Drug–target interaction prediction through fine-grained selection and bidirectional random walk methodology

The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer informati...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 18104 - 14
Main Authors Wang, YaPing, Yin, ZhiXiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug–target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization.
AbstractList The study of drug-target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug-target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization.The study of drug-target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug-target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization.
Abstract The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug–target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization.
The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in the last several years, yielding numerous significant research findings and methodologies. Heterogeneous data sources provide richer information and comprehensive perspectives for drug–target interaction prediction, so many existing methods rely on heterogeneous networks, and graph embedding technology becomes an important technology to extract information from heterogeneous networks. These approaches, however, are less concerned with potential noisy information in heterogeneous networks and more focused on the extent of information extraction in those networks. Based on this, a potential DTI predictive network model called FBRWPC is proposed in this paper. It uses a fine-grained similarity selection program to first integrate similarity on similar networks and then a bidirectional random walk graph embedding learning method with restart to obtain an updated drug target interaction matrix. Through the use of similarity selection and fine-grained selection similarity integration, the framework can effectively filter out the noise present in heterogeneous networks and enhance the model's prediction performance. The experimental findings demonstrate that, even after being split up into four distinct types of data sets, FBRWPC can still retain great prediction performance, a sign of the model's resilience and good generalization.
ArticleNumber 18104
Author Wang, YaPing
Yin, ZhiXiang
Author_xml – sequence: 1
  givenname: YaPing
  surname: Wang
  fullname: Wang, YaPing
  organization: School of Mathematics, Physics and Statistics, Institute for Frontier Medical Technology, Center of Intelligent Computing and Applied Statistics, Shanghai University of Engineering Science
– sequence: 2
  givenname: ZhiXiang
  surname: Yin
  fullname: Yin, ZhiXiang
  email: zxyin66@163.com
  organization: School of Mathematics, Physics and Statistics, Institute for Frontier Medical Technology, Center of Intelligent Computing and Applied Statistics, Shanghai University of Engineering Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39103483$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1UREvpC7BAkdiwCfiaY68QKrdKldjA2nLscY4PSVxsh6PueAfekCfBbUppWeDNjGf--TzyzGN0MMcZEHpK8EuCmXyVORFKtpjytlNEdu3-ATqimIuWMkoP7viH6CTnHa5HUMWJeoQOmaoMLtkRmt6mZfj142cxaYDShLlAMraEODcXCVxY3bJNcRm2jQ8ztEMy1bgmwwhr2syu6YMLab2bsUk1FKdmb8avzQRlG10c43D5BD30ZsxwcmOP0Zf37z6ffmzPP304O31z3lquaGl9328s5iC45KTnjnrLoOs8pRY88a5jWDC_wcoDEDAbYbFwVhjulOycsuwYna1cF81OX6QwmXSpown6OhDToE0qwY6gnRc97YxlHAyHXkjZc-Isc9gSKylU1uuVdbH0EzgLc0lmvAe9n5nDVg_xuyaEYdxhXAkvbggpflsgFz2FbGEczQxxyZphqUQdDldV-vwf6S4uqf7oqsKYCn4FfHa3pdte_oy1CugqsCnmnMDfSgjWV-uj1_XRdX309frofS1ia1Gu4nmA9Pft_1T9BgcEzGo
Cites_doi 10.1038/s41467-017-00680-8
10.1093/bib/bbae067
10.1371/journal.pcbi.1004760
10.1093/bioinformatics/btn162
10.1093/bioinformatics/bty535
10.1093/bioinformatics/btz600
10.1093/nar/gkx1037
10.1093/nar/gky963
10.1109/TCBB.2016.2530062
10.3389/fmicb.2022.1092467
10.1093/bioinformatics/btad451
10.1093/bib/bbac384
10.1093/bioinformatics/bty543
10.1093/bib/bbv066
10.1093/bioinformatics/btx731
10.1093/bioinformatics/btac629
10.1148/radiology.143.1.7063747
10.1186/s13321-021-00552-w
10.1093/bib/bbaa044
10.1021/jm050090o
10.1038/s42256-022-00605-1
10.3390/molecules28135013
10.1093/bioinformatics/btw228
10.1016/j.knosys.2020.106254
10.1093/bib/bbab275
10.1093/bib/bbad161
10.1093/bib/bbab046
10.1109/ACCESS.2017.2766758
10.1145/1143844.1143874
10.1145/2487575.2487670
10.1109/JBHI.2024.3383591
10.1145/3159652.3159706
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-69186-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_df5b26ac34ea4eb588b41dc3d0c1c82e
PMC11300600
39103483
10_1038_s41598_024_69186_w
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072296; 62072296
– fundername: National Natural Science Foundation of China
  grantid: 62072296
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-fbb7c04e54841b4d2fc3e66f22cef1fd63053f709fee1ea75c05dc5a4d986d9c3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:41 EDT 2025
Thu Aug 21 18:31:59 EDT 2025
Fri Jul 11 10:46:11 EDT 2025
Wed Aug 13 04:11:55 EDT 2025
Mon Jul 21 06:05:16 EDT 2025
Tue Jul 01 01:02:19 EDT 2025
Fri Feb 21 02:37:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Similarity integration
Heterogeneous network
Random walk
Drug–target interaction prediction
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-fbb7c04e54841b4d2fc3e66f22cef1fd63053f709fee1ea75c05dc5a4d986d9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/df5b26ac34ea4eb588b41dc3d0c1c82e
PMID 39103483
PQID 3089002540
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_df5b26ac34ea4eb588b41dc3d0c1c82e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11300600
proquest_miscellaneous_3089505249
proquest_journals_3089002540
pubmed_primary_39103483
crossref_primary_10_1038_s41598_024_69186_w
springer_journals_10_1038_s41598_024_69186_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-05
PublicationDateYYYYMMDD 2024-08-05
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Liu, Wu, Miao, Zhao, Li (CR29) 2016; 12
Zhao, Su, Hu, Huang, You, Hu (CR13) 2023; 39
Yamanishi, Araki, Gutteridge, Honda, Kanehisa (CR25) 2008; 24
Ding, Tang, Guo (CR28) 2020; 204
Hanley, McNeil (CR33) 1982; 143
Zhao, Hu, Valsdottir, Zang, Peng (CR6) 2021; 22
CR15
CR34
Wishart (CR36) 2018; 46
Evers, Hessler, Matter, Klabunde (CR4) 2005; 48
CR31
Chen (CR1) 2016; 17
Tsubaki, Tomii, Sese (CR8) 2019; 35
CR30
Zhao, Su, Hu, Ma, Zhou, Hu (CR14) 2022; 23
Thafar, Olayan, Albaradei (CR11) 2021; 13
Li, Sun, Wei, Liu (CR9) 2022; 38
Li, Luo, Xiao, Liang, Ding, Cao (CR19) 2017; 8
Hu, Yin, Zeng, Peng (CR22) 2023; 28
Nascimento, Prudêncio, Costa (CR27) 2016; 17
Mahmud (CR3) 2021; 22
Ursu (CR35) 2019; 47
Liu, Wang, Sun, Tsoumakas (CR23) 2023; 24
Bai, Miljković, John, Lu (CR7) 2023; 5
Olayan, Ashoor, Bajic (CR21) 2018; 34
Luo (CR5) 2017; 8
Peng, Zhao, Hu (CR2) 2023; 13
Liu, Papadopoulos, Malliaros (CR26) 2022; 23
Yang, Su, Zhao (CR17) 2023; PP
Wang, Hong, Xiao, Jiang, Zeng (CR20) 2019; 35
Hu, Zhang, Hu (CR16) 2024; 25
Dong (CR18) 2023; 24
Mohamed, Nováček, Nounu (CR10) 2020; 36
Ezzat, Zhao, Wu, Li, Kwoh (CR12) 2016; 14
Luo (CR24) 2016; 32
An, Yu (CR32) 2021; 22
Y Peng (69186_CR2) 2023; 13
A Evers (69186_CR4) 2005; 48
RS Olayan (69186_CR21) 2018; 34
X Hu (69186_CR22) 2023; 28
B Liu (69186_CR26) 2022; 23
JA Hanley (69186_CR33) 1982; 143
Y Yang (69186_CR17) 2023; PP
69186_CR31
Y Yamanishi (69186_CR25) 2008; 24
69186_CR34
FP Wang (69186_CR20) 2019; 35
SMH Mahmud (69186_CR3) 2021; 22
DS Wishart (69186_CR36) 2018; 46
BW Zhao (69186_CR14) 2022; 23
69186_CR15
M Tsubaki (69186_CR8) 2019; 35
X Chen (69186_CR1) 2016; 17
ACA Nascimento (69186_CR27) 2016; 17
P Bai (69186_CR7) 2023; 5
SK Mohamed (69186_CR10) 2020; 36
Q An (69186_CR32) 2021; 22
TY Zhao (69186_CR6) 2021; 22
A Ezzat (69186_CR12) 2016; 14
MA Thafar (69186_CR11) 2021; 13
Y Liu (69186_CR29) 2016; 12
B Liu (69186_CR23) 2023; 24
G Li (69186_CR19) 2017; 8
Y Luo (69186_CR5) 2017; 8
L Hu (69186_CR16) 2024; 25
69186_CR30
BW Zhao (69186_CR13) 2023; 39
W Dong (69186_CR18) 2023; 24
H Luo (69186_CR24) 2016; 32
O Ursu (69186_CR35) 2019; 47
Y Ding (69186_CR28) 2020; 204
YF Li (69186_CR9) 2022; 38
References_xml – volume: 8
  start-page: 573
  issue: 1
  year: 2017
  ident: CR5
  article-title: A network integration approach for drug target interaction prediction and computational drug repositioning from heterogeneous information
  publication-title: J. Nat. Commun.
  doi: 10.1038/s41467-017-00680-8
– volume: 25
  start-page: bbae067
  issue: 2
  year: 2024
  ident: CR16
  article-title: Dual-channel hypergraph convolutional network for predicting herb–disease associations
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbae067
– volume: 23
  start-page: 1
  issue: 5
  year: 2022
  end-page: 9
  ident: CR26
  article-title: Multiple similarity drug–target interaction prediction with random walks and matrix factorization
  publication-title: J. Brief. Bioinform.
– volume: 12
  start-page: e1004760
  issue: 2
  year: 2016
  ident: CR29
  article-title: Neighborhood regularized logistic matrix factorization for drug–target interaction prediction
  publication-title: J. PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004760
– volume: 24
  start-page: i232
  issue: 13
  year: 2008
  end-page: i240
  ident: CR25
  article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btn162
– volume: 35
  start-page: 309
  issue: 2
  year: 2019
  end-page: 318
  ident: CR8
  article-title: Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/bty535
– volume: 36
  start-page: 603
  issue: 2
  year: 2020
  end-page: 610
  ident: CR10
  article-title: Discovering protein drug targets using knowledge graph embeddings
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btz600
– volume: 46
  start-page: D1074
  issue: D1
  year: 2018
  end-page: D1082
  ident: CR36
  article-title: DrugBank 50: A major update to the DrugBank database for 2018
  publication-title: J. Nucleic Acids Res.
  doi: 10.1093/nar/gkx1037
– ident: CR30
– volume: 47
  start-page: D963
  issue: D1
  year: 2019
  end-page: D970
  ident: CR35
  article-title: DrugCentral 2018: An update
  publication-title: J. Nucleic Acids Res.
  doi: 10.1093/nar/gky963
– volume: 14
  start-page: 646
  issue: 3
  year: 2016
  end-page: 656
  ident: CR12
  article-title: Drug–target interaction prediction with graph regularized matrix factorization
  publication-title: J. IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2016.2530062
– volume: 13
  start-page: 1092467
  year: 2023
  ident: CR2
  article-title: LGBMDF: A cascade forest framework with LightGBM for predicting drug–target interactions
  publication-title: J. Front. Microbiol.
  doi: 10.3389/fmicb.2022.1092467
– volume: PP
  start-page: 1
  issue: 99
  year: 2023
  end-page: 14
  ident: CR17
  article-title: Fuzzy-based deep attributed graph clustering
  publication-title: J. IEEE Trans. Fuzzy Syst.
– volume: 39
  start-page: btad451
  issue: 8
  year: 2023
  ident: CR13
  article-title: iGRLDTI: an improved graph representation learning method for predicting drug–target interactions over heterogeneous biological information network
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btad451
– volume: 23
  start-page: bbac384
  issue: 6
  year: 2022
  ident: CR14
  article-title: A geometric deep learning framework for drug repositioning over heterogeneous information networks
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbac384
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  end-page: 16
  ident: CR27
  article-title: A multiple kernel learning algorithm for drug–target interaction prediction
  publication-title: J. BMC Bioinform.
– volume: 35
  start-page: 104
  issue: 1
  year: 2019
  end-page: 111
  ident: CR20
  article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/bty543
– volume: 17
  start-page: 696
  issue: 4
  year: 2016
  end-page: 712
  ident: CR1
  article-title: Drug–target interaction prediction: databases, web servers, and computational models
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbv066
– volume: 34
  start-page: 1164
  issue: 7
  year: 2018
  end-page: 1173
  ident: CR21
  article-title: DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btx731
– volume: 38
  start-page: 5073
  issue: 22
  year: 2022
  end-page: 5080
  ident: CR9
  article-title: Drug-Protein interaction prediction by correcting the effect of incomplete information in heterogeneous information
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btac629
– volume: 24
  start-page: 1085
  issue: 2
  year: 2023
  ident: CR23
  article-title: Fine-grained selective similarity integration for drug–target interaction prediction
  publication-title: J. Brief. Bioinform.
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: CR33
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: J. Radiol.
  doi: 10.1148/radiology.143.1.7063747
– volume: 13
  start-page: 1
  year: 2021
  end-page: 18
  ident: CR11
  article-title: DTi2Vec: Drug–target interaction prediction using network embedding and ensemble learning
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-021-00552-w
– ident: CR15
– volume: 22
  start-page: 2141
  issue: 2
  year: 2021
  end-page: 2150
  ident: CR6
  article-title: Identifying drug–target interactions based on graph convolutional network and deep neural network
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbaa044
– volume: 48
  start-page: 5448
  issue: 17
  year: 2005
  end-page: 5465
  ident: CR4
  article-title: Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein-and ligand-based virtual screening protocols
  publication-title: J. Med. Chem.
  doi: 10.1021/jm050090o
– ident: CR31
– volume: 5
  start-page: 126
  issue: 2
  year: 2023
  end-page: 136
  ident: CR7
  article-title: Interpretable bilinear attention network with domain adaptation improves drug–target prediction
  publication-title: J. Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00605-1
– volume: 28
  start-page: 5013
  issue: 13
  year: 2023
  ident: CR22
  article-title: Prediction of miRNA–disease associations by cascade forest model based on stacked autoencoder
  publication-title: J. Mol.
  doi: 10.3390/molecules28135013
– ident: CR34
– volume: 32
  start-page: 2664
  year: 2016
  end-page: 2671
  ident: CR24
  article-title: Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btw228
– volume: 204
  year: 2020
  ident: CR28
  article-title: Identification of drug–target interactions via dual laplacian regularized least squares with multiple kernel fusion
  publication-title: J. Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106254
– volume: 22
  start-page: bbab275
  issue: 6
  year: 2021
  ident: CR32
  article-title: A heterogeneous network embedding framework for predicting similarity-based drug–target interactions
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbab275
– volume: 24
  start-page: bbad161
  issue: 3
  year: 2023
  ident: CR18
  article-title: Multi-modality attribute learning-based method for drug–protein interaction prediction based on deep neural network
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbad161
– volume: 22
  start-page: bbab046
  issue: 5
  year: 2021
  ident: CR3
  article-title: PreDTIs: Prediction of drug–target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbab046
– volume: 8
  start-page: 24032
  issue: 5
  year: 2017
  end-page: 24039
  ident: CR19
  article-title: Predicting MicroRNA-disease associations using network topological similarity based on DeepWalk
  publication-title: J. IEEE Access.
  doi: 10.1109/ACCESS.2017.2766758
– volume: 24
  start-page: i232
  issue: 13
  year: 2008
  ident: 69186_CR25
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btn162
– volume: 8
  start-page: 24032
  issue: 5
  year: 2017
  ident: 69186_CR19
  publication-title: J. IEEE Access.
  doi: 10.1109/ACCESS.2017.2766758
– volume: PP
  start-page: 1
  issue: 99
  year: 2023
  ident: 69186_CR17
  publication-title: J. IEEE Trans. Fuzzy Syst.
– volume: 34
  start-page: 1164
  issue: 7
  year: 2018
  ident: 69186_CR21
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btx731
– volume: 48
  start-page: 5448
  issue: 17
  year: 2005
  ident: 69186_CR4
  publication-title: J. Med. Chem.
  doi: 10.1021/jm050090o
– ident: 69186_CR34
  doi: 10.1145/1143844.1143874
– volume: 14
  start-page: 646
  issue: 3
  year: 2016
  ident: 69186_CR12
  publication-title: J. IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2016.2530062
– volume: 204
  year: 2020
  ident: 69186_CR28
  publication-title: J. Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106254
– volume: 39
  start-page: btad451
  issue: 8
  year: 2023
  ident: 69186_CR13
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btad451
– volume: 24
  start-page: bbad161
  issue: 3
  year: 2023
  ident: 69186_CR18
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbad161
– ident: 69186_CR30
  doi: 10.1145/2487575.2487670
– volume: 12
  start-page: e1004760
  issue: 2
  year: 2016
  ident: 69186_CR29
  publication-title: J. PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004760
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: 69186_CR27
  publication-title: J. BMC Bioinform.
– volume: 47
  start-page: D963
  issue: D1
  year: 2019
  ident: 69186_CR35
  publication-title: J. Nucleic Acids Res.
  doi: 10.1093/nar/gky963
– volume: 36
  start-page: 603
  issue: 2
  year: 2020
  ident: 69186_CR10
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btz600
– volume: 22
  start-page: bbab275
  issue: 6
  year: 2021
  ident: 69186_CR32
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbab275
– volume: 13
  start-page: 1
  year: 2021
  ident: 69186_CR11
  publication-title: J. Cheminform.
  doi: 10.1186/s13321-021-00552-w
– volume: 35
  start-page: 309
  issue: 2
  year: 2019
  ident: 69186_CR8
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/bty535
– volume: 38
  start-page: 5073
  issue: 22
  year: 2022
  ident: 69186_CR9
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btac629
– ident: 69186_CR15
  doi: 10.1109/JBHI.2024.3383591
– volume: 24
  start-page: 1085
  issue: 2
  year: 2023
  ident: 69186_CR23
  publication-title: J. Brief. Bioinform.
– volume: 23
  start-page: 1
  issue: 5
  year: 2022
  ident: 69186_CR26
  publication-title: J. Brief. Bioinform.
– volume: 5
  start-page: 126
  issue: 2
  year: 2023
  ident: 69186_CR7
  publication-title: J. Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00605-1
– volume: 28
  start-page: 5013
  issue: 13
  year: 2023
  ident: 69186_CR22
  publication-title: J. Mol.
  doi: 10.3390/molecules28135013
– volume: 17
  start-page: 696
  issue: 4
  year: 2016
  ident: 69186_CR1
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbv066
– volume: 13
  start-page: 1092467
  year: 2023
  ident: 69186_CR2
  publication-title: J. Front. Microbiol.
  doi: 10.3389/fmicb.2022.1092467
– volume: 23
  start-page: bbac384
  issue: 6
  year: 2022
  ident: 69186_CR14
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbac384
– volume: 22
  start-page: bbab046
  issue: 5
  year: 2021
  ident: 69186_CR3
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbab046
– volume: 32
  start-page: 2664
  year: 2016
  ident: 69186_CR24
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/btw228
– volume: 25
  start-page: bbae067
  issue: 2
  year: 2024
  ident: 69186_CR16
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbae067
– volume: 143
  start-page: 29
  year: 1982
  ident: 69186_CR33
  publication-title: J. Radiol.
  doi: 10.1148/radiology.143.1.7063747
– ident: 69186_CR31
  doi: 10.1145/3159652.3159706
– volume: 8
  start-page: 573
  issue: 1
  year: 2017
  ident: 69186_CR5
  publication-title: J. Nat. Commun.
  doi: 10.1038/s41467-017-00680-8
– volume: 22
  start-page: 2141
  issue: 2
  year: 2021
  ident: 69186_CR6
  publication-title: J. Brief. Bioinform.
  doi: 10.1093/bib/bbaa044
– volume: 35
  start-page: 104
  issue: 1
  year: 2019
  ident: 69186_CR20
  publication-title: J. Bioinform.
  doi: 10.1093/bioinformatics/bty543
– volume: 46
  start-page: D1074
  issue: D1
  year: 2018
  ident: 69186_CR36
  publication-title: J. Nucleic Acids Res.
  doi: 10.1093/nar/gkx1037
SSID ssj0000529419
Score 2.4418685
Snippet The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in...
The study of drug-target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced significantly in...
Abstract The study of drug–target interaction plays an important role in the process of drug development. The subject of DTI forecasting has advanced...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 18104
SubjectTerms 631/114
631/154
Algorithms
Disease
Drug development
Drug Development - methods
Drugs
Drug–target interaction prediction
Embedding
Graph representations
Heterogeneous network
Humanities and Social Sciences
Humans
Information processing
multidisciplinary
Neural networks
Pharmaceutical Preparations
Predictions
R&D
Random walk
Research & development
Science
Science (multidisciplinary)
Similarity integration
Therapeutic targets
SummonAdditionalLinks – databaseName: DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ji9VAEC5kQPAi7kZHacGbNpP0lu6j2zAIenJgbk16GwedvOEtPLz5H_yH_hKru_Oe81zw4i2kG1J0VaUqqarvA3jq2z6hj3kaVZeoYF5RF3tJM7ZaBqJMulRM371XR8fi7Yk8uUT1lXvCKjxwPbiDkKRjavBcxEFEJ7V2ogueh9Z3XrOY374Y8y59TFVUb2ZEZ6YpmZbrgwVGqjxNxgRVBiWh651IVAD7_5Rl_t4s-UvFtASiwxtwfcogyYsq-U24EsdbcLVySn65Deev56vT71-_1RZvkuEg5nV4gVzMc1WmXE70PCRhkklPM01EDGRROHHy8jAG4s5quCv_CgmGtDA7J-vh8ydSWafL8-7A8eGbD6-O6MSpQL0wbEmTc71vRcQPFdE5EVjyPCqVGPMxdSko9H-eelRSjF0ceulbGbwcRDBaBeP5XdgbZ2O8D0Qo6ZLDPR5DnIiYWwwicW96FzDLCm0Dzzbnay8qdIYtJW-ubdWGRW3Yog27buBlVsF2Z4a9LjfQGOxkDPZfxtDA_kaBdvLFheWtNmXoHyV6sl1GL8qlkWGMs1Xdkyn9hGngXtX3VhKOGRUXmjegdyxhR9TdlfHsY0Hq7nKxEFPKBp5vjOanXH8_iwf_4ywewjWWrT23t8h92FvOV_ERJlBL97j4yg9Y3h07
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7BIiQuiDeBBRmJG1ibxI7jnBCv1QoJTqzUmxW_ygo2KWmrihv_gX_IL8Fju12V1y2KLWWSmfFM5vUBPDVl64OOGepE5SmvjaDatQ3F2Wo4iNLLmDF9_0GcnPJ3s2aWA27LXFa5PRPjQW1HgzHyI1bKLrZuly8WXymiRmF2NUNoXIYrOLoMS7raWbuLsWAWi1dd7pUpmTxaBnuFPWU1p6IL9NDNnj2KY_v_5mv-WTL5W940mqPjG3A9-5HkZWL8TbjkhltwNSFLfrsN52-m9fzn9x-p0JvgUIgptTCQxYS5mXiZQXqID64mnSNYhLNkGZFxcLkfLNFnyejFiCEJhs2O52TTf_lMEvZ0fN4dOD1--_H1Cc3ICtTwrl5Rr3VrSu7C7wqvNLe1N8wJ4evaOF95K8IpwHwbWOVc5fq2MWVjTdNz20lhO8PuwsEwDu4-EC4a7XXYY4Kh4y54GD33zHSttsHXsmUBz7bfVy3SAA0VE99MqsQNFbihIjfUpoBXyILdThx-HW-M01xlXVLWN7oWvWHc9dzpRkrNK2uYLU1lZO0KONwyUGWNXKoL-SngyW456BImSPrBjeu0B4H9eFfAvcTvHSUs-FWMS1aA3JOEPVL3V4azT3Fed4Upw-BYFvB8KzQXdP37Wzz4_2s8hGs1yjGWrzSHcLCa1u5RcJBW-nHUgl-HhhMq
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VIiQuiH9SCjISN7BIbMdxjrBQVUhwolJvVvy3VLTZKrurFTfeoW_IkzC2k0UL5cAtiifJKDOTmXhmvgF4acsmoI1Z6mUVqGBWUuObmkZstQhEGVTKmH76LI9PxMfT-nQP2NQLk4r2E6Rl-kxP1WFvluhoYjMYE1S2eCO6uQE3I3R71OqZnG33VWLmSlTt2B9TcnXNpTs-KEH1Xxdf_l0m-UeuNLmgo7twZ4wdydvM7T3Y8_19uJWnSX5_ABfvh_X854-rXNxNIhDEkNsWyOUQ8zHpcBzMQwKGl3QeB0R4R5ZpGk5c7npHzFl2dGmXkKAzc4sLsunOv5E8bzo97yGcHH34Mjum4zQFakXLVjQY09hSePxFEZURjgXLvZSBMetDFZxEy-ehQfF4X_muqW1ZO1t3wrVKutbyR7DfL3r_BIiQtQkGaSw6N-ExquhE4LZtjMP4ypUFvJrer77MoBk6Jbu50lkaGqWhkzT0poB3UQRbygh4nU4shrkeFUC7UBsmO8uF74Q3tVJGVM5yV9rKKuYLOJwEqEcrXGpeqja1-yNHL7bLaD8xKdL1frHONHGYn2gLeJzlveWEYyzFheIFqB1N2GF1d6U_-5owuquYJsRgsoDXk9L85uvf7-Lg_8ifwm0W9TqWsNSHsL8a1v4ZBkkr8zxZxS-FNRGs
  priority: 102
  providerName: Springer Nature
Title Drug–target interaction prediction through fine-grained selection and bidirectional random walk methodology
URI https://link.springer.com/article/10.1038/s41598-024-69186-w
https://www.ncbi.nlm.nih.gov/pubmed/39103483
https://www.proquest.com/docview/3089002540
https://www.proquest.com/docview/3089505249
https://pubmed.ncbi.nlm.nih.gov/PMC11300600
https://doaj.org/article/df5b26ac34ea4eb588b41dc3d0c1c82e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7JNqog8QaGxHac5AGhrmyaKm1CQKW-RfFXN22kI21V9t9zttOiQpF4ahVbzcl31_slZ_9-AK9VklvMMUWMSC3hVAkiTZ4Rx63miCht4Tum5xfibMSH42y8Ayu5o24BZ1sf7Zye1Ki9effzx91HTPgP4ch48X6GRcgdFKOciBJvQpa7sI-VKXeJet7B_cD1TUvutT4cCTtBMEG7czTbf2ajVnlK_2049O_tlH_0VH2pOn0IDzqMGfdDUDyCHdM8hntBdfLuCVx_ahcTEraAx44uog2HG-Lb1nVt_NdOvie2CELJxMlIGB3PvGaOG64bHcurUA79u8QYS56efo-X9c11HFSp_d2ewuj05NvgjHSaC0Txks6JlTJXCTf4IMNTyTW1ihkhLKXK2NRqgf8PzOboRGNSU-eZSjKtsprrshC6VOwZ7DXTxryAmItMWolzFJZAbhB71NwyVeZSIwrTSQRvVqtb3QZqjcq3xFlRBV9U6IvK-6JaRnDsHLCe6Wix_YVpO6m6LKu0zSQVtWLc1NzIrCgkT7ViOlGpKqiJ4GjlvmoVahVLitKTAqBFr9bDmGWudVI3ZroIc5zkHy8jeB68vbaEIeJivGARFBtxsGHq5khzdemZvFPXTETIGcHbVcj8tuvfa3HwH3Yewn3qQtntbsmOYG_eLsxLxE9z2YPdfJz3YL_fH34d4ufxycXnL3h1IAY9_06i59PmF9vjHq8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ7Ca2M7rgBClrba0XSHUSr258Wup2maX7K5WvfEf-B_8KH4JfiRbLa9bb1FsJY5nxvPF45kP4KWMc2NtTGKdJQYzIjMsdJ5iV1vNFaI0hY-Y7g-y_iH7eJQercCPLhfGHavs1kS_UKuRdHvk6zQuSp-6Hb8bf8WONcpFVzsKjaAWu_pibn_ZJm93Nq18XxGyvXXwoY9bVgEsWUmm2AiRy5hpC9VZIpgiRlKdZYYQqU1iVGYtgJrcDlPrRFd5KuNUybRiqiwyVUpqn3sNVhm1vzI9WN3YGnz6vNjVcXEzlpRtdk5Mi_WJ9ZAui40wnJV2BvB8yQN6ooC_ods_D2n-Fqn1DnD7NtxqkSt6H1TtDqzo-i5cD1yWF_fgfLOZDX9--x6OliNXhqIJSRNo3LhokL9saYGQseAWDx09hVZo4rl4XHNVKyROgpv1e5TIulI1Okfz6uwUBbZr_777cHgls_4AevWo1o8AsSwVRtg-0rpWpi2mqZihssyFsuhOxRG87uaXj0PJDu5D7bTgQRrcSoN7afB5BBtOBIuerty2vzFqhry1Xq5MKkhWScp0xbRIi0KwREmqYpnIgugI1joB8nYNmPBLjY3gxaLZWq8LyVS1Hs1CH0clyMoIHgZ5L0ZCLZKjrKARFEuasDTU5Zb65IuvEJ64IKWFshG86ZTmclz_novH__-M53Cjf7C_x_d2BrtP4CZxOu0Oz6Rr0Js2M_3UwrOpeNbaBILjqzbDXyNcUyU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFL0aBoHYIN4EBjASrMBqYjuJs0AIKNUMAyMWjNSdiV9lBJOUPlTNjn_gb_gcvgQ_ko7Kaze7KrZS1_de31PfxwF4pNLSOhtT2BSZxYyoAktT5tj3VvONKC0PEdN3B8XuIXszzsdb8KOvhfFplf2ZGA5q3Sp_Rz6gKa9C6XY6sF1axPvh6Pn0K_YMUj7S2tNpRBXZNycr9_dt_mxv6GT9mJDR6w-vdnHHMIAVq8gCWylLlTLjYDvLJNPEKmqKwhKijM2sLpw1UFu6JRuTmbrMVZprlddMV7zQlaLuvefgfEnzzNtYOS7X9zs-gsayqqvTSSkfzJ2v9PVshOGicnuBVxu-MFAG_A3n_pmu-VvMNrjC0RW43GFY9CIq3VXYMs01uBBZLU-uw_Fwtpz8_PY9Jpkj35BiFssn0HTm40LhY0cQhKyDuXjiiSqMRvPAyuOH60YjeRQdbritRM6p6vYYreovn1HkvQ7fdwMOz2TPb8J20zbmNiBW5NJKN0c5J8uMQzc1s1RVpdQO5-k0gSf9_oppbN4hQtCdchGlIZw0RJCGWCXw0otgPdM33g4P2tlEdHYstM0lKWpFmamZkTnnkmVaUZ2qTHFiEtjpBSi602AuTnU3gYfrYWfHPjhTN6ZdxjmeVJBVCdyK8l6vhDpMRxmnCfANTdhY6uZIc_Qp9ArPfLjSgdoEnvZKc7quf-_Fnf__jAdw0RmfeLt3sH8XLhGv0j6LJt-B7cVsae45nLaQ94NBIPh41hb4C9wNVfU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug-target+interaction+prediction+through+fine-grained+selection+and+bidirectional+random+walk+methodology&rft.jtitle=Scientific+reports&rft.au=Wang%2C+YaPing&rft.au=Yin%2C+ZhiXiang&rft.date=2024-08-05&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=18104&rft_id=info:doi/10.1038%2Fs41598-024-69186-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon