Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries
Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, a...
Saved in:
Published in | Nature communications Vol. 16; no. 1; pp. 2316 - 11 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.03.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO
4
2
−
and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.
The use of aqueous Zn-ion batteries is hindered by parasitic reactions, dendrite formation, and low Coulombic efficiency of Zn metal electrode. Here, authors regulate the electrolyte ions diffusion via ion-separation accelerating channel through self-assembly of poly(allylamine hydrochloride) and poly(acrylic acid). |
---|---|
AbstractList | Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO
4
2
−
and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.
The use of aqueous Zn-ion batteries is hindered by parasitic reactions, dendrite formation, and low Coulombic efficiency of Zn metal electrode. Here, authors regulate the electrolyte ions diffusion via ion-separation accelerating channel through self-assembly of poly(allylamine hydrochloride) and poly(acrylic acid). Abstract Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO4 2 − and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries. Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries. Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO42- and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO42- and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries. Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO 4 2 − and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries. Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO42− and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.The use of aqueous Zn-ion batteries is hindered by parasitic reactions, dendrite formation, and low Coulombic efficiency of Zn metal electrode. Here, authors regulate the electrolyte ions diffusion via ion-separation accelerating channel through self-assembly of poly(allylamine hydrochloride) and poly(acrylic acid). |
ArticleNumber | 2316 |
Author | Gao, Xuan Dong, Haobo Wang, Tianlei Parkin, Ivan P. Gao, Nan He, Hongzhen Liu, Yiyang Brett, Dan J. L. He, Guanjie Hu, Xueying Dai, Yuhang |
Author_xml | – sequence: 1 givenname: Xueying surname: Hu fullname: Hu, Xueying organization: Christopher Ingold Laboratory, Department of Chemistry, University College London – sequence: 2 givenname: Haobo orcidid: 0000-0001-6278-8997 surname: Dong fullname: Dong, Haobo email: dhbhubble@scut.edu.cn organization: Christopher Ingold Laboratory, Department of Chemistry, University College London, School of Future Technology, South China University of Technology – sequence: 3 givenname: Nan surname: Gao fullname: Gao, Nan organization: State Key Lab of Superhard Materials, College of Physics, Jilin University – sequence: 4 givenname: Tianlei surname: Wang fullname: Wang, Tianlei organization: Christopher Ingold Laboratory, Department of Chemistry, University College London – sequence: 5 givenname: Hongzhen surname: He fullname: He, Hongzhen organization: Christopher Ingold Laboratory, Department of Chemistry, University College London – sequence: 6 givenname: Xuan surname: Gao fullname: Gao, Xuan organization: Christopher Ingold Laboratory, Department of Chemistry, University College London – sequence: 7 givenname: Yuhang orcidid: 0000-0001-8445-6758 surname: Dai fullname: Dai, Yuhang organization: Christopher Ingold Laboratory, Department of Chemistry, University College London – sequence: 8 givenname: Yiyang surname: Liu fullname: Liu, Yiyang organization: Hanwei Co., Ltd., Building A6, Guoke Artificial Intelligence Innovation Center – sequence: 9 givenname: Dan J. L. surname: Brett fullname: Brett, Dan J. L. organization: Hanwei Co., Ltd., Building A6, Guoke Artificial Intelligence Innovation Center – sequence: 10 givenname: Ivan P. orcidid: 0000-0002-4072-6610 surname: Parkin fullname: Parkin, Ivan P. organization: Christopher Ingold Laboratory, Department of Chemistry, University College London – sequence: 11 givenname: Guanjie orcidid: 0000-0002-7365-9645 surname: He fullname: He, Guanjie email: g.he@ucl.ac.uk organization: Christopher Ingold Laboratory, Department of Chemistry, University College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40057473$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vEzEQhleoiJbSP8ABrcSFy4I_Zv1xQqiiUKkSB-DCxfLujpONHDvYDij_vk5SSssBXzxjP_N6NH6fNychBmyal5S8pYSrdxkoCNkR1ne9FEJ05ElzxgjQjkrGTx7Ep81FzitSF9dUATxrToGQXoLkZ43_it51NmdcDx6ndhP9Dj2OJdWgYG5_z2XZzjF0GTc22VLD1o5jZfZJWLTj0oaAPrcupnY5L5Z-1-Ziq1r7I3R7fLClYJoxv2ieOuszXtzt5833q4_fLj93N18-XV9-uOlG0Kx0TgtUwAkTk5uocJLpXlg5DhpQM80k77UGSq3gnDMlp0G7gQ4KudPaMcvPm-uj7hTtymzSvLZpZ6KdzeEgpoWxqcyjRwMCHJODEsgUKCcHzfuBcaG0G3tQqmq9P2pttsMapxFDSdY_En18E-alWcRfhlKliQSoCm_uFFL8ucVczHrOdYDeBozbbDiVvVCEA6vo63_QVdymUGd1oBgAaFGpVw9buu_lz69WgB2BMcWcE7p7hBKzd485usdU95iDewypRfxYlCscFpj-vv2fqlvansc3 |
Cites_doi | 10.1088/0957-4484/16/9/068 10.1016/j.ensm.2020.01.032 10.1002/adma.202003021 10.1002/pssb.201000435 10.1002/aenm.201903977 10.1039/C9EE00596J 10.1002/ange.202215552 10.1038/s42004-019-0111-x 10.1126/science.aaa2491 10.1016/j.polymer.2011.01.033 10.1002/ange.202302583 10.1002/adma.202307727 10.1002/adfm.202103227 10.1073/pnas.1101144108 10.1021/acs.chemrev.6b00627 10.1002/ange.202218452 10.1155/2015/320631 10.1002/aenm.202200665 10.1016/j.esci.2023.100120 10.1039/D0TA08638J 10.1039/D2EE02931F 10.1002/adfm.201908528 10.1002/adma.200502444 10.1016/j.ensm.2022.04.010 10.1016/j.cis.2014.02.014 10.1002/smll.202101728 10.1021/acs.chemrev.3c00791 10.1002/ange.202311268 10.1016/j.addr.2011.05.011 10.1016/j.esci.2023.100093 10.1002/adfm.202302293 10.1002/aenm.202302707 10.5012/bkcs.2008.29.1.104 10.1039/D1EE00308A 10.1038/s41467-023-39877-5 10.1021/ma034516p 10.1002/anie.201907830 10.1002/adfm.201401050 10.1002/aenm.201801090 10.1002/aenm.202102780 10.1016/j.nanoen.2020.104880 10.1002/adma.202007388 10.1002/adfm.202108533 10.1021/acsnano.5b01832 10.1021/acsaem.9b01932 10.3390/ma14112889 10.1002/adfm.202209642 10.1002/adfm.202311773 10.1039/C3PY01262J 10.1039/C9EE03545A 10.1016/j.ijbiomac.2020.02.216 10.1002/anie.202005472 10.1002/adfm.202001263 10.1021/cm071260j 10.1007/s10934-020-00870-8 10.3390/polym13213728 10.1021/la404337d 10.1039/D2TA04875B |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-025-57666-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_464f27b86e2848f7b935b23689fc5488 PMC11890744 40057473 10_1038_s41467_025_57666_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: EP/Y008707/1 funderid: https://doi.org/10.13039/100010661 – fundername: RCUK | Science and Technology Facilities Council (STFC) grantid: ST/R006873/1 funderid: https://doi.org/10.13039/501100000271 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/V027433/3 funderid: https://doi.org/10.13039/501100000266 – fundername: RCUK | Science and Technology Facilities Council (STFC) grantid: ST/R006873/1 – fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC) grantid: EP/V027433/3 – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: EP/Y008707/1 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZT PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SV3 TSG UKHRP AASML AAYXX CITATION PHGZM SNYQT NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M48 P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 AARCD 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-f96e843026dfd16f72956a7cb94e929273599411a6333287db9fb1b8e3f99f2a3 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:09:35 EDT 2025 Thu Aug 21 18:34:53 EDT 2025 Tue Aug 05 08:42:41 EDT 2025 Sat Aug 23 14:55:27 EDT 2025 Thu Apr 03 06:54:25 EDT 2025 Tue Jul 01 05:24:23 EDT 2025 Sun Mar 09 01:29:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-f96e843026dfd16f72956a7cb94e929273599411a6333287db9fb1b8e3f99f2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8445-6758 0000-0002-7365-9645 0000-0001-6278-8997 0000-0002-4072-6610 |
OpenAccessLink | https://doaj.org/article/464f27b86e2848f7b935b23689fc5488 |
PMID | 40057473 |
PQID | 3175244496 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_464f27b86e2848f7b935b23689fc5488 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11890744 proquest_miscellaneous_3175680342 proquest_journals_3175244496 pubmed_primary_40057473 crossref_primary_10_1038_s41467_025_57666_0 springer_journals_10_1038_s41467_025_57666_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-08 |
PublicationDateYYYYMMDD | 2025-03-08 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | R Yao (57666_CR42) 2022; 12 Z Shen (57666_CR2) 2023; 135 P Liang (57666_CR3) 2020; 30 AI Petrov (57666_CR34) 2003; 36 HM Tóháti (57666_CR51) 2010; 247 X Xie (57666_CR47) 2020; 13 S Wu (57666_CR6) 2023; 3 C Han (57666_CR18) 2020; 74 K Wu (57666_CR17) 2020; 10 Y Wang (57666_CR40) 2023; 13 M Bandeira (57666_CR36) 2021; 14 N Hu (57666_CR58) 2024; 34 BP Thapaliya (57666_CR31) 2019; 3 JJ Richardson (57666_CR24) 2015; 348 J Yang (57666_CR39) 2022; 32 T Kavitha (57666_CR35) 2014; 30 L Kang (57666_CR10) 2018; 8 HI Meléndez-Ortiz (57666_CR37) 2020; 27 H Zhang (57666_CR7) 2022; 12 H Dong (57666_CR1) 2023; 135 Y Ma (57666_CR32) 2007; 19 Y Chu (57666_CR44) 2021; 14 SR Lewis (57666_CR20) 2011; 108 Y Zhang (57666_CR19) 2015; 9 N Joseph (57666_CR21) 2014; 5 J Hao (57666_CR46) 2020; 32 Y Cui (57666_CR4) 2020; 59 H Qin (57666_CR55) 2022; 10 J Borges (57666_CR26) 2014; 24 MM De Villiers (57666_CR27) 2011; 63 C Jiang (57666_CR23) 2006; 18 T Iwano (57666_CR52) 2019; 2 JJ Richardson (57666_CR22) 2016; 116 P Lin (57666_CR38) 2022; 49 L Wang (57666_CR9) 2022; 32 C Deng (57666_CR43) 2021; 31 TC Li (57666_CR5) 2021; 17 X Ni (57666_CR16) 2023; 33 J Park (57666_CR50) 2008; 29 Y Yang (57666_CR11) 2021; 33 S Fujita (57666_CR29) 2005; 16 N Peng (57666_CR33) 2011; 52 Y Jiao (57666_CR54) 2020; 8 Z Hu (57666_CR41) 2023; 15 S Roy (57666_CR49) 2020; 153 U Baig (57666_CR30) 2021; 13 57666_CR53 Z Zhao (57666_CR13) 2019; 12 F Wang (57666_CR57) 2023; 14 Z Cai (57666_CR12) 2023; 3 J Hao (57666_CR48) 2020; 30 Y Wang (57666_CR56) 2023; 135 LL Del Mercato (57666_CR25) 2014; 207 M Li (57666_CR59) 2023; 135 Y Dai (57666_CR28) 2024; 124 Q Zhang (57666_CR14) 2019; 58 X Cai (57666_CR15) 2024; 36 Z Cai (57666_CR8) 2020; 27 A Chen (57666_CR45) 2023; 16 |
References_xml | – volume: 16 start-page: 1821 year: 2005 ident: 57666_CR29 publication-title: Nanotechnology doi: 10.1088/0957-4484/16/9/068 – volume: 27 start-page: 205 year: 2020 ident: 57666_CR8 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.032 – volume: 32 year: 2020 ident: 57666_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.202003021 – volume: 247 start-page: 2884 year: 2010 ident: 57666_CR51 publication-title: Phys. status solidi (b) doi: 10.1002/pssb.201000435 – volume: 10 start-page: 1903977 year: 2020 ident: 57666_CR17 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903977 – volume: 12 start-page: 1938 year: 2019 ident: 57666_CR13 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00596J – volume: 135 year: 2023 ident: 57666_CR59 publication-title: Angew. Chem. doi: 10.1002/ange.202215552 – volume: 2 start-page: 9 year: 2019 ident: 57666_CR52 publication-title: Commun. Chem. doi: 10.1038/s42004-019-0111-x – volume: 348 start-page: aaa2491 year: 2015 ident: 57666_CR24 publication-title: Science doi: 10.1126/science.aaa2491 – volume: 52 start-page: 1256 year: 2011 ident: 57666_CR33 publication-title: Polymer doi: 10.1016/j.polymer.2011.01.033 – volume: 135 year: 2023 ident: 57666_CR56 publication-title: Angew. Chem. doi: 10.1002/ange.202302583 – volume: 36 year: 2024 ident: 57666_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.202307727 – volume: 31 year: 2021 ident: 57666_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202103227 – volume: 108 start-page: 8577 year: 2011 ident: 57666_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1101144108 – volume: 116 start-page: 14828 year: 2016 ident: 57666_CR22 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00627 – volume: 135 year: 2023 ident: 57666_CR2 publication-title: Angew. Chem. doi: 10.1002/ange.202218452 – ident: 57666_CR53 doi: 10.1155/2015/320631 – volume: 12 year: 2022 ident: 57666_CR7 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200665 – volume: 3 year: 2023 ident: 57666_CR6 publication-title: EScience doi: 10.1016/j.esci.2023.100120 – volume: 8 start-page: 22075 year: 2020 ident: 57666_CR54 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08638J – volume: 16 start-page: 275 year: 2023 ident: 57666_CR45 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02931F – volume: 30 year: 2020 ident: 57666_CR3 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908528 – volume: 18 start-page: 829 year: 2006 ident: 57666_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.200502444 – volume: 49 start-page: 172 year: 2022 ident: 57666_CR38 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.04.010 – volume: 207 start-page: 139 year: 2014 ident: 57666_CR25 publication-title: Adv. colloid interface Sci. doi: 10.1016/j.cis.2014.02.014 – volume: 17 year: 2021 ident: 57666_CR5 publication-title: Small doi: 10.1002/smll.202101728 – volume: 124 start-page: 5795 year: 2024 ident: 57666_CR28 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00791 – volume: 135 year: 2023 ident: 57666_CR1 publication-title: Angew. Chem. doi: 10.1002/ange.202311268 – volume: 63 start-page: 701 year: 2011 ident: 57666_CR27 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.05.011 – volume: 3 start-page: 100093 year: 2023 ident: 57666_CR12 publication-title: eScience doi: 10.1016/j.esci.2023.100093 – volume: 33 year: 2023 ident: 57666_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302293 – volume: 13 year: 2023 ident: 57666_CR40 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202302707 – volume: 29 start-page: 104 year: 2008 ident: 57666_CR50 publication-title: Bull. Korean Chem. Soc. doi: 10.5012/bkcs.2008.29.1.104 – volume: 14 start-page: 3609 year: 2021 ident: 57666_CR44 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00308A – volume: 14 year: 2023 ident: 57666_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39877-5 – volume: 36 start-page: 10079 year: 2003 ident: 57666_CR34 publication-title: Macromolecules doi: 10.1021/ma034516p – volume: 58 start-page: 15841 year: 2019 ident: 57666_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201907830 – volume: 24 start-page: 5624 year: 2014 ident: 57666_CR26 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401050 – volume: 8 year: 2018 ident: 57666_CR10 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801090 – volume: 12 year: 2022 ident: 57666_CR42 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102780 – volume: 74 start-page: 104880 year: 2020 ident: 57666_CR18 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104880 – volume: 33 year: 2021 ident: 57666_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.202007388 – volume: 32 year: 2022 ident: 57666_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108533 – volume: 9 start-page: 7124 year: 2015 ident: 57666_CR19 publication-title: ACS nano doi: 10.1021/acsnano.5b01832 – volume: 3 start-page: 1265 year: 2019 ident: 57666_CR31 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01932 – volume: 14 start-page: 2889 year: 2021 ident: 57666_CR36 publication-title: Materials doi: 10.3390/ma14112889 – volume: 32 year: 2022 ident: 57666_CR39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209642 – volume: 34 year: 2024 ident: 57666_CR58 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202311773 – volume: 5 start-page: 1817 year: 2014 ident: 57666_CR21 publication-title: Polym. Chem. doi: 10.1039/C3PY01262J – volume: 13 start-page: 503 year: 2020 ident: 57666_CR47 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03545A – volume: 153 start-page: 931 year: 2020 ident: 57666_CR49 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.02.216 – volume: 59 start-page: 16594 year: 2020 ident: 57666_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202005472 – volume: 30 year: 2020 ident: 57666_CR48 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001263 – volume: 19 start-page: 5058 year: 2007 ident: 57666_CR32 publication-title: Chem. Mater. doi: 10.1021/cm071260j – volume: 15 year: 2023 ident: 57666_CR41 publication-title: Nanomicro Lett. – volume: 27 start-page: 929 year: 2020 ident: 57666_CR37 publication-title: J. Porous Mater. doi: 10.1007/s10934-020-00870-8 – volume: 13 start-page: 3728 year: 2021 ident: 57666_CR30 publication-title: Polymers doi: 10.3390/polym13213728 – volume: 30 start-page: 402 year: 2014 ident: 57666_CR35 publication-title: Langmuir doi: 10.1021/la404337d – volume: 10 start-page: 17440 year: 2022 ident: 57666_CR55 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA04875B |
SSID | ssj0000391844 |
Score | 2.5332613 |
Snippet | Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges... Abstract Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2316 |
SubjectTerms | 140/133 140/146 147/135 147/137 639/4077/4079/891 639/638/675 Acrylic acid Ammonia Anions Antifungal agents Batteries Cations Commercialization Dendrites Deposition Diffusion Electrolytes Electrolytic cells Electrostatic properties Fabrication Humanities and Social Sciences Hydrogen evolution Ion channels Lithium Lithium-ion batteries multidisciplinary Nucleation Polyacrylic acid Polyelectrolytes Science Science (multidisciplinary) Self-assembly Separation Side reactions Zinc |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXqrzTFmQkbmC1iR3HPiFAVBUSXKDSiotlO3apFJJtd3vYf98ZJ7vV8jommUSOZ-z5Zmx_A_DaaOIATxV3wXguy-S5c23gwYia6NPLlOjs8Jev6vRMfp7Vsynhtpi2Va7nxDxRt0OgHPkR-Tl0RdKod_NLTlWjaHV1KqFxF-4RdRlt6WpmzSbHQuznWsrprMyx0EcLmWcGquGKQFthML3ljzJt_9-w5p9bJn9bN83u6GQPdiccyd6Pin8Id2L_CO6PlSVXj6H7FrvEERjHX76LLZsP3WqqeNOtEF0yyr8y1AlfxJH9e-iZCwFl6KI_Z3QiuEfHyRDVMiI17lYMkSR-jf3oOYn7TM2JkfYTODv59P3jKZ8KK_AgTbXkyaiopcDwq01tqRIC7Fq5JngjI8IlRDS1MbIsnRJCYEjVepN86XUUyZhUOfEUdvqhj8-BlbWrRSvx7Qb9YatdpKo3MTjVihrFC3iz7l47H_kzbF73FtqOyrCoDJuVYY8L-EAa2EgS93W-MVyd22koWanQthqvVUTXqlPj0ax8JZQ2KWD8pQs4XOvPTgNyYW_Np4BXm8c4lGh9xPVxuB5llCZOxAKejeretETSqV3ZiAL0liFsNXX7SX_xM9N1YwhHGQhZwNu1zdy26999sf__3ziABxWZMW2H04ews7y6ji8QHy39yzwIbgDE5g6Y priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIiQuFd-kLchI3MCiiR3HPtIVVYUEF6hUcbHsxC5Iwam628P--844yVYL5cAx8TiyPOPMG9vzBuCt0cQBHivuWuO5LKPnznUtb42oiT69jJFyh798Vadn8vN5fb4D1ZwLky_tZ0rL_Jueb4d9WMq8pKn4KiJkhVHwPbhP1O1k1Qu12OyrEOO5lnLKjzkS-o6uWz4oU_XfhS__vib5x1lpdkEnj2Bvwo7s4zjax7AT0hN4MFaTXD-F_lvoI0cwHH77PnTscujXU5Wbfo2IktGeK0M98GUYGb-HxFzbogw9pAtGWcAJnSVDJMuIyLhfM0SP-DX2I3ES95mOE6PrZ3B28un74pRPxRR4K0214tGooKXAkKuLXakigupauab1RgaESIhiamNkWTolhMAwqvMm-tLrIKIxsXLiOeymIYWXwMra1aKT2LtBH9hpF6jSTWid6kSN4gW8m6fXXo6cGTafdQttR2VYVIbNyrBHBRyTBjaSxHedXwxXF3bSv5UK7anxWgV0pzo2Hk3JV0JpE1uMuXQBh7P-7LQIl5agEaIXaVQBbzbNuHzoTMSlMFyPMkoTD2IBL0Z1b0YiKVNXNqIAvWUIW0Pdbkm_fmaKbgzbaNdBFvB-tpnbcf17Lvb_T_wAHlZk1nQlTh_C7urqOrxCjLTyr_OiuAFPUgxo priority: 102 providerName: Springer Nature |
Title | Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries |
URI | https://link.springer.com/article/10.1038/s41467-025-57666-0 https://www.ncbi.nlm.nih.gov/pubmed/40057473 https://www.proquest.com/docview/3175244496 https://www.proquest.com/docview/3175680342 https://pubmed.ncbi.nlm.nih.gov/PMC11890744 https://doaj.org/article/464f27b86e2848f7b935b23689fc5488 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBIviG8yRmUk3sDaEjuO_dhVK1MlJsSYVPFi2YkNSCGd1u6h_z13TlpWPsQLL42aXCzLd_b9Lvb9DuC10cQBHgvuauO5zKPnzjU1r40oiT49j5Fyh9-fqdMLOZuX8xulvuhMWE8P3A_coVTYUuW1CriQ6lh5bMQXQmkTa0TbKc0Xfd6NYCqtwcJg6CKHLJkjoQ-XMq0JVL0VIbbCMHrHEyXC_j-hzN8PS_6yY5oc0fQB3B8QJBv3PX8It0L3CO72NSXXj6E9D23kCInDd9-Ghl0u2vVQ66ZdI65k9OWVoTb4MvS834uOubpGGfrTfWGUC9yhy2SIZxnRGbdrhhgSW2OfO07iPpFyYoz9BC6mJ58mp3woqcBraYoVj0YFLQUGXk1schURWpfKVbU3MiBQQixTGiPz3CkhBAZTjTfR514HEY2JhRNPYa9bdOE5sLx0pWgkvl2hJ2y0C1TvJtRONaJE8QzebIbXXvbMGTbteAtte2VYVIZNyrBHGRyTBraSxHqdbqAt2MEW7L9sIYODjf7sMBWXlgASYhhpVAavto9xEtHOiOvC4rqXUZrYEDN41qt72xNJ-bqyEhnoHUPY6eruk-7b10TUjcEbfXuQGbzd2MzPfv19LPb_x1i8gHsFGTsdl9MHsLe6ug4vET-t_AhuV_MKf_X03QjujMez8xlej0_OPnzEuxM1GaXJ9AN1qRvD |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxJuFAkaCE1jtrr2OfUCIV0jp40IrVVyMvWsXpGU3NKlQ_hS_kZl9pAqvW4_JTlaOZ8bzje35BuCJ0cQBHjPuCuO5TKPnzpUFL4zIiT49jZFqh_f21eRQfjjKj9bg51ALQ9cqhzWxXajLpqA98k2KcxiKpFEvp985dY2i09WhhUZnFjth8QNTttmL7beo36dZNn538GbC-64CvJAmm_NoVNBSYO5RxjJVEdFlrtyo8EYGxAoYznNjZJo6JYTAfKL0JvrU6yCiMTFzAt97AS5KIQx5lB6_X-7pENu6lrKvzdkSenMm25WIesYisFeYvK_Ev7ZNwN-w7Z9XNH87p23D3_gaXO1xK3vVGdp1WAv1DbjUdbJc3ITqY6giRyAevvkqlGzaVIu-w061QDTLaL-XoQ3wWejYxpuauaJAGfpQHzOqQK4xUDNE0YxIlKsFQ-SKb2Ofak7ivqUCxcz-Fhyey5TfhvW6qcNdYGnuclFK_PUI42-pXaAuO6FwqhQ5iifwbJheO-34Omx7zi607ZRhURm2VYbdSuA1aWApSVzb7RfNybHtXddKhbY88loFDOU6jjyasc-E0iYWmO_pBDYG_dl-AZjZM3NN4PHyMbounce4OjSnnYzSxMGYwJ1O3cuRSKoSliORgF4xhJWhrj6pv35p6cExZaQdD5nA88Fmzsb177m49_-_8QguTw72du3u9v7OfbiSkUnTVTy9Aevzk9PwALHZ3D9sHYLB5_P2wF82TUoe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaxtYsexDwgBZdVSqJCg0oqLiRO7IIVk6W6F8tf4dczksdXyuvW4m9nI65nxfGN7vgF4ZDRxgIeE54VxXMbB8TwvC14YkRJ9ehwC1Q6_O1C7h_LNLJ1twM-xFoauVY5rYrdQl01Be-QTinMYiqRRkzBci3i_M30-_86pgxSdtI7tNHoT2fftD0zfFs_2dlDXj5Nk-vrjq10-dBjghTTJkgejvJYC85AylLEKiDRTlWeFM9IjbsDQnhoj4zhXQgjMLUpngoud9iIYE5Jc4HvPwXkUi8nHslm22t8h5nUt5VCnsy30ZCG7VYn6xyLIV5jIr8XCrmXA33Dun9c1fzuz7ULh9ApcHjAse9Eb3VXY8PU1uNB3tWyvQ_XBV4EjKPffXOVLNm-qdui2U7WIbBnt_TK0B77wPfN4U7O8KFCGPtRHjKqRawzaDBE1I0LlqmWIYvFt7FPNSdx1tKCY5d-AwzOZ8puwWTe1vw0sTvNUlBJ_nWEsLnXuqeOOL3JVihTFI3gyTq-d99wdtjtzF9r2yrCoDNspw25H8JI0sJIk3u3ui-b4yA5ubKVCu86cVh7Dug6ZQ5N2iVDahAJzPx3B1qg_OywGC3tquhE8XD1GN6azmbz2zUkvozTxMUZwq1f3aiSSKoZlJiLQa4awNtT1J_XXLx1VOKaPtPshI3g62szpuP49F3f-_zcewEX0Pft272D_LlxKyKLpVp7egs3l8Ym_hzBt6e53_sDg81k74C-F0E5L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+polyelectrolytes+with+ion-separation+accelerating+channels+for+highly+stable+Zn-ion+batteries&rft.jtitle=Nature+communications&rft.au=Xueying+Hu&rft.au=Haobo+Dong&rft.au=Nan+Gao&rft.au=Tianlei+Wang&rft.date=2025-03-08&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-025-57666-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_464f27b86e2848f7b935b23689fc5488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |