Drug–target interaction prediction through fine-grained selection and bidirectional random walk methodology
The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer informati...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 18104 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug–target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization. |
---|---|
AbstractList | The study of drug-target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug-target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization.The study of drug-target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug-target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization. Abstract The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug–target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization. The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug–target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization. |
ArticleNumber | 18104 |
Author | Wang, YaPing Yin, ZhiXiang |
Author_xml | – sequence: 1 givenname: YaPing surname: Wang fullname: Wang, YaPing organization: School of Mathematics, Physics and Statistics, Institute for Frontier Medical Technology, Center of Intelligent Computing and Applied Statistics, Shanghai University of Engineering Science – sequence: 2 givenname: ZhiXiang surname: Yin fullname: Yin, ZhiXiang email: zxyin66@163.com organization: School of Mathematics, Physics and Statistics, Institute for Frontier Medical Technology, Center of Intelligent Computing and Applied Statistics, Shanghai University of Engineering Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39103483$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhi1UREvpC7BAkdiwCfiaY68QKrdKldjA2nLscY4PSVxsh6PueAfekCfBbUppWeDNjGf--TzyzGN0MMcZEHpK8EuCmXyVORFKtpjytlNEdu3-ATqimIuWMkoP7viH6CTnHa5HUMWJeoQOmaoMLtkRmt6mZfj142cxaYDShLlAMraEODcXCVxY3bJNcRm2jQ8ztEMy1bgmwwhr2syu6YMLab2bsUk1FKdmb8avzQRlG10c43D5BD30ZsxwcmOP0Zf37z6ffmzPP304O31z3lquaGl9328s5iC45KTnjnrLoOs8pRY88a5jWDC_wcoDEDAbYbFwVhjulOycsuwYna1cF81OX6QwmXSpown6OhDToE0qwY6gnRc97YxlHAyHXkjZc-Isc9gSKylU1uuVdbH0EzgLc0lmvAe9n5nDVg_xuyaEYdxhXAkvbggpflsgFz2FbGEczQxxyZphqUQdDldV-vwf6S4uqf7oqsKYCn4FfHa3pdte_oy1CugqsCnmnMDfSgjWV-uj1_XRdX309frofS1ia1Gu4nmA9Pft_1T9BgcEzGo |
Cites_doi | 10.1038/s41467-017-00680-8 10.1093/bib/bbae067 10.1371/journal.pcbi.1004760 10.1093/bioinformatics/btn162 10.1093/bioinformatics/bty535 10.1093/bioinformatics/btz600 10.1093/nar/gkx1037 10.1093/nar/gky963 10.1109/TCBB.2016.2530062 10.3389/fmicb.2022.1092467 10.1093/bioinformatics/btad451 10.1093/bib/bbac384 10.1093/bioinformatics/bty543 10.1093/bib/bbv066 10.1093/bioinformatics/btx731 10.1093/bioinformatics/btac629 10.1148/radiology.143.1.7063747 10.1186/s13321-021-00552-w 10.1093/bib/bbaa044 10.1021/jm050090o 10.1038/s42256-022-00605-1 10.3390/molecules28135013 10.1093/bioinformatics/btw228 10.1016/j.knosys.2020.106254 10.1093/bib/bbab275 10.1093/bib/bbad161 10.1093/bib/bbab046 10.1109/ACCESS.2017.2766758 10.1145/1143844.1143874 10.1145/2487575.2487670 10.1109/JBHI.2024.3383591 10.1145/3159652.3159706 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-69186-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_df5b26ac34ea4eb588b41dc3d0c1c82e PMC11300600 39103483 10_1038_s41598_024_69186_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072296; 62072296 – fundername: National Natural Science Foundation of China grantid: 62072296 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-fbb7c04e54841b4d2fc3e66f22cef1fd63053f709fee1ea75c05dc5a4d986d9c3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:41 EDT 2025 Thu Aug 21 18:31:59 EDT 2025 Fri Jul 11 10:46:11 EDT 2025 Wed Aug 13 04:11:55 EDT 2025 Mon Jul 21 06:05:16 EDT 2025 Tue Jul 01 01:02:19 EDT 2025 Fri Feb 21 02:37:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Similarity integration Heterogeneous network Random walk Drug–target interaction prediction |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-fbb7c04e54841b4d2fc3e66f22cef1fd63053f709fee1ea75c05dc5a4d986d9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/df5b26ac34ea4eb588b41dc3d0c1c82e |
PMID | 39103483 |
PQID | 3089002540 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_df5b26ac34ea4eb588b41dc3d0c1c82e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300600 proquest_miscellaneous_3089505249 proquest_journals_3089002540 pubmed_primary_39103483 crossref_primary_10_1038_s41598_024_69186_w springer_journals_10_1038_s41598_024_69186_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-05 |
PublicationDateYYYYMMDD | 2024-08-05 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Liu, Wu, Miao, Zhao, Li (CR29) 2016; 12 Zhao, Su, Hu, Huang, You, Hu (CR13) 2023; 39 Yamanishi, Araki, Gutteridge, Honda, Kanehisa (CR25) 2008; 24 Ding, Tang, Guo (CR28) 2020; 204 Hanley, McNeil (CR33) 1982; 143 Zhao, Hu, Valsdottir, Zang, Peng (CR6) 2021; 22 CR15 CR34 Wishart (CR36) 2018; 46 Evers, Hessler, Matter, Klabunde (CR4) 2005; 48 CR31 Chen (CR1) 2016; 17 Tsubaki, Tomii, Sese (CR8) 2019; 35 CR30 Zhao, Su, Hu, Ma, Zhou, Hu (CR14) 2022; 23 Thafar, Olayan, Albaradei (CR11) 2021; 13 Li, Sun, Wei, Liu (CR9) 2022; 38 Li, Luo, Xiao, Liang, Ding, Cao (CR19) 2017; 8 Hu, Yin, Zeng, Peng (CR22) 2023; 28 Nascimento, Prudêncio, Costa (CR27) 2016; 17 Mahmud (CR3) 2021; 22 Ursu (CR35) 2019; 47 Liu, Wang, Sun, Tsoumakas (CR23) 2023; 24 Bai, Miljković, John, Lu (CR7) 2023; 5 Olayan, Ashoor, Bajic (CR21) 2018; 34 Luo (CR5) 2017; 8 Peng, Zhao, Hu (CR2) 2023; 13 Liu, Papadopoulos, Malliaros (CR26) 2022; 23 Yang, Su, Zhao (CR17) 2023; PP Wang, Hong, Xiao, Jiang, Zeng (CR20) 2019; 35 Hu, Zhang, Hu (CR16) 2024; 25 Dong (CR18) 2023; 24 Mohamed, Nováček, Nounu (CR10) 2020; 36 Ezzat, Zhao, Wu, Li, Kwoh (CR12) 2016; 14 Luo (CR24) 2016; 32 An, Yu (CR32) 2021; 22 Y Peng (69186_CR2) 2023; 13 A Evers (69186_CR4) 2005; 48 RS Olayan (69186_CR21) 2018; 34 X Hu (69186_CR22) 2023; 28 B Liu (69186_CR26) 2022; 23 JA Hanley (69186_CR33) 1982; 143 Y Yang (69186_CR17) 2023; PP 69186_CR31 Y Yamanishi (69186_CR25) 2008; 24 69186_CR34 FP Wang (69186_CR20) 2019; 35 SMH Mahmud (69186_CR3) 2021; 22 DS Wishart (69186_CR36) 2018; 46 BW Zhao (69186_CR14) 2022; 23 69186_CR15 M Tsubaki (69186_CR8) 2019; 35 X Chen (69186_CR1) 2016; 17 ACA Nascimento (69186_CR27) 2016; 17 P Bai (69186_CR7) 2023; 5 SK Mohamed (69186_CR10) 2020; 36 Q An (69186_CR32) 2021; 22 TY Zhao (69186_CR6) 2021; 22 A Ezzat (69186_CR12) 2016; 14 MA Thafar (69186_CR11) 2021; 13 Y Liu (69186_CR29) 2016; 12 B Liu (69186_CR23) 2023; 24 G Li (69186_CR19) 2017; 8 Y Luo (69186_CR5) 2017; 8 L Hu (69186_CR16) 2024; 25 69186_CR30 BW Zhao (69186_CR13) 2023; 39 W Dong (69186_CR18) 2023; 24 H Luo (69186_CR24) 2016; 32 O Ursu (69186_CR35) 2019; 47 Y Ding (69186_CR28) 2020; 204 YF Li (69186_CR9) 2022; 38 |
References_xml | – volume: 8 start-page: 573 issue: 1 year: 2017 ident: CR5 article-title: A network integration approach for drug target interaction prediction and computational drug repositioning from heterogeneous information publication-title: J. Nat. Commun. doi: 10.1038/s41467-017-00680-8 – volume: 25 start-page: bbae067 issue: 2 year: 2024 ident: CR16 article-title: Dual-channel hypergraph convolutional network for predicting herb–disease associations publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbae067 – volume: 23 start-page: 1 issue: 5 year: 2022 end-page: 9 ident: CR26 article-title: Multiple similarity drug–target interaction prediction with random walks and matrix factorization publication-title: J. Brief. Bioinform. – volume: 12 start-page: e1004760 issue: 2 year: 2016 ident: CR29 article-title: Neighborhood regularized logistic matrix factorization for drug–target interaction prediction publication-title: J. PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004760 – volume: 24 start-page: i232 issue: 13 year: 2008 end-page: i240 ident: CR25 article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btn162 – volume: 35 start-page: 309 issue: 2 year: 2019 end-page: 318 ident: CR8 article-title: Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences publication-title: J. Bioinform. doi: 10.1093/bioinformatics/bty535 – volume: 36 start-page: 603 issue: 2 year: 2020 end-page: 610 ident: CR10 article-title: Discovering protein drug targets using knowledge graph embeddings publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btz600 – volume: 46 start-page: D1074 issue: D1 year: 2018 end-page: D1082 ident: CR36 article-title: DrugBank 50: A major update to the DrugBank database for 2018 publication-title: J. Nucleic Acids Res. doi: 10.1093/nar/gkx1037 – ident: CR30 – volume: 47 start-page: D963 issue: D1 year: 2019 end-page: D970 ident: CR35 article-title: DrugCentral 2018: An update publication-title: J. Nucleic Acids Res. doi: 10.1093/nar/gky963 – volume: 14 start-page: 646 issue: 3 year: 2016 end-page: 656 ident: CR12 article-title: Drug–target interaction prediction with graph regularized matrix factorization publication-title: J. IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2016.2530062 – volume: 13 start-page: 1092467 year: 2023 ident: CR2 article-title: LGBMDF: A cascade forest framework with LightGBM for predicting drug–target interactions publication-title: J. Front. Microbiol. doi: 10.3389/fmicb.2022.1092467 – volume: PP start-page: 1 issue: 99 year: 2023 end-page: 14 ident: CR17 article-title: Fuzzy-based deep attributed graph clustering publication-title: J. IEEE Trans. Fuzzy Syst. – volume: 39 start-page: btad451 issue: 8 year: 2023 ident: CR13 article-title: iGRLDTI: an improved graph representation learning method for predicting drug–target interactions over heterogeneous biological information network publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btad451 – volume: 23 start-page: bbac384 issue: 6 year: 2022 ident: CR14 article-title: A geometric deep learning framework for drug repositioning over heterogeneous information networks publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbac384 – volume: 17 start-page: 1 issue: 1 year: 2016 end-page: 16 ident: CR27 article-title: A multiple kernel learning algorithm for drug–target interaction prediction publication-title: J. BMC Bioinform. – volume: 35 start-page: 104 issue: 1 year: 2019 end-page: 111 ident: CR20 article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions publication-title: J. Bioinform. doi: 10.1093/bioinformatics/bty543 – volume: 17 start-page: 696 issue: 4 year: 2016 end-page: 712 ident: CR1 article-title: Drug–target interaction prediction: databases, web servers, and computational models publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbv066 – volume: 34 start-page: 1164 issue: 7 year: 2018 end-page: 1173 ident: CR21 article-title: DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btx731 – volume: 38 start-page: 5073 issue: 22 year: 2022 end-page: 5080 ident: CR9 article-title: Drug-Protein interaction prediction by correcting the effect of incomplete information in heterogeneous information publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btac629 – volume: 24 start-page: 1085 issue: 2 year: 2023 ident: CR23 article-title: Fine-grained selective similarity integration for drug–target interaction prediction publication-title: J. Brief. Bioinform. – volume: 143 start-page: 29 year: 1982 end-page: 36 ident: CR33 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: J. Radiol. doi: 10.1148/radiology.143.1.7063747 – volume: 13 start-page: 1 year: 2021 end-page: 18 ident: CR11 article-title: DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning publication-title: J. Cheminform. doi: 10.1186/s13321-021-00552-w – ident: CR15 – volume: 22 start-page: 2141 issue: 2 year: 2021 end-page: 2150 ident: CR6 article-title: Identifying drug–target interactions based on graph convolutional network and deep neural network publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbaa044 – volume: 48 start-page: 5448 issue: 17 year: 2005 end-page: 5465 ident: CR4 article-title: Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein-and ligand-based virtual screening protocols publication-title: J. Med. Chem. doi: 10.1021/jm050090o – ident: CR31 – volume: 5 start-page: 126 issue: 2 year: 2023 end-page: 136 ident: CR7 article-title: Interpretable bilinear attention network with domain adaptation improves drug–target prediction publication-title: J. Nat. Mach. Intell. doi: 10.1038/s42256-022-00605-1 – volume: 28 start-page: 5013 issue: 13 year: 2023 ident: CR22 article-title: Prediction of miRNA–disease associations by cascade forest model based on stacked autoencoder publication-title: J. Mol. doi: 10.3390/molecules28135013 – ident: CR34 – volume: 32 start-page: 2664 year: 2016 end-page: 2671 ident: CR24 article-title: Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btw228 – volume: 204 year: 2020 ident: CR28 article-title: Identification of drug–target interactions via dual laplacian regularized least squares with multiple kernel fusion publication-title: J. Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106254 – volume: 22 start-page: bbab275 issue: 6 year: 2021 ident: CR32 article-title: A heterogeneous network embedding framework for predicting similarity-based drug–target interactions publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbab275 – volume: 24 start-page: bbad161 issue: 3 year: 2023 ident: CR18 article-title: Multi-modality attribute learning-based method for drug–protein interaction prediction based on deep neural network publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbad161 – volume: 22 start-page: bbab046 issue: 5 year: 2021 ident: CR3 article-title: PreDTIs: Prediction of drug–target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbab046 – volume: 8 start-page: 24032 issue: 5 year: 2017 end-page: 24039 ident: CR19 article-title: Predicting MicroRNA-disease associations using network topological similarity based on DeepWalk publication-title: J. IEEE Access. doi: 10.1109/ACCESS.2017.2766758 – volume: 24 start-page: i232 issue: 13 year: 2008 ident: 69186_CR25 publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btn162 – volume: 8 start-page: 24032 issue: 5 year: 2017 ident: 69186_CR19 publication-title: J. IEEE Access. doi: 10.1109/ACCESS.2017.2766758 – volume: PP start-page: 1 issue: 99 year: 2023 ident: 69186_CR17 publication-title: J. IEEE Trans. Fuzzy Syst. – volume: 34 start-page: 1164 issue: 7 year: 2018 ident: 69186_CR21 publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btx731 – volume: 48 start-page: 5448 issue: 17 year: 2005 ident: 69186_CR4 publication-title: J. Med. Chem. doi: 10.1021/jm050090o – ident: 69186_CR34 doi: 10.1145/1143844.1143874 – volume: 14 start-page: 646 issue: 3 year: 2016 ident: 69186_CR12 publication-title: J. IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2016.2530062 – volume: 204 year: 2020 ident: 69186_CR28 publication-title: J. Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106254 – volume: 39 start-page: btad451 issue: 8 year: 2023 ident: 69186_CR13 publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btad451 – volume: 24 start-page: bbad161 issue: 3 year: 2023 ident: 69186_CR18 publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbad161 – ident: 69186_CR30 doi: 10.1145/2487575.2487670 – volume: 12 start-page: e1004760 issue: 2 year: 2016 ident: 69186_CR29 publication-title: J. PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004760 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: 69186_CR27 publication-title: J. BMC Bioinform. – volume: 47 start-page: D963 issue: D1 year: 2019 ident: 69186_CR35 publication-title: J. Nucleic Acids Res. doi: 10.1093/nar/gky963 – volume: 36 start-page: 603 issue: 2 year: 2020 ident: 69186_CR10 publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btz600 – volume: 22 start-page: bbab275 issue: 6 year: 2021 ident: 69186_CR32 publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbab275 – volume: 13 start-page: 1 year: 2021 ident: 69186_CR11 publication-title: J. Cheminform. doi: 10.1186/s13321-021-00552-w – volume: 35 start-page: 309 issue: 2 year: 2019 ident: 69186_CR8 publication-title: J. Bioinform. doi: 10.1093/bioinformatics/bty535 – volume: 38 start-page: 5073 issue: 22 year: 2022 ident: 69186_CR9 publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btac629 – ident: 69186_CR15 doi: 10.1109/JBHI.2024.3383591 – volume: 24 start-page: 1085 issue: 2 year: 2023 ident: 69186_CR23 publication-title: J. Brief. Bioinform. – volume: 23 start-page: 1 issue: 5 year: 2022 ident: 69186_CR26 publication-title: J. Brief. Bioinform. – volume: 5 start-page: 126 issue: 2 year: 2023 ident: 69186_CR7 publication-title: J. Nat. Mach. Intell. doi: 10.1038/s42256-022-00605-1 – volume: 28 start-page: 5013 issue: 13 year: 2023 ident: 69186_CR22 publication-title: J. Mol. doi: 10.3390/molecules28135013 – volume: 17 start-page: 696 issue: 4 year: 2016 ident: 69186_CR1 publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbv066 – volume: 13 start-page: 1092467 year: 2023 ident: 69186_CR2 publication-title: J. Front. Microbiol. doi: 10.3389/fmicb.2022.1092467 – volume: 23 start-page: bbac384 issue: 6 year: 2022 ident: 69186_CR14 publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbac384 – volume: 22 start-page: bbab046 issue: 5 year: 2021 ident: 69186_CR3 publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbab046 – volume: 32 start-page: 2664 year: 2016 ident: 69186_CR24 publication-title: J. Bioinform. doi: 10.1093/bioinformatics/btw228 – volume: 25 start-page: bbae067 issue: 2 year: 2024 ident: 69186_CR16 publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbae067 – volume: 143 start-page: 29 year: 1982 ident: 69186_CR33 publication-title: J. Radiol. doi: 10.1148/radiology.143.1.7063747 – ident: 69186_CR31 doi: 10.1145/3159652.3159706 – volume: 8 start-page: 573 issue: 1 year: 2017 ident: 69186_CR5 publication-title: J. Nat. Commun. doi: 10.1038/s41467-017-00680-8 – volume: 22 start-page: 2141 issue: 2 year: 2021 ident: 69186_CR6 publication-title: J. Brief. Bioinform. doi: 10.1093/bib/bbaa044 – volume: 35 start-page: 104 issue: 1 year: 2019 ident: 69186_CR20 publication-title: J. Bioinform. doi: 10.1093/bioinformatics/bty543 – volume: 46 start-page: D1074 issue: D1 year: 2018 ident: 69186_CR36 publication-title: J. Nucleic Acids Res. doi: 10.1093/nar/gkx1037 |
SSID | ssj0000529419 |
Score | 2.4418685 |
Snippet | The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in... The study of drug-target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in... Abstract The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 18104 |
SubjectTerms | 631/114 631/154 Algorithms Disease Drug development Drug Development - methods Drugs Drug–target interaction prediction Embedding Graph representations Heterogeneous network Humanities and Social Sciences Humans Information processing multidisciplinary Neural networks Pharmaceutical Preparations Predictions R&D Random walk Research & development Science Science (multidisciplinary) Similarity integration Therapeutic targets |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ji9VAEC5kQPAi7kZHacGbNpP0lu6j2zAIenJgbk16GwedvOEtPLz5H_yH_hKru_Oe81zw4i2kG1J0VaUqqarvA3jq2z6hj3kaVZeoYF5RF3tJM7ZaBqJMulRM371XR8fi7Yk8uUT1lXvCKjxwPbiDkKRjavBcxEFEJ7V2ogueh9Z3XrOY374Y8y59TFVUb2ZEZ6YpmZbrgwVGqjxNxgRVBiWh651IVAD7_5Rl_t4s-UvFtASiwxtwfcogyYsq-U24EsdbcLVySn65Deev56vT71-_1RZvkuEg5nV4gVzMc1WmXE70PCRhkklPM01EDGRROHHy8jAG4s5quCv_CgmGtDA7J-vh8ydSWafL8-7A8eGbD6-O6MSpQL0wbEmTc71vRcQPFdE5EVjyPCqVGPMxdSko9H-eelRSjF0ceulbGbwcRDBaBeP5XdgbZ2O8D0Qo6ZLDPR5DnIiYWwwicW96FzDLCm0Dzzbnay8qdIYtJW-ubdWGRW3Yog27buBlVsF2Z4a9LjfQGOxkDPZfxtDA_kaBdvLFheWtNmXoHyV6sl1GL8qlkWGMs1Xdkyn9hGngXtX3VhKOGRUXmjegdyxhR9TdlfHsY0Hq7nKxEFPKBp5vjOanXH8_iwf_4ywewjWWrT23t8h92FvOV_ERJlBL97j4yg9Y3h07 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiQuiDeBBRmJG1ibxI7jnBCv1QoJTqzUmxW_ygo2KWmrihv_gX_IL8Fju12V1y2KLWWSmfFM5vUBPDVl64OOGepE5SmvjaDatQ3F2Wo4iNLLmDF9_0GcnPJ3s2aWA27LXFa5PRPjQW1HgzHyI1bKLrZuly8WXymiRmF2NUNoXIYrOLoMS7raWbuLsWAWi1dd7pUpmTxaBnuFPWU1p6IL9NDNnj2KY_v_5mv-WTL5W940mqPjG3A9-5HkZWL8TbjkhltwNSFLfrsN52-m9fzn9x-p0JvgUIgptTCQxYS5mXiZQXqID64mnSNYhLNkGZFxcLkfLNFnyejFiCEJhs2O52TTf_lMEvZ0fN4dOD1--_H1Cc3ICtTwrl5Rr3VrSu7C7wqvNLe1N8wJ4evaOF95K8IpwHwbWOVc5fq2MWVjTdNz20lhO8PuwsEwDu4-EC4a7XXYY4Kh4y54GD33zHSttsHXsmUBz7bfVy3SAA0VE99MqsQNFbihIjfUpoBXyILdThx-HW-M01xlXVLWN7oWvWHc9dzpRkrNK2uYLU1lZO0KONwyUGWNXKoL-SngyW456BImSPrBjeu0B4H9eFfAvcTvHSUs-FWMS1aA3JOEPVL3V4azT3Fed4Upw-BYFvB8KzQXdP37Wzz4_2s8hGs1yjGWrzSHcLCa1u5RcJBW-nHUgl-HhhMq priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VIiQuiH9SCjISN7BIbMdxjrBQVUhwolJvVvy3VLTZKrurFTfeoW_IkzC2k0UL5cAtiifJKDOTmXhmvgF4acsmoI1Z6mUVqGBWUuObmkZstQhEGVTKmH76LI9PxMfT-nQP2NQLk4r2E6Rl-kxP1WFvluhoYjMYE1S2eCO6uQE3I3R71OqZnG33VWLmSlTt2B9TcnXNpTs-KEH1Xxdf_l0m-UeuNLmgo7twZ4wdydvM7T3Y8_19uJWnSX5_ABfvh_X854-rXNxNIhDEkNsWyOUQ8zHpcBzMQwKGl3QeB0R4R5ZpGk5c7npHzFl2dGmXkKAzc4sLsunOv5E8bzo97yGcHH34Mjum4zQFakXLVjQY09hSePxFEZURjgXLvZSBMetDFZxEy-ehQfF4X_muqW1ZO1t3wrVKutbyR7DfL3r_BIiQtQkGaSw6N-ExquhE4LZtjMP4ypUFvJrer77MoBk6Jbu50lkaGqWhkzT0poB3UQRbygh4nU4shrkeFUC7UBsmO8uF74Q3tVJGVM5yV9rKKuYLOJwEqEcrXGpeqja1-yNHL7bLaD8xKdL1frHONHGYn2gLeJzlveWEYyzFheIFqB1N2GF1d6U_-5owuquYJsRgsoDXk9L85uvf7-Lg_8ifwm0W9TqWsNSHsL8a1v4ZBkkr8zxZxS-FNRGs priority: 102 providerName: Springer Nature |
Title | Drug–target interaction prediction through fine-grained selection and bidirectional random walk methodology |
URI | https://link.springer.com/article/10.1038/s41598-024-69186-w https://www.ncbi.nlm.nih.gov/pubmed/39103483 https://www.proquest.com/docview/3089002540 https://www.proquest.com/docview/3089505249 https://pubmed.ncbi.nlm.nih.gov/PMC11300600 https://doaj.org/article/df5b26ac34ea4eb588b41dc3d0c1c82e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7JNqog8QaGxHac5AGhrmyaKm1CQKW-RfFXN22kI21V9t9zttOiQpF4ahVbzcl31_slZ_9-AK9VklvMMUWMSC3hVAkiTZ4Rx63miCht4Tum5xfibMSH42y8Ayu5o24BZ1sf7Zye1Ki9effzx91HTPgP4ch48X6GRcgdFKOciBJvQpa7sI-VKXeJet7B_cD1TUvutT4cCTtBMEG7czTbf2ajVnlK_2049O_tlH_0VH2pOn0IDzqMGfdDUDyCHdM8hntBdfLuCVx_ahcTEraAx44uog2HG-Lb1nVt_NdOvie2CELJxMlIGB3PvGaOG64bHcurUA79u8QYS56efo-X9c11HFSp_d2ewuj05NvgjHSaC0Txks6JlTJXCTf4IMNTyTW1ihkhLKXK2NRqgf8PzOboRGNSU-eZSjKtsprrshC6VOwZ7DXTxryAmItMWolzFJZAbhB71NwyVeZSIwrTSQRvVqtb3QZqjcq3xFlRBV9U6IvK-6JaRnDsHLCe6Wix_YVpO6m6LKu0zSQVtWLc1NzIrCgkT7ViOlGpKqiJ4GjlvmoVahVLitKTAqBFr9bDmGWudVI3ZroIc5zkHy8jeB68vbaEIeJivGARFBtxsGHq5khzdemZvFPXTETIGcHbVcj8tuvfa3HwH3Yewn3qQtntbsmOYG_eLsxLxE9z2YPdfJz3YL_fH34d4ufxycXnL3h1IAY9_06i59PmF9vjHq8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ7Ca2M7rgBClrba0XSHUSr258Wup2maX7K5WvfEf-B_8KH4JfiRbLa9bb1FsJY5nxvPF45kP4KWMc2NtTGKdJQYzIjMsdJ5iV1vNFaI0hY-Y7g-y_iH7eJQercCPLhfGHavs1kS_UKuRdHvk6zQuSp-6Hb8bf8WONcpFVzsKjaAWu_pibn_ZJm93Nq18XxGyvXXwoY9bVgEsWUmm2AiRy5hpC9VZIpgiRlKdZYYQqU1iVGYtgJrcDlPrRFd5KuNUybRiqiwyVUpqn3sNVhm1vzI9WN3YGnz6vNjVcXEzlpRtdk5Mi_WJ9ZAui40wnJV2BvB8yQN6ooC_ods_D2n-Fqn1DnD7NtxqkSt6H1TtDqzo-i5cD1yWF_fgfLOZDX9--x6OliNXhqIJSRNo3LhokL9saYGQseAWDx09hVZo4rl4XHNVKyROgpv1e5TIulI1Okfz6uwUBbZr_777cHgls_4AevWo1o8AsSwVRtg-0rpWpi2mqZihssyFsuhOxRG87uaXj0PJDu5D7bTgQRrcSoN7afB5BBtOBIuerty2vzFqhry1Xq5MKkhWScp0xbRIi0KwREmqYpnIgugI1joB8nYNmPBLjY3gxaLZWq8LyVS1Hs1CH0clyMoIHgZ5L0ZCLZKjrKARFEuasDTU5Zb65IuvEJ64IKWFshG86ZTmclz_novH__-M53Cjf7C_x_d2BrtP4CZxOu0Oz6Rr0Js2M_3UwrOpeNbaBILjqzbDXyNcUyU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFL0aBoHYIN4EBjASrMBqYjuJs0AIKNUMAyMWjNSdiV9lBJOUPlTNjn_gb_gcvgQ_ko7Kaze7KrZS1_de31PfxwF4pNLSOhtT2BSZxYyoAktT5tj3VvONKC0PEdN3B8XuIXszzsdb8KOvhfFplf2ZGA5q3Sp_Rz6gKa9C6XY6sF1axPvh6Pn0K_YMUj7S2tNpRBXZNycr9_dt_mxv6GT9mJDR6w-vdnHHMIAVq8gCWylLlTLjYDvLJNPEKmqKwhKijM2sLpw1UFu6JRuTmbrMVZprlddMV7zQlaLuvefgfEnzzNtYOS7X9zs-gsayqqvTSSkfzJ2v9PVshOGicnuBVxu-MFAG_A3n_pmu-VvMNrjC0RW43GFY9CIq3VXYMs01uBBZLU-uw_Fwtpz8_PY9Jpkj35BiFssn0HTm40LhY0cQhKyDuXjiiSqMRvPAyuOH60YjeRQdbritRM6p6vYYreovn1HkvQ7fdwMOz2TPb8J20zbmNiBW5NJKN0c5J8uMQzc1s1RVpdQO5-k0gSf9_oppbN4hQtCdchGlIZw0RJCGWCXw0otgPdM33g4P2tlEdHYstM0lKWpFmamZkTnnkmVaUZ2qTHFiEtjpBSi602AuTnU3gYfrYWfHPjhTN6ZdxjmeVJBVCdyK8l6vhDpMRxmnCfANTdhY6uZIc_Qp9ArPfLjSgdoEnvZKc7quf-_Fnf__jAdw0RmfeLt3sH8XLhGv0j6LJt-B7cVsae45nLaQ94NBIPh41hb4C9wNVfU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug-target+interaction+prediction+through+fine-grained+selection+and+bidirectional+random+walk+methodology&rft.jtitle=Scientific+reports&rft.au=Wang%2C+YaPing&rft.au=Yin%2C+ZhiXiang&rft.date=2024-08-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=18104&rft_id=info:doi/10.1038%2Fs41598-024-69186-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |