Mechanisms of action of ionic liquids on living cells: the state of the art
Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investi...
Saved in:
Published in | Biophysical reviews Vol. 12; no. 5; pp. 1187 - 1215 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1867-2450 1867-2469 |
DOI | 10.1007/s12551-020-00754-w |
Cover
Loading…
Abstract | Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of “ILs, biomolecules, and cells.” |
---|---|
AbstractList | Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of “ILs, biomolecules, and cells.” Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of “ILs, biomolecules, and cells.” Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of "ILs, biomolecules, and cells."Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting temperature falls around room-temperature. In the last 20 years, the toxicity of ILs towards cells and micro-organisms has been heavily investigated with the main aim to assess the risks associated with their potential use in (industrial) applications, and to develop strategies to design greener ILs. Toxicity, however, is synonym with affinity, and this has stimulated, in turn, a series of biophysical and chemical-physical investigations as well as few biochemical studies focused on the mechanisms of action (MoAs) of ILs, key step in the development of applications in bio-nanomedicine and bio-nanotechnology. This review has the intent to present an overview of the state of the art of the MoAs of ILs, which have been the focus of a limited number of studies but still sufficient enough to provide a first glimpse on the subject. The overall picture that emerges is quite intriguing and shows that ILs interact with cells in a variety of different mechanisms, including alteration of lipid distribution and cell membrane viscoelasticity, disruption of cell and nuclear membranes, mitochondrial permeabilization and dysfunction, generation of reactive oxygen species, chloroplast damage (in plants), alteration of transmembrane and cytoplasmatic proteins/enzyme functions, alteration of signaling pathways, and DNA fragmentation. Together with our earlier review work on the biophysics and chemical-physics of IL-cell membrane interactions (Biophys. Rev. 9:309, 2017), we hope that the present review, focused instead on the biochemical aspects, will stimulate a series of new investigations and discoveries in the still new and interdisciplinary field of "ILs, biomolecules, and cells." |
Author | Kumari, Pallavi Benedetto, Antonio Pillai, Visakh V.S. |
Author_xml | – sequence: 1 givenname: Pallavi surname: Kumari fullname: Kumari, Pallavi organization: Department of Sciences, University of Roma Tre, School of Physics, University College Dublin, Conway Institute of Biomolecular and Biomedical Research, University College Dublin – sequence: 2 givenname: Visakh V.S. surname: Pillai fullname: Pillai, Visakh V.S. organization: Department of Sciences, University of Roma Tre, School of Physics, University College Dublin, Conway Institute of Biomolecular and Biomedical Research, University College Dublin – sequence: 3 givenname: Antonio orcidid: 0000-0002-9324-8595 surname: Benedetto fullname: Benedetto, Antonio email: antonio.benedetto@uniroma3.it, antonio.benedetto@ucd.ie, antonio.benedetto@psi.ch organization: Department of Sciences, University of Roma Tre, School of Physics, University College Dublin, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Laboratory for Neutron Scattering, Paul Scherrer Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32936423$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctO3TAQtRCoPMoPsKgisWGT1m87XSAh1FJUUDft2nIc516jXBvshKv-fSdcHoUFqzmjOWfmzMw-2o4peoSOCP5MMFZfCqFCkBpTXEMqeL3eQntES1VTLpvtZyzwLtov5QZjyakWH9Auow0DzPbQz2vvljaGsipV6ivrxpDijCAEVw3hbgodlCLA-xAXlfPDUL5W49JXZbSjn7lzYvP4Ee30dij-8DEeoD_fv_0-_1Ff_bq4PD-7qh1v6LrWDlutXCe1p1o1LaSyYb2QGraQjLWyASR7xtteW01ow13HW6c71_lOKnaATjd9b6d25Tvn45jtYG5zWNn81yQbzOtKDEuzSPdGCQVTGDQ4eWyQ093ky2hWocyL2ejTVAzlnAmiYDBQj99Qb9KUI6wHLMU0kULNrE__O3q28nRnIOgNweVUSva9cQGuB0cGg2EwBJv5pWbzUgMvNQ8vNWuQ0jfSp-7vithGVIAcFz6_2H5H9Q9Ba7Nr |
CitedBy_id | crossref_primary_10_1007_s11172_024_4362_z crossref_primary_10_3390_pharmaceutics13010018 crossref_primary_10_1021_acs_jpcb_2c02212 crossref_primary_10_1016_j_molliq_2021_117077 crossref_primary_10_1007_s10811_025_03477_1 crossref_primary_10_1016_j_molliq_2023_122823 crossref_primary_10_1021_acs_chemrev_3c00420 crossref_primary_10_3390_microorganisms9040730 crossref_primary_10_1021_envhealth_4c00088 crossref_primary_10_2174_0113862073285654240308055228 crossref_primary_10_1016_j_ecoenv_2022_114334 crossref_primary_10_1016_j_indcrop_2022_115476 crossref_primary_10_3390_plants12040914 crossref_primary_10_1016_j_jcis_2023_11_158 crossref_primary_10_1016_j_desal_2023_117120 crossref_primary_10_1039_D1OB00011J crossref_primary_10_1016_j_molliq_2022_118673 crossref_primary_10_1021_acs_jpcb_1c00592 crossref_primary_10_1007_s12551_020_00755_9 crossref_primary_10_1038_s41597_024_04190_3 crossref_primary_10_1016_j_biotechadv_2021_107702 crossref_primary_10_1002_adma_202406080 crossref_primary_10_1016_j_molliq_2023_121322 crossref_primary_10_1007_s11095_022_03322_x crossref_primary_10_1016_j_molliq_2025_127277 crossref_primary_10_1002_adfm_202306644 crossref_primary_10_1016_j_scp_2020_100369 crossref_primary_10_1016_j_drudis_2021_01_031 crossref_primary_10_1039_D4GC00528G crossref_primary_10_3390_sci7010002 crossref_primary_10_3390_molecules29071524 crossref_primary_10_1039_D3CS00510K crossref_primary_10_1007_s12551_023_01173_3 crossref_primary_10_1016_j_envint_2024_109089 crossref_primary_10_1016_j_toxlet_2023_07_011 crossref_primary_10_3390_pharmaceutics16050642 crossref_primary_10_59324_ejtas_2024_2_5__37 crossref_primary_10_1039_D1CS00946J crossref_primary_10_1007_s00203_024_04035_y crossref_primary_10_1021_acs_langmuir_3c00883 crossref_primary_10_1021_acs_jpclett_2c01873 crossref_primary_10_1021_acs_jmedchem_4c01780 crossref_primary_10_1002_adtp_202200332 crossref_primary_10_1016_j_microc_2021_106667 crossref_primary_10_1016_j_jhazmat_2025_138011 crossref_primary_10_1002_smll_202206968 crossref_primary_10_1016_j_molliq_2022_120750 crossref_primary_10_3390_molecules29102326 crossref_primary_10_1016_j_chroma_2021_462219 crossref_primary_10_3390_ma14216231 crossref_primary_10_1021_acs_jpclett_2c01505 crossref_primary_10_1080_07391102_2024_2329307 crossref_primary_10_1002_adfm_202104148 crossref_primary_10_1016_j_ejpb_2022_11_018 crossref_primary_10_1016_j_molliq_2024_125698 crossref_primary_10_1016_j_molstruc_2022_133947 crossref_primary_10_1021_acs_jpcb_1c09476 crossref_primary_10_3390_molecules28031107 crossref_primary_10_1016_j_mtcomm_2021_102672 crossref_primary_10_1093_femsyr_foac036 crossref_primary_10_1088_2516_1075_abfd21 crossref_primary_10_1021_acs_jpcb_1c01347 crossref_primary_10_1021_acs_jpcb_3c06797 crossref_primary_10_1080_10837450_2024_2417004 crossref_primary_10_1016_j_molliq_2022_120450 crossref_primary_10_1002_bit_28198 crossref_primary_10_3390_pharmaceutics16040496 crossref_primary_10_1016_j_jhazmat_2021_125215 crossref_primary_10_1016_j_chemosphere_2024_142964 crossref_primary_10_1080_10610278_2021_1975280 crossref_primary_10_1016_j_chemosphere_2024_143252 crossref_primary_10_1039_D4CP01236D crossref_primary_10_3390_polym15204097 crossref_primary_10_1021_acssuschemeng_0c08790 crossref_primary_10_1007_s12551_021_00782_0 crossref_primary_10_3390_cancers15030756 crossref_primary_10_1007_s00253_024_13353_6 crossref_primary_10_1007_s12551_020_00764_8 crossref_primary_10_1080_08927022_2022_2113810 crossref_primary_10_1016_j_molliq_2024_124420 crossref_primary_10_1039_D1GC01520F crossref_primary_10_3390_pharmaceutics16010151 crossref_primary_10_1016_j_microb_2024_100111 crossref_primary_10_1134_S1070363223170036 crossref_primary_10_3390_ijerph19148719 crossref_primary_10_3390_ijms221910487 crossref_primary_10_1016_j_molliq_2024_125631 crossref_primary_10_1016_j_molliq_2024_125483 crossref_primary_10_1016_j_cis_2023_102848 crossref_primary_10_1002_ardp_202200085 crossref_primary_10_1016_j_molliq_2022_119989 crossref_primary_10_1016_j_ceja_2024_100670 crossref_primary_10_1007_s11224_023_02259_0 crossref_primary_10_3390_molecules27061974 crossref_primary_10_1016_j_jmb_2024_168627 crossref_primary_10_1021_acs_jpcb_4c01455 crossref_primary_10_1007_s11356_023_25562_z crossref_primary_10_1021_acs_est_4c12617 crossref_primary_10_3390_molecules27238492 crossref_primary_10_1021_acs_jpcb_2c00710 |
Cites_doi | 10.1007/s12551-018-0425-4 10.1039/C1NJ20470J 10.1038/s41573-019-0058-8 10.1371/journal.pone.0229745 10.1016/j.jhazmat.2018.01.028 10.1007/s12551-018-0426-3 10.1021/jz201006b 10.1021/acs.langmuir.6b04359 10.1016/j.procbio.2014.09.014 10.1016/j.envpol.2019.04.043 10.1039/b615406a 10.1021/cr1003248 10.1038/nchembio.1986 10.1007/s00232001078 10.1016/j.ecoenv.2006.08.008 10.1021/acs.jpclett.0c02149 10.1038/nrmicro2333 10.1073/pnas.1521988112 10.1039/b921805j 10.1016/j.ecoenv.2007.11.002 10.1021/acsbiomaterials.8b00486 10.1021/acs.langmuir.7b04361 10.1016/j.physb.2018.02.043 10.1016/j.ecoenv.2009.10.004 10.1038/s43246-020-0035-0 10.1007/s12551-018-0424-5 10.1073/pnas.1005485107 10.1002/tox.20443 10.1007/s12551-017-0279-1 10.3390/ijms19030790 10.1038/nrmicro1098 10.1073/pnas.0702439104 10.1021/jp7116592 10.1016/j.jhazmat.2014.11.028 10.1002/chem.201704924 10.1016/j.bbrc.2015.10.015 10.1016/j.tiv.2017.09.025 10.1016/j.chemosphere.2015.11.055 10.1039/C7SM01799E 10.1016/j.ecoenv.2020.110392 10.1016/j.molstruc.2007.09.022 10.1021/jp507631h 10.1007/s12551-017-0388-x 10.1016/j.molliq.2017.02.078 10.1007/s11356-015-4794-y 10.1016/j.ecoenv.2008.02.022 10.1039/C7RA01520H 10.1038/srep19889 10.1039/b419172b 10.1016/j.jhazmat.2016.08.056 10.1073/pnas.1722338115 10.1039/b704503d 10.1039/B511554J 10.1080/02772240600589505 10.1007/s00216-008-2523-9 10.1016/S0147-6513(03)00105-2 10.1021/tx200228c 10.1016/j.jconrel.2020.04.038 10.1038/s41467-017-02118-7 10.1016/j.tiv.2012.07.006 10.1007/s12551-018-0419-2 10.1016/j.jhazmat.2015.12.028 10.1039/C0MD00201A 10.1263/jbb.105.425 10.1038/s41467-020-15257-1 10.1002/cssc.201700261 10.1016/j.chemosphere.2013.08.092 10.1016/j.ecoenv.2015.07.010 10.1016/j.scitotenv.2017.10.021 10.1002/adtp.202000041 10.1016/j.tiv.2018.05.013 10.1073/pnas.1517541113 10.1016/j.ecoenv.2007.08.011 10.1007/s12551-018-0422-7 10.1002/cssc.201300459 10.1039/b807019a 10.1016/j.ijbiomac.2016.12.005 10.1016/j.bbamem.2019.183103 10.1016/j.aquatox.2015.10.024 10.1016/j.molliq.2018.06.045 10.1016/j.jhazmat.2013.11.003 10.1016/j.chemosphere.2016.09.140 10.1016/j.chemphyslip.2016.11.003 10.1038/s41467-019-11503-3 10.1021/jp412281n 10.1007/s10646-011-0785-z 10.1039/C4TX00079J 10.1039/c0gc00813c 10.1039/C004968A 10.1038/srep18444 10.1039/b807214k 10.1073/pnas.1319900111 10.1021/acsomega.8b03691 10.1039/b817717c 10.1016/j.jconrel.2018.07.029 10.1016/j.molliq.2019.111751 10.1016/j.ecoenv.2010.01.017 10.3390/ijms20122865 10.1021/acs.langmuir.8b01554 10.1021/acs.langmuir.6b02496 10.1039/D0CP00801J 10.1016/j.jconrel.2020.03.018 10.1021/acs.langmuir.6b03192 10.1038/sj.bjp.0705374 10.1016/j.jconrel.2019.08.029 10.1016/j.chemosphere.2019.124919 10.1002/adma.201901103 10.1897/04-614R.1 10.1007/s12551-017-0390-3 10.1021/acs.chemrev.6b00562 10.1007/s12551-018-0421-8 10.1016/j.chemosphere.2009.11.047 10.1002/open.201100003 10.1016/j.chemosphere.2016.02.029 10.3109/15569543.2013.867885 10.1002/biot.201900073 10.1038/nrmicro3380 10.1146/annurev-chembioeng-060713-040024 10.1063/1.4915918 10.1021/acssuschemeng.5b01385 10.1039/b706677p 10.1016/j.yrtph.2010.03.006 10.1016/j.watres.2017.08.046 10.1007/s12551-018-0410-y 10.1038/s42004-020-0302-5 10.1016/j.molliq.2020.112547 10.1016/j.chemosphere.2019.124436 10.1039/b821842k 10.1016/j.ecoenv.2020.110902 10.1016/j.bmcl.2009.06.086 10.1016/j.bmcl.2009.11.085 10.1039/C1FD00071C 10.1515/aiht-2017-68-2979 10.1097/ICO.0b013e31823f0a86 10.1073/pnas.1914426116 10.1038/srep11935 10.1038/s41586-019-1357-2 10.1002/btm2.10083 10.1039/b602161a 10.1016/j.chemosphere.2013.01.013 10.1073/pnas.1518034113 10.1016/j.chemosphere.2016.08.061 10.1021/acsomega.0c01098 10.1038/nature14098 10.1021/acs.langmuir.6b00768 10.1177/0960327110371259 10.1007/s10646-008-0272-3 10.1039/b907462g 10.1016/j.ecoenv.2013.03.002 10.1073/pnas.1814924116 10.1038/s41598-019-56731-1 10.3390/biom9060251 10.1039/C4SM01528B 10.1016/j.ijpharm.2019.05.020 10.1016/j.jmb.2018.05.002 10.1016/j.ejmech.2019.111832 10.1016/j.ecoenv.2013.12.022 10.1039/C3CC48650H 10.1016/j.fct.2019.111069 10.1016/j.ecoenv.2012.06.013 10.1073/pnas.1403995111 10.1016/j.ecoenv.2015.06.018 10.1016/j.chemosphere.2009.07.026 10.1007/s11356-013-2348-8 10.1016/j.envpol.2013.06.007 10.1002/slct.201903435 10.1021/cr980032t 10.1039/C6CP05601F 10.1351/pac200072071391 10.1007/s00249-011-0760-x 10.1073/pnas.1909585117 10.1016/j.ecoenv.2010.07.020 10.1073/pnas.1611173113 10.1039/C4MD00161C 10.1002/jbt.21495 10.1002/anie.201510090 10.1016/j.bbapap.2009.09.017 10.1016/j.ecoenv.2009.05.002 10.1021/acs.langmuir.6b03182 10.1073/pnas.1613055113 10.1016/j.bmcl.2008.08.090 10.1039/C9RA02521A 10.1021/acs.molpharmaceut.7b00442 10.1002/chem.202003466 10.1039/b316491h 10.1016/j.watres.2009.09.030 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s12551-020-00754-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1867-2469 |
EndPage | 1215 |
ExternalDocumentID | PMC7575683 32936423 10_1007_s12551_020_00754_w |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Science Foundation Ireland grantid: 15-SIRG-3538 – fundername: Ministero dell’Istruzione, dell’Università e della Ricerca grantid: MIUR-DM080518-372 funderid: http://dx.doi.org/10.13039/501100003407 – fundername: Ministero dell'Istruzione, dell'Università e della Ricerca grantid: MIUR-DM080518-372 – fundername: ; grantid: 15-SIRG-3538 – fundername: ; grantid: MIUR-DM080518-372 |
GroupedDBID | -5F -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 203 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 67N 6NX 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AOIJS AUKKA AXYYD BA0 BGNMA C6C CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y N9A NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 PT4 QOR QOS R89 RLLFE ROL RPM RSV S1Z S27 S3A S3B SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z83 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ NPM 7X8 5PM |
ID | FETCH-LOGICAL-c492w-8c0a87cd68e2879bc0a693f568007633b698006f34bf8a81294cd4bc8dcded673 |
IEDL.DBID | U2A |
ISSN | 1867-2450 |
IngestDate | Thu Aug 21 18:31:48 EDT 2025 Fri Jul 11 10:11:28 EDT 2025 Fri Jul 25 11:06:55 EDT 2025 Mon Jul 21 05:51:34 EDT 2025 Tue Jul 01 02:55:27 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 Fri Feb 21 02:33:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Nuclear membrane disruption Reactive oxygen species Mitochondrial dysfunction DNA damage Transmembrane protein function System biology Mitochondrial permeabilization Signaling pathways Ionic liquids Cell membrane disruption Chloroplast damage Mechanism of action Cell membrane viscoelasticity |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492w-8c0a87cd68e2879bc0a693f568007633b698006f34bf8a81294cd4bc8dcded673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9324-8595 |
OpenAccessLink | https://link.springer.com/10.1007/s12551-020-00754-w |
PMID | 32936423 |
PQID | 2473816574 |
PQPubID | 2043958 |
PageCount | 29 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7575683 proquest_miscellaneous_2443517294 proquest_journals_2473816574 pubmed_primary_32936423 crossref_citationtrail_10_1007_s12551_020_00754_w crossref_primary_10_1007_s12551_020_00754_w springer_journals_10_1007_s12551_020_00754_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Biophysical reviews |
PublicationTitleAbbrev | Biophys Rev |
PublicationTitleAlternate | Biophys Rev |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Wu, Zeng, Wang (CR172) 2018; 348 Ranke, Mölter, Stock (CR127) 2004; 58 Kudłak, Owczarek, Namieśnik (CR66) 2015; 22 Nurunnabi, Ibsen, Tanner, Mitragotri (CR114) 2019; 116 Ibsen, Ma, Banerjee (CR58) 2018; 4 Kumar, Bisht, Venkatesu (CR69) 2017; 69 Liu, Zhu, Wang (CR84) 2015; 5 Brogden (CR25) 2005; 3 Sharma, Mukhopadhyay (CR139) 2018; 10 Blesic, Marques, Plechkova, Seddon, Rebelo, Lopes (CR23) 2007; 9 Kontro, Svedström, Duša, Ahvenainen, Ruokonen, Witos, Wiedmer (CR65) 2016; 201 Ryu, Lee, Iwata (CR134) 2015; 5 Chantereau, Sharma, Abednejad (CR29) 2020; 302 Liu, Zhang, Dong (CR87) 2015; 169 Yu, Li, Li (CR178) 2008; 71 Leitch, Abdelghany, Probert (CR74) 2020; 136 Maddali, Kumar, Marchand (CR97) 2011; 2 Young, Abdelghany, Leitch (CR177) 2020; 15 Kumar, Venkatesu (CR68) 2014; 49 Bui-Le, Clarke, Bröhl (CR27) 2020; 3 Ruokonen, Sanwald, Robciuc (CR133) 2018; 24 Earle, Seddon (CR41) 2000; 72 Tanner, Ibsen, Mitragotri (CR154) 2018; 286 Li, Ma, Jing, Wang (CR76) 2013; 93 Rotella, Kumari, Rodriguez (CR132) 2018; 10 Frade, Afonso (CR48) 2010; 29 Studzińska, Buszewski (CR150) 2009; 393 Grein, Müller, Scherer (CR51) 2020; 11 Hattori, Tagawa, Inai (CR53) 2019; 9 Liu, Zhu, Wang (CR90) 2016; 145 Tanner, Curreri, Balkaran (CR153) 2019; 31 Wenzel, Chiriac, Otto (CR168) 2014; 111 Marks, Kannan, Roncase (CR103) 2016; 113 Benedetto, Ballone (CR12) 2018; 551 Thamke, Tapase, Kodam (CR159) 2017; 125 Egorova, Gordeev, Ananikov (CR43) 2017; 117 Mwangi, Yin, Wang (CR112) 2019; 116 Jodynis-Liebert, Nowicki, Murias (CR61) 2010; 57 Rees, Seashore-Ludlow, Cheah (CR130) 2016; 12 Costa, Azevedo, Pinto, Saraiva (CR34) 2017; 10 Li, Zeng, Dong (CR82) 2012; 21 Kumari, Pillai, Rodriguez, Prencipe, Benedetto (CR73) 2020; 11 Dong, Zhu, Zhu (CR39) 2013; 91 Thamke, Chaudhari, Tapase (CR157) 2019; 250 Bachowska, Kazmierczak-Baranska, Cieslak (CR4) 2012; 1 Cvjetko Bubalo, Hanousek, Radošević (CR35) 2014; 101 Takekiyo, Yoshimura (CR152) 2018; 10 Williams, Sahbaz, Ford (CR169) 2014; 50 Li, Jing, Lei (CR78) 2012; 83 Liu, Zhu, Xie (CR86) 2014; 21 Luo, Wang, Yun (CR94) 2009; 77 Agatemor, Ibsen, Tanner, Mitragotri (CR1) 2018; 3 Xu, Wang, Du (CR173) 2020; 240 Ranke, Müller, Bottin-Weber (CR129) 2007; 67 Yoo, Shah, Zhu, Maginn (CR174) 2014; 10 Jing, Hu, Guo (CR59) 2014; 33 Bornemann, Herzog, Roling (CR24) 2020; 22 Wilson, Wang, Gitai, Seyedsayamdost (CR170) 2016; 113 Li, Luo, Yun (CR81) 2010; 78 Carson, Chau, Earle (CR28) 2009; 11 Docherty, Kulpa (CR38) 2005; 7 Zakrewsky, Lovejoy, Kern (CR182) 2014; 111 O’Toole, Wathier, Zegans, Shanks, Kowalski, Grinstaff (CR115) 2012; 31 Kumar, Trivedi, Reddy, Jha (CR70) 2011; 24 Stoimenovski, Dean, Izgorodina, MacFarlane (CR146) 2012; 154 Wan, Xia, Wang (CR161) 2018; 52 Petkovic, Hartmann, Adamová (CR120) 2012; 36 Thamke, Kodam (CR158) 2016; 320 Zhu, Varona, Anderson (CR185) 2020; 5 Yu, Mo, Zhang, Liu (CR181) 2016; 163 Liu, Zhang, Hu, Chen (CR85) 2013; 181 Pandey, Ekka, Ranjan (CR116) 2017; 7 Pillai, Benedetto (CR122) 2018; 10 Benedetto, Bodo, Gontrani, Ballone, Caminiti (CR16) 2014; 118 Evans (CR46) 2008; 112 Luo, San-Hu, Li (CR93) 2010; 73 Magazù, Migliardo, Benedetto (CR100) 2012; 41 Egorova, Seitkalieva, Posvyatenko, Ananikov (CR45) 2015; 4 Magazù, Maisano, Migliardo, Benedetto (CR98) 2008; 882 Banerjee, Ibsen, Brown (CR8) 2018; 115 Łuczak, Jungnickel, Łącka (CR92) 2010; 12 Leitch, Abdelghany, Charlton (CR75) 2020; 202 McLaughlin, Earle, Gîlea (CR107) 2011; 13 Tanner, Wiraja, Curreri (CR155) 2020; 3 Cook, Tarnawsky, Swinton (CR32) 2019; 9 CR151 Kapanidis, Uphoff, Stracy (CR62) 2018; 430 Witos, Russo, Ruokonen, Wiedmer (CR171) 2017; 33 Yoo, Jing, Jones, Lamberti, Zhu, Shah, Maginn (CR175) 2016; 6 Benedetto, Heinrich, Gonzalez (CR17) 2014; 118 Ganapathi, Ganesan (CR50) 2017; 233 Liu, Zhang, Chen (CR88) 2015; 122 Chowdhury, Moshikur, Wakabayashi (CR30) 2019; 565 Bakshi, Mitra, Sharma (CR5) 2020; 1862 Zhang, Malhotra, Francis (CR183) 2014; 264 Welton (CR167) 2018; 10 Deng, Beadham, Ren (CR36) 2020; 194 Li, Ma, Wang (CR77) 2015; 120 Sharma, Ghosh, Mandal (CR138) 2017; 13 Yoo, Zhu, Maginn (CR176) 2016; 32 Stolte, Arning, Bottin-Weber (CR147) 2006; 8 Dharamdasani, Mandal, Qi (CR37) 2020; 323 Modi, Singh, Mahendran (CR108) 2011; 2 Kumar, Malhotra (CR67) 2008; 18 Feng, Zhu, Schurig-Briccio (CR47) 2015; 112 Kumar, Papaïconomou, Lee (CR71) 2009; 24 Sommer, Fister, Gundolf (CR144) 2018; 19 Benedetto, Ballone (CR13) 2016; 4 Magazù, Maisano, Migliardo, Benedetto (CR99) 2010; 1804 Bhattacharya, Giri, Saxena, Agrawal, Gupta, Mukhopadhyay, Ghosh (CR20) 2017; 33 Jing, Li, Zhang, Wang (CR60) 2013; 27 Kashin, Galkin, Khokhlova, Ananikov (CR63) 2016; 55 Cornmell, Winder, Tiddy (CR33) 2008; 10 Wang, Jong, Rühling, Lesch, Shimizu, Wulff, Heuer, Glorius, Galla (CR163) 2016; 32 Petkovic, Seddon, Rebelo, Pereira (CR119) 2011; 40 Egorova, Posvyatenko, Fakhrutdinov (CR44) 2020; 297 Hallett, Welton (CR52) 2011; 111 Piotrowska, Syguda, Wyrwas (CR123) 2017; 167 Bharmoria, Mondal, Pereira (CR19) 2020; 1 Wang, Richter, Rühling, Hüwel, Glorius, Galla (CR162) 2015; 467 Bailey, Townsend, Jernigan (CR7) 2008; 10 Malhotra, Kumar (CR101) 2010; 20 Benedetto, Bingham, Ballone (CR14) 2015; 142 CR117 Silva, Cerqueira, Prudêncio (CR141) 2019; 4 Strahl, Hamoen (CR148) 2010; 107 Mookherjee, Anderson, Haagsman, Davidson (CR110) 2020; 19 Welton (CR166) 1999; 99 Galluzzi, Schulte, Milani, Podestà (CR49) 2018; 34 Tateishi-Karimata, Sugimoto (CR156) 2018; 10 Benedetto, Galla (CR15) 2018; 10 Müller, Wenzel, Strahl (CR111) 2016; 113 Bernot, Kennedy, Lamberti (CR18) 2005; 24 Moniruzzaman, Tahara, Tamura (CR109) 2010; 46 Wang, Galla, Drücker (CR164) 2018; 10 Bai, Da, Li (CR6) 2019; 571 Ranke, Cox, Müller, Schmidt, Beyersmann (CR128) 2006; 88 Liu, Zhu, Wang (CR89) 2015; 285 Pham, Cho, Min, Yun (CR121) 2008; 105 Kohanski, Dwyer, Collins (CR64) 2010; 8 Wang, Ohlin, Lu (CR165) 2007; 9 Blair, Webber, Baylay (CR22) 2015; 13 Li, Zhou, Yu (CR80) 2009; 72 Hough, Smiglak, Rodriguez, Swatloski, Spear, Daly, Pernak, Grisel, Carliss, Soutullo, Davis, Rogers (CR56) 2007; 31 Sioriki, Gaillard, Nahra (CR142) 2019; 4 Stromyer, Southerland, Satyal (CR149) 2020; 185 Benedetto, Ballone (CR11) 2018; 34 Heckenbach, Romero, Green, Halden (CR54) 2016; 150 Li, Jing, Zang (CR79) 2012; 26 Benedetto (CR10) 2017; 9 McClelland, Evans, Abidin (CR106) 2003; 139 Pawłowska, Telesiński, Biczak (CR118) 2019; 237 Hwang, Park, Choi (CR57) 2018; 46 Vraneš, Tot, Ćosić (CR160) 2019; 9 Al-blewi, Rezki, Naqvi (CR2) 2019; 20 Ling, Schneider, Peoples (CR83) 2015; 517 Holm, Borg, Ehrenberg, Sanyal (CR55) 2016; 113 Scott, Whyment, Foster (CR137) 2000; 176 Sivapragasam, Moniruzzaman, Goto (CR143) 2020; 15 Bhattacharya, Mitra, Mandal (CR21) 2018; 10 Rezki, Messali, Al-Sodies (CR131) 2018; 265 Matzke, Stolte, Arning (CR105) 2009; 18 Qi, Mitragotri (CR125) 2019; 311–312 Coleman, Gathergood (CR31) 2010; 39 Samorì, Malferrari, Valbonesi (CR136) 2010; 73 Egorova, Ananikov (CR42) 2014; 7 Ma, Fang, Lu (CR96) 2019; 10 Bubalo, Radošević, Redovniković (CR26) 2017; 68 Malhotra, Kumar, Velez, Zayas (CR102) 2014; 5 Pretti, Chiappe, Pieraccini, Gregori, Abramo, Monni, Intorre (CR124) 2006; 8 Sahbaz, Nguyen, Ford (CR135) 2017; 14 Zhu, Mohapatra, Weisshaar (CR184) 2019; 116 Nandi, English, Futera, Benedetto (CR113) 2017; 19 Andreev, Dupuy, Segala (CR3) 2007; 104 Ma, Cai, Zhang (CR95) 2010; 73 Yu, Wang, Luo (CR179) 2009; 72 Batson, de Chiara, Majce (CR9) 2017; 8 CR186 Shi, Zhao, Gao (CR140) 2020; 322 Radošević, Cvjetko, Kopjar (CR126) 2013; 92 Kumar, Malhotra (CR72) 2009; 19 Stasiewicz, Mulkiewicz, Tomczak-Wandzel (CR145) 2008; 71 Yu, Zhang, Dai (CR180) 2016; 307 Liu, Liu, Wang (CR91) 2018; 622–623 Marrucho, Branco, Rebelo (CR104) 2014; 5 Drücker, Rühling, Grill, Wang, Draeger, Gerke, Glorius, Galla (CR40) 2017; 33 A Müller (754_CR111) 2016; 113 A Benedetto (754_CR12) 2018; 551 M Yu (754_CR178) 2008; 71 D McClelland (754_CR106) 2003; 139 EEL Tanner (754_CR154) 2018; 286 A Piotrowska (754_CR123) 2017; 167 T Liu (754_CR90) 2016; 145 S-K Ruokonen (754_CR133) 2018; 24 R Wan (754_CR161) 2018; 52 VK Sharma (754_CR139) 2018; 10 AS Kashin (754_CR63) 2016; 55 S Stolte (754_CR147) 2006; 8 KS Egorova (754_CR44) 2020; 297 K Bakshi (754_CR5) 2020; 1862 SV Malhotra (754_CR102) 2014; 5 FT Welton (754_CR166) 1999; 99 S Magazù (754_CR99) 2010; 1804 X-Y Li (754_CR78) 2012; 83 X Wang (754_CR165) 2007; 9 Z Yu (754_CR181) 2016; 163 RF Frade (754_CR48) 2010; 29 C Samorì (754_CR136) 2010; 73 C Pretti (754_CR124) 2006; 8 X-Y Li (754_CR80) 2009; 72 GR Young (754_CR177) 2020; 15 S Bornemann (754_CR24) 2020; 22 ME Heckenbach (754_CR54) 2016; 150 G Bhattacharya (754_CR20) 2017; 33 S Wu (754_CR172) 2018; 348 MC Bubalo (754_CR26) 2017; 68 P Drücker (754_CR40) 2017; 33 PK Nandi (754_CR113) 2017; 19 MZ Wilson (754_CR170) 2016; 113 C Jing (754_CR60) 2013; 27 X-Y Li (754_CR79) 2012; 26 Y Sahbaz (754_CR135) 2017; 14 H Liu (754_CR88) 2015; 122 RH Scott (754_CR137) 2000; 176 MR Chowdhury (754_CR30) 2019; 565 M Petkovic (754_CR120) 2012; 36 G Bhattacharya (754_CR21) 2018; 10 LL Ling (754_CR83) 2015; 517 T Takekiyo (754_CR152) 2018; 10 M Kumar (754_CR70) 2011; 24 V Kumar (754_CR72) 2009; 19 QM Qi (754_CR125) 2019; 311–312 T Liu (754_CR86) 2014; 21 B Yoo (754_CR176) 2016; 32 T Liu (754_CR84) 2015; 5 M Dong (754_CR39) 2013; 91 KM Docherty (754_CR38) 2005; 7 P Bharmoria (754_CR19) 2020; 1 Y-R Luo (754_CR93) 2010; 73 B Yoo (754_CR174) 2014; 10 H Liu (754_CR87) 2015; 169 C Zhu (754_CR185) 2020; 5 X-Y Li (754_CR82) 2012; 21 MJ Earle (754_CR41) 2000; 72 D Wang (754_CR162) 2015; 467 L Bui-Le (754_CR27) 2020; 3 J Witos (754_CR171) 2017; 33 M Holm (754_CR55) 2016; 113 RA Kumar (754_CR71) 2009; 24 RJ Bernot (754_CR18) 2005; 24 A Benedetto (754_CR15) 2018; 10 D Wang (754_CR164) 2018; 10 X Li (754_CR76) 2013; 93 P Kumari (754_CR73) 2020; 11 A Pandey (754_CR116) 2017; 7 AT Silva (754_CR141) 2019; 4 754_CR151 C Zhang (754_CR183) 2014; 264 VR Thamke (754_CR157) 2019; 250 H Tateishi-Karimata (754_CR156) 2018; 10 N Modi (754_CR108) 2011; 2 Y Shi (754_CR140) 2020; 322 B Pawłowska (754_CR118) 2019; 237 T Welton (754_CR167) 2018; 10 T Liu (754_CR89) 2015; 285 M Wenzel (754_CR168) 2014; 111 S Magazù (754_CR100) 2012; 41 D Coleman (754_CR31) 2010; 39 AC Leitch (754_CR74) 2020; 136 T Hattori (754_CR53) 2019; 9 C Rotella (754_CR132) 2018; 10 M Matzke (754_CR105) 2009; 18 KS Egorova (754_CR45) 2015; 4 B Yoo (754_CR175) 2016; 6 VK Sharma (754_CR138) 2017; 13 Y Zhu (754_CR184) 2019; 116 C Agatemor (754_CR1) 2018; 3 H Strahl (754_CR148) 2010; 107 JMA Blair (754_CR22) 2015; 13 A Benedetto (754_CR14) 2015; 142 M Cvjetko Bubalo (754_CR35) 2014; 101 A Kumar (754_CR68) 2014; 49 J Ranke (754_CR128) 2006; 88 S Bai (754_CR6) 2019; 571 M Petkovic (754_CR119) 2011; 40 J Hwang (754_CR57) 2018; 46 J Łuczak (754_CR92) 2010; 12 N Mookherjee (754_CR110) 2020; 19 Y Xu (754_CR173) 2020; 240 SPF Costa (754_CR34) 2017; 10 F Grein (754_CR51) 2020; 11 M Sivapragasam (754_CR143) 2020; 15 VR Thamke (754_CR159) 2017; 125 A Benedetto (754_CR13) 2016; 4 RJ Cornmell (754_CR33) 2008; 10 J Marks (754_CR103) 2016; 113 J Ranke (754_CR129) 2007; 67 S Magazù (754_CR98) 2008; 882 MG Rees (754_CR130) 2016; 12 M McLaughlin (754_CR107) 2011; 13 A Benedetto (754_CR10) 2017; 9 HD Williams (754_CR169) 2014; 50 M Zakrewsky (754_CR182) 2014; 111 J Stoimenovski (754_CR146) 2012; 154 MM Bailey (754_CR7) 2008; 10 J Mwangi (754_CR112) 2019; 116 I Kontro (754_CR65) 2016; 201 J Ranke (754_CR127) 2004; 58 Cook (754_CR32) 2019; 9 X-Y Li (754_CR81) 2010; 78 V Dharamdasani (754_CR37) 2020; 323 TPT Pham (754_CR121) 2008; 105 KA Brogden (754_CR25) 2005; 3 D Liu (754_CR91) 2018; 622–623 M Stasiewicz (754_CR145) 2008; 71 M Yu (754_CR179) 2009; 72 IM Marrucho (754_CR104) 2014; 5 S Batson (754_CR9) 2017; 8 SV Malhotra (754_CR101) 2010; 20 C Jing (754_CR59) 2014; 33 KS Egorova (754_CR43) 2017; 117 X Li (754_CR77) 2015; 120 KN Ibsen (754_CR58) 2018; 4 A Banerjee (754_CR8) 2018; 115 754_CR186 G Chantereau (754_CR29) 2020; 302 H Ryu (754_CR134) 2015; 5 B Ma (754_CR96) 2019; 10 D Wang (754_CR163) 2016; 32 Y-R Luo (754_CR94) 2009; 77 K Maddali (754_CR97) 2011; 2 JP Hallett (754_CR52) 2011; 111 VVS Pillai (754_CR122) 2018; 10 KS Egorova (754_CR42) 2014; 7 S Studzińska (754_CR150) 2009; 393 M Vraneš (754_CR160) 2019; 9 J Jodynis-Liebert (754_CR61) 2010; 57 EEL Tanner (754_CR155) 2020; 3 M Blesic (754_CR23) 2007; 9 H Liu (754_CR85) 2013; 181 J Sommer (754_CR144) 2018; 19 K Radošević (754_CR126) 2013; 92 J Yu (754_CR180) 2016; 307 X Feng (754_CR47) 2015; 112 AN Kapanidis (754_CR62) 2018; 430 V Kumar (754_CR67) 2008; 18 754_CR117 M Galluzzi (754_CR49) 2018; 34 F Al-blewi (754_CR2) 2019; 20 ML Stromyer (754_CR149) 2020; 185 E Sioriki (754_CR142) 2019; 4 KO Evans (754_CR46) 2008; 112 P Ganapathi (754_CR50) 2017; 233 M Moniruzzaman (754_CR109) 2010; 46 B Bachowska (754_CR4) 2012; 1 M Nurunnabi (754_CR114) 2019; 116 L Carson (754_CR28) 2009; 11 N Rezki (754_CR131) 2018; 265 A Benedetto (754_CR16) 2014; 118 J-M Ma (754_CR95) 2010; 73 EEL Tanner (754_CR153) 2019; 31 Y Deng (754_CR36) 2020; 194 MA Kohanski (754_CR64) 2010; 8 B Kudłak (754_CR66) 2015; 22 G O’Toole (754_CR115) 2012; 31 VR Thamke (754_CR158) 2016; 320 A Kumar (754_CR69) 2017; 69 OA Andreev (754_CR3) 2007; 104 A Benedetto (754_CR11) 2018; 34 A Benedetto (754_CR17) 2014; 118 WL Hough (754_CR56) 2007; 31 AC Leitch (754_CR75) 2020; 202 |
References_xml | – volume: 10 start-page: 847 year: 2018 end-page: 852 ident: CR122 article-title: Ionic liquids in protein amyloidogenesis: a brief screenshot of the state-of-the-art publication-title: Biophys Rev doi: 10.1007/s12551-018-0425-4 – volume: 36 start-page: 56 year: 2012 end-page: 63 ident: CR120 article-title: Unravelling the mechanism of toxicity of alkyltributylphosphonium chlorides in Aspergillus nidulans conidia publication-title: New J Chem doi: 10.1039/C1NJ20470J – volume: 19 start-page: 311 year: 2020 end-page: 332 ident: CR110 article-title: Antimicrobial host defence peptides: functions and clinical potential publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0058-8 – volume: 15 start-page: e0229745 year: 2020 ident: CR177 article-title: Changes in the gut microbiota of mice orally exposed to methylimidazolium ionic liquids publication-title: PLoS One doi: 10.1371/journal.pone.0229745 – volume: 348 start-page: 1 year: 2018 end-page: 9 ident: CR172 article-title: Assessment of the cytotoxicity of ionic liquids on Spodoptera frugiperda 9 (Sf-9) cell lines via in vitro assays publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.01.028 – volume: 10 start-page: 687 year: 2018 end-page: 690 ident: CR15 article-title: Editorial of the “ionic liquids and biomolecules” special issue publication-title: Biophys Rev doi: 10.1007/s12551-018-0426-3 – volume: 2 start-page: 2331 year: 2011 end-page: 2336 ident: CR108 article-title: Probing the transport of ionic liquids in aqueous solution through nanopores publication-title: J Phys Chem Lett doi: 10.1021/jz201006b – volume: 33 start-page: 1066 year: 2017 end-page: 1076 ident: CR171 article-title: Unraveling interactions between ionic liquids and phospholipid vesicles using nanoplasmonic sensing publication-title: Langmuir doi: 10.1021/acs.langmuir.6b04359 – volume: 49 start-page: 2158 year: 2014 end-page: 2169 ident: CR68 article-title: A comparative study of myoglobin stability in the presence of Hofmeister anions of ionic liquids and ionic salts publication-title: Process Biochem doi: 10.1016/j.procbio.2014.09.014 – volume: 250 start-page: 567 year: 2019 end-page: 577 ident: CR157 article-title: In vitro toxicological evaluation of ionic liquids and development of effective bioremediation process for their removal publication-title: Environ Pollut doi: 10.1016/j.envpol.2019.04.043 – volume: 9 start-page: 481 year: 2007 end-page: 490 ident: CR23 article-title: Self-aggregation of ionic liquids: micelle formation in aqueous solution publication-title: Green Chem doi: 10.1039/b615406a – volume: 111 start-page: 3508 year: 2011 end-page: 3576 ident: CR52 article-title: Room-temperature ionic liquids: solvents for synthesis and catalysis. 2 publication-title: Chem Rev doi: 10.1021/cr1003248 – volume: 12 start-page: 109 year: 2016 end-page: 116 ident: CR130 article-title: Correlating chemical sensitivity and basal gene expression reveals mechanism of action publication-title: Nat Chem Biol doi: 10.1038/nchembio.1986 – volume: 176 start-page: 119 year: 2000 end-page: 131 ident: CR137 article-title: Analysis of the structure and electrophysiological actions of halitoxins: 1,3 alkyl-pyridinium salts from Callyspongia ridleyi publication-title: J Membr Biol doi: 10.1007/s00232001078 – volume: 67 start-page: 430 year: 2007 end-page: 438 ident: CR129 article-title: Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2006.08.008 – volume: 11 start-page: 7327 year: 2020 end-page: 7333 ident: CR73 article-title: Sub-toxic concentrations of ionic liquids enhance cell migration by reducing the elasticity of the cellular lipid membrane publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.0c02149 – volume: 8 start-page: 423 year: 2010 end-page: 435 ident: CR64 article-title: How antibiotics kill bacteria: from targets to networks publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2333 – volume: 112 start-page: E7073 year: 2015 end-page: E7082 ident: CR47 article-title: Antiinfectives targeting enzymes and the proton motive force publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1521988112 – volume: 12 start-page: 593 year: 2010 ident: CR92 article-title: Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives publication-title: Green Chem doi: 10.1039/b921805j – volume: 72 start-page: 552 year: 2009 end-page: 556 ident: CR80 article-title: Toxic effects of 1-methyl-3-octylimidazolium bromide on the early embryonic development of the frog Rana nigromaculata publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2007.11.002 – volume: 4 start-page: 2370 year: 2018 end-page: 2379 ident: CR58 article-title: Mechanism of antibacterial activity of choline-based ionic liquids (CAGE) publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.8b00486 – volume: 34 start-page: 9579 year: 2018 end-page: 9597 ident: CR11 article-title: Room-temperature ionic liquids and biomembranes: setting the stage for applications in pharmacology, biomedicine, and bionanotechnology publication-title: Langmuir doi: 10.1021/acs.langmuir.7b04361 – volume: 551 start-page: 227 year: 2018 end-page: 231 ident: CR12 article-title: An overview of neutron scattering and molecular dynamics simulation studies of phospholipid bilayers in room-temperature ionic liquid/water solutions publication-title: Phys B Condens Matter doi: 10.1016/j.physb.2018.02.043 – volume: 73 start-page: 1465 year: 2010 end-page: 1469 ident: CR95 article-title: Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2009.10.004 – volume: 1 start-page: 34 year: 2020 ident: CR19 article-title: Instantaneous fibrillation of egg white proteome with ionic liquid and macromolecular crowding publication-title: Commun Mater doi: 10.1038/s43246-020-0035-0 – volume: 10 start-page: 751 year: 2018 end-page: 756 ident: CR132 article-title: Controlling the mechanoelasticity of model biomembranes with room-temperature ionic liquids publication-title: Biophys Rev doi: 10.1007/s12551-018-0424-5 – volume: 107 start-page: 12281 year: 2010 end-page: 12286 ident: CR148 article-title: Membrane potential is important for bacterial cell division publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1005485107 – volume: 24 start-page: 388 year: 2009 end-page: 395 ident: CR71 article-title: In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions publication-title: Environ Toxicol doi: 10.1002/tox.20443 – volume: 9 start-page: 309 year: 2017 end-page: 320 ident: CR10 article-title: Room-temperature ionic liquids meet bio-membranes: the state-of-the-art publication-title: Biophys Rev doi: 10.1007/s12551-017-0279-1 – volume: 19 start-page: 790 year: 2018 ident: CR144 article-title: Virucidal or not virucidal? That is the question—predictability of ionic liquid’s virucidal potential in biological test systems publication-title: IJMS doi: 10.3390/ijms19030790 – volume: 3 start-page: 238 year: 2005 end-page: 250 ident: CR25 article-title: Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1098 – volume: 104 start-page: 7893 year: 2007 end-page: 7898 ident: CR3 article-title: Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0702439104 – volume: 112 start-page: 8558 year: 2008 end-page: 8562 ident: CR46 article-title: Supported phospholipid membrane interactions with 1- butyl-3-methylimidazolium chloride publication-title: J Phys Chem B doi: 10.1021/jp7116592 – volume: 285 start-page: 27 year: 2015 end-page: 36 ident: CR89 article-title: The genotoxic and cytotoxic effects of 1-butyl-3-methylimidazolium chloride in soil on Vicia faba seedlings publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2014.11.028 – volume: 24 start-page: 2669 year: 2018 end-page: 2680 ident: CR133 article-title: Correlation between ionic liquid cytotoxicity and liposome-ionic liquid interactions publication-title: Chem Eur J doi: 10.1002/chem.201704924 – volume: 467 start-page: 1033 year: 2015 end-page: 1038 ident: CR162 article-title: Anti-tumor activity and cytotoxicity in vitro of novel 4,5-dialkyli- midazolium surfactants publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.10.015 – volume: 46 start-page: 194 year: 2018 end-page: 202 ident: CR57 article-title: Investigation of dermal toxicity of ionic liquids in monolayer-cultured skin cells and 3D reconstructed human skin models publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2017.09.025 – volume: 145 start-page: 269 year: 2016 end-page: 276 ident: CR90 article-title: Phytotoxicity of imidazolium-based ILs with different anions in soil on Vicia faba seedlings and the influence of anions on toxicity publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.055 – volume: 13 start-page: 8969 year: 2017 end-page: 8979 ident: CR138 article-title: Effects of ionic liquids on the nanoscopic dynamics and phase behaviour of a phosphatidylcholine membrane publication-title: Soft Matter doi: 10.1039/C7SM01799E – volume: 194 start-page: 110392 year: 2020 ident: CR36 article-title: A study into the species sensitivity of green algae towards imidazolium-based ionic liquids using flow cytometry publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.110392 – volume: 882 start-page: 140 year: 2008 end-page: 145 ident: CR98 article-title: Mean square displacement from self-distribution function evaluation by elastic incoherent neutron scattering publication-title: J Mol Struct doi: 10.1016/j.molstruc.2007.09.022 – volume: 118 start-page: 12192 year: 2014 end-page: 12206 ident: CR17 article-title: Structure and stability of phospholipid bilayers hydrated by a room-temperature ionic liquid/water solution: a neutron reflectometry study publication-title: J Phys Chem B doi: 10.1021/jp507631h – volume: 10 start-page: 735 year: 2018 end-page: 746 ident: CR164 article-title: Membrane interactions of ionic liquids and imidazolium salts publication-title: Biophys Rev doi: 10.1007/s12551-017-0388-x – volume: 233 start-page: 452 year: 2017 end-page: 464 ident: CR50 article-title: Anti-bacterial, catalytic and docking behaviours of novel di/trimeric imidazolium salts publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.02.078 – volume: 22 start-page: 11975 year: 2015 end-page: 11992 ident: CR66 article-title: Selected issues related to the toxicity of ionic liquids and deep eutectic solvents—a review publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-015-4794-y – volume: 71 start-page: 903 year: 2008 end-page: 908 ident: CR178 article-title: Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2008.02.022 – volume: 7 start-page: 22927 year: 2017 end-page: 22935 ident: CR116 article-title: Teratogenic, cardiotoxic and hepatotoxic properties of related ionic liquids reveal the biological importance of anionic components publication-title: RSC Adv doi: 10.1039/C7RA01520H – volume: 6 start-page: 19889 year: 2016 ident: CR175 article-title: Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach publication-title: Sci Rep doi: 10.1038/srep19889 – volume: 7 start-page: 185 year: 2005 ident: CR38 article-title: Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids publication-title: Green Chem doi: 10.1039/b419172b – volume: 320 start-page: 408 year: 2016 end-page: 416 ident: CR158 article-title: Toxicity study of ionic liquid, 1-butyl-3-methylimidazolium bromide on guppy fish, Poecilia reticulata and its biodegradation by soil bacterium Rhodococcus hoagii VRT1 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2016.08.056 – volume: 115 start-page: 7296 year: 2018 end-page: 7301 ident: CR8 article-title: Ionic liquids for oral insulin delivery publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1722338115 – volume: 9 start-page: 1191 year: 2007 ident: CR165 article-title: Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa publication-title: Green Chem doi: 10.1039/b704503d – ident: CR117 – volume: 8 start-page: 238 year: 2006 end-page: 240 ident: CR124 article-title: Acute toxicity of ionic liquids to the zebrafish (Danio Rerio) publication-title: Green Chem doi: 10.1039/B511554J – volume: 88 start-page: 273 year: 2006 end-page: 285 ident: CR128 article-title: Sorption, cellular distribution, and cytotoxicity of imidazolium ionic liquids in mammalian cells—influence of lipophilicity publication-title: Toxicol Environ Chem doi: 10.1080/02772240600589505 – volume: 393 start-page: 983 year: 2009 end-page: 990 ident: CR150 article-title: Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.) publication-title: Anal Bioanal Chem doi: 10.1007/s00216-008-2523-9 – volume: 58 start-page: 396 year: 2004 end-page: 404 ident: CR127 article-title: Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays publication-title: Ecotoxicol Environ Saf doi: 10.1016/S0147-6513(03)00105-2 – volume: 24 start-page: 1882 year: 2011 end-page: 1890 ident: CR70 article-title: Toxic effects of imidazolium ionic liquids on the green seaweed Ulva lactuca: oxidative stress and DNA damage publication-title: Chem Res Toxicol doi: 10.1021/tx200228c – volume: 323 start-page: 475 year: 2020 end-page: 482 ident: CR37 article-title: Topical delivery of siRNA into skin using ionic liquids publication-title: J Control Release doi: 10.1016/j.jconrel.2020.04.038 – volume: 8 start-page: 1939 year: 2017 ident: CR9 article-title: Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine publication-title: Nat Commun doi: 10.1038/s41467-017-02118-7 – volume: 26 start-page: 1087 year: 2012 end-page: 1092 ident: CR79 article-title: Toxic cytological alteration and mitochondrial dysfunction in PC12 cells induced by 1-octyl-3-methylimidazolium chloride publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2012.07.006 – volume: 10 start-page: 691 year: 2018 end-page: 706 ident: CR167 article-title: Ionic liquids: a brief history publication-title: Biophys Rev doi: 10.1007/s12551-018-0419-2 – volume: 307 start-page: 73 year: 2016 end-page: 81 ident: CR180 article-title: Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.12.028 – volume: 2 start-page: 143 year: 2011 end-page: 150 ident: CR97 article-title: Biological evaluation of imidazolium- and ammonium-based salts as HIV-1 integrase inhibitors publication-title: Med Chem Commun doi: 10.1039/C0MD00201A – volume: 105 start-page: 425 year: 2008 end-page: 428 ident: CR121 article-title: Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata publication-title: J Biosci Bioeng doi: 10.1263/jbb.105.425 – volume: 11 start-page: 1455 year: 2020 ident: CR51 article-title: Ca2+-daptomycin targets cell wall biosynthesis by forming a tripartite complex with undecaprenyl-coupled intermediates and membrane lipids publication-title: Nat Commun doi: 10.1038/s41467-020-15257-1 – volume: 10 start-page: 2321 year: 2017 end-page: 2347 ident: CR34 article-title: Environmental impact of ionic liquids: recent advances in (eco)toxicology and (bio)degradability publication-title: ChemSusChem doi: 10.1002/cssc.201700261 – volume: 93 start-page: 2488 year: 2013 end-page: 2492 ident: CR76 article-title: Expression alterations of cytochromes P4501A1, 2E1, and 3A, and their receptors AhR and PXR caused by 1-octyl-3-methylimidazolium chloride in mouse mammary carcinoma cells publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.08.092 – volume: 122 start-page: 83 year: 2015 end-page: 90 ident: CR88 article-title: Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.07.010 – volume: 622–623 start-page: 1572 year: 2018 end-page: 1580 ident: CR91 article-title: The toxicity of ionic liquid 1-decylpyridinium bromide to the algae Scenedesmus obliquus: growth inhibition, phototoxicity, and oxidative stress publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.10.021 – ident: CR151 – volume: 3 start-page: 2000041 year: 2020 ident: CR155 article-title: Stabilization and topical skin delivery of framework nucleic acids using ionic liquids publication-title: Adv Therap doi: 10.1002/adtp.202000041 – volume: 52 start-page: 1 year: 2018 end-page: 7 ident: CR161 article-title: Toxicity of imidazoles ionic liquid [C16mim]Cl to HepG2 cells publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2018.05.013 – volume: 113 start-page: 978 year: 2016 end-page: 983 ident: CR55 article-title: Molecular mechanism of viomycin inhibition of peptide elongation in bacteria publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1517541113 – volume: 71 start-page: 157 year: 2008 end-page: 165 ident: CR145 article-title: Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2007.08.011 – volume: 10 start-page: 931 year: 2018 end-page: 940 ident: CR156 article-title: Biological and nanotechnological applications using interactions between ionic liquids and nucleic acids publication-title: Biophys Rev doi: 10.1007/s12551-018-0422-7 – volume: 7 start-page: 336 year: 2014 end-page: 360 ident: CR42 article-title: Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization publication-title: ChemSusChem doi: 10.1002/cssc.201300459 – volume: 10 start-page: 1213 year: 2008 ident: CR7 article-title: Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice publication-title: Green Chem doi: 10.1039/b807019a – volume: 69 start-page: 611 year: 2017 end-page: 651 ident: CR69 article-title: Biocompatibility of ionic liquids towards protein stability: a comprehensive overview on the current understanding and their implications publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2016.12.005 – volume: 1862 start-page: 183103 year: 2020 ident: CR5 article-title: Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane publication-title: Biochim Biophys Acta Biomembr doi: 10.1016/j.bbamem.2019.183103 – volume: 169 start-page: 179 year: 2015 end-page: 187 ident: CR87 article-title: Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2015.10.024 – volume: 265 start-page: 428 year: 2018 end-page: 441 ident: CR131 article-title: Design, synthesis, in-silico and in-vitro evaluation of di-cationic pyridinium ionic liquids as potential anticancer scaffolds publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.06.045 – volume: 264 start-page: 246 year: 2014 end-page: 253 ident: CR183 article-title: Toxicity of ionic liquids to Clostridium sp. and effects on uranium biosorption publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2013.11.003 – volume: 167 start-page: 114 year: 2017 end-page: 119 ident: CR123 article-title: Toxicity evaluation of selected ammonium-based ionic liquid forms with MCPP and dicamba moieties on Pseudomonas putida publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.140 – volume: 201 start-page: 59 year: 2016 end-page: 66 ident: CR65 article-title: Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering publication-title: Chem Phys Lipids doi: 10.1016/j.chemphyslip.2016.11.003 – volume: 10 start-page: 3517 year: 2019 ident: CR96 article-title: The antimicrobial peptide thanatin disrupts the bacterial outer membrane and inactivates the NDM-1 metallo-β-lactamase publication-title: Nat Commun doi: 10.1038/s41467-019-11503-3 – volume: 118 start-page: 2471 year: 2014 end-page: 2486 ident: CR16 article-title: Amino acid anions in organic ionic compounds. An ab initio study of selected ion pairs publication-title: J Phys Chem doi: 10.1021/jp412281n – volume: 21 start-page: 253 year: 2012 end-page: 259 ident: CR82 article-title: Acute toxicity and responses of antioxidant systems to 1-methyl-3-octylimidazolium bromide at different developmental stages of goldfish publication-title: Ecotoxicology doi: 10.1007/s10646-011-0785-z – volume: 4 start-page: 152 year: 2015 end-page: 159 ident: CR45 article-title: An unexpected increase of toxicity of amino acid-containing ionic liquids publication-title: Toxicol Res doi: 10.1039/C4TX00079J – volume: 13 start-page: 2794 year: 2011 ident: CR107 article-title: Cytotoxicity of 1-alkylquinolinium bromide ionic liquids in murine fibroblast NIH 3 T3 cells publication-title: Green Chem doi: 10.1039/c0gc00813c – volume: 40 start-page: 1383 year: 2011 end-page: 1403 ident: CR119 article-title: Ionic liquids: a pathway to environmental acceptability publication-title: Chem Soc Rev doi: 10.1039/C004968A – volume: 5 start-page: 18444 year: 2015 ident: CR84 article-title: Biochemical toxicity and DNA damage of imidazolium-based ionic liquid with different anions in soil on Vicia faba seedlings publication-title: Sci Rep doi: 10.1038/srep18444 – volume: 10 start-page: 836 year: 2008 ident: CR33 article-title: Accumulation of ionic liquids in Escherichia coli cells publication-title: Green Chem doi: 10.1039/b807214k – volume: 111 start-page: E1409 year: 2014 end-page: E1418 ident: CR168 article-title: Small cationic antimicrobial peptides delocalize peripheral membrane proteins publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1319900111 – volume: 4 start-page: 5682 year: 2019 end-page: 5689 ident: CR141 article-title: Antiproliferative organic salts derived from betulinic acid: disclosure of an ionic liquid selective against lung and liver cancer cells publication-title: ACS Omega doi: 10.1021/acsomega.8b03691 – ident: CR186 – volume: 39 start-page: 600 year: 2010 ident: CR31 article-title: Biodegradation studies of ionic liquids publication-title: Chem Soc Rev doi: 10.1039/b817717c – volume: 286 start-page: 137 year: 2018 end-page: 144 ident: CR154 article-title: Transdermal insulin delivery using choline-based ionic liquids (CAGE) publication-title: J Control Release doi: 10.1016/j.jconrel.2018.07.029 – volume: 297 start-page: 111751 year: 2020 ident: CR44 article-title: Assessing possible influence of structuring effects in solution on cytotoxicity of ionic liquid systems publication-title: J Mol Liq doi: 10.1016/j.molliq.2019.111751 – volume: 73 start-page: 1046 year: 2010 end-page: 1050 ident: CR93 article-title: Toxicity of ionic liquids on the growth, reproductive ability, and ATPase activity of earthworm publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2010.01.017 – volume: 20 start-page: 2865 year: 2019 ident: CR2 article-title: A profile of the in vitro anti-tumor activity and in silico ADME predictions of novel benzothiazole amide-functionalized imidazolium ionic liquids publication-title: IJMS doi: 10.3390/ijms20122865 – volume: 34 start-page: 12452 year: 2018 end-page: 12462 ident: CR49 article-title: Imidazolium-based ionic liquids affect morphology and rigidity of living cells: an atomic force microscopy study publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01554 – volume: 32 start-page: 12579 year: 2016 end-page: 12592 ident: CR163 article-title: Imidazolium-based lipid analogues and their interaction with phosphatidylcholine membranes publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02496 – volume: 22 start-page: 9775 year: 2020 end-page: 9788 ident: CR24 article-title: Interaction of imidazolium-based lipids with phospholipid bilayer membranes of different complexity publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP00801J – volume: 322 start-page: 602 year: 2020 end-page: 609 ident: CR140 article-title: Oral delivery of sorafenib through spontaneous formation of ionic liquid nanocomplexes publication-title: J Control Release doi: 10.1016/j.jconrel.2020.03.018 – volume: 33 start-page: 1295 year: 2017 end-page: 1304 ident: CR20 article-title: X-ray reflectivity study of the interaction of an imidazolium-based ionic liquid with a soft supported lipid membrane publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03192 – volume: 139 start-page: 1399 year: 2003 end-page: 1408 ident: CR106 article-title: Irreversible and reversible pore formation by polymeric alkylpyridinium salts (poly-APS) from the sponge Reniera sarai publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0705374 – volume: 311–312 start-page: 162 year: 2019 end-page: 169 ident: CR125 article-title: Mechanistic study of transdermal delivery of macromolecules assisted by ionic liquids publication-title: J Control Release doi: 10.1016/j.jconrel.2019.08.029 – volume: 240 start-page: 124919 year: 2020 ident: CR173 article-title: Toxicity evaluation of three imidazolium-based ionic liquids ([C6mim]R) on Vicia faba seedlings using an integrated biomarker response (IBR) index publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124919 – volume: 31 start-page: 1901103 year: 2019 ident: CR153 article-title: Design principles of ionic liquids for transdermal drug delivery publication-title: Adv Mater doi: 10.1002/adma.201901103 – volume: 24 start-page: 1759 year: 2005 ident: CR18 article-title: Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa Acuta publication-title: Environ Toxicol Chem doi: 10.1897/04-614R.1 – volume: 10 start-page: 709 year: 2018 end-page: 719 ident: CR21 article-title: Thermodynamics of interaction of ionic liquids with lipid monolayer publication-title: Biophys Rev doi: 10.1007/s12551-017-0390-3 – volume: 117 start-page: 7132 year: 2017 end-page: 7189 ident: CR43 article-title: Biological activity of ionic liquids and their application in pharmaceutics and medicine publication-title: Chem Rev doi: 10.1021/acs.chemrev.6b00562 – volume: 10 start-page: 853 year: 2018 end-page: 860 ident: CR152 article-title: Suppression and dissolution of amyloid aggregates using ionic liquids publication-title: Biophys Rev doi: 10.1007/s12551-018-0421-8 – volume: 78 start-page: 853 year: 2010 end-page: 858 ident: CR81 article-title: Effects of 1-methyl-3-octylimidazolium bromide on the anti-oxidant system of earthworm publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.11.047 – volume: 1 start-page: 33 year: 2012 end-page: 38 ident: CR4 article-title: High cytotoxic activity of phosphonium salts and their complementary selectivity towards HeLa and K562 cancer cells: identification of tri-n-butyl-n-hexadecylphosphonium bromide as a highly potent anti-HeLa phosphonium salt publication-title: ChemistryOpen doi: 10.1002/open.201100003 – volume: 150 start-page: 266 year: 2016 end-page: 274 ident: CR54 article-title: Meta-analysis of ionic liquid literature and toxicology publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.029 – volume: 33 start-page: 91 year: 2014 end-page: 94 ident: CR59 article-title: Cytotoxicity of 1-octyl-3-methylimidazolium chloride on Escherichia coli DH5α publication-title: Toxin Rev doi: 10.3109/15569543.2013.867885 – volume: 15 start-page: 1900073 year: 2020 ident: CR143 article-title: An overview on the toxicological properties of ionic liquids toward microorganisms publication-title: Biotechnol J doi: 10.1002/biot.201900073 – volume: 13 start-page: 42 year: 2015 end-page: 51 ident: CR22 article-title: Molecular mechanisms of antibiotic resistance publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3380 – volume: 5 start-page: 527 year: 2014 end-page: 546 ident: CR104 article-title: Ionic liquids in pharmaceutical applications publication-title: Annu Rev Chem Biomol Eng doi: 10.1146/annurev-chembioeng-060713-040024 – volume: 142 start-page: 124706 year: 2015 ident: CR14 article-title: Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids publication-title: J Chem Phys doi: 10.1063/1.4915918 – volume: 4 start-page: 392 year: 2016 end-page: 412 ident: CR13 article-title: Room temperature ionic liquids meet biomolecules: a microscopic view of structure and dynamics publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.5b01385 – volume: 31 start-page: 1429 year: 2007 end-page: 1436 ident: CR56 article-title: The third evolution of ionic liquids: active pharmaceutical ingredients publication-title: New J Chem doi: 10.1039/b706677p – volume: 57 start-page: 266 year: 2010 end-page: 273 ident: CR61 article-title: Cytotoxicity, acute and subchronic toxicity of ionic liquid, didecyldimethylammonium saccharinate, in rats publication-title: Regul Toxicol Pharmacol doi: 10.1016/j.yrtph.2010.03.006 – volume: 125 start-page: 237 year: 2017 end-page: 248 ident: CR159 article-title: Evaluation of risk assessment of new industrial pollutant, ionic liquids on environmental living systems publication-title: Water Res doi: 10.1016/j.watres.2017.08.046 – volume: 10 start-page: 721 year: 2018 end-page: 734 ident: CR139 article-title: Deciphering interactions of ionic liquids with biomembrane publication-title: Biophys Rev doi: 10.1007/s12551-018-0410-y – volume: 3 start-page: 55 year: 2020 ident: CR27 article-title: Revealing the complexity of ionic liquid–protein interactions through a multi-technique investigation publication-title: Commun Chem doi: 10.1038/s42004-020-0302-5 – volume: 302 start-page: 112547 year: 2020 ident: CR29 article-title: Bacterial nanocellulose membranes loaded with vitamin B-based ionic liquids for dermal care applications publication-title: J Mol Liq doi: 10.1016/j.molliq.2020.112547 – volume: 237 start-page: 124436 year: 2019 ident: CR118 article-title: Phytotoxicity of ionic liquids publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124436 – volume: 11 start-page: 492 year: 2009 ident: CR28 article-title: Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids publication-title: Green Chem doi: 10.1039/b821842k – volume: 202 start-page: 110902 year: 2020 ident: CR75 article-title: Renal injury and hepatic effects from the methylimidazolium ionic liquid M8OI in mouse publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.110902 – volume: 19 start-page: 4643 year: 2009 end-page: 4646 ident: CR72 article-title: Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.06.086 – volume: 20 start-page: 581 year: 2010 end-page: 585 ident: CR101 article-title: A profile of the in vitro anti-tumor activity of imidazolium-based ionic liquids publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.11.085 – volume: 154 start-page: 335 year: 2012 end-page: 352 ident: CR146 article-title: Protic pharmaceutical ionic liquids and solids: aspects of protonics publication-title: Faraday Discuss doi: 10.1039/C1FD00071C – volume: 68 start-page: 171 year: 2017 end-page: 179 ident: CR26 article-title: Toxicity mechanisms of ionic liquids publication-title: Arch Ind Hyg Toxicol doi: 10.1515/aiht-2017-68-2979 – volume: 31 start-page: 810 year: 2012 end-page: 816 ident: CR115 article-title: Diphosphonium ionic liquids as broad-spectrum anti-microbial agents publication-title: Cornea doi: 10.1097/ICO.0b013e31823f0a86 – volume: 116 start-page: 25042 year: 2019 end-page: 25047 ident: CR114 article-title: Oral ionic liquid for the treatment of diet-induced obesity publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1914426116 – volume: 5 start-page: 11935 year: 2015 ident: CR134 article-title: Investigation of ion channel activities of gramicidin A in the presence of ionic liquids using model cell membranes publication-title: Sci Rep doi: 10.1038/srep11935 – volume: 571 start-page: 245 year: 2019 end-page: 250 ident: CR6 article-title: Planar perovskite solar cells with long-term stability using ionic liquid additives publication-title: Nature doi: 10.1038/s41586-019-1357-2 – volume: 3 start-page: 7 year: 2018 end-page: 25 ident: CR1 article-title: Ionic liquids for addressing unmet needs in healthcare: AGATEMOR et al publication-title: Bioeng Transl Med doi: 10.1002/btm2.10083 – volume: 8 start-page: 621 year: 2006 ident: CR147 article-title: Anion effects on the cytotoxicity of ionic liquids publication-title: Green Chem doi: 10.1039/b602161a – volume: 91 start-page: 1107 year: 2013 end-page: 1112 ident: CR39 article-title: Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.01.013 – volume: 113 start-page: 1630 year: 2016 end-page: 1635 ident: CR170 article-title: Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1518034113 – volume: 163 start-page: 452 year: 2016 end-page: 460 ident: CR181 article-title: Time- and anion-dependent stimulation on triphosphopyridine nucleotide followed by antioxidant responses in Vibrio fischeri after exposure to 1-ethyl-3-methylimidazolium salts publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.08.061 – volume: 5 start-page: 11151 year: 2020 end-page: 11159 ident: CR185 article-title: Magnetic ionic liquids as solvents for RNA extraction and preservation publication-title: ACS Omega doi: 10.1021/acsomega.0c01098 – volume: 517 start-page: 455 year: 2015 end-page: 459 ident: CR83 article-title: A new antibiotic kills pathogens without detectable resistance publication-title: Nature doi: 10.1038/nature14098 – volume: 32 start-page: 5403 year: 2016 end-page: 5411 ident: CR176 article-title: Molecular mechanism of ionic-liquid- induced membrane disruption: morphological changes to bilayers, multilayers, and vesicles publication-title: Langmuir doi: 10.1021/acs.langmuir.6b00768 – volume: 29 start-page: 1038 year: 2010 end-page: 1054 ident: CR48 article-title: Impact of ionic liquids in environment and humans: an overview publication-title: Hum Exp Toxicol doi: 10.1177/0960327110371259 – volume: 18 start-page: 197 year: 2009 end-page: 203 ident: CR105 article-title: Ionic liquids in soils: effects of different anion species of imidazolium based ionic liquids on wheat (Triticum aestivum) as affected by different clay minerals and clay concentrations publication-title: Ecotoxicology doi: 10.1007/s10646-008-0272-3 – volume: 46 start-page: 1452 year: 2010 ident: CR109 article-title: Ionic liquid-assisted transdermal delivery of sparingly soluble drugs publication-title: Chem Commun doi: 10.1039/b907462g – volume: 92 start-page: 112 year: 2013 end-page: 118 ident: CR126 article-title: In vitro cytotoxicity assessment of imidazolium ionic liquids: biological effects in fish Channel Catfish Ovary (CCO) cell line publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.03.002 – volume: 116 start-page: 1017 year: 2019 end-page: 1026 ident: CR184 article-title: Rigidification of the Escherichia coli cytoplasm by the human antimicrobial peptide LL-37 revealed by superresolution fluorescence microscopy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1814924116 – volume: 9 start-page: 20191 year: 2019 ident: CR53 article-title: Transdermal delivery of nobiletin using ionic liquids publication-title: Sci Rep doi: 10.1038/s41598-019-56731-1 – volume: 9 start-page: 251 year: 2019 ident: CR32 article-title: Correlating lipid membrane permeabilities of imidazolium ionic liquids with their cytotoxicities on yeast, bacterial, and mammalian cells publication-title: Biomolecules doi: 10.3390/biom9060251 – volume: 10 start-page: 8641 year: 2014 end-page: 8651 ident: CR174 article-title: Amphiphilic interactions of ionic liquids with lipid biomembranes: a molecular simulation study publication-title: Soft Matter doi: 10.1039/C4SM01528B – volume: 565 start-page: 219 year: 2019 end-page: 226 ident: CR30 article-title: In vivo biocompatibility, pharmacokinetics, antitumor efficacy, and hypersensitivity evaluation of ionic liquid-mediated paclitaxel formulations publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2019.05.020 – volume: 430 start-page: 4443 year: 2018 end-page: 4455 ident: CR62 article-title: Understanding protein mobility in bacteria by tracking single molecules publication-title: J Mol Biol doi: 10.1016/j.jmb.2018.05.002 – volume: 185 start-page: 111832 year: 2020 ident: CR149 article-title: Synthesis, characterization, and biological activity of a triphenylphosphonium-containing imidazolium salt against select bladder cancer cell lines publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2019.111832 – volume: 101 start-page: 116 year: 2014 end-page: 123 ident: CR35 article-title: Imidiazolium based ionic liquids: effects of different anions and alkyl chains lengths on the barley seedlings publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.12.022 – volume: 50 start-page: 1688 year: 2014 end-page: 1690 ident: CR169 article-title: Ionic liquids provide unique opportunities for oral drug delivery: structure optimization and in vivo evidence of utility publication-title: Chem Commun doi: 10.1039/C3CC48650H – volume: 136 start-page: 111069 year: 2020 ident: CR74 article-title: The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2019.111069 – volume: 83 start-page: 102 year: 2012 end-page: 107 ident: CR78 article-title: Apoptosis caused by imidazolium-based ionic liquids in PC12 cells publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2012.06.013 – volume: 111 start-page: 13313 year: 2014 end-page: 13318 ident: CR182 article-title: Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1403995111 – volume: 120 start-page: 342 year: 2015 end-page: 348 ident: CR77 article-title: Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-octylimidazolium bromide publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.06.018 – volume: 77 start-page: 313 year: 2009 end-page: 318 ident: CR94 article-title: The toxic effects of ionic liquids on the activities of acetylcholinesterase and cellulase in earthworms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.07.026 – volume: 21 start-page: 3936 year: 2014 end-page: 3945 ident: CR86 article-title: Effects of the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate on the growth of wheat seedlings publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-013-2348-8 – volume: 181 start-page: 242 year: 2013 end-page: 249 ident: CR85 article-title: Phytotoxicity and oxidative stress effect of 1-octyl-3-methylimidazolium chloride ionic liquid on rice seedlings publication-title: Environ Pollut doi: 10.1016/j.envpol.2013.06.007 – volume: 4 start-page: 11061 year: 2019 end-page: 11065 ident: CR142 article-title: Investigating the biological activity of imidazolium aurate salts publication-title: ChemistrySelect doi: 10.1002/slct.201903435 – volume: 99 start-page: 2071 year: 1999 end-page: 2084 ident: CR166 article-title: Room-temperature ionic liquids Solvents for synthesis and catalysi publication-title: Chem Rev doi: 10.1021/cr980032t – volume: 19 start-page: 318 year: 2017 end-page: 329 ident: CR113 article-title: Hydrogen-bond dynamics at the bio–water interface in hydrated proteins: a molecular-dynamics study publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP05601F – volume: 72 start-page: 1391 year: 2000 end-page: 1398 ident: CR41 article-title: Ionic liquids. Green solvents for the future publication-title: Pure Appl Chem doi: 10.1351/pac200072071391 – volume: 41 start-page: 361 year: 2012 end-page: 367 ident: CR100 article-title: Bio-protective effects of homologous disaccharides on biological macromolecules publication-title: Eur Biophys J doi: 10.1007/s00249-011-0760-x – volume: 116 start-page: 26516 year: 2019 end-page: 26522 ident: CR112 article-title: The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1909585117 – volume: 73 start-page: 1456 year: 2010 end-page: 1464 ident: CR136 article-title: Introduction of oxygenated side chain into imidazolium ionic liquids: evaluation of the effects at different biological organization levels publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2010.07.020 – volume: 113 start-page: E7077 year: 2016 end-page: E7086 ident: CR111 article-title: Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1611173113 – volume: 5 start-page: 1404 year: 2014 end-page: 1409 ident: CR102 article-title: Imidazolium-derived ionic salts induce inhibition of cancerous cell growth through apoptosis publication-title: Med Chem Commun doi: 10.1039/C4MD00161C – volume: 27 start-page: 330 year: 2013 end-page: 336 ident: CR60 article-title: Responses of the antioxidant system in QGY-7701 cells to the cytotoxicity and apoptosis induced by 1-octyl-3-methylimidazolium chloride: antioxidant system in Qgy-7701 cells publication-title: J Biochem Mol Toxicol doi: 10.1002/jbt.21495 – volume: 55 start-page: 2161 year: 2016 end-page: 2166 ident: CR63 article-title: Direct observation of self-organized water-containing structures in the liquid phase and their influence on 5-(hydroxymethyl)furfural formation in ionic liquids publication-title: Angew Chem Int Ed doi: 10.1002/anie.201510090 – volume: 1804 start-page: 49 year: 2010 end-page: 55 ident: CR99 article-title: Motion characterization by self-distribution–function procedure publication-title: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics doi: 10.1016/j.bbapap.2009.09.017 – volume: 72 start-page: 1798 year: 2009 end-page: 1804 ident: CR179 article-title: Effects of the 1-alkyl-3-methylimidazolium bromide ionic liquids on the antioxidant defense system of Daphnia magna publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2009.05.002 – volume: 33 start-page: 1333 year: 2017 end-page: 1342 ident: CR40 article-title: Imidazolium salts mimicking the structure of natural lipids exploit remarkable properties forming lamellar phases and giant vesicles publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03182 – volume: 113 start-page: 12150 year: 2016 end-page: 12155 ident: CR103 article-title: Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1613055113 – volume: 18 start-page: 5640 year: 2008 end-page: 5642 ident: CR67 article-title: Synthesis of nucleoside-based antiviral drugs in ionic liquids publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2008.08.090 – volume: 9 start-page: 19189 year: 2019 end-page: 19196 ident: CR160 article-title: Correlation between lipophilicity of newly synthesized ionic liquids and selected Fusarium genus growth rate publication-title: RSC Adv doi: 10.1039/C9RA02521A – volume: 14 start-page: 3669 year: 2017 end-page: 3683 ident: CR135 article-title: Ionic liquid forms of weakly acidic drugs in oral lipid formulations: preparation, characterization, in vitro digestion, and in vivo absorption studies publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.7b00442 – volume: 116 start-page: 26516 year: 2019 ident: 754_CR112 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1909585117 – volume: 26 start-page: 1087 year: 2012 ident: 754_CR79 publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2012.07.006 – volume: 113 start-page: 1630 year: 2016 ident: 754_CR170 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1518034113 – volume: 201 start-page: 59 year: 2016 ident: 754_CR65 publication-title: Chem Phys Lipids doi: 10.1016/j.chemphyslip.2016.11.003 – volume: 10 start-page: 8641 year: 2014 ident: 754_CR174 publication-title: Soft Matter doi: 10.1039/C4SM01528B – volume: 142 start-page: 124706 year: 2015 ident: 754_CR14 publication-title: J Chem Phys doi: 10.1063/1.4915918 – volume: 5 start-page: 1404 year: 2014 ident: 754_CR102 publication-title: Med Chem Commun doi: 10.1039/C4MD00161C – volume: 10 start-page: 709 year: 2018 ident: 754_CR21 publication-title: Biophys Rev doi: 10.1007/s12551-017-0390-3 – volume: 118 start-page: 2471 year: 2014 ident: 754_CR16 publication-title: J Phys Chem doi: 10.1021/jp412281n – volume: 311–312 start-page: 162 year: 2019 ident: 754_CR125 publication-title: J Control Release doi: 10.1016/j.jconrel.2019.08.029 – volume: 7 start-page: 22927 year: 2017 ident: 754_CR116 publication-title: RSC Adv doi: 10.1039/C7RA01520H – volume: 32 start-page: 12579 year: 2016 ident: 754_CR163 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b02496 – volume: 233 start-page: 452 year: 2017 ident: 754_CR50 publication-title: J Mol Liq doi: 10.1016/j.molliq.2017.02.078 – volume: 18 start-page: 197 year: 2009 ident: 754_CR105 publication-title: Ecotoxicology doi: 10.1007/s10646-008-0272-3 – volume: 33 start-page: 1066 year: 2017 ident: 754_CR171 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b04359 – volume: 112 start-page: E7073 year: 2015 ident: 754_CR47 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1521988112 – volume: 21 start-page: 3936 year: 2014 ident: 754_CR86 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-013-2348-8 – volume: 40 start-page: 1383 year: 2011 ident: 754_CR119 publication-title: Chem Soc Rev doi: 10.1039/C004968A – volume: 41 start-page: 361 year: 2012 ident: 754_CR100 publication-title: Eur Biophys J doi: 10.1007/s00249-011-0760-x – volume: 320 start-page: 408 year: 2016 ident: 754_CR158 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2016.08.056 – volume: 113 start-page: 978 year: 2016 ident: 754_CR55 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1517541113 – volume: 185 start-page: 111832 year: 2020 ident: 754_CR149 publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2019.111832 – volume: 1 start-page: 34 year: 2020 ident: 754_CR19 publication-title: Commun Mater doi: 10.1038/s43246-020-0035-0 – volume: 10 start-page: 735 year: 2018 ident: 754_CR164 publication-title: Biophys Rev doi: 10.1007/s12551-017-0388-x – volume: 5 start-page: 527 year: 2014 ident: 754_CR104 publication-title: Annu Rev Chem Biomol Eng doi: 10.1146/annurev-chembioeng-060713-040024 – volume: 19 start-page: 318 year: 2017 ident: 754_CR113 publication-title: Phys Chem Chem Phys doi: 10.1039/C6CP05601F – volume: 46 start-page: 1452 year: 2010 ident: 754_CR109 publication-title: Chem Commun doi: 10.1039/b907462g – volume: 24 start-page: 1882 year: 2011 ident: 754_CR70 publication-title: Chem Res Toxicol doi: 10.1021/tx200228c – volume: 145 start-page: 269 year: 2016 ident: 754_CR90 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.055 – volume: 101 start-page: 116 year: 2014 ident: 754_CR35 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.12.022 – volume: 348 start-page: 1 year: 2018 ident: 754_CR172 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2018.01.028 – volume: 1804 start-page: 49 year: 2010 ident: 754_CR99 publication-title: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics doi: 10.1016/j.bbapap.2009.09.017 – volume: 571 start-page: 245 year: 2019 ident: 754_CR6 publication-title: Nature doi: 10.1038/s41586-019-1357-2 – volume: 125 start-page: 237 year: 2017 ident: 754_CR159 publication-title: Water Res doi: 10.1016/j.watres.2017.08.046 – volume: 163 start-page: 452 year: 2016 ident: 754_CR181 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.08.061 – volume: 72 start-page: 552 year: 2009 ident: 754_CR80 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2007.11.002 – volume: 73 start-page: 1046 year: 2010 ident: 754_CR93 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2010.01.017 – volume: 99 start-page: 2071 year: 1999 ident: 754_CR166 publication-title: Chem Rev doi: 10.1021/cr980032t – volume: 19 start-page: 790 year: 2018 ident: 754_CR144 publication-title: IJMS doi: 10.3390/ijms19030790 – volume: 19 start-page: 4643 year: 2009 ident: 754_CR72 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.06.086 – volume: 5 start-page: 11935 year: 2015 ident: 754_CR134 publication-title: Sci Rep doi: 10.1038/srep11935 – volume: 8 start-page: 621 year: 2006 ident: 754_CR147 publication-title: Green Chem doi: 10.1039/b602161a – volume: 73 start-page: 1465 year: 2010 ident: 754_CR95 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2009.10.004 – volume: 88 start-page: 273 year: 2006 ident: 754_CR128 publication-title: Toxicol Environ Chem doi: 10.1080/02772240600589505 – volume: 286 start-page: 137 year: 2018 ident: 754_CR154 publication-title: J Control Release doi: 10.1016/j.jconrel.2018.07.029 – volume: 3 start-page: 7 year: 2018 ident: 754_CR1 publication-title: Bioeng Transl Med doi: 10.1002/btm2.10083 – volume: 13 start-page: 2794 year: 2011 ident: 754_CR107 publication-title: Green Chem doi: 10.1039/c0gc00813c – volume: 297 start-page: 111751 year: 2020 ident: 754_CR44 publication-title: J Mol Liq doi: 10.1016/j.molliq.2019.111751 – volume: 4 start-page: 152 year: 2015 ident: 754_CR45 publication-title: Toxicol Res doi: 10.1039/C4TX00079J – volume: 9 start-page: 1191 year: 2007 ident: 754_CR165 publication-title: Green Chem doi: 10.1039/b704503d – volume: 882 start-page: 140 year: 2008 ident: 754_CR98 publication-title: J Mol Struct doi: 10.1016/j.molstruc.2007.09.022 – ident: 754_CR117 doi: 10.1002/chem.202003466 – volume: 237 start-page: 124436 year: 2019 ident: 754_CR118 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124436 – volume: 33 start-page: 1333 year: 2017 ident: 754_CR40 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03182 – volume: 34 start-page: 12452 year: 2018 ident: 754_CR49 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01554 – volume: 15 start-page: e0229745 year: 2020 ident: 754_CR177 publication-title: PLoS One doi: 10.1371/journal.pone.0229745 – volume: 1 start-page: 33 year: 2012 ident: 754_CR4 publication-title: ChemistryOpen doi: 10.1002/open.201100003 – volume: 430 start-page: 4443 year: 2018 ident: 754_CR62 publication-title: J Mol Biol doi: 10.1016/j.jmb.2018.05.002 – volume: 139 start-page: 1399 year: 2003 ident: 754_CR106 publication-title: Br J Pharmacol doi: 10.1038/sj.bjp.0705374 – volume: 8 start-page: 423 year: 2010 ident: 754_CR64 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2333 – volume: 29 start-page: 1038 year: 2010 ident: 754_CR48 publication-title: Hum Exp Toxicol doi: 10.1177/0960327110371259 – volume: 4 start-page: 392 year: 2016 ident: 754_CR13 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.5b01385 – volume: 2 start-page: 143 year: 2011 ident: 754_CR97 publication-title: Med Chem Commun doi: 10.1039/C0MD00201A – volume: 181 start-page: 242 year: 2013 ident: 754_CR85 publication-title: Environ Pollut doi: 10.1016/j.envpol.2013.06.007 – volume: 10 start-page: 721 year: 2018 ident: 754_CR139 publication-title: Biophys Rev doi: 10.1007/s12551-018-0410-y – volume: 10 start-page: 1213 year: 2008 ident: 754_CR7 publication-title: Green Chem doi: 10.1039/b807019a – volume: 9 start-page: 19189 year: 2019 ident: 754_CR160 publication-title: RSC Adv doi: 10.1039/C9RA02521A – volume: 5 start-page: 11151 year: 2020 ident: 754_CR185 publication-title: ACS Omega doi: 10.1021/acsomega.0c01098 – volume: 565 start-page: 219 year: 2019 ident: 754_CR30 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2019.05.020 – volume: 22 start-page: 9775 year: 2020 ident: 754_CR24 publication-title: Phys Chem Chem Phys doi: 10.1039/D0CP00801J – volume: 302 start-page: 112547 year: 2020 ident: 754_CR29 publication-title: J Mol Liq doi: 10.1016/j.molliq.2020.112547 – volume: 105 start-page: 425 year: 2008 ident: 754_CR121 publication-title: J Biosci Bioeng doi: 10.1263/jbb.105.425 – volume: 52 start-page: 1 year: 2018 ident: 754_CR161 publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2018.05.013 – volume: 307 start-page: 73 year: 2016 ident: 754_CR180 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2015.12.028 – volume: 7 start-page: 336 year: 2014 ident: 754_CR42 publication-title: ChemSusChem doi: 10.1002/cssc.201300459 – volume: 323 start-page: 475 year: 2020 ident: 754_CR37 publication-title: J Control Release doi: 10.1016/j.jconrel.2020.04.038 – volume: 13 start-page: 42 year: 2015 ident: 754_CR22 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3380 – volume: 32 start-page: 5403 year: 2016 ident: 754_CR176 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b00768 – volume: 551 start-page: 227 year: 2018 ident: 754_CR12 publication-title: Phys B Condens Matter doi: 10.1016/j.physb.2018.02.043 – volume: 24 start-page: 2669 year: 2018 ident: 754_CR133 publication-title: Chem Eur J doi: 10.1002/chem.201704924 – volume: 111 start-page: E1409 year: 2014 ident: 754_CR168 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1319900111 – volume: 9 start-page: 251 year: 2019 ident: 754_CR32 publication-title: Biomolecules doi: 10.3390/biom9060251 – volume: 33 start-page: 1295 year: 2017 ident: 754_CR20 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03192 – volume: 39 start-page: 600 year: 2010 ident: 754_CR31 publication-title: Chem Soc Rev doi: 10.1039/b817717c – volume: 5 start-page: 18444 year: 2015 ident: 754_CR84 publication-title: Sci Rep doi: 10.1038/srep18444 – volume: 202 start-page: 110902 year: 2020 ident: 754_CR75 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.110902 – volume: 33 start-page: 91 year: 2014 ident: 754_CR59 publication-title: Toxin Rev doi: 10.3109/15569543.2013.867885 – volume: 93 start-page: 2488 year: 2013 ident: 754_CR76 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.08.092 – volume: 517 start-page: 455 year: 2015 ident: 754_CR83 publication-title: Nature doi: 10.1038/nature14098 – volume: 116 start-page: 25042 year: 2019 ident: 754_CR114 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1914426116 – volume: 11 start-page: 1455 year: 2020 ident: 754_CR51 publication-title: Nat Commun doi: 10.1038/s41467-020-15257-1 – volume: 6 start-page: 19889 year: 2016 ident: 754_CR175 publication-title: Sci Rep doi: 10.1038/srep19889 – volume: 21 start-page: 253 year: 2012 ident: 754_CR82 publication-title: Ecotoxicology doi: 10.1007/s10646-011-0785-z – volume: 92 start-page: 112 year: 2013 ident: 754_CR126 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2013.03.002 – volume: 1862 start-page: 183103 year: 2020 ident: 754_CR5 publication-title: Biochim Biophys Acta Biomembr doi: 10.1016/j.bbamem.2019.183103 – volume: 112 start-page: 8558 year: 2008 ident: 754_CR46 publication-title: J Phys Chem B doi: 10.1021/jp7116592 – volume: 111 start-page: 3508 year: 2011 ident: 754_CR52 publication-title: Chem Rev doi: 10.1021/cr1003248 – volume: 2 start-page: 2331 year: 2011 ident: 754_CR108 publication-title: J Phys Chem Lett doi: 10.1021/jz201006b – volume: 120 start-page: 342 year: 2015 ident: 754_CR77 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.06.018 – volume: 31 start-page: 810 year: 2012 ident: 754_CR115 publication-title: Cornea doi: 10.1097/ICO.0b013e31823f0a86 – volume: 10 start-page: 853 year: 2018 ident: 754_CR152 publication-title: Biophys Rev doi: 10.1007/s12551-018-0421-8 – volume: 10 start-page: 751 year: 2018 ident: 754_CR132 publication-title: Biophys Rev doi: 10.1007/s12551-018-0424-5 – volume: 622–623 start-page: 1572 year: 2018 ident: 754_CR91 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.10.021 – volume: 122 start-page: 83 year: 2015 ident: 754_CR88 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2015.07.010 – volume: 264 start-page: 246 year: 2014 ident: 754_CR183 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2013.11.003 – volume: 83 start-page: 102 year: 2012 ident: 754_CR78 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2012.06.013 – ident: 754_CR151 doi: 10.1039/b316491h – volume: 11 start-page: 492 year: 2009 ident: 754_CR28 publication-title: Green Chem doi: 10.1039/b821842k – volume: 115 start-page: 7296 year: 2018 ident: 754_CR8 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1722338115 – volume: 167 start-page: 114 year: 2017 ident: 754_CR123 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.140 – volume: 10 start-page: 687 year: 2018 ident: 754_CR15 publication-title: Biophys Rev doi: 10.1007/s12551-018-0426-3 – volume: 46 start-page: 194 year: 2018 ident: 754_CR57 publication-title: Toxicol in Vitro doi: 10.1016/j.tiv.2017.09.025 – volume: 27 start-page: 330 year: 2013 ident: 754_CR60 publication-title: J Biochem Mol Toxicol doi: 10.1002/jbt.21495 – volume: 19 start-page: 311 year: 2020 ident: 754_CR110 publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-019-0058-8 – volume: 10 start-page: 931 year: 2018 ident: 754_CR156 publication-title: Biophys Rev doi: 10.1007/s12551-018-0422-7 – volume: 34 start-page: 9579 year: 2018 ident: 754_CR11 publication-title: Langmuir doi: 10.1021/acs.langmuir.7b04361 – volume: 285 start-page: 27 year: 2015 ident: 754_CR89 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2014.11.028 – volume: 14 start-page: 3669 year: 2017 ident: 754_CR135 publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.7b00442 – volume: 113 start-page: E7077 year: 2016 ident: 754_CR111 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1611173113 – volume: 150 start-page: 266 year: 2016 ident: 754_CR54 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.029 – volume: 10 start-page: 691 year: 2018 ident: 754_CR167 publication-title: Biophys Rev doi: 10.1007/s12551-018-0419-2 – volume: 72 start-page: 1798 year: 2009 ident: 754_CR179 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2009.05.002 – volume: 467 start-page: 1033 year: 2015 ident: 754_CR162 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2015.10.015 – volume: 68 start-page: 171 year: 2017 ident: 754_CR26 publication-title: Arch Ind Hyg Toxicol doi: 10.1515/aiht-2017-68-2979 – volume: 265 start-page: 428 year: 2018 ident: 754_CR131 publication-title: J Mol Liq doi: 10.1016/j.molliq.2018.06.045 – volume: 55 start-page: 2161 year: 2016 ident: 754_CR63 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201510090 – volume: 10 start-page: 3517 year: 2019 ident: 754_CR96 publication-title: Nat Commun doi: 10.1038/s41467-019-11503-3 – volume: 3 start-page: 2000041 year: 2020 ident: 754_CR155 publication-title: Adv Therap doi: 10.1002/adtp.202000041 – volume: 77 start-page: 313 year: 2009 ident: 754_CR94 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.07.026 – volume: 4 start-page: 2370 year: 2018 ident: 754_CR58 publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.8b00486 – volume: 113 start-page: 12150 year: 2016 ident: 754_CR103 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1613055113 – volume: 69 start-page: 611 year: 2017 ident: 754_CR69 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2016.12.005 – volume: 12 start-page: 593 year: 2010 ident: 754_CR92 publication-title: Green Chem doi: 10.1039/b921805j – volume: 73 start-page: 1456 year: 2010 ident: 754_CR136 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2010.07.020 – volume: 4 start-page: 11061 year: 2019 ident: 754_CR142 publication-title: ChemistrySelect doi: 10.1002/slct.201903435 – volume: 10 start-page: 836 year: 2008 ident: 754_CR33 publication-title: Green Chem doi: 10.1039/b807214k – volume: 393 start-page: 983 year: 2009 ident: 754_CR150 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-008-2523-9 – volume: 136 start-page: 111069 year: 2020 ident: 754_CR74 publication-title: Food Chem Toxicol doi: 10.1016/j.fct.2019.111069 – volume: 31 start-page: 1429 year: 2007 ident: 754_CR56 publication-title: New J Chem doi: 10.1039/b706677p – volume: 58 start-page: 396 year: 2004 ident: 754_CR127 publication-title: Ecotoxicol Environ Saf doi: 10.1016/S0147-6513(03)00105-2 – volume: 18 start-page: 5640 year: 2008 ident: 754_CR67 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2008.08.090 – volume: 10 start-page: 847 year: 2018 ident: 754_CR122 publication-title: Biophys Rev doi: 10.1007/s12551-018-0425-4 – volume: 9 start-page: 20191 year: 2019 ident: 754_CR53 publication-title: Sci Rep doi: 10.1038/s41598-019-56731-1 – volume: 71 start-page: 903 year: 2008 ident: 754_CR178 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2008.02.022 – volume: 4 start-page: 5682 year: 2019 ident: 754_CR141 publication-title: ACS Omega doi: 10.1021/acsomega.8b03691 – volume: 31 start-page: 1901103 year: 2019 ident: 754_CR153 publication-title: Adv Mater doi: 10.1002/adma.201901103 – volume: 154 start-page: 335 year: 2012 ident: 754_CR146 publication-title: Faraday Discuss doi: 10.1039/C1FD00071C – volume: 71 start-page: 157 year: 2008 ident: 754_CR145 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2007.08.011 – volume: 9 start-page: 309 year: 2017 ident: 754_CR10 publication-title: Biophys Rev doi: 10.1007/s12551-017-0279-1 – volume: 20 start-page: 581 year: 2010 ident: 754_CR101 publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2009.11.085 – volume: 91 start-page: 1107 year: 2013 ident: 754_CR39 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.01.013 – volume: 240 start-page: 124919 year: 2020 ident: 754_CR173 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124919 – volume: 107 start-page: 12281 year: 2010 ident: 754_CR148 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1005485107 – volume: 50 start-page: 1688 year: 2014 ident: 754_CR169 publication-title: Chem Commun doi: 10.1039/C3CC48650H – volume: 36 start-page: 56 year: 2012 ident: 754_CR120 publication-title: New J Chem doi: 10.1039/C1NJ20470J – volume: 176 start-page: 119 year: 2000 ident: 754_CR137 publication-title: J Membr Biol doi: 10.1007/s00232001078 – volume: 194 start-page: 110392 year: 2020 ident: 754_CR36 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2020.110392 – volume: 10 start-page: 2321 year: 2017 ident: 754_CR34 publication-title: ChemSusChem doi: 10.1002/cssc.201700261 – volume: 116 start-page: 1017 year: 2019 ident: 754_CR184 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1814924116 – volume: 12 start-page: 109 year: 2016 ident: 754_CR130 publication-title: Nat Chem Biol doi: 10.1038/nchembio.1986 – volume: 78 start-page: 853 year: 2010 ident: 754_CR81 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.11.047 – volume: 9 start-page: 481 year: 2007 ident: 754_CR23 publication-title: Green Chem doi: 10.1039/b615406a – volume: 117 start-page: 7132 year: 2017 ident: 754_CR43 publication-title: Chem Rev doi: 10.1021/acs.chemrev.6b00562 – volume: 24 start-page: 388 year: 2009 ident: 754_CR71 publication-title: Environ Toxicol doi: 10.1002/tox.20443 – volume: 322 start-page: 602 year: 2020 ident: 754_CR140 publication-title: J Control Release doi: 10.1016/j.jconrel.2020.03.018 – volume: 7 start-page: 185 year: 2005 ident: 754_CR38 publication-title: Green Chem doi: 10.1039/b419172b – volume: 250 start-page: 567 year: 2019 ident: 754_CR157 publication-title: Environ Pollut doi: 10.1016/j.envpol.2019.04.043 – volume: 72 start-page: 1391 year: 2000 ident: 754_CR41 publication-title: Pure Appl Chem doi: 10.1351/pac200072071391 – volume: 57 start-page: 266 year: 2010 ident: 754_CR61 publication-title: Regul Toxicol Pharmacol doi: 10.1016/j.yrtph.2010.03.006 – volume: 67 start-page: 430 year: 2007 ident: 754_CR129 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2006.08.008 – volume: 3 start-page: 238 year: 2005 ident: 754_CR25 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1098 – volume: 22 start-page: 11975 year: 2015 ident: 754_CR66 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-015-4794-y – volume: 169 start-page: 179 year: 2015 ident: 754_CR87 publication-title: Aquat Toxicol doi: 10.1016/j.aquatox.2015.10.024 – volume: 3 start-page: 55 year: 2020 ident: 754_CR27 publication-title: Commun Chem doi: 10.1038/s42004-020-0302-5 – volume: 11 start-page: 7327 year: 2020 ident: 754_CR73 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.0c02149 – volume: 8 start-page: 238 year: 2006 ident: 754_CR124 publication-title: Green Chem doi: 10.1039/B511554J – volume: 104 start-page: 7893 year: 2007 ident: 754_CR3 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0702439104 – volume: 8 start-page: 1939 year: 2017 ident: 754_CR9 publication-title: Nat Commun doi: 10.1038/s41467-017-02118-7 – volume: 49 start-page: 2158 year: 2014 ident: 754_CR68 publication-title: Process Biochem doi: 10.1016/j.procbio.2014.09.014 – volume: 118 start-page: 12192 year: 2014 ident: 754_CR17 publication-title: J Phys Chem B doi: 10.1021/jp507631h – volume: 24 start-page: 1759 year: 2005 ident: 754_CR18 publication-title: Environ Toxicol Chem doi: 10.1897/04-614R.1 – volume: 15 start-page: 1900073 year: 2020 ident: 754_CR143 publication-title: Biotechnol J doi: 10.1002/biot.201900073 – volume: 20 start-page: 2865 year: 2019 ident: 754_CR2 publication-title: IJMS doi: 10.3390/ijms20122865 – volume: 13 start-page: 8969 year: 2017 ident: 754_CR138 publication-title: Soft Matter doi: 10.1039/C7SM01799E – ident: 754_CR186 doi: 10.1016/j.watres.2009.09.030 – volume: 111 start-page: 13313 year: 2014 ident: 754_CR182 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1403995111 |
SSID | ssj0064285 |
Score | 2.5002232 |
SecondaryResourceType | review_article |
Snippet | Ionic liquids (ILs) are a relatively new class of organic electrolytes composed of an organic cation and either an organic or inorganic anion, whose melting... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1187 |
SubjectTerms | Biochemistry Biological and Medical Physics Biological Techniques Biomedical and Life Sciences Biomolecules Biophysics Cell Biology Cell membranes Chloroplasts DNA fragmentation Electrolytic cells Ionic liquids Life Sciences Lipids Melt temperature Membrane Biology Mitochondria Nanotechnology Nonaqueous electrolytes Nuclear membranes Reactive oxygen species Review Reviews Room temperature State-of-the-art reviews Toxicity Viscoelasticity |
Title | Mechanisms of action of ionic liquids on living cells: the state of the art |
URI | https://link.springer.com/article/10.1007/s12551-020-00754-w https://www.ncbi.nlm.nih.gov/pubmed/32936423 https://www.proquest.com/docview/2473816574 https://www.proquest.com/docview/2443517294 https://pubmed.ncbi.nlm.nih.gov/PMC7575683 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_cRPBF_HY6RwXftLA1aZr4NoZzKPrkQJ9Km6Q40E7txvC_964fG_MLfEvIJU0vl-R3yd0F4DTCbUB5hrkK9QmXk22N4m3rJkx6cYLzqW3IUfj2TgyG_PrBfyidwrLK2r26ksxX6oWzG6JfVH098oQOfO7OarDqo-5Ocj30utX6S4CaDBcpUpvrcb9dusr83MbydvQNY343lfxyX5pvQ_1N2Cjxo9MtBnwLVmy6DWvFi5IfO3Bza8mVd5S9ZM44cQqvBUrRsat2nkdv05HBohSTdJTg0MF9duEgDHRy3yKipQxK1C4M-5f3vYFbvpfgaq68mSt1O5KBNkJa1INUjFmhWOILSfdtjMVCYUokjMeJjHBnV1wbHmtptLFGBGwP6uk4tQfgMI3QMKZALkihdScS3HIrOyzAFrRhDehUbAt1GUyc3rR4DhdhkInVIbI6zFkdzhpwNq_zWoTS-JO6WY1GWE6rLPR4QBedfsAbcDIvxglBzIpSO54SDSJAhGUKafaLwZt_jiG4QfnA7gdLwzonoGDbyyXp6CkPuh0grhUSa55XArDo1u9_cfg_8iNY90g4c2PBJtQn71N7jKBnErdgtXv1eHPZglpP9Fq5xH8CO4b52A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8IwFG4UY_TFeBdFnYlvughr17W-GaJBuTxBwtuytV0kwaEOQvz3nrMLBFAT39r0dOtOT3e-Xs5XQq4DcAPS0dSWMJ-wGZ6tkaxq7IgKJ4xgPFU1Bgq3O7zRYy99t5_T5GAszNL-_V0CDtiFCa-D8c-ey-zpOtlgMFNGnvw6rxd_XYTReFwR-dlsh7nVPEDm52csOqEVZLl6QHJplzR1Pk-7ZCdHjdZD1s17ZM3E-2Qzu0fy64A02wYDeAfJW2KNIiuLVcAULrYqazj4mAw0FMWQxAUEC5frk3sLwJ-VRhShLGbAjg5J7-mxW2_Y-S0JtmLSmdpCVQPhKc2FgdmPDCHLJY1cLnCXjdKQS0jxiLIwEgH4c8mUZqESWmmjuUePSCkexeaEWFQBIAyRvgUklKoFnBlmRI168ASlaZnUCrX5KqcQx5sshv6c_BhV7YOq_VTV_rRMbmZ13jMCjT-lK0Vv-PlgSnyHebi96XqsTK5mxTAMUFlBbEYTlAHcB2BMgsxx1nmz11GANGAf0HxvoVtnAkixvVgSD15Tqm0P0CwXUPO2MIB5s37_itP_iV-SrUa33fJbz53mGdl20FDT44IVUhp_Tsw5wJ5xeJHa-zcGhvY5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8Uo_HF-C2KOhPfdBHWrmt9MyhBEeKDJLwtW9tFEhwoEOJ_790-QERNfGvT69Zdr-uv7f2uhJwHMA1IR1NbwnrCZuhbI1nZ2BEVThjBeCprJAo3W7zeZg8dt_OFxZ94u-dHkimnAaM0xaOrgY6uZsQ3QMKwDHaQFe25zJ4skxVYqVTQqa_Kq_m_GME1OjFi1DbbYW45o838_Iz5qWkBby66TX47O02mpNom2ciwpHWTdv4WWTLxNllNb5f82CGNpkFab3f4OrT6kZUyGDCFW7DK6nXfxl0NRTEkcVvBwk384bUFkNBKeEYoixmwrl3Srt09V-t2dneCrZh0JrZQ5UB4SnNhYE0kQ8hySSOXCzx7ozTkElI8oiyMRACzvGRKs1AJrbTR3KN7pBD3Y3NALKoAJoYY1AUklKoEnBlmRIV68ASlaZFUcrX5Kgssjvdb9PxZSGRUtQ-q9hNV-5MiuZjWGaRhNf6ULuW94WdDbOg7zMNDT9djRXI2LYbBgcoKYtMfowygQYBoEmT2086bvo4C0AH7gOZ7c906FcDA2_MlcfclCcDtAcblAmpe5gYwa9bvX3H4P_FTsvZ0W_Mf71uNI7LuoJ0mPoQlUhi9j80xYKFReJKY-ye35P6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+action+of+ionic+liquids+on+living+cells%3A+the+state+of+the+art&rft.jtitle=Biophysical+reviews&rft.au=Kumari%2C+Pallavi&rft.au=Pillai%2C+Visakh+V.S.&rft.au=Benedetto%2C+Antonio&rft.date=2020-10-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1867-2450&rft.eissn=1867-2469&rft.volume=12&rft.issue=5&rft.spage=1187&rft.epage=1215&rft_id=info:doi/10.1007%2Fs12551-020-00754-w&rft_id=info%3Apmid%2F32936423&rft.externalDocID=PMC7575683 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2450&client=summon |