Assessment of liver viscoelasticity using multifrequency MR elastography

MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion‐sensitive gradients. An experi...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 60; no. 2; pp. 373 - 379
Main Authors Asbach, Patrick, Klatt, Dieter, Hamhaber, Uwe, Braun, Jürgen, Somasundaram, Rajan, Hamm, Bernd, Sack, Ingolf
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion‐sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy‐proven high‐grade liver fibrosis (grade 3–4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 ± 6.6 Pa · s) and elastic moduli (2.91 ± 0.84 kPa; 4.83 ± 1.77 kPa) than the viscosity (7.3 ± 2.3 Pa · s) and elastic moduli (1.16 ± 0.28 kPa; 1.97 ± 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. Magn Reson Med 60:373–379, 2008. © 2008 Wiley‐Liss, Inc.
AbstractList MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion-sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy-proven high-grade liver fibrosis (grade 3-4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 +/- 6.6 Pa x s) and elastic moduli (2.91 +/- 0.84 kPa; 4.83 +/- 1.77 kPa) than the viscosity (7.3 +/- 2.3 Pa x s) and elastic moduli (1.16 +/- 0.28 kPa; 1.97 +/- 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties.MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion-sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy-proven high-grade liver fibrosis (grade 3-4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 +/- 6.6 Pa x s) and elastic moduli (2.91 +/- 0.84 kPa; 4.83 +/- 1.77 kPa) than the viscosity (7.3 +/- 2.3 Pa x s) and elastic moduli (1.16 +/- 0.28 kPa; 1.97 +/- 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties.
MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion-sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy-proven high-grade liver fibrosis (grade 3-4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 +/- 6.6 Pa x s) and elastic moduli (2.91 +/- 0.84 kPa; 4.83 +/- 1.77 kPa) than the viscosity (7.3 +/- 2.3 Pa x s) and elastic moduli (1.16 +/- 0.28 kPa; 1.97 +/- 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties.
MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion-sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy-proven high-grade liver fibrosis (grade 3-4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 - 6.6 Pa * s) and elastic moduli (2.91 - 0.84 kPa; 4.83 - 1.77 kPa) than the viscosity (7.3 - 2.3 Pa * s) and elastic moduli (1.16 - 0.28 kPa; 1.97 - 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. Magn Reson Med 60:373-379, 2008.
MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion‐sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy‐proven high‐grade liver fibrosis (grade 3–4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 ± 6.6 Pa · s) and elastic moduli (2.91 ± 0.84 kPa; 4.83 ± 1.77 kPa) than the viscosity (7.3 ± 2.3 Pa · s) and elastic moduli (1.16 ± 0.28 kPa; 1.97 ± 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. Magn Reson Med 60:373–379, 2008. © 2008 Wiley‐Liss, Inc.
MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion‐sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy‐proven high‐grade liver fibrosis (grade 3–4). Fibrotic liver had a significantly higher ( P < 0.01) viscosity (14.4 ± 6.6 Pa · s) and elastic moduli (2.91 ± 0.84 kPa; 4.83 ± 1.77 kPa) than the viscosity (7.3 ± 2.3 Pa · s) and elastic moduli (1.16 ± 0.28 kPa; 1.97 ± 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. Magn Reson Med 60:373–379, 2008. © 2008 Wiley‐Liss, Inc.
Author Somasundaram, Rajan
Hamm, Bernd
Klatt, Dieter
Hamhaber, Uwe
Braun, Jürgen
Asbach, Patrick
Sack, Ingolf
Author_xml – sequence: 1
  givenname: Patrick
  surname: Asbach
  fullname: Asbach, Patrick
  organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
– sequence: 2
  givenname: Dieter
  surname: Klatt
  fullname: Klatt, Dieter
  organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
– sequence: 3
  givenname: Uwe
  surname: Hamhaber
  fullname: Hamhaber, Uwe
  organization: Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
– sequence: 4
  givenname: Jürgen
  surname: Braun
  fullname: Braun, Jürgen
  organization: Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
– sequence: 5
  givenname: Rajan
  surname: Somasundaram
  fullname: Somasundaram, Rajan
  organization: Department of Gastroenterology, Rheumatology and Infectiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
– sequence: 6
  givenname: Bernd
  surname: Hamm
  fullname: Hamm, Bernd
  organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
– sequence: 7
  givenname: Ingolf
  surname: Sack
  fullname: Sack, Ingolf
  email: ingolf.sack@charite.de
  organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18666132$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoMoWqsLX0BmJbgYzW0yk6UWbRWrUJQuQ2aa1OhcajJTnbc3vS5EcRU4fN-fw_kPwW5ZlQqAEwQvEIT4srDFBUaMsB3QQRHGIY443QUdGFMYEsTpATh07g1CyHlM98EBShhjiOAOGFw5p5wrVFkHlQ5yM1c2mBuXVSqXrjaZqdugcaacBkWT10Zb9dGoMmuD4ShYItXUytlrewT2tMydOl6_XfBye_PcG4QPT_273tVDmFFOWCihTJmWqY6wYtGE-BmBFGYTEmGYJFpCpkmKF5smkHJFtZQoSSICvRKnjHTB2Sp3Ziu_iatF4bdVeS5LVTVOME4SwlH8L-i_i2LKF4mna7BJCzURM2sKaVuxOZIHLldAZivnrNLCX0XWpiprK00uEBSLGoSvQSxr8Mb5D2Mb-gu7Tv80uWr_BsVwNNwY4cowrlZfW0Pad8FiEkdi_NgX_Pp-OMaDWIzJNxDXpdI
CitedBy_id crossref_primary_10_1007_s00330_012_2474_6
crossref_primary_10_1016_j_neuroimage_2009_06_018
crossref_primary_10_3389_fphy_2021_666192
crossref_primary_10_1016_j_media_2022_102416
crossref_primary_10_1038_s41598_021_91895_9
crossref_primary_10_1109_TMI_2016_2604568
crossref_primary_10_1002_jmri_22066
crossref_primary_10_1002_ca_21006
crossref_primary_10_1088_0967_3334_34_12_1675
crossref_primary_10_1142_S0218957713500085
crossref_primary_10_3389_fphy_2020_617582
crossref_primary_10_1002_mrm_27019
crossref_primary_10_1007_s00330_015_3949_z
crossref_primary_10_1016_j_jmbbm_2017_06_027
crossref_primary_10_1142_S0219519410003411
crossref_primary_10_1002_jmri_29493
crossref_primary_10_1016_j_jmr_2014_11_009
crossref_primary_10_1002_nbm_2958
crossref_primary_10_13104_imri_2023_0029
crossref_primary_10_1061_JENMDT_EMENG_7826
crossref_primary_10_1002_mrm_22124
crossref_primary_10_1371_journal_pone_0097355
crossref_primary_10_1016_j_ultrasmedbio_2014_03_004
crossref_primary_10_1115_1_4066226
crossref_primary_10_1016_j_media_2020_101710
crossref_primary_10_1007_s00261_014_0315_6
crossref_primary_10_1148_radiol_2016160252
crossref_primary_10_1016_j_mbs_2013_08_012
crossref_primary_10_1007_s00330_017_5278_x
crossref_primary_10_1002_nbm_4442
crossref_primary_10_1016_j_cgh_2014_09_046
crossref_primary_10_1016_j_cmpb_2014_05_006
crossref_primary_10_1016_j_jbiomech_2012_01_017
crossref_primary_10_1016_j_jbiomech_2020_110090
crossref_primary_10_1016_j_pbiomolbio_2018_03_002
crossref_primary_10_1080_17460441_2020_1822815
crossref_primary_10_1109_TMI_2012_2231093
crossref_primary_10_1002_mrm_24495
crossref_primary_10_1002_mrm_24891
crossref_primary_10_2214_AJR_10_5989
crossref_primary_10_4236_ojmi_2017_74013
crossref_primary_10_1016_j_ultrasmedbio_2013_05_020
crossref_primary_10_1002_jmri_22294
crossref_primary_10_7863_ultra_34_6_1123
crossref_primary_10_1002_nbm_3919
crossref_primary_10_1016_j_ultrasmedbio_2015_01_002
crossref_primary_10_1002_jmri_23731
crossref_primary_10_1002_jmri_24028
crossref_primary_10_4329_wjr_v8_i1_59
crossref_primary_10_1016_j_actbio_2016_08_055
crossref_primary_10_1002_mrm_29972
crossref_primary_10_1016_j_jbiomech_2012_12_024
crossref_primary_10_1007_s00261_020_02893_w
crossref_primary_10_1016_j_actbio_2019_08_013
crossref_primary_10_1016_j_ultrasmedbio_2020_08_023
crossref_primary_10_1016_j_mri_2011_09_017
crossref_primary_10_1007_s00117_012_2311_6
crossref_primary_10_1016_j_jcp_2016_10_039
crossref_primary_10_1002_cyto_a_22875
crossref_primary_10_1016_j_jmbbm_2020_103795
crossref_primary_10_1016_j_jmbbm_2017_11_045
crossref_primary_10_1016_j_media_2022_102432
crossref_primary_10_1016_j_jbiomech_2016_03_013
crossref_primary_10_1088_0031_9155_59_7_1641
crossref_primary_10_3233_BIR_16091
crossref_primary_10_1039_c3sm50552a
crossref_primary_10_1097_RMR_0000000000000149
crossref_primary_10_1109_TUFFC_2014_006653
crossref_primary_10_1002_jmri_22354
crossref_primary_10_1016_j_jmbbm_2018_09_032
crossref_primary_10_3389_fbiom_2024_1323763
crossref_primary_10_1007_s10143_017_0862_8
crossref_primary_10_1148_radiol_2017160622
crossref_primary_10_1016_j_ultrasmedbio_2022_09_019
crossref_primary_10_4028_www_scientific_net_MSF_917_329
crossref_primary_10_1002_mrm_22091
crossref_primary_10_1002_nbm_4543
crossref_primary_10_1088_0031_9155_55_21_007
crossref_primary_10_1016_j_jbiomech_2011_06_023
crossref_primary_10_1142_S0218957713500152
crossref_primary_10_1088_1758_5090_ad5705
crossref_primary_10_1002_mrm_24674
crossref_primary_10_1088_1361_6560_aa4f6f
crossref_primary_10_1016_j_mri_2021_03_015
crossref_primary_10_1109_TMI_2010_2079940
crossref_primary_10_1016_j_jbiomech_2010_06_008
crossref_primary_10_3390_bioengineering8080106
crossref_primary_10_3390_pharmaceutics14061138
crossref_primary_10_1038_s41598_021_99243_7
crossref_primary_10_1016_j_ultrasmedbio_2018_05_027
crossref_primary_10_1016_j_ultras_2015_09_003
crossref_primary_10_1016_j_ultrasmedbio_2010_07_016
crossref_primary_10_1088_0031_9155_54_7_025
crossref_primary_10_1148_radiol_2016160685
crossref_primary_10_1002_jmri_23597
crossref_primary_10_1002_jmri_24049
crossref_primary_10_1016_j_medengphy_2014_10_007
crossref_primary_10_1016_j_cld_2012_03_005
crossref_primary_10_1016_j_mri_2014_10_002
crossref_primary_10_1016_j_mri_2015_10_001
crossref_primary_10_1016_j_jbiomech_2014_02_034
crossref_primary_10_35848_1347_4065_ad3ae4
crossref_primary_10_3389_fphys_2021_733393
crossref_primary_10_1016_j_yacr_2019_04_009
crossref_primary_10_1002_jmri_26903
crossref_primary_10_3179_jjmu_JJMU_R_203
crossref_primary_10_1038_nrneurol_2015_194
crossref_primary_10_1088_0031_9155_55_19_022
crossref_primary_10_1088_0031_9155_57_8_2273
crossref_primary_10_1631_jzus_B1300121
crossref_primary_10_1007_s00330_009_1470_y
crossref_primary_10_1088_0031_9155_57_3_R35
crossref_primary_10_1002_mrm_26006
crossref_primary_10_1053_j_sult_2012_11_007
crossref_primary_10_1016_j_cgh_2017_10_037
crossref_primary_10_1016_j_jbiomech_2010_12_031
crossref_primary_10_1109_TMI_2013_2268978
crossref_primary_10_1088_1361_6560_ac3263
crossref_primary_10_1002_mrm_21878
crossref_primary_10_3390_biom11020307
crossref_primary_10_1007_s00261_021_03143_3
crossref_primary_10_1088_0031_9155_57_8_2329
crossref_primary_10_2214_AJR_15_14553
crossref_primary_10_1007_s00330_021_08295_w
crossref_primary_10_1016_j_cma_2024_117493
crossref_primary_10_1016_j_ejro_2015_04_001
crossref_primary_10_1016_j_ultrasmedbio_2014_10_006
crossref_primary_10_1088_0031_9155_56_8_005
crossref_primary_10_1016_j_ultrasmedbio_2013_02_006
crossref_primary_10_1109_TMI_2009_2035309
crossref_primary_10_1109_TMI_2023_3288468
crossref_primary_10_1053_j_sult_2017_11_004
crossref_primary_10_1002_jmri_23986
crossref_primary_10_1002_nbm_5210
crossref_primary_10_1148_radiol_10092489
crossref_primary_10_1364_OE_23_020617
crossref_primary_10_1088_0031_9155_61_24_R401
crossref_primary_10_1002_nbm_3438
crossref_primary_10_1016_j_mri_2018_08_016
crossref_primary_10_2214_AJR_15_14552
crossref_primary_10_1097_RLI_0b013e3181ec4b63
crossref_primary_10_1016_j_nicl_2012_09_003
crossref_primary_10_1007_s10396_020_01059_x
crossref_primary_10_1088_1757_899X_490_2_022035
crossref_primary_10_1016_j_mric_2014_05_001
crossref_primary_10_2463_mrms_rev_2021_0152
crossref_primary_10_1016_j_acra_2011_01_006
crossref_primary_10_1299_mej_14_00417
crossref_primary_10_1007_s00330_013_2978_8
crossref_primary_10_1118_1_3443563
crossref_primary_10_1016_j_mri_2015_12_037
crossref_primary_10_1002_jmri_29633
crossref_primary_10_1002_cpz1_379
crossref_primary_10_1177_016173461003200405
crossref_primary_10_1007_s11548_014_1100_2
crossref_primary_10_1007_s00330_021_07988_6
crossref_primary_10_1002_jmri_22845
crossref_primary_10_1016_j_cgh_2015_07_030
crossref_primary_10_3349_ymj_2014_55_3_651
crossref_primary_10_1088_1361_6560_aa8444
crossref_primary_10_1002_jmri_25550
crossref_primary_10_1016_j_jbiomech_2016_02_018
crossref_primary_10_1007_s00261_019_02400_w
crossref_primary_10_1007_s12072_022_10303_0
crossref_primary_10_1016_j_mric_2020_03_001
crossref_primary_10_1016_j_cult_2013_09_006
crossref_primary_10_1038_s41598_022_05262_3
crossref_primary_10_1007_s00261_020_02656_7
crossref_primary_10_1007_s00261_017_1340_z
crossref_primary_10_1002_nbm_3499
crossref_primary_10_1002_nbm_4102
crossref_primary_10_1136_gutjnl_2020_322976
crossref_primary_10_1002_nbm_3891
crossref_primary_10_1097_RMR_0b013e3181c4737e
crossref_primary_10_1016_j_fertnstert_2010_06_004
crossref_primary_10_1121_1_3268508
crossref_primary_10_1007_s10237_020_01297_5
crossref_primary_10_1186_1532_429X_12_60
crossref_primary_10_1016_j_bspc_2014_04_006
crossref_primary_10_1016_j_mric_2010_07_002
crossref_primary_10_1148_radiol_11101942
crossref_primary_10_1002_cnm_2917
crossref_primary_10_1097_RMR_0000000000000177
crossref_primary_10_1148_radiol_2018170601
crossref_primary_10_2174_1874120701307010116
crossref_primary_10_1016_j_jbiomech_2014_05_017
crossref_primary_10_1002_mrm_22976
crossref_primary_10_1109_JBHI_2014_2370059
crossref_primary_10_3390_s20082379
crossref_primary_10_1016_j_neuroimage_2009_02_040
crossref_primary_10_37549_AR1982
crossref_primary_10_1016_j_mri_2013_02_001
Cites_doi 10.7326/0003-4819-127-11-199712010-00006
10.1007/s00397-005-0026-6
10.1002/mrm.21152
10.1016/j.ultrasmedbio.2003.07.001
10.1097/01.rli.0000244341.16372.08
10.1088/0031-9155/45/6/313
10.1016/S0168-8278(02)00429-4
10.1002/mrm.21286
10.1002/mrm.21404
10.1002/hep.20506
10.1088/0031-9155/52/24/006
10.1056/NEJM200102083440604
10.1177/016173469101300201
10.1148/radiol.2402050606
10.1002/nbm.1189
10.1126/science.7569924
10.1016/0301-5629(90)90003-U
10.1002/jmri.1880050620
10.1088/0031-9155/49/18/002
10.1002/nbm.1030
10.1007/978-3-642-73602-5
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
(c) 2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: (c) 2008 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
DOI 10.1002/mrm.21636
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Engineering Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 379
ExternalDocumentID 18666132
10_1002_mrm_21636
MRM21636
ark_67375_WNG_9BJMW2H7_W
Genre article
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: German Research Foundation
  funderid: Sa/901‐3
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c4936-a0ab6fabf52e65d39363040cd352088fa06f3b200998049e4faa188530bf57b63
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 13:50:23 EDT 2025
Fri Jul 11 14:09:25 EDT 2025
Mon Jul 21 06:04:09 EDT 2025
Tue Jul 01 01:20:39 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Wed Jan 22 16:28:06 EST 2025
Wed Oct 30 09:56:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License (c) 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4936-a0ab6fabf52e65d39363040cd352088fa06f3b200998049e4faa188530bf57b63
Notes istex:C0B729420EEE349AAEB134AB738F7C022BCA892C
ArticleID:MRM21636
German Research Foundation - No. Sa/901-3
ark:/67375/WNG-9BJMW2H7-W
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.21636
PMID 18666132
PQID 20857496
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_69383917
proquest_miscellaneous_20857496
pubmed_primary_18666132
crossref_citationtrail_10_1002_mrm_21636
crossref_primary_10_1002_mrm_21636
wiley_primary_10_1002_mrm_21636_MRM21636
istex_primary_ark_67375_WNG_9BJMW2H7_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2008
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: August 2008
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Tschoegl NW. The phenomenological theory of linear viscoelastic behavior. Berlin: Springer; 1989.
Kiss MZ, Varghese T, Hall TJ. Viscoelastic characterization of in vitro canine tissue. Phys Med Biol 2004; 49: 4207-4218.
Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F, Beaugrand M, Palau R. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705-1713.
Klatt D, Hamhaber U, Asbach P, Braun J, Sack I. Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 2007; 52: 7281-7294.
Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF, Ehman RL. Tissue characterization using magnetic resonance elastography: preliminary results. Phys Med Biol 2000; 45: 1579-1590.
Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed 2008; 21: 265-271.
Plewes DB, Betty I, Urchuk SN, Soutar I. Visualizing tissue compliance with MR imaging. J Magn Reson Imaging 1995; 5: 733-738.
Rump J, Klatt D, Braun J, Warmuth C, Sack I. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med 2007; 57: 388-395.
Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111-134.
Valtorta D, Mazza E. Measurement of rheological properties of soft biological tissue with a novel torsional resonator device. Rheologica Acta 2006; 45: 677-692.
Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, Glaser KJ, Manduca A, Ehman RL. Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med 2007; 58: 346-353.
Rouviere O, Yin M, Dresner MA, Rossman PJ, Burgart LJ, Fidler JL, Ehman RL. MR elastography of the liver: preliminary results. Radiology 2006; 240: 440-448.
Liu Z, Bilston L. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 2000; 37: 191-201.
Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 2007; 58: 1135-1144.
Hammel P, Couvelard A, O'Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Levy P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 2001; 344: 418-423.
Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med 1997; 127: 981-985.
Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269: 1854-1857.
Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for "sonoelasticity imaging". Ultrasound Med Biol 1990; 16: 241-246.
Huwart L, Peeters F, Sinkus R, Annet L, Salameh N, ter Beek LC, Horsmans Y, Van Beers BE. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 2006; 19: 173-179.
Klatt D, Asbach P, Rump J, Papazoglou S, Somasundaram R, Modrow J, Braun J, Sack I. In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography. Invest Radiol 2006; 41: 841-848.
Ziol M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F, de Ledinghen V, Marcellin P, Dhumeaux D, Trinchet JC, Beaugrand M. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54.
Friedman SL. Liver fibrosis-from bench to bedside. J Hepatol 2003; 38(Suppl 1): S38-S53.
2001; 344
1997; 127
2006; 41
2006; 45
1990; 16
1991; 13
2000; 37
2000; 45
2004; 49
2006; 240
1998
2005; 41
2007
2003; 38
1995; 269
2006; 19
2008; 21
2003; 29
2003
2007; 52
2007; 57
1995; 5
2007; 58
1989
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_22_2
e_1_2_7_21_2
e_1_2_7_20_2
Liu Z (e_1_2_7_23_2) 2000; 37
References_xml – reference: Klatt D, Hamhaber U, Asbach P, Braun J, Sack I. Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 2007; 52: 7281-7294.
– reference: Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, Glaser KJ, Manduca A, Ehman RL. Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med 2007; 58: 346-353.
– reference: Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 2007; 58: 1135-1144.
– reference: Hammel P, Couvelard A, O'Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Levy P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 2001; 344: 418-423.
– reference: Ziol M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F, de Ledinghen V, Marcellin P, Dhumeaux D, Trinchet JC, Beaugrand M. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54.
– reference: Friedman SL. Liver fibrosis-from bench to bedside. J Hepatol 2003; 38(Suppl 1): S38-S53.
– reference: Huwart L, Peeters F, Sinkus R, Annet L, Salameh N, ter Beek LC, Horsmans Y, Van Beers BE. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 2006; 19: 173-179.
– reference: Klatt D, Asbach P, Rump J, Papazoglou S, Somasundaram R, Modrow J, Braun J, Sack I. In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography. Invest Radiol 2006; 41: 841-848.
– reference: Liu Z, Bilston L. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 2000; 37: 191-201.
– reference: Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for "sonoelasticity imaging". Ultrasound Med Biol 1990; 16: 241-246.
– reference: Kiss MZ, Varghese T, Hall TJ. Viscoelastic characterization of in vitro canine tissue. Phys Med Biol 2004; 49: 4207-4218.
– reference: Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med 1997; 127: 981-985.
– reference: Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed 2008; 21: 265-271.
– reference: Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269: 1854-1857.
– reference: Rump J, Klatt D, Braun J, Warmuth C, Sack I. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med 2007; 57: 388-395.
– reference: Rouviere O, Yin M, Dresner MA, Rossman PJ, Burgart LJ, Fidler JL, Ehman RL. MR elastography of the liver: preliminary results. Radiology 2006; 240: 440-448.
– reference: Tschoegl NW. The phenomenological theory of linear viscoelastic behavior. Berlin: Springer; 1989.
– reference: Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111-134.
– reference: Plewes DB, Betty I, Urchuk SN, Soutar I. Visualizing tissue compliance with MR imaging. J Magn Reson Imaging 1995; 5: 733-738.
– reference: Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF, Ehman RL. Tissue characterization using magnetic resonance elastography: preliminary results. Phys Med Biol 2000; 45: 1579-1590.
– reference: Valtorta D, Mazza E. Measurement of rheological properties of soft biological tissue with a novel torsional resonator device. Rheologica Acta 2006; 45: 677-692.
– reference: Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F, Beaugrand M, Palau R. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705-1713.
– volume: 52
  start-page: 7281
  year: 2007
  end-page: 7294
  article-title: Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity
  publication-title: Phys Med Biol
– volume: 21
  start-page: 265
  year: 2008
  end-page: 271
  article-title: Non‐invasive measurement of brain viscoelasticity using magnetic resonance elastography
  publication-title: NMR Biomed
– volume: 240
  start-page: 440
  year: 2006
  end-page: 448
  article-title: MR elastography of the liver: preliminary results
  publication-title: Radiology
– year: 2007
– year: 1989
– year: 2003
– volume: 49
  start-page: 4207
  year: 2004
  end-page: 4218
  article-title: Viscoelastic characterization of in vitro canine tissue
  publication-title: Phys Med Biol
– volume: 37
  start-page: 191
  year: 2000
  end-page: 201
  article-title: On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour
  publication-title: Biorheology
– volume: 127
  start-page: 981
  year: 1997
  end-page: 985
  article-title: Reversibility of hepatic fibrosis in autoimmune hepatitis
  publication-title: Ann Intern Med
– volume: 13
  start-page: 111
  year: 1991
  end-page: 134
  article-title: Elastography: a quantitative method for imaging the elasticity of biological tissues
  publication-title: Ultrason Imaging
– volume: 19
  start-page: 173
  year: 2006
  end-page: 179
  article-title: Liver fibrosis: non‐invasive assessment with MR elastography
  publication-title: NMR Biomed
– volume: 16
  start-page: 241
  year: 1990
  end-page: 246
  article-title: Tissue response to mechanical vibrations for “sonoelasticity imaging”
  publication-title: Ultrasound Med Biol
– volume: 5
  start-page: 733
  year: 1995
  end-page: 738
  article-title: Visualizing tissue compliance with MR imaging
  publication-title: J Magn Reson Imaging
– year: 1998
– volume: 57
  start-page: 388
  year: 2007
  end-page: 395
  article-title: Fractional encoding of harmonic motions in MR elastography
  publication-title: Magn Reson Med
– volume: 29
  start-page: 1705
  year: 2003
  end-page: 1713
  article-title: Transient elastography: a new noninvasive method for assessment of hepatic fibrosis
  publication-title: Ultrasound Med Biol
– volume: 38
  start-page: S38
  issue: Suppl 1
  year: 2003
  end-page: S53
  article-title: Liver fibrosis—from bench to bedside
  publication-title: J Hepatol
– volume: 269
  start-page: 1854
  year: 1995
  end-page: 1857
  article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves
  publication-title: Science
– volume: 58
  start-page: 1135
  year: 2007
  end-page: 1144
  article-title: MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast‐enhanced MR mammography
  publication-title: Magn Reson Med
– volume: 41
  start-page: 48
  year: 2005
  end-page: 54
  article-title: Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C
  publication-title: Hepatology
– volume: 41
  start-page: 841
  year: 2006
  end-page: 848
  article-title: In vivo determination of hepatic stiffness using steady‐state free precession magnetic resonance elastography
  publication-title: Invest Radiol
– volume: 45
  start-page: 677
  year: 2006
  end-page: 692
  article-title: Measurement of rheological properties of soft biological tissue with a novel torsional resonator device
  publication-title: Rheologica Acta
– volume: 45
  start-page: 1579
  year: 2000
  end-page: 1590
  article-title: Tissue characterization using magnetic resonance elastography: preliminary results
  publication-title: Phys Med Biol
– volume: 58
  start-page: 346
  year: 2007
  end-page: 353
  article-title: Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography
  publication-title: Magn Reson Med
– volume: 344
  start-page: 418
  year: 2001
  end-page: 423
  article-title: Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct
  publication-title: N Engl J Med
– ident: e_1_2_7_2_2
  doi: 10.7326/0003-4819-127-11-199712010-00006
– ident: e_1_2_7_25_2
  doi: 10.1007/s00397-005-0026-6
– ident: e_1_2_7_21_2
  doi: 10.1002/mrm.21152
– ident: e_1_2_7_19_2
– ident: e_1_2_7_9_2
  doi: 10.1016/j.ultrasmedbio.2003.07.001
– ident: e_1_2_7_13_2
  doi: 10.1097/01.rli.0000244341.16372.08
– ident: e_1_2_7_15_2
  doi: 10.1088/0031-9155/45/6/313
– ident: e_1_2_7_4_2
  doi: 10.1016/S0168-8278(02)00429-4
– ident: e_1_2_7_14_2
  doi: 10.1002/mrm.21286
– ident: e_1_2_7_18_2
  doi: 10.1002/mrm.21404
– ident: e_1_2_7_10_2
  doi: 10.1002/hep.20506
– ident: e_1_2_7_16_2
  doi: 10.1088/0031-9155/52/24/006
– ident: e_1_2_7_26_2
– ident: e_1_2_7_3_2
  doi: 10.1056/NEJM200102083440604
– ident: e_1_2_7_20_2
– volume: 37
  start-page: 191
  year: 2000
  ident: e_1_2_7_23_2
  article-title: On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour
  publication-title: Biorheology
– ident: e_1_2_7_6_2
  doi: 10.1177/016173469101300201
– ident: e_1_2_7_11_2
  doi: 10.1148/radiol.2402050606
– ident: e_1_2_7_17_2
  doi: 10.1002/nbm.1189
– ident: e_1_2_7_7_2
  doi: 10.1126/science.7569924
– ident: e_1_2_7_5_2
  doi: 10.1016/0301-5629(90)90003-U
– ident: e_1_2_7_8_2
  doi: 10.1002/jmri.1880050620
– ident: e_1_2_7_24_2
  doi: 10.1088/0031-9155/49/18/002
– ident: e_1_2_7_12_2
  doi: 10.1002/nbm.1030
– ident: e_1_2_7_22_2
  doi: 10.1007/978-3-642-73602-5
SSID ssj0009974
Score 2.3840442
Snippet MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress....
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 373
SubjectTerms Algorithms
cirrhosis
Elasticity
Elasticity Imaging Techniques - methods
fibrosis
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
liver
Liver - pathology
Liver - physiopathology
Liver Cirrhosis - pathology
Liver Cirrhosis - physiopathology
magnetic resonance elastography
multifrequency MRE
Reproducibility of Results
Sensitivity and Specificity
Stress, Mechanical
viscoelasticity
Viscosity
wave speed dispersion
Title Assessment of liver viscoelasticity using multifrequency MR elastography
URI https://api.istex.fr/ark:/67375/WNG-9BJMW2H7-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21636
https://www.ncbi.nlm.nih.gov/pubmed/18666132
https://www.proquest.com/docview/20857496
https://www.proquest.com/docview/69383917
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFD6IsrGXublfd3MaZAxfeq1Jmzb45IZ6EerDZXJ9EELSpmOo9477Y8z99TsnaXtxKAzfSjkpSU5O8p3myxeAT4YEXhxmJyrnLkq4iyOLK3UkqtQY4zJhHR1wLs7k4Dw5vUgvVuCgPQsT9CG6H24UGX6-pgA3dra3FA29md70OaIJktsmrhYBouFSOkqpoMCcJTTPqKRVFYr5Xlfyzlq0Rt36-z6geRe3-oXneB0u2yoHvslVfzG3_fLPP2qOj2zTC3jeAFJ2GEbQS1hx4w14WjRb7hvwxHNEy9krGBx2Kp5sUrNrYnSwXz9m5cQhBCd29vyWEY_-O_M0xXoaaNq3rBgyb9LIY7-G8-Ojb18HUXMRQ1QmSsjIxMbK2tg65U6mlcB3AoO_rBC94SxVm1jWwtI-i8ox43BJbcx-jkAgxiKZleINrI4nY_cOmMgrGaus3udVmkhrlSl5mdFHMpwZctGD3dYlumxUyumyjGsd9JW5xj7Svo96sNOZ_gzSHPcZffZ-7SzM9Iq4bFmqR2cnWn05LUZ8kOlRD7Zbx2uMMNo2MWM3Wcy0v8U0UfJhC6kwz8e8twdvw4hZ1ifH9BATfmyW9_vDFdXFsPAP7__f9AM8C_QV4iNuwup8unAfESPN7ZYPhr-74gvH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlAuPAqF5dUIIcQl29ROnFjiUh4llGYPq1bbC7LsxEGo7S7aR9Xy65mxk6yKWglxi6Jx5Hg84xn78zcAbzQRvFjMTmTGbBgzG4UGV-qQV4nW2qbcWLrgXAxEfhTvHyfHK_C-vQvj-SG6DTeyDOevycBpQ3p7yRp6Nj3rMwwnxC1Yo4rexJz_abgkj5LSczCnMXkaGbe8QhHb7ppeWY3WaGAvrgs1r0aubunZuw_f2057xMlJfzE3_fL3X3yO__tXD-BeE5MGu34SPYQVO96AO0Vz6r4Btx1MtJw9gny3I_IMJnVwSqCO4PznrJxYjMIJoD2_DAhK_yNwSMV66pHal0ExDJxIw5D9GI72Ph9-zMOmFkNYxpKLUEfaiFqbOmFWJBXHdxztv6wwgENHVetI1NzQUYvMMOmwca31ToaxQIRNUiP4JqyOJ2P7FAKeVSKSab3DqiQWxkhdsjKlj6ToHDLeg3etTlTZEJVTvYxT5SmWmcIxUm6MevC6E_3l2TmuE3rrFNtJ6OkJwdnSRI0GX5T8sF-MWJ6qUQ-2Ws0rNDI6OdFjO1nMlCtkGktxs4SQmOpj6tuDJ37KLPuTYYaIOT_-llP8zR1VxbBwD8_-XXQL1vPD4kAdfB18ew53PZqF4IkvYHU-XdiXGDLNzStnGX8Abb0P4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qi8WXqvXr6keDiPiy122SzW7wqVrPs7qHHJbrQyEku4lI27tyH2L713eS_TgqLYhvyzJZkkxmMrP55TcAb7QneLGYnciM2ohTG0cGd-qIlYnW2qbMWH_BOR-I_iE_OEqOVuB9cxem4odof7h5ywj-2hv4eel2lqShZ9OzLsVoQtyBNS5i6es27A-X3FFSVhTMKfeORvKGViimO23Ta5vRmp_XPzdFmtcD17Dz9O7DcdPnCnBy0l3MTbe4_IvO8T8H9QA26oiU7FVL6CGs2PEmrOf1mfsm3A0g0WL2CPp7LY0nmThy6iEd5PevWTGxGIN7ePb8gngg_U8ScIpuWuG0L0g-JEGk5sd-DIe9Tz8-9qO6EkNUcMlEpGNthNPGJdSKpGT4jqH1FyWGb-imnI6FY8YftMgMUw7Lnda7GUYCMTZJjWBPYHU8GdtnQFhWorJSt0vLhAtjpC5okfqPpOgaMtaBd41KVFHTlPtqGaeqIlimCudIhTnqwOtW9Lzi5rhJ6G3QayuhpycezJYmajT4rOSHg3xE-6kadWC7UbxCE_PnJnpsJ4uZCmVMuRS3SwiJiT4mvh14Wq2YZX8yzA8x48dhBb3f3lGVD_PwsPXvotuw_n2_p759GXx9DvcqKIvHJr6A1fl0YV9ivDQ3r4JdXAE0Iw6S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+liver+viscoelasticity+using+multifrequency+MR+elastography&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Asbach%2C+Patrick&rft.au=Klatt%2C+Dieter&rft.au=Hamhaber%2C+Uwe&rft.au=Braun%2C+J%C3%BCrgen&rft.date=2008-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=60&rft.issue=2&rft.spage=373&rft.epage=379&rft_id=info:doi/10.1002%2Fmrm.21636&rft.externalDBID=10.1002%252Fmrm.21636&rft.externalDocID=MRM21636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon