10_1577_T07_060_1
crossref_primary_10_1111_j_1600_0633_2009_00392_x
crossref_primary_10_1080_10641260500341544
crossref_primary_10_1002_ece3_329
crossref_primary_10_1086_701598
crossref_primary_10_1016_j_oneear_2024_05_009
crossref_primary_10_1111_j_1752_4571_2009_00110_x
crossref_primary_10_1656_058_019_0202
crossref_primary_10_1080_00028487_2012_670184
crossref_primary_10_1186_s40462_024_00490_w
crossref_primary_10_3732_ajb_1100021
crossref_primary_10_1894_0038_4909_64_1_31
crossref_primary_10_1016_j_fishres_2023_106608
crossref_primary_10_1111_j_1365_2427_2008_02030_x
crossref_primary_10_1016_j_gene_2023_148000
crossref_primary_10_7717_peerj_1694
crossref_primary_10_7717_peerj_6149
crossref_primary_10_1007_s00227_022_04149_1
Cites_doi 10.1111/j.1558-5646.1988.tb04154.x
10.1046/j.1365-294X.2003.02063.x
10.2307/3671925
10.1046/j.1365-294X.2003.01731.x
10.1017/S0016672300034455
10.1146/annurev.ge.29.120195.001513
10.1126/science.282.5394.1658
10.1126/science.282.5394.1695
10.1126/science.3420403
10.1046/j.1523-1739.1995.09040782.x
10.1038/hdy.1994.174
10.1093/genetics/162.3.1329
10.1016/B978-012417540-2/50009-9
10.1006/tpbi.1993.1031
10.1111/j.1558-5646.1990.tb05244.x
10.2307/3671919
10.1093/genetics/98.3.625
10.1046/j.1365-294x.1998.00414.x
10.1046/j.1523-1739.1994.08010175.x
10.1073/pnas.76.4.1967
10.1111/j.1558-5646.1994.tb02218.x
10.1016/0304-4149(82)90011-4
10.1046/j.1365-2540.1999.00467.x
10.2307/1467936
10.1890/1051-0761(1999)009[0642:MSOBTI]2.0.CO;2
10.1093/genetics/146.1.427
10.1126/science.277.5325.494
10.3732/ajb.91.5.682
10.1093/oso/9780198540663.001.0001
10.1093/genetics/149.1.429
10.2307/1447786
10.1016/0040-5809(75)90020-9
10.1093/genetics/131.2.479
10.1111/j.1095-8649.2007.01398.x
10.1017/S1367943002002135
10.2307/1939348
10.1093/oxfordjournals.molbev.a025672
10.1093/oxfordjournals.jhered.a111573
10.2307/1447973
10.1046/j.1365-294x.2001.01194.x
10.1023/B:COGE.0000029998.11426.ab
10.2307/1440404
10.2307/2532296
10.1073/pnas.031358898
10.1046/j.1365-294x.2000.01084.x
10.1017/S0016672301005286
10.1017/CBO9780511623448
10.1126/science.266.5186.753
10.1111/j.1365-294X.2006.02908.x
10.1111/j.1365-294X.2005.02568.x
10.1086/286145
10.1023/A:1011036127663
10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
10.1093/genetics/121.2.379
10.1111/j.1558-5646.1984.tb05657.x
ContentType Journal Article
Copyright Copyright 2005 Society for Conservation Biology
2005 Society for Conservation Biology
2005 INIST-CNRS
Copyright_xml – notice: Copyright 2005 Society for Conservation Biology
– notice: 2005 Society for Conservation Biology
– notice: 2005 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7S9
L.6
H97
DOI 10.1111/j.1523-1739.2005.00081.x
DatabaseName Istex
CrossRef
Pascal-Francis
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

AGRICOLA

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 1148
ExternalDocumentID 893288131
17042573
10_1111_j_1523_1739_2005_00081_x
COBI419
3591299
ark_67375_WNG_7QPBZDRM_G
Genre article
Feature
GeographicLocations Rio Grande
USA, New Mexico
Brazil, Rio Grande do Sul, Rio Grande
GeographicLocations_xml – name: Rio Grande
– name: Brazil, Rio Grande do Sul, Rio Grande
– name: USA, New Mexico
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACPVT
ACSCC
ACSTJ
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADUKH
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGUYK
AHBTC
AHXOZ
AI.
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SAMSI
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
ADXHL
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
-
02
08R
0R
31
3N
4
AAJUZ
AAPBV
ABCVL
ABFLS
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
ADZLD
AESBF
AFFDN
AFVGU
AGJLS
AIRJO
CWIXF
DWIUU
DZ
EQZMY
GA
HF
HZ
IA
IPNFZ
KM
NF
P4A
PQEST
RIG
UMP
WT
Y3
AAYXX
AGHNM
CITATION
IQODW
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7S9
L.6
H97
ID FETCH-LOGICAL-c4939-bc9746d5dcf5834483290c6466498e317adeee79865276015d4b5952cc17c9633
IEDL.DBID DR2
ISSN 0888-8892
IngestDate Fri Jul 11 11:21:38 EDT 2025
Fri Jul 11 18:29:36 EDT 2025
Fri Jul 25 10:45:16 EDT 2025
Mon Jul 21 09:13:56 EDT 2025
Tue Jul 01 02:25:05 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Sat Jul 09 15:13:05 EDT 2022
Thu Jul 03 21:31:56 EDT 2025
Wed Oct 30 09:58:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Endangered species
downstream transport
Population number
Hybognathus amarus
Genetic diversity
Rivers
Biodiversity
Fragmentation
Freshwater environment
Vertebrata
Pisces
river fragmentation
Phoxinus phoxinus
Habitat
Transport
Downstream
Environmental protection
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4939-bc9746d5dcf5834483290c6466498e317adeee79865276015d4b5952cc17c9633
Notes ark:/67375/WNG-7QPBZDRM-G
ArticleID:COBI419
istex:9612E0DCE0030B12D5EDF860DF86CF370CDEB109
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 201456786
PQPubID 36794
PageCount 11
ParticipantIDs proquest_miscellaneous_17380109
proquest_miscellaneous_1501359657
proquest_journals_201456786
pascalfrancis_primary_17042573
crossref_citationtrail_10_1111_j_1523_1739_2005_00081_x
crossref_primary_10_1111_j_1523_1739_2005_00081_x
wiley_primary_10_1111_j_1523_1739_2005_00081_x_COBI419
jstor_primary_3591299
istex_primary_ark_67375_WNG_7QPBZDRM_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2005
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: August 2005
PublicationDecade 2000
PublicationPlace 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK
PublicationPlace_xml – name: 350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK
– name: Malden, MA
– name: Washington
PublicationTitle Conservation biology
PublicationYear 2005
Publisher Blackwell Publishing, Inc
Blackwell Science
Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing, Inc
– name: Blackwell Science
– name: Blackwell
– name: Blackwell Publishing Ltd
References Kingman , J. F. C. 1982 . The coalescent . Stochastic Processes and their Applications 13 : 235 - 248 .
Lande , R. 1988 . Genetics and demography in biological conservation . Science 241 : 1455 - 1460 .
Lavery , S. , C. Moritz , and D. R. Fielder . 1996 . Genetic patterns suggest exponential population growth in a declining species . Molecular Biology and Evolution 13 : 1106 - 1113 .
Kuhner , M. K. , J. Yamato , and J. Felsenstein . 1998 . Maximum likelihood estimation of population growth rates based on the coalescent . Genetics 149 : 429 - 434 .
Speirs , D. C. , and W. S. C. Gurney . 2001 . Population persistence in rivers and estuaries . Ecology 82 : 1219 - 1237 .
Higgins , K. , and M. Lynch . 2001 . Metapopulation extinction caused by mutation accumulation . Proceedings of the National Academy of Sciences of the United States of America 98 : 2928 - 2933 .
Turner , T. F. , J. P. Wares , and J. R. Gold . 2002 . Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus) . Genetics 162 : 1329 - 1339 .
Weir , B. S. , and C. C. Cockerham . 1984 . Estimating F-statistics for the analysis of population structure . Evolution 38 : 1358 - 1370 .
Dunham , J. B. , and B. E. Rieman . 1999 . Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics . Ecological Applications 9 : 642 - 655 .
Westemeier R. L. , Brawn J. D. , Simpson S. A. , Esker T. L. , Jansen R. W. , Walk J. W. , Kershner E. L. , Bouzat J. L. , and K. N. Paige . 1998 . Tracking the long-term decline and recovery of an isolated population . Science 282 : 1695 - 1698 .
Luttrell , G. R. , A. A. Echelle , W. L. Fisher , and D. J. Eisenhour . 1999 . Declining status of two species of the Macrhybopsis aestivalis complex (Teleostei: Cyprinidae) in the Arkansas River Basin and related effects of reservoirs as barriers to dispersal . Copeia 1999 : 981 - 989 .
Avise , J. C. 2000 . Phylogeography: the history and formation of species . Harvard University Press , Cambridge , Massachusetts .
Sunnucks , P. , A. C. C. Wilson , L. B. Beheregaray , K. Zenger , J. French , and A. C. Taylor . 2000 . SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology . Molecular Ecology 9 : 1699 - 1710 .
Nei , M. , and F. Tajima . 1981 . Genetic drift and estimation of effective population size . Genetics 98 : 625 - 640 .
Whitlock , M. C. , and N. H. Barton . 1997 . The effective size of a subdivided population . Genetics 146 : 427 - 441 .
Platania , S. P. , and C. S. Altenbach . 1998 . Reproductive strategies and egg types of seven Rio Grande Basin cyprinids . Copeia 1998 : 559 - 569 .
Raymond , M. , and F. Rousset . 1995 . Genepop (version 1.2)-population-genetics software for exact tests and ecumenicism . Journal of Heredity 86 : 248 - 249 .
Waples , R. S. , 1989 . A generalized approach for estimating effective population size from temporal changes in allele frequency . Genetics 121 : 379 - 391 .
Benke , A. C. 1990 . A perspective on America's vanishing streams . Journal of the North American Benthological Society 9 : 77 - 88 .
Bestgen , K. R. , and S. P. Platania . 1991 . Status and conservation of the Rio Grande silvery minnow, Hybognathus amarus . Southwestern Naturalist 36 : 225 - 232 .
Watterson , G. A. 1975 . On the number of segregating sites in genetical models without recombination . Theoretical Population Biology 7 : 256 - 276 .
Frankham , R. 1995a . Conservation genetics . Annual Review of Genetics 29 : 305 - 327 .
Ballard , J. W. O. , and M. C. Whitlock . 2004 . The incomplete natural history of mitochondria . Molecular Ecology 13 : 729 - 744 .
Luikart , G. , W. B. Sherwin , B. M. Steele , and F. W. Allendorf . 1998 . Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change . Molecular Ecology 7 : 963 - 974 .
Diffendorfer , J. E. , M. S. Gaines , and R. D. Holt . 1995 . Habitat fragmentation and movements of three small mammals (Sigmodon, Microtus, and Peromyscus) . Ecology 76 : 827 - 839 .
Dynesius , M. , and C. Nilsson . 1994 . Fragmentation and flow regulation of river systems in the northern third of the world . Science 266 : 753 - 762 .
Orive , M. E. 1993 . Effective population size in organisms with complex life histories . Theoretical Population Biology 44 : 316 - 340 .
Bouzat , J. L. , H. A. Lewin , and K. N. Paige . 1998 . The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken . The American Naturalist 152 : 1 - 6 .
Excoffier , L. , P. E. Smouse , and J. M. Quattro . 1992 . Analysis of molecular variance inferred from metric distances among DNA haplotypes-application to human mitochondrial-DNA restriction data . Genetics 131 : 479 - 491 .
Nunney , L. , and D. R. Elam . 1994 . Estimating the effective size of conserved populations . Conservation Biology 8 : 175 - 184 .
Sivasundar , A. , E. Bermingham , and G. Orti . 2001 . Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers . Molecular Ecology 10 : 407 - 417 .
Wang , J. L. , and A. Caballero . 1999 . Developments in predicting the effective size of subdivided populations . Heredity 82 : 212 - 226 .
Garrigan , D. , P. C. Marsh , and T. E. Dowling . 2002 . Long-term effective population size of three endangered Colorado River fishes . Animal Conservation 5 : 95 - 102 .
Rousset , F. 1997 . Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance . Genetics 145 : 1219 - 1228 .
Vitousek , P. M. , H. A. Mooney , J. Lubchenco , and J. M. Melillo . 1997 . Human domination of Earth's ecosystems . Science 277 : 494 - 499 .
Hellberg , M. E. 1994 . Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans . Evolution 48 : 1829 - 1854 .
Lynch , M. , and W. Gabriel . 1990 . Mutation load and the survival of small populations . Evolution 44 : 1725 - 1737 .
Jager , H. I. , J. A. Chandler , K. B. Lepla , and W. Van Winkle . 2001 . A theoretical study of river fragmentation by dams and its effects on white sturgeon populations . Environmental Biology of Fishes 60 : 347 - 361 .
Wright , S. 1943 . Isolation by distance . Genetics 28 : 139 - 156 .
Brown , W. M. , M. George , and A. C. Wilson . 1979 . Rapid evolution of animal mitochondrial DNA . Proceedings of the National Academy of Sciences of the United States of America 76 : 1967 - 1971
Caballero , A. 1994 . Developments in the prediction of effective population size . Heredity 73 : 657 - 679 .
Platania , S. P. , 1991 . Fishes of the Rio Chama and upper Rio Grande, New Mexico, with preliminary comments on their longitudinal distribution . Southwestern Naturalist 36 : 186 - 193 .
Trevino-Robinson , D. 1959 . The ichthyofauna of the lower Rio Grande, Texas and Mexico . Copeia 1959 : 253 - 256 .
Turner , T. F. , T. E. Dowling , R. E. Broughton , and J. R. Gold . 2004 . Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae) . Conservation Genetics 5 : 279 - 281 .
Nei , M. 1987 . Molecular evolutionary genetics . Columbia University Press , New York .
Wang , J. L. 2001 . A pseudo-likelihood method for estimating effective population size from temporally spaced samples . Genetical Research 78 : 243 - 257 .
Lande , R. 1995 . Mutation and conservation . Conservation Biology 9 : 782 - 791 .
Crow , J. F. , and C. Denniston . 1988 . Inbreeding and variance effective population numbers . Evolution 42 : 482 - 495 .
Guo , S. W. , and E. A. Thompson . 1992 . Performing the exact test Hardy-Weinberg proportion for multiple alleles . Biometrics 48 : 361 - 372 .
Young A. G. , and G. M. Clark . 2000 . Genetics, demography, and viability of fragmented populations . Cambridge University Press , Cambridge , United Kingdom .
Hanski , I. 1999 . Metapopulation ecology . Oxford University Press , New York .
Wang , J. L. , and M. C. Whitlock . 2003 . Estimating effective population size and migration rates from genetic samples over space and time . Genetics 163 : 429 - 446 .
Frankham , R. 1995b . Effective population size/adult population size ratios in wildlife: a review . Genetical Research 66 : 95 - 107 .
Soulé , M. E. , and L. S. Mills . 1998 . Population genetics: no need to isolate genetics . Science 282 : 1658 - 1659 .
1982; 13
1995a; 29
2000; 9
1995; 76
1997; 277
1995b; 66
2004; 5
1999; 82
1979; 76
1998; 152
1994; 266
1997; 146
2001; 60
1990; 44
1990
2000
1997; 145
1987
1992; 48
1988; 42
1975; 7
1994; 73
1998; 282
2001; 98
2001; 10
2003; 163
1998; 1998
1995; 9
1991; 36
2002; 5
1993; 44
1997
1994
2004
1994; 48
1988; 241
2002
1996; 13
1999; 9
1999
1995; 86
1994; 8
2001; 82
1992; 131
1959; 1959
2002; 162
1984; 38
1999; 1999
1989; 121
2004; 13
1943; 28
1998; 149
1998; 7
2001; 78
1990; 9
1981; 98
e_1_2_7_5_1
e_1_2_7_3_1
Waples R. S. (e_1_2_7_55_1) 2002
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
Chapman D. G. (e_1_2_7_10_1) 1990
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_35_1
e_1_2_7_56_1
Hanski I. (e_1_2_7_21_1) 1999
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Hedgecock D. (e_1_2_7_22_1) 1994
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Excoffier , L. , P. E. Smouse , and J. M. Quattro . 1992 . Analysis of molecular variance inferred from metric distances among DNA haplotypes-application to human mitochondrial-DNA restriction data . Genetics 131 : 479 - 491 .
– reference: Garrigan , D. , P. C. Marsh , and T. E. Dowling . 2002 . Long-term effective population size of three endangered Colorado River fishes . Animal Conservation 5 : 95 - 102 .
– reference: Watterson , G. A. 1975 . On the number of segregating sites in genetical models without recombination . Theoretical Population Biology 7 : 256 - 276 .
– reference: Luikart , G. , W. B. Sherwin , B. M. Steele , and F. W. Allendorf . 1998 . Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change . Molecular Ecology 7 : 963 - 974 .
– reference: Rousset , F. 1997 . Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance . Genetics 145 : 1219 - 1228 .
– reference: Vitousek , P. M. , H. A. Mooney , J. Lubchenco , and J. M. Melillo . 1997 . Human domination of Earth's ecosystems . Science 277 : 494 - 499 .
– reference: Ballard , J. W. O. , and M. C. Whitlock . 2004 . The incomplete natural history of mitochondria . Molecular Ecology 13 : 729 - 744 .
– reference: Soulé , M. E. , and L. S. Mills . 1998 . Population genetics: no need to isolate genetics . Science 282 : 1658 - 1659 .
– reference: Wang , J. L. 2001 . A pseudo-likelihood method for estimating effective population size from temporally spaced samples . Genetical Research 78 : 243 - 257 .
– reference: Nunney , L. , and D. R. Elam . 1994 . Estimating the effective size of conserved populations . Conservation Biology 8 : 175 - 184 .
– reference: Higgins , K. , and M. Lynch . 2001 . Metapopulation extinction caused by mutation accumulation . Proceedings of the National Academy of Sciences of the United States of America 98 : 2928 - 2933 .
– reference: Raymond , M. , and F. Rousset . 1995 . Genepop (version 1.2)-population-genetics software for exact tests and ecumenicism . Journal of Heredity 86 : 248 - 249 .
– reference: Sivasundar , A. , E. Bermingham , and G. Orti . 2001 . Population structure and biogeography of migratory freshwater fishes (Prochilodus: Characiformes) in major South American rivers . Molecular Ecology 10 : 407 - 417 .
– reference: Waples , R. S. , 1989 . A generalized approach for estimating effective population size from temporal changes in allele frequency . Genetics 121 : 379 - 391 .
– reference: Frankham , R. 1995b . Effective population size/adult population size ratios in wildlife: a review . Genetical Research 66 : 95 - 107 .
– reference: Turner , T. F. , T. E. Dowling , R. E. Broughton , and J. R. Gold . 2004 . Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae) . Conservation Genetics 5 : 279 - 281 .
– reference: Jager , H. I. , J. A. Chandler , K. B. Lepla , and W. Van Winkle . 2001 . A theoretical study of river fragmentation by dams and its effects on white sturgeon populations . Environmental Biology of Fishes 60 : 347 - 361 .
– reference: Lavery , S. , C. Moritz , and D. R. Fielder . 1996 . Genetic patterns suggest exponential population growth in a declining species . Molecular Biology and Evolution 13 : 1106 - 1113 .
– reference: Luttrell , G. R. , A. A. Echelle , W. L. Fisher , and D. J. Eisenhour . 1999 . Declining status of two species of the Macrhybopsis aestivalis complex (Teleostei: Cyprinidae) in the Arkansas River Basin and related effects of reservoirs as barriers to dispersal . Copeia 1999 : 981 - 989 .
– reference: Lande , R. 1988 . Genetics and demography in biological conservation . Science 241 : 1455 - 1460 .
– reference: Platania , S. P. , 1991 . Fishes of the Rio Chama and upper Rio Grande, New Mexico, with preliminary comments on their longitudinal distribution . Southwestern Naturalist 36 : 186 - 193 .
– reference: Speirs , D. C. , and W. S. C. Gurney . 2001 . Population persistence in rivers and estuaries . Ecology 82 : 1219 - 1237 .
– reference: Platania , S. P. , and C. S. Altenbach . 1998 . Reproductive strategies and egg types of seven Rio Grande Basin cyprinids . Copeia 1998 : 559 - 569 .
– reference: Dunham , J. B. , and B. E. Rieman . 1999 . Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics . Ecological Applications 9 : 642 - 655 .
– reference: Bouzat , J. L. , H. A. Lewin , and K. N. Paige . 1998 . The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken . The American Naturalist 152 : 1 - 6 .
– reference: Dynesius , M. , and C. Nilsson . 1994 . Fragmentation and flow regulation of river systems in the northern third of the world . Science 266 : 753 - 762 .
– reference: Nei , M. , and F. Tajima . 1981 . Genetic drift and estimation of effective population size . Genetics 98 : 625 - 640 .
– reference: Hanski , I. 1999 . Metapopulation ecology . Oxford University Press , New York .
– reference: Turner , T. F. , J. P. Wares , and J. R. Gold . 2002 . Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus) . Genetics 162 : 1329 - 1339 .
– reference: Hellberg , M. E. 1994 . Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans . Evolution 48 : 1829 - 1854 .
– reference: Wright , S. 1943 . Isolation by distance . Genetics 28 : 139 - 156 .
– reference: Benke , A. C. 1990 . A perspective on America's vanishing streams . Journal of the North American Benthological Society 9 : 77 - 88 .
– reference: Lande , R. 1995 . Mutation and conservation . Conservation Biology 9 : 782 - 791 .
– reference: Trevino-Robinson , D. 1959 . The ichthyofauna of the lower Rio Grande, Texas and Mexico . Copeia 1959 : 253 - 256 .
– reference: Bestgen , K. R. , and S. P. Platania . 1991 . Status and conservation of the Rio Grande silvery minnow, Hybognathus amarus . Southwestern Naturalist 36 : 225 - 232 .
– reference: Kuhner , M. K. , J. Yamato , and J. Felsenstein . 1998 . Maximum likelihood estimation of population growth rates based on the coalescent . Genetics 149 : 429 - 434 .
– reference: Lynch , M. , and W. Gabriel . 1990 . Mutation load and the survival of small populations . Evolution 44 : 1725 - 1737 .
– reference: Brown , W. M. , M. George , and A. C. Wilson . 1979 . Rapid evolution of animal mitochondrial DNA . Proceedings of the National Academy of Sciences of the United States of America 76 : 1967 - 1971
– reference: Frankham , R. 1995a . Conservation genetics . Annual Review of Genetics 29 : 305 - 327 .
– reference: Westemeier R. L. , Brawn J. D. , Simpson S. A. , Esker T. L. , Jansen R. W. , Walk J. W. , Kershner E. L. , Bouzat J. L. , and K. N. Paige . 1998 . Tracking the long-term decline and recovery of an isolated population . Science 282 : 1695 - 1698 .
– reference: Wang , J. L. , and M. C. Whitlock . 2003 . Estimating effective population size and migration rates from genetic samples over space and time . Genetics 163 : 429 - 446 .
– reference: Diffendorfer , J. E. , M. S. Gaines , and R. D. Holt . 1995 . Habitat fragmentation and movements of three small mammals (Sigmodon, Microtus, and Peromyscus) . Ecology 76 : 827 - 839 .
– reference: Sunnucks , P. , A. C. C. Wilson , L. B. Beheregaray , K. Zenger , J. French , and A. C. Taylor . 2000 . SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology . Molecular Ecology 9 : 1699 - 1710 .
– reference: Whitlock , M. C. , and N. H. Barton . 1997 . The effective size of a subdivided population . Genetics 146 : 427 - 441 .
– reference: Orive , M. E. 1993 . Effective population size in organisms with complex life histories . Theoretical Population Biology 44 : 316 - 340 .
– reference: Crow , J. F. , and C. Denniston . 1988 . Inbreeding and variance effective population numbers . Evolution 42 : 482 - 495 .
– reference: Caballero , A. 1994 . Developments in the prediction of effective population size . Heredity 73 : 657 - 679 .
– reference: Guo , S. W. , and E. A. Thompson . 1992 . Performing the exact test Hardy-Weinberg proportion for multiple alleles . Biometrics 48 : 361 - 372 .
– reference: Young A. G. , and G. M. Clark . 2000 . Genetics, demography, and viability of fragmented populations . Cambridge University Press , Cambridge , United Kingdom .
– reference: Avise , J. C. 2000 . Phylogeography: the history and formation of species . Harvard University Press , Cambridge , Massachusetts .
– reference: Weir , B. S. , and C. C. Cockerham . 1984 . Estimating F-statistics for the analysis of population structure . Evolution 38 : 1358 - 1370 .
– reference: Nei , M. 1987 . Molecular evolutionary genetics . Columbia University Press , New York .
– reference: Kingman , J. F. C. 1982 . The coalescent . Stochastic Processes and their Applications 13 : 235 - 248 .
– reference: Wang , J. L. , and A. Caballero . 1999 . Developments in predicting the effective size of subdivided populations . Heredity 82 : 212 - 226 .
– volume: 7
  start-page: 256
  year: 1975
  end-page: 276
  article-title: On the number of segregating sites in genetical models without recombination
  publication-title: Theoretical Population Biology
– volume: 149
  start-page: 429
  year: 1998
  end-page: 434
  article-title: Maximum likelihood estimation of population growth rates based on the coalescent
  publication-title: Genetics
– volume: 60
  start-page: 347
  year: 2001
  end-page: 361
  article-title: A theoretical study of river fragmentation by dams and its effects on white sturgeon populations
  publication-title: Environmental Biology of Fishes
– volume: 163
  start-page: 429
  year: 2003
  end-page: 446
  article-title: Estimating effective population size and migration rates from genetic samples over space and time
  publication-title: Genetics
– volume: 9
  start-page: 1699
  year: 2000
  end-page: 1710
  article-title: SSCP is not so difficult: the application and utility of single‐stranded conformation polymorphism in evolutionary biology and molecular ecology
  publication-title: Molecular Ecology
– volume: 73
  start-page: 657
  year: 1994
  end-page: 679
  article-title: Developments in the prediction of effective population size
  publication-title: Heredity
– volume: 131
  start-page: 479
  year: 1992
  end-page: 491
  article-title: Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial‐DNA restriction data
  publication-title: Genetics
– volume: 98
  start-page: 2928
  year: 2001
  end-page: 2933
  article-title: Metapopulation extinction caused by mutation accumulation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 162
  start-page: 1329
  year: 2002
  end-page: 1339
  article-title: Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine‐dependent marine fish ( )
  publication-title: Genetics
– volume: 86
  start-page: 248
  year: 1995
  end-page: 249
  article-title: Genepop (version 1.2)–population‐genetics software for exact tests and ecumenicism
  publication-title: Journal of Heredity
– volume: 76
  start-page: 1967
  year: 1979
  end-page: 1971
  article-title: Rapid evolution of animal mitochondrial DNA
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 82
  start-page: 1219
  year: 2001
  end-page: 1237
  article-title: Population persistence in rivers and estuaries
  publication-title: Ecology
– volume: 7
  start-page: 963
  year: 1998
  end-page: 974
  article-title: Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change
  publication-title: Molecular Ecology
– volume: 282
  start-page: 1658
  year: 1998
  end-page: 1659
  article-title: Population genetics: no need to isolate genetics
  publication-title: Science
– volume: 121
  start-page: 379
  year: 1989
  end-page: 391
  article-title: A generalized approach for estimating effective population size from temporal changes in allele frequency
  publication-title: Genetics
– start-page: 81
  year: 1990
  end-page: 92
– volume: 9
  start-page: 77
  year: 1990
  end-page: 88
  article-title: A perspective on America's vanishing streams
  publication-title: Journal of the North American Benthological Society
– volume: 266
  start-page: 753
  year: 1994
  end-page: 762
  article-title: Fragmentation and flow regulation of river systems in the northern third of the world
  publication-title: Science
– volume: 36
  start-page: 225
  year: 1991
  end-page: 232
  article-title: Status and conservation of the Rio Grande silvery minnow,
  publication-title: Southwestern Naturalist
– volume: 48
  start-page: 1829
  year: 1994
  end-page: 1854
  article-title: Relationships between inferred levels of gene flow and geographic distance in a philopatric coral,
  publication-title: Evolution
– volume: 78
  start-page: 243
  year: 2001
  end-page: 257
  article-title: A pseudo‐likelihood method for estimating effective population size from temporally spaced samples
  publication-title: Genetical Research
– volume: 277
  start-page: 494
  year: 1997
  end-page: 499
  article-title: Human domination of Earth's ecosystems
  publication-title: Science
– volume: 38
  start-page: 1358
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 82
  start-page: 212
  year: 1999
  end-page: 226
  article-title: Developments in predicting the effective size of subdivided populations
  publication-title: Heredity
– year: 2004
– volume: 36
  start-page: 186
  year: 1991
  end-page: 193
  article-title: Fishes of the Rio Chama and upper Rio Grande, New Mexico, with preliminary comments on their longitudinal distribution
  publication-title: Southwestern Naturalist
– volume: 145
  start-page: 1219
  year: 1997
  end-page: 1228
  article-title: Genetic differentiation and estimation of gene flow from F‐statistics under isolation by distance
  publication-title: Genetics
– volume: 152
  start-page: 1
  year: 1998
  end-page: 6
  article-title: The ghost of genetic diversity past: historical DNA analysis of the greater prairie chicken
  publication-title: The American Naturalist
– volume: 13
  start-page: 235
  year: 1982
  end-page: 248
  article-title: The coalescent
  publication-title: Stochastic Processes and their Applications
– volume: 1998
  start-page: 559
  year: 1998
  end-page: 569
  article-title: Reproductive strategies and egg types of seven Rio Grande Basin cyprinids
  publication-title: Copeia
– start-page: 122
  year: 1994
  end-page: 134
– volume: 42
  start-page: 482
  year: 1988
  end-page: 495
  article-title: Inbreeding and variance effective population numbers
  publication-title: Evolution
– start-page: 113
  year: 1997
  end-page: 126
– volume: 29
  start-page: 305
  year: 1995a
  end-page: 327
  article-title: Conservation genetics
  publication-title: Annual Review of Genetics
– volume: 44
  start-page: 1725
  year: 1990
  end-page: 1737
  article-title: Mutation load and the survival of small populations
  publication-title: Evolution
– volume: 5
  start-page: 279
  year: 2004
  end-page: 281
  article-title: Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae)
  publication-title: Conservation Genetics
– year: 1987
– year: 2000
– volume: 1999
  start-page: 981
  year: 1999
  end-page: 989
  article-title: Declining status of two species of the complex (Teleostei: Cyprinidae) in the Arkansas River Basin and related effects of reservoirs as barriers to dispersal
  publication-title: Copeia
– volume: 9
  start-page: 642
  year: 1999
  end-page: 655
  article-title: Metapopulation structure of bull trout: influences of physical, biotic, and geometrical landscape characteristics
  publication-title: Ecological Applications
– volume: 241
  start-page: 1455
  year: 1988
  end-page: 1460
  article-title: Genetics and demography in biological conservation
  publication-title: Science
– start-page: 147
  year: 2002
  end-page: 168
– volume: 8
  start-page: 175
  year: 1994
  end-page: 184
  article-title: Estimating the effective size of conserved populations
  publication-title: Conservation Biology
– volume: 10
  start-page: 407
  year: 2001
  end-page: 417
  article-title: Population structure and biogeography of migratory freshwater fishes ( : Characiformes) in major South American rivers
  publication-title: Molecular Ecology
– volume: 76
  start-page: 827
  year: 1995
  end-page: 839
  article-title: Habitat fragmentation and movements of three small mammals ( , , and )
  publication-title: Ecology
– volume: 44
  start-page: 316
  year: 1993
  end-page: 340
  article-title: Effective population size in organisms with complex life histories
  publication-title: Theoretical Population Biology
– volume: 146
  start-page: 427
  year: 1997
  end-page: 441
  article-title: The effective size of a subdivided population
  publication-title: Genetics
– volume: 13
  start-page: 1106
  year: 1996
  end-page: 1113
  article-title: Genetic patterns suggest exponential population growth in a declining species
  publication-title: Molecular Biology and Evolution
– volume: 66
  start-page: 95
  year: 1995b
  end-page: 107
  article-title: Effective population size/adult population size ratios in wildlife: a review
  publication-title: Genetical Research
– volume: 48
  start-page: 361
  year: 1992
  end-page: 372
  article-title: Performing the exact test Hardy‐Weinberg proportion for multiple alleles
  publication-title: Biometrics
– volume: 1959
  start-page: 253
  year: 1959
  end-page: 256
  article-title: The ichthyofauna of the lower Rio Grande, Texas and Mexico
  publication-title: Copeia
– volume: 5
  start-page: 95
  year: 2002
  end-page: 102
  article-title: Long‐term effective population size of three endangered Colorado River fishes
  publication-title: Animal Conservation
– volume: 282
  start-page: 1695
  year: 1998
  end-page: 1698
  article-title: Tracking the long‐term decline and recovery of an isolated population
  publication-title: Science
– volume: 13
  start-page: 729
  year: 2004
  end-page: 744
  article-title: The incomplete natural history of mitochondria
  publication-title: Molecular Ecology
– volume: 98
  start-page: 625
  year: 1981
  end-page: 640
  article-title: Genetic drift and estimation of effective population size
  publication-title: Genetics
– volume: 9
  start-page: 782
  year: 1995
  end-page: 791
  article-title: Mutation and conservation
  publication-title: Conservation Biology
– volume: 28
  start-page: 139
  year: 1943
  end-page: 156
  article-title: Isolation by distance
  publication-title: Genetics
– year: 1999
– ident: e_1_2_7_11_1
  doi: 10.1111/j.1558-5646.1988.tb04154.x
– start-page: 122
  volume-title: Genetics and evolution of aquatic organisms
  year: 1994
  ident: e_1_2_7_22_1
– ident: e_1_2_7_3_1
  doi: 10.1046/j.1365-294X.2003.02063.x
– ident: e_1_2_7_6_1
  doi: 10.2307/3671925
– ident: e_1_2_7_2_1
  doi: 10.1046/j.1365-294X.2003.01731.x
– ident: e_1_2_7_18_1
  doi: 10.1017/S0016672300034455
– ident: e_1_2_7_17_1
  doi: 10.1146/annurev.ge.29.120195.001513
– ident: e_1_2_7_44_1
  doi: 10.1126/science.282.5394.1658
– ident: e_1_2_7_58_1
  doi: 10.1126/science.282.5394.1695
– start-page: 147
  volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_7_55_1
– ident: e_1_2_7_28_1
  doi: 10.1126/science.3420403
– ident: e_1_2_7_29_1
  doi: 10.1046/j.1523-1739.1995.09040782.x
– ident: e_1_2_7_9_1
  doi: 10.1038/hdy.1994.174
– ident: e_1_2_7_13_1
– ident: e_1_2_7_48_1
  doi: 10.1093/genetics/162.3.1329
– ident: e_1_2_7_5_1
  doi: 10.1016/B978-012417540-2/50009-9
– ident: e_1_2_7_37_1
  doi: 10.1006/tpbi.1993.1031
– ident: e_1_2_7_33_1
  doi: 10.1111/j.1558-5646.1990.tb05244.x
– ident: e_1_2_7_38_1
  doi: 10.2307/3671919
– ident: e_1_2_7_35_1
  doi: 10.1093/genetics/98.3.625
– ident: e_1_2_7_31_1
  doi: 10.1046/j.1365-294x.1998.00414.x
– ident: e_1_2_7_36_1
  doi: 10.1046/j.1523-1739.1994.08010175.x
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.76.4.1967
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1558-5646.1994.tb02218.x
– ident: e_1_2_7_26_1
  doi: 10.1016/0304-4149(82)90011-4
– ident: e_1_2_7_52_1
  doi: 10.1046/j.1365-2540.1999.00467.x
– ident: e_1_2_7_4_1
  doi: 10.2307/1467936
– ident: e_1_2_7_14_1
  doi: 10.1890/1051-0761(1999)009[0642:MSOBTI]2.0.CO;2
– start-page: 81
  volume-title: Writing for fishery journals
  year: 1990
  ident: e_1_2_7_10_1
– ident: e_1_2_7_59_1
  doi: 10.1093/genetics/146.1.427
– ident: e_1_2_7_50_1
  doi: 10.1126/science.277.5325.494
– ident: e_1_2_7_60_1
  doi: 10.3732/ajb.91.5.682
– volume-title: Metapopulation ecology
  year: 1999
  ident: e_1_2_7_21_1
  doi: 10.1093/oso/9780198540663.001.0001
– ident: e_1_2_7_27_1
  doi: 10.1093/genetics/149.1.429
– ident: e_1_2_7_39_1
  doi: 10.2307/1447786
– ident: e_1_2_7_56_1
  doi: 10.1016/0040-5809(75)90020-9
– ident: e_1_2_7_16_1
  doi: 10.1093/genetics/131.2.479
– ident: e_1_2_7_53_1
  doi: 10.1111/j.1095-8649.2007.01398.x
– ident: e_1_2_7_19_1
  doi: 10.1017/S1367943002002135
– ident: e_1_2_7_12_1
  doi: 10.2307/1939348
– ident: e_1_2_7_30_1
  doi: 10.1093/oxfordjournals.molbev.a025672
– ident: e_1_2_7_40_1
  doi: 10.1093/oxfordjournals.jhered.a111573
– ident: e_1_2_7_32_1
  doi: 10.2307/1447973
– ident: e_1_2_7_43_1
  doi: 10.1046/j.1365-294x.2001.01194.x
– ident: e_1_2_7_49_1
  doi: 10.1023/B:COGE.0000029998.11426.ab
– ident: e_1_2_7_47_1
  doi: 10.2307/1440404
– ident: e_1_2_7_20_1
  doi: 10.2307/2532296
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.031358898
– ident: e_1_2_7_46_1
  doi: 10.1046/j.1365-294x.2000.01084.x
– ident: e_1_2_7_51_1
  doi: 10.1017/S0016672301005286
– ident: e_1_2_7_61_1
  doi: 10.1017/CBO9780511623448
– ident: e_1_2_7_15_1
  doi: 10.1126/science.266.5186.753
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1365-294X.2006.02908.x
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1365-294X.2005.02568.x
– ident: e_1_2_7_42_1
– ident: e_1_2_7_7_1
  doi: 10.1086/286145
– ident: e_1_2_7_25_1
  doi: 10.1023/A:1011036127663
– ident: e_1_2_7_45_1
  doi: 10.1890/0012-9658(2001)082[1219:PPIRAE]2.0.CO;2
– ident: e_1_2_7_54_1
  doi: 10.1093/genetics/121.2.379
– ident: e_1_2_7_57_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
SSID ssj0009514
Score 2.1695843
Snippet We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered...
:  We assessed spatial and temporal patterns of genetic diversity to evaluate effects of river fragmentation on remnant populations of the federally endangered...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1138
SubjectTerms adults
analytical methods
Animal and plant ecology
Animal populations
Animal, plant and microbial ecology
Applied ecology
Biological and medical sciences
Conservation biology
Conservation, protection and management of environment and wildlife
Demography
Deoxyribonucleic acid
diversidad genética
Diversion dams
DNA
downstream transport
Ecological genetics
eggs
Emigration
Endangered & extinct species
Evolutionary genetics
Fish
fragmentación del río
Fresh water ecosystems
Freshwater
Fundamental and applied biological sciences. Psychology
gene flow
Genetic diversity
Genetic structure
genetic variation
Habitat fragmentation
Habitats
Hybognathus amarus
Larvae
Life history
microsatellite repeats
Minnows
Mitochondrial DNA
mortality
Parks, reserves, wildlife conservation. Endangered species: population survey and restocking
Population estimates
Population genetics
Population number
Population size
Reproduction
river fragmentation
Rivers
río abajo transporte
Spawning
Synecology
variance
Title Effects of Habitat Fragmentation on Effective Population Size in the Endangered Rio Grande Silvery Minnow
URI https://api.istex.fr/ark:/67375/WNG-7QPBZDRM-G/fulltext.pdf
https://www.jstor.org/stable/3591299
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1523-1739.2005.00081.x
https://www.proquest.com/docview/201456786
https://www.proquest.com/docview/1501359657
https://www.proquest.com/docview/17380109
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLamISReuA4RBsNIiLeU5mI7fmSja0HaGIWJiRcrdhwUDRLUi1j36znHTkI7gTQhpD5Uit3GJ8fH33E-f4eQFzrLeSGSKCxiwcI0zyEOyjILYS02mqUlYgBkWxzzyWn67oydbZFJdxbG60P0G244M1y8xgme6_mrNSYOpFBhJPxpE9wYgcVtgGgSiVuIjqbxmvquF_mGdC_MMnmF0vPHH9pYp26gyS86yiLyJ_M5mLD0tS82wOk6xHVr1OEdUnWj89SU88FyoQfm8orw4_8Y_l1yuwWy9LX3vHtky9b3yU1f2nIF30ZODnv1gFReIHlOm5JOco1n2ijA5a_f21NPNYWPbwORl570FcXox-rS0qqmgFHpqC7cCWVb0GnV0PEMN7-hBRK7V_Soquvm5w45PRx9OpiEbYGH0KQykaE2kM3wghWmZFjvA6KLHBqOivcys4Bs8sJaK2TGWYzcHVakmkkWGxMJA5EjeUi266a2jwi1w1iWvGRwCTIqw3VixVADeE2EtQDRAiK6x6lMq36ORTi-qbUsCEyq0KRYm5MpZ1J1EZCo7_nDK4Bco89L5zF9h3x2jgw6wdTn47ESH072v7yZHqlxQHacS_UNEyYBgcmA7G242O9_Fi7Kwnh2O59TbdSZwy1EgIdFxgPyvL8K4QLfAeW1bZZzuF_A_ExyJgLy7G9tRJLhG9OAcOeB1x62Oni__zaN5ON_7bhLbjlpXEewfEK2F7OlfQqgb6H33IT-BVzDQ9k
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Habitat+Fragmentation+on+Effective+Population+Size+in+the+Endangered+Rio+Grande+Silvery+Minnow&rft.jtitle=Conservation+biology&rft.au=AL%C3%92%2C+DOMINIQUE&rft.au=TURNER%2C+THOMAS+F.&rft.date=2005-08-01&rft.pub=Blackwell+Publishing%2C+Inc&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=19&rft.issue=4&rft.spage=1138&rft.epage=1148&rft_id=info:doi/10.1111%2Fj.1523-1739.2005.00081.x&rft.externalDocID=COBI419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon