Assessment of liver viscoelasticity using multifrequency MR elastography
MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion‐sensitive gradients. An experi...
Saved in:
Published in | Magnetic resonance in medicine Vol. 60; no. 2; pp. 373 - 379 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.08.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion‐sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy‐proven high‐grade liver fibrosis (grade 3–4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 ± 6.6 Pa · s) and elastic moduli (2.91 ± 0.84 kPa; 4.83 ± 1.77 kPa) than the viscosity (7.3 ± 2.3 Pa · s) and elastic moduli (1.16 ± 0.28 kPa; 1.97 ± 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. Magn Reson Med 60:373–379, 2008. © 2008 Wiley‐Liss, Inc. |
---|---|
AbstractList | MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion-sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy-proven high-grade liver fibrosis (grade 3-4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 +/- 6.6 Pa x s) and elastic moduli (2.91 +/- 0.84 kPa; 4.83 +/- 1.77 kPa) than the viscosity (7.3 +/- 2.3 Pa x s) and elastic moduli (1.16 +/- 0.28 kPa; 1.97 +/- 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties.MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion-sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy-proven high-grade liver fibrosis (grade 3-4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 +/- 6.6 Pa x s) and elastic moduli (2.91 +/- 0.84 kPa; 4.83 +/- 1.77 kPa) than the viscosity (7.3 +/- 2.3 Pa x s) and elastic moduli (1.16 +/- 0.28 kPa; 1.97 +/- 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion-sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy-proven high-grade liver fibrosis (grade 3-4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 +/- 6.6 Pa x s) and elastic moduli (2.91 +/- 0.84 kPa; 4.83 +/- 1.77 kPa) than the viscosity (7.3 +/- 2.3 Pa x s) and elastic moduli (1.16 +/- 0.28 kPa; 1.97 +/- 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion-sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy-proven high-grade liver fibrosis (grade 3-4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 - 6.6 Pa * s) and elastic moduli (2.91 - 0.84 kPa; 4.83 - 1.77 kPa) than the viscosity (7.3 - 2.3 Pa * s) and elastic moduli (1.16 - 0.28 kPa; 1.97 - 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. Magn Reson Med 60:373-379, 2008. MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion‐sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy‐proven high‐grade liver fibrosis (grade 3–4). Fibrotic liver had a significantly higher (P < 0.01) viscosity (14.4 ± 6.6 Pa · s) and elastic moduli (2.91 ± 0.84 kPa; 4.83 ± 1.77 kPa) than the viscosity (7.3 ± 2.3 Pa · s) and elastic moduli (1.16 ± 0.28 kPa; 1.97 ± 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. Magn Reson Med 60:373–379, 2008. © 2008 Wiley‐Liss, Inc. MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress. Shear waves of a given frequency are mechanically introduced and the propagation is imaged by applying motion‐sensitive gradients. An experiment was set up that introduces multifrequency shear waves combined with broadband motion sensitization to extend the dynamic range of MRE from one given frequency to, in this study, four different frequencies. With this approach, multiple wave images corresponding to the four driving frequencies are simultaneously acquired and can be evaluated with regard to the dispersion of the complex modulus over the respective frequency. A viscoelastic model based on two shear moduli and one viscosity parameter was used to reproduce the experimental wave speed and wave damping dispersion. The technique was applied in eight healthy volunteers and eight patients with biopsy‐proven high‐grade liver fibrosis (grade 3–4). Fibrotic liver had a significantly higher ( P < 0.01) viscosity (14.4 ± 6.6 Pa · s) and elastic moduli (2.91 ± 0.84 kPa; 4.83 ± 1.77 kPa) than the viscosity (7.3 ± 2.3 Pa · s) and elastic moduli (1.16 ± 0.28 kPa; 1.97 ± 0.30 kPa) of normal volunteers. Multifrequency MRE is well suited for the noninvasive differentiation of normal and fibrotic liver as it allows the measurement of rheologic material properties. Magn Reson Med 60:373–379, 2008. © 2008 Wiley‐Liss, Inc. |
Author | Somasundaram, Rajan Hamm, Bernd Klatt, Dieter Hamhaber, Uwe Braun, Jürgen Asbach, Patrick Sack, Ingolf |
Author_xml | – sequence: 1 givenname: Patrick surname: Asbach fullname: Asbach, Patrick organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany – sequence: 2 givenname: Dieter surname: Klatt fullname: Klatt, Dieter organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany – sequence: 3 givenname: Uwe surname: Hamhaber fullname: Hamhaber, Uwe organization: Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany – sequence: 4 givenname: Jürgen surname: Braun fullname: Braun, Jürgen organization: Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany – sequence: 5 givenname: Rajan surname: Somasundaram fullname: Somasundaram, Rajan organization: Department of Gastroenterology, Rheumatology and Infectiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany – sequence: 6 givenname: Bernd surname: Hamm fullname: Hamm, Bernd organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany – sequence: 7 givenname: Ingolf surname: Sack fullname: Sack, Ingolf email: ingolf.sack@charite.de organization: Department of Radiology, Charité-Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18666132$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctKAzEUhoMoWqsLX0BmJbgYzW0yk6UWbRWrUJQuQ2aa1OhcajJTnbc3vS5EcRU4fN-fw_kPwW5ZlQqAEwQvEIT4srDFBUaMsB3QQRHGIY443QUdGFMYEsTpATh07g1CyHlM98EBShhjiOAOGFw5p5wrVFkHlQ5yM1c2mBuXVSqXrjaZqdugcaacBkWT10Zb9dGoMmuD4ShYItXUytlrewT2tMydOl6_XfBye_PcG4QPT_273tVDmFFOWCihTJmWqY6wYtGE-BmBFGYTEmGYJFpCpkmKF5smkHJFtZQoSSICvRKnjHTB2Sp3Ziu_iatF4bdVeS5LVTVOME4SwlH8L-i_i2LKF4mna7BJCzURM2sKaVuxOZIHLldAZivnrNLCX0XWpiprK00uEBSLGoSvQSxr8Mb5D2Mb-gu7Tv80uWr_BsVwNNwY4cowrlZfW0Pad8FiEkdi_NgX_Pp-OMaDWIzJNxDXpdI |
CitedBy_id | crossref_primary_10_1007_s00330_012_2474_6 crossref_primary_10_1016_j_neuroimage_2009_06_018 crossref_primary_10_3389_fphy_2021_666192 crossref_primary_10_1016_j_media_2022_102416 crossref_primary_10_1038_s41598_021_91895_9 crossref_primary_10_1109_TMI_2016_2604568 crossref_primary_10_1002_jmri_22066 crossref_primary_10_1002_ca_21006 crossref_primary_10_1088_0967_3334_34_12_1675 crossref_primary_10_1142_S0218957713500085 crossref_primary_10_3389_fphy_2020_617582 crossref_primary_10_1002_mrm_27019 crossref_primary_10_1007_s00330_015_3949_z crossref_primary_10_1016_j_jmbbm_2017_06_027 crossref_primary_10_1142_S0219519410003411 crossref_primary_10_1002_jmri_29493 crossref_primary_10_1016_j_jmr_2014_11_009 crossref_primary_10_1002_nbm_2958 crossref_primary_10_13104_imri_2023_0029 crossref_primary_10_1061_JENMDT_EMENG_7826 crossref_primary_10_1002_mrm_22124 crossref_primary_10_1371_journal_pone_0097355 crossref_primary_10_1016_j_ultrasmedbio_2014_03_004 crossref_primary_10_1115_1_4066226 crossref_primary_10_1016_j_media_2020_101710 crossref_primary_10_1007_s00261_014_0315_6 crossref_primary_10_1148_radiol_2016160252 crossref_primary_10_1016_j_mbs_2013_08_012 crossref_primary_10_1007_s00330_017_5278_x crossref_primary_10_1002_nbm_4442 crossref_primary_10_1016_j_cgh_2014_09_046 crossref_primary_10_1016_j_cmpb_2014_05_006 crossref_primary_10_1016_j_jbiomech_2012_01_017 crossref_primary_10_1016_j_jbiomech_2020_110090 crossref_primary_10_1016_j_pbiomolbio_2018_03_002 crossref_primary_10_1080_17460441_2020_1822815 crossref_primary_10_1109_TMI_2012_2231093 crossref_primary_10_1002_mrm_24495 crossref_primary_10_1002_mrm_24891 crossref_primary_10_2214_AJR_10_5989 crossref_primary_10_4236_ojmi_2017_74013 crossref_primary_10_1016_j_ultrasmedbio_2013_05_020 crossref_primary_10_1002_jmri_22294 crossref_primary_10_7863_ultra_34_6_1123 crossref_primary_10_1002_nbm_3919 crossref_primary_10_1016_j_ultrasmedbio_2015_01_002 crossref_primary_10_1002_jmri_23731 crossref_primary_10_1002_jmri_24028 crossref_primary_10_4329_wjr_v8_i1_59 crossref_primary_10_1016_j_actbio_2016_08_055 crossref_primary_10_1002_mrm_29972 crossref_primary_10_1016_j_jbiomech_2012_12_024 crossref_primary_10_1007_s00261_020_02893_w crossref_primary_10_1016_j_actbio_2019_08_013 crossref_primary_10_1016_j_ultrasmedbio_2020_08_023 crossref_primary_10_1016_j_mri_2011_09_017 crossref_primary_10_1007_s00117_012_2311_6 crossref_primary_10_1016_j_jcp_2016_10_039 crossref_primary_10_1002_cyto_a_22875 crossref_primary_10_1016_j_jmbbm_2020_103795 crossref_primary_10_1016_j_jmbbm_2017_11_045 crossref_primary_10_1016_j_media_2022_102432 crossref_primary_10_1016_j_jbiomech_2016_03_013 crossref_primary_10_1088_0031_9155_59_7_1641 crossref_primary_10_3233_BIR_16091 crossref_primary_10_1039_c3sm50552a crossref_primary_10_1097_RMR_0000000000000149 crossref_primary_10_1109_TUFFC_2014_006653 crossref_primary_10_1002_jmri_22354 crossref_primary_10_1016_j_jmbbm_2018_09_032 crossref_primary_10_3389_fbiom_2024_1323763 crossref_primary_10_1007_s10143_017_0862_8 crossref_primary_10_1148_radiol_2017160622 crossref_primary_10_1016_j_ultrasmedbio_2022_09_019 crossref_primary_10_4028_www_scientific_net_MSF_917_329 crossref_primary_10_1002_mrm_22091 crossref_primary_10_1002_nbm_4543 crossref_primary_10_1088_0031_9155_55_21_007 crossref_primary_10_1016_j_jbiomech_2011_06_023 crossref_primary_10_1142_S0218957713500152 crossref_primary_10_1088_1758_5090_ad5705 crossref_primary_10_1002_mrm_24674 crossref_primary_10_1088_1361_6560_aa4f6f crossref_primary_10_1016_j_mri_2021_03_015 crossref_primary_10_1109_TMI_2010_2079940 crossref_primary_10_1016_j_jbiomech_2010_06_008 crossref_primary_10_3390_bioengineering8080106 crossref_primary_10_3390_pharmaceutics14061138 crossref_primary_10_1038_s41598_021_99243_7 crossref_primary_10_1016_j_ultrasmedbio_2018_05_027 crossref_primary_10_1016_j_ultras_2015_09_003 crossref_primary_10_1016_j_ultrasmedbio_2010_07_016 crossref_primary_10_1088_0031_9155_54_7_025 crossref_primary_10_1148_radiol_2016160685 crossref_primary_10_1002_jmri_23597 crossref_primary_10_1002_jmri_24049 crossref_primary_10_1016_j_medengphy_2014_10_007 crossref_primary_10_1016_j_cld_2012_03_005 crossref_primary_10_1016_j_mri_2014_10_002 crossref_primary_10_1016_j_mri_2015_10_001 crossref_primary_10_1016_j_jbiomech_2014_02_034 crossref_primary_10_35848_1347_4065_ad3ae4 crossref_primary_10_3389_fphys_2021_733393 crossref_primary_10_1016_j_yacr_2019_04_009 crossref_primary_10_1002_jmri_26903 crossref_primary_10_3179_jjmu_JJMU_R_203 crossref_primary_10_1038_nrneurol_2015_194 crossref_primary_10_1088_0031_9155_55_19_022 crossref_primary_10_1088_0031_9155_57_8_2273 crossref_primary_10_1631_jzus_B1300121 crossref_primary_10_1007_s00330_009_1470_y crossref_primary_10_1088_0031_9155_57_3_R35 crossref_primary_10_1002_mrm_26006 crossref_primary_10_1053_j_sult_2012_11_007 crossref_primary_10_1016_j_cgh_2017_10_037 crossref_primary_10_1016_j_jbiomech_2010_12_031 crossref_primary_10_1109_TMI_2013_2268978 crossref_primary_10_1088_1361_6560_ac3263 crossref_primary_10_1002_mrm_21878 crossref_primary_10_3390_biom11020307 crossref_primary_10_1007_s00261_021_03143_3 crossref_primary_10_1088_0031_9155_57_8_2329 crossref_primary_10_2214_AJR_15_14553 crossref_primary_10_1007_s00330_021_08295_w crossref_primary_10_1016_j_cma_2024_117493 crossref_primary_10_1016_j_ejro_2015_04_001 crossref_primary_10_1016_j_ultrasmedbio_2014_10_006 crossref_primary_10_1088_0031_9155_56_8_005 crossref_primary_10_1016_j_ultrasmedbio_2013_02_006 crossref_primary_10_1109_TMI_2009_2035309 crossref_primary_10_1109_TMI_2023_3288468 crossref_primary_10_1053_j_sult_2017_11_004 crossref_primary_10_1002_jmri_23986 crossref_primary_10_1002_nbm_5210 crossref_primary_10_1148_radiol_10092489 crossref_primary_10_1364_OE_23_020617 crossref_primary_10_1088_0031_9155_61_24_R401 crossref_primary_10_1002_nbm_3438 crossref_primary_10_1016_j_mri_2018_08_016 crossref_primary_10_2214_AJR_15_14552 crossref_primary_10_1097_RLI_0b013e3181ec4b63 crossref_primary_10_1016_j_nicl_2012_09_003 crossref_primary_10_1007_s10396_020_01059_x crossref_primary_10_1088_1757_899X_490_2_022035 crossref_primary_10_1016_j_mric_2014_05_001 crossref_primary_10_2463_mrms_rev_2021_0152 crossref_primary_10_1016_j_acra_2011_01_006 crossref_primary_10_1299_mej_14_00417 crossref_primary_10_1007_s00330_013_2978_8 crossref_primary_10_1118_1_3443563 crossref_primary_10_1016_j_mri_2015_12_037 crossref_primary_10_1002_jmri_29633 crossref_primary_10_1002_cpz1_379 crossref_primary_10_1177_016173461003200405 crossref_primary_10_1007_s11548_014_1100_2 crossref_primary_10_1007_s00330_021_07988_6 crossref_primary_10_1002_jmri_22845 crossref_primary_10_1016_j_cgh_2015_07_030 crossref_primary_10_3349_ymj_2014_55_3_651 crossref_primary_10_1088_1361_6560_aa8444 crossref_primary_10_1002_jmri_25550 crossref_primary_10_1016_j_jbiomech_2016_02_018 crossref_primary_10_1007_s00261_019_02400_w crossref_primary_10_1007_s12072_022_10303_0 crossref_primary_10_1016_j_mric_2020_03_001 crossref_primary_10_1016_j_cult_2013_09_006 crossref_primary_10_1038_s41598_022_05262_3 crossref_primary_10_1007_s00261_020_02656_7 crossref_primary_10_1007_s00261_017_1340_z crossref_primary_10_1002_nbm_3499 crossref_primary_10_1002_nbm_4102 crossref_primary_10_1136_gutjnl_2020_322976 crossref_primary_10_1002_nbm_3891 crossref_primary_10_1097_RMR_0b013e3181c4737e crossref_primary_10_1016_j_fertnstert_2010_06_004 crossref_primary_10_1121_1_3268508 crossref_primary_10_1007_s10237_020_01297_5 crossref_primary_10_1186_1532_429X_12_60 crossref_primary_10_1016_j_bspc_2014_04_006 crossref_primary_10_1016_j_mric_2010_07_002 crossref_primary_10_1148_radiol_11101942 crossref_primary_10_1002_cnm_2917 crossref_primary_10_1097_RMR_0000000000000177 crossref_primary_10_1148_radiol_2018170601 crossref_primary_10_2174_1874120701307010116 crossref_primary_10_1016_j_jbiomech_2014_05_017 crossref_primary_10_1002_mrm_22976 crossref_primary_10_1109_JBHI_2014_2370059 crossref_primary_10_3390_s20082379 crossref_primary_10_1016_j_neuroimage_2009_02_040 crossref_primary_10_37549_AR1982 crossref_primary_10_1016_j_mri_2013_02_001 |
Cites_doi | 10.7326/0003-4819-127-11-199712010-00006 10.1007/s00397-005-0026-6 10.1002/mrm.21152 10.1016/j.ultrasmedbio.2003.07.001 10.1097/01.rli.0000244341.16372.08 10.1088/0031-9155/45/6/313 10.1016/S0168-8278(02)00429-4 10.1002/mrm.21286 10.1002/mrm.21404 10.1002/hep.20506 10.1088/0031-9155/52/24/006 10.1056/NEJM200102083440604 10.1177/016173469101300201 10.1148/radiol.2402050606 10.1002/nbm.1189 10.1126/science.7569924 10.1016/0301-5629(90)90003-U 10.1002/jmri.1880050620 10.1088/0031-9155/49/18/002 10.1002/nbm.1030 10.1007/978-3-642-73602-5 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Wiley‐Liss, Inc. (c) 2008 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: (c) 2008 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
DOI | 10.1002/mrm.21636 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Engineering Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 379 |
ExternalDocumentID | 18666132 10_1002_mrm_21636 MRM21636 ark_67375_WNG_9BJMW2H7_W |
Genre | article Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: German Research Foundation funderid: Sa/901‐3 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c4936-a0ab6fabf52e65d39363040cd352088fa06f3b200998049e4faa188530bf57b63 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 13:50:23 EDT 2025 Fri Jul 11 14:09:25 EDT 2025 Mon Jul 21 06:04:09 EDT 2025 Tue Jul 01 01:20:39 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Wed Jan 22 16:28:06 EST 2025 Wed Oct 30 09:56:33 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | (c) 2008 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4936-a0ab6fabf52e65d39363040cd352088fa06f3b200998049e4faa188530bf57b63 |
Notes | istex:C0B729420EEE349AAEB134AB738F7C022BCA892C ArticleID:MRM21636 German Research Foundation - No. Sa/901-3 ark:/67375/WNG-9BJMW2H7-W ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-1 ObjectType-Feature-3 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.21636 |
PMID | 18666132 |
PQID | 20857496 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_69383917 proquest_miscellaneous_20857496 pubmed_primary_18666132 crossref_citationtrail_10_1002_mrm_21636 crossref_primary_10_1002_mrm_21636 wiley_primary_10_1002_mrm_21636_MRM21636 istex_primary_ark_67375_WNG_9BJMW2H7_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2008 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: August 2008 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2008 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Tschoegl NW. The phenomenological theory of linear viscoelastic behavior. Berlin: Springer; 1989. Kiss MZ, Varghese T, Hall TJ. Viscoelastic characterization of in vitro canine tissue. Phys Med Biol 2004; 49: 4207-4218. Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F, Beaugrand M, Palau R. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705-1713. Klatt D, Hamhaber U, Asbach P, Braun J, Sack I. Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 2007; 52: 7281-7294. Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF, Ehman RL. Tissue characterization using magnetic resonance elastography: preliminary results. Phys Med Biol 2000; 45: 1579-1590. Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed 2008; 21: 265-271. Plewes DB, Betty I, Urchuk SN, Soutar I. Visualizing tissue compliance with MR imaging. J Magn Reson Imaging 1995; 5: 733-738. Rump J, Klatt D, Braun J, Warmuth C, Sack I. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med 2007; 57: 388-395. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111-134. Valtorta D, Mazza E. Measurement of rheological properties of soft biological tissue with a novel torsional resonator device. Rheologica Acta 2006; 45: 677-692. Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, Glaser KJ, Manduca A, Ehman RL. Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med 2007; 58: 346-353. Rouviere O, Yin M, Dresner MA, Rossman PJ, Burgart LJ, Fidler JL, Ehman RL. MR elastography of the liver: preliminary results. Radiology 2006; 240: 440-448. Liu Z, Bilston L. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 2000; 37: 191-201. Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 2007; 58: 1135-1144. Hammel P, Couvelard A, O'Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Levy P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 2001; 344: 418-423. Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med 1997; 127: 981-985. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269: 1854-1857. Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for "sonoelasticity imaging". Ultrasound Med Biol 1990; 16: 241-246. Huwart L, Peeters F, Sinkus R, Annet L, Salameh N, ter Beek LC, Horsmans Y, Van Beers BE. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 2006; 19: 173-179. Klatt D, Asbach P, Rump J, Papazoglou S, Somasundaram R, Modrow J, Braun J, Sack I. In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography. Invest Radiol 2006; 41: 841-848. Ziol M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F, de Ledinghen V, Marcellin P, Dhumeaux D, Trinchet JC, Beaugrand M. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54. Friedman SL. Liver fibrosis-from bench to bedside. J Hepatol 2003; 38(Suppl 1): S38-S53. 2001; 344 1997; 127 2006; 41 2006; 45 1990; 16 1991; 13 2000; 37 2000; 45 2004; 49 2006; 240 1998 2005; 41 2007 2003; 38 1995; 269 2006; 19 2008; 21 2003; 29 2003 2007; 52 2007; 57 1995; 5 2007; 58 1989 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_22_2 e_1_2_7_21_2 e_1_2_7_20_2 Liu Z (e_1_2_7_23_2) 2000; 37 |
References_xml | – reference: Klatt D, Hamhaber U, Asbach P, Braun J, Sack I. Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity. Phys Med Biol 2007; 52: 7281-7294. – reference: Yin M, Woollard J, Wang X, Torres VE, Harris PC, Ward CJ, Glaser KJ, Manduca A, Ehman RL. Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med 2007; 58: 346-353. – reference: Sinkus R, Siegmann K, Xydeas T, Tanter M, Claussen C, Fink M. MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 2007; 58: 1135-1144. – reference: Hammel P, Couvelard A, O'Toole D, Ratouis A, Sauvanet A, Flejou JF, Degott C, Belghiti J, Bernades P, Valla D, Ruszniewski P, Levy P. Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct. N Engl J Med 2001; 344: 418-423. – reference: Ziol M, Handra-Luca A, Kettaneh A, Christidis C, Mal F, Kazemi F, de Ledinghen V, Marcellin P, Dhumeaux D, Trinchet JC, Beaugrand M. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology 2005; 41: 48-54. – reference: Friedman SL. Liver fibrosis-from bench to bedside. J Hepatol 2003; 38(Suppl 1): S38-S53. – reference: Huwart L, Peeters F, Sinkus R, Annet L, Salameh N, ter Beek LC, Horsmans Y, Van Beers BE. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 2006; 19: 173-179. – reference: Klatt D, Asbach P, Rump J, Papazoglou S, Somasundaram R, Modrow J, Braun J, Sack I. In vivo determination of hepatic stiffness using steady-state free precession magnetic resonance elastography. Invest Radiol 2006; 41: 841-848. – reference: Liu Z, Bilston L. On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 2000; 37: 191-201. – reference: Parker KJ, Huang SR, Musulin RA, Lerner RM. Tissue response to mechanical vibrations for "sonoelasticity imaging". Ultrasound Med Biol 1990; 16: 241-246. – reference: Kiss MZ, Varghese T, Hall TJ. Viscoelastic characterization of in vitro canine tissue. Phys Med Biol 2004; 49: 4207-4218. – reference: Dufour JF, DeLellis R, Kaplan MM. Reversibility of hepatic fibrosis in autoimmune hepatitis. Ann Intern Med 1997; 127: 981-985. – reference: Sack I, Beierbach B, Hamhaber U, Klatt D, Braun J. Non-invasive measurement of brain viscoelasticity using magnetic resonance elastography. NMR Biomed 2008; 21: 265-271. – reference: Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 1995; 269: 1854-1857. – reference: Rump J, Klatt D, Braun J, Warmuth C, Sack I. Fractional encoding of harmonic motions in MR elastography. Magn Reson Med 2007; 57: 388-395. – reference: Rouviere O, Yin M, Dresner MA, Rossman PJ, Burgart LJ, Fidler JL, Ehman RL. MR elastography of the liver: preliminary results. Radiology 2006; 240: 440-448. – reference: Tschoegl NW. The phenomenological theory of linear viscoelastic behavior. Berlin: Springer; 1989. – reference: Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111-134. – reference: Plewes DB, Betty I, Urchuk SN, Soutar I. Visualizing tissue compliance with MR imaging. J Magn Reson Imaging 1995; 5: 733-738. – reference: Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF, Ehman RL. Tissue characterization using magnetic resonance elastography: preliminary results. Phys Med Biol 2000; 45: 1579-1590. – reference: Valtorta D, Mazza E. Measurement of rheological properties of soft biological tissue with a novel torsional resonator device. Rheologica Acta 2006; 45: 677-692. – reference: Sandrin L, Fourquet B, Hasquenoph JM, Yon S, Fournier C, Mal F, Christidis C, Ziol M, Poulet B, Kazemi F, Beaugrand M, Palau R. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29: 1705-1713. – volume: 52 start-page: 7281 year: 2007 end-page: 7294 article-title: Noninvasive assessment of the rheological behavior of human internal organs using multifrequency MR elastography: a study of brain and liver viscoelasticity publication-title: Phys Med Biol – volume: 21 start-page: 265 year: 2008 end-page: 271 article-title: Non‐invasive measurement of brain viscoelasticity using magnetic resonance elastography publication-title: NMR Biomed – volume: 240 start-page: 440 year: 2006 end-page: 448 article-title: MR elastography of the liver: preliminary results publication-title: Radiology – year: 2007 – year: 1989 – year: 2003 – volume: 49 start-page: 4207 year: 2004 end-page: 4218 article-title: Viscoelastic characterization of in vitro canine tissue publication-title: Phys Med Biol – volume: 37 start-page: 191 year: 2000 end-page: 201 article-title: On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour publication-title: Biorheology – volume: 127 start-page: 981 year: 1997 end-page: 985 article-title: Reversibility of hepatic fibrosis in autoimmune hepatitis publication-title: Ann Intern Med – volume: 13 start-page: 111 year: 1991 end-page: 134 article-title: Elastography: a quantitative method for imaging the elasticity of biological tissues publication-title: Ultrason Imaging – volume: 19 start-page: 173 year: 2006 end-page: 179 article-title: Liver fibrosis: non‐invasive assessment with MR elastography publication-title: NMR Biomed – volume: 16 start-page: 241 year: 1990 end-page: 246 article-title: Tissue response to mechanical vibrations for “sonoelasticity imaging” publication-title: Ultrasound Med Biol – volume: 5 start-page: 733 year: 1995 end-page: 738 article-title: Visualizing tissue compliance with MR imaging publication-title: J Magn Reson Imaging – year: 1998 – volume: 57 start-page: 388 year: 2007 end-page: 395 article-title: Fractional encoding of harmonic motions in MR elastography publication-title: Magn Reson Med – volume: 29 start-page: 1705 year: 2003 end-page: 1713 article-title: Transient elastography: a new noninvasive method for assessment of hepatic fibrosis publication-title: Ultrasound Med Biol – volume: 38 start-page: S38 issue: Suppl 1 year: 2003 end-page: S53 article-title: Liver fibrosis—from bench to bedside publication-title: J Hepatol – volume: 269 start-page: 1854 year: 1995 end-page: 1857 article-title: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves publication-title: Science – volume: 58 start-page: 1135 year: 2007 end-page: 1144 article-title: MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast‐enhanced MR mammography publication-title: Magn Reson Med – volume: 41 start-page: 48 year: 2005 end-page: 54 article-title: Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C publication-title: Hepatology – volume: 41 start-page: 841 year: 2006 end-page: 848 article-title: In vivo determination of hepatic stiffness using steady‐state free precession magnetic resonance elastography publication-title: Invest Radiol – volume: 45 start-page: 677 year: 2006 end-page: 692 article-title: Measurement of rheological properties of soft biological tissue with a novel torsional resonator device publication-title: Rheologica Acta – volume: 45 start-page: 1579 year: 2000 end-page: 1590 article-title: Tissue characterization using magnetic resonance elastography: preliminary results publication-title: Phys Med Biol – volume: 58 start-page: 346 year: 2007 end-page: 353 article-title: Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography publication-title: Magn Reson Med – volume: 344 start-page: 418 year: 2001 end-page: 423 article-title: Regression of liver fibrosis after biliary drainage in patients with chronic pancreatitis and stenosis of the common bile duct publication-title: N Engl J Med – ident: e_1_2_7_2_2 doi: 10.7326/0003-4819-127-11-199712010-00006 – ident: e_1_2_7_25_2 doi: 10.1007/s00397-005-0026-6 – ident: e_1_2_7_21_2 doi: 10.1002/mrm.21152 – ident: e_1_2_7_19_2 – ident: e_1_2_7_9_2 doi: 10.1016/j.ultrasmedbio.2003.07.001 – ident: e_1_2_7_13_2 doi: 10.1097/01.rli.0000244341.16372.08 – ident: e_1_2_7_15_2 doi: 10.1088/0031-9155/45/6/313 – ident: e_1_2_7_4_2 doi: 10.1016/S0168-8278(02)00429-4 – ident: e_1_2_7_14_2 doi: 10.1002/mrm.21286 – ident: e_1_2_7_18_2 doi: 10.1002/mrm.21404 – ident: e_1_2_7_10_2 doi: 10.1002/hep.20506 – ident: e_1_2_7_16_2 doi: 10.1088/0031-9155/52/24/006 – ident: e_1_2_7_26_2 – ident: e_1_2_7_3_2 doi: 10.1056/NEJM200102083440604 – ident: e_1_2_7_20_2 – volume: 37 start-page: 191 year: 2000 ident: e_1_2_7_23_2 article-title: On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour publication-title: Biorheology – ident: e_1_2_7_6_2 doi: 10.1177/016173469101300201 – ident: e_1_2_7_11_2 doi: 10.1148/radiol.2402050606 – ident: e_1_2_7_17_2 doi: 10.1002/nbm.1189 – ident: e_1_2_7_7_2 doi: 10.1126/science.7569924 – ident: e_1_2_7_5_2 doi: 10.1016/0301-5629(90)90003-U – ident: e_1_2_7_8_2 doi: 10.1002/jmri.1880050620 – ident: e_1_2_7_24_2 doi: 10.1088/0031-9155/49/18/002 – ident: e_1_2_7_12_2 doi: 10.1002/nbm.1030 – ident: e_1_2_7_22_2 doi: 10.1007/978-3-642-73602-5 |
SSID | ssj0009974 |
Score | 2.3840442 |
Snippet | MR elastography (MRE) allows the noninvasive assessment of the viscoelastic properties of human organs based on the organ response to oscillatory shear stress.... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 373 |
SubjectTerms | Algorithms cirrhosis Elasticity Elasticity Imaging Techniques - methods fibrosis Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods liver Liver - pathology Liver - physiopathology Liver Cirrhosis - pathology Liver Cirrhosis - physiopathology magnetic resonance elastography multifrequency MRE Reproducibility of Results Sensitivity and Specificity Stress, Mechanical viscoelasticity Viscosity wave speed dispersion |
Title | Assessment of liver viscoelasticity using multifrequency MR elastography |
URI | https://api.istex.fr/ark:/67375/WNG-9BJMW2H7-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.21636 https://www.ncbi.nlm.nih.gov/pubmed/18666132 https://www.proquest.com/docview/20857496 https://www.proquest.com/docview/69383917 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS90wFD6IsrGXublfd3MaZAxfeq1Jmzb45IZ6EerDZXJ9EELSpmOo9477Y8z99TsnaXtxKAzfSjkpSU5O8p3myxeAT4YEXhxmJyrnLkq4iyOLK3UkqtQY4zJhHR1wLs7k4Dw5vUgvVuCgPQsT9CG6H24UGX6-pgA3dra3FA29md70OaIJktsmrhYBouFSOkqpoMCcJTTPqKRVFYr5Xlfyzlq0Rt36-z6geRe3-oXneB0u2yoHvslVfzG3_fLPP2qOj2zTC3jeAFJ2GEbQS1hx4w14WjRb7hvwxHNEy9krGBx2Kp5sUrNrYnSwXz9m5cQhBCd29vyWEY_-O_M0xXoaaNq3rBgyb9LIY7-G8-Ojb18HUXMRQ1QmSsjIxMbK2tg65U6mlcB3AoO_rBC94SxVm1jWwtI-i8ox43BJbcx-jkAgxiKZleINrI4nY_cOmMgrGaus3udVmkhrlSl5mdFHMpwZctGD3dYlumxUyumyjGsd9JW5xj7Svo96sNOZ_gzSHPcZffZ-7SzM9Iq4bFmqR2cnWn05LUZ8kOlRD7Zbx2uMMNo2MWM3Wcy0v8U0UfJhC6kwz8e8twdvw4hZ1ifH9BATfmyW9_vDFdXFsPAP7__f9AM8C_QV4iNuwup8unAfESPN7ZYPhr-74gvH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVlAuPAqF5dUIIcQl29ROnFjiUh4llGYPq1bbC7LsxEGo7S7aR9Xy65mxk6yKWglxi6Jx5Hg84xn78zcAbzQRvFjMTmTGbBgzG4UGV-qQV4nW2qbcWLrgXAxEfhTvHyfHK_C-vQvj-SG6DTeyDOevycBpQ3p7yRp6Nj3rMwwnxC1Yo4rexJz_abgkj5LSczCnMXkaGbe8QhHb7ppeWY3WaGAvrgs1r0aubunZuw_f2057xMlJfzE3_fL3X3yO__tXD-BeE5MGu34SPYQVO96AO0Vz6r4Btx1MtJw9gny3I_IMJnVwSqCO4PznrJxYjMIJoD2_DAhK_yNwSMV66pHal0ExDJxIw5D9GI72Ph9-zMOmFkNYxpKLUEfaiFqbOmFWJBXHdxztv6wwgENHVetI1NzQUYvMMOmwca31ToaxQIRNUiP4JqyOJ2P7FAKeVSKSab3DqiQWxkhdsjKlj6ToHDLeg3etTlTZEJVTvYxT5SmWmcIxUm6MevC6E_3l2TmuE3rrFNtJ6OkJwdnSRI0GX5T8sF-MWJ6qUQ-2Ws0rNDI6OdFjO1nMlCtkGktxs4SQmOpj6tuDJ37KLPuTYYaIOT_-llP8zR1VxbBwD8_-XXQL1vPD4kAdfB18ew53PZqF4IkvYHU-XdiXGDLNzStnGX8Abb0P4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qi8WXqvXr6keDiPiy122SzW7wqVrPs7qHHJbrQyEku4lI27tyH2L713eS_TgqLYhvyzJZkkxmMrP55TcAb7QneLGYnciM2ohTG0cGd-qIlYnW2qbMWH_BOR-I_iE_OEqOVuB9cxem4odof7h5ywj-2hv4eel2lqShZ9OzLsVoQtyBNS5i6es27A-X3FFSVhTMKfeORvKGViimO23Ta5vRmp_XPzdFmtcD17Dz9O7DcdPnCnBy0l3MTbe4_IvO8T8H9QA26oiU7FVL6CGs2PEmrOf1mfsm3A0g0WL2CPp7LY0nmThy6iEd5PevWTGxGIN7ePb8gngg_U8ScIpuWuG0L0g-JEGk5sd-DIe9Tz8-9qO6EkNUcMlEpGNthNPGJdSKpGT4jqH1FyWGb-imnI6FY8YftMgMUw7Lnda7GUYCMTZJjWBPYHU8GdtnQFhWorJSt0vLhAtjpC5okfqPpOgaMtaBd41KVFHTlPtqGaeqIlimCudIhTnqwOtW9Lzi5rhJ6G3QayuhpycezJYmajT4rOSHg3xE-6kadWC7UbxCE_PnJnpsJ4uZCmVMuRS3SwiJiT4mvh14Wq2YZX8yzA8x48dhBb3f3lGVD_PwsPXvotuw_n2_p759GXx9DvcqKIvHJr6A1fl0YV9ivDQ3r4JdXAE0Iw6S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+liver+viscoelasticity+using+multifrequency+MR+elastography&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Asbach%2C+Patrick&rft.au=Klatt%2C+Dieter&rft.au=Hamhaber%2C+Uwe&rft.au=Braun%2C+J%C3%BCrgen&rft.date=2008-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=60&rft.issue=2&rft.spage=373&rft.epage=379&rft_id=info:doi/10.1002%2Fmrm.21636&rft.externalDBID=10.1002%252Fmrm.21636&rft.externalDocID=MRM21636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |