Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries

Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, a...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 16; no. 1; pp. 2316 - 11
Main Authors Hu, Xueying, Dong, Haobo, Gao, Nan, Wang, Tianlei, He, Hongzhen, Gao, Xuan, Dai, Yuhang, Liu, Yiyang, Brett, Dan J. L., Parkin, Ivan P., He, Guanjie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.03.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO 4 2 − and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries. The use of aqueous Zn-ion batteries is hindered by parasitic reactions, dendrite formation, and low Coulombic efficiency of Zn metal electrode. Here, authors regulate the electrolyte ions diffusion via ion-separation accelerating channel through self-assembly of poly(allylamine hydrochloride) and poly(acrylic acid).
AbstractList Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO 4 2 − and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries. The use of aqueous Zn-ion batteries is hindered by parasitic reactions, dendrite formation, and low Coulombic efficiency of Zn metal electrode. Here, authors regulate the electrolyte ions diffusion via ion-separation accelerating channel through self-assembly of poly(allylamine hydrochloride) and poly(acrylic acid).
Abstract Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO4 2 − and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.
Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.
Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO42- and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO42- and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.
Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO 4 2 − and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.
Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges like hydrogen evolution and uncontrolled diffusion of H⁺, Zn²⁺, and SO₄²⁻ in the electrolyte lead to the dendrite formation, side reactions, and reduced Coulombic efficiency for Zn nucleation. Here, to simultaneously regulate the diffusion of cations and anions in the electrolyte, an ion-separation accelerating channel is constructed by introducing layer-by-layer self-assembly of a flocculant poly(allylamine hydrochloride) and its tautomer poly(acrylic acid). The dual-ion channels, created by strong electrostatic interactions between carboxylate anions and ammonia cations, block SO42− and promote the uniform Zn deposition along the Zn(002) plane, exhibiting a CE of 99.8% after 1600 cycles in the Cu||Zn cell. With the facile fabrication of the layer-by-layer self-assembled Zn anode, an Ah-level pouch cell (17.36 Ah) with a high mass loading (> 8 mg cm⁻²) demonstrates the practical viability for large-scale applications, retaining a capacity of 93.6% for 250 cycles at 1.7 C (35.3 min). This work enables more uniform Zn deposition and enhances the cycling stability in larger pouch cells, paving the way for the commercialisation of zinc-ion batteries.The use of aqueous Zn-ion batteries is hindered by parasitic reactions, dendrite formation, and low Coulombic efficiency of Zn metal electrode. Here, authors regulate the electrolyte ions diffusion via ion-separation accelerating channel through self-assembly of poly(allylamine hydrochloride) and poly(acrylic acid).
ArticleNumber 2316
Author Gao, Xuan
Dong, Haobo
Wang, Tianlei
Parkin, Ivan P.
Gao, Nan
He, Hongzhen
Liu, Yiyang
Brett, Dan J. L.
He, Guanjie
Hu, Xueying
Dai, Yuhang
Author_xml – sequence: 1
  givenname: Xueying
  surname: Hu
  fullname: Hu, Xueying
  organization: Christopher Ingold Laboratory, Department of Chemistry, University College London
– sequence: 2
  givenname: Haobo
  orcidid: 0000-0001-6278-8997
  surname: Dong
  fullname: Dong, Haobo
  email: dhbhubble@scut.edu.cn
  organization: Christopher Ingold Laboratory, Department of Chemistry, University College London, School of Future Technology, South China University of Technology
– sequence: 3
  givenname: Nan
  surname: Gao
  fullname: Gao, Nan
  organization: State Key Lab of Superhard Materials, College of Physics, Jilin University
– sequence: 4
  givenname: Tianlei
  surname: Wang
  fullname: Wang, Tianlei
  organization: Christopher Ingold Laboratory, Department of Chemistry, University College London
– sequence: 5
  givenname: Hongzhen
  surname: He
  fullname: He, Hongzhen
  organization: Christopher Ingold Laboratory, Department of Chemistry, University College London
– sequence: 6
  givenname: Xuan
  surname: Gao
  fullname: Gao, Xuan
  organization: Christopher Ingold Laboratory, Department of Chemistry, University College London
– sequence: 7
  givenname: Yuhang
  orcidid: 0000-0001-8445-6758
  surname: Dai
  fullname: Dai, Yuhang
  organization: Christopher Ingold Laboratory, Department of Chemistry, University College London
– sequence: 8
  givenname: Yiyang
  surname: Liu
  fullname: Liu, Yiyang
  organization: Hanwei Co., Ltd., Building A6, Guoke Artificial Intelligence Innovation Center
– sequence: 9
  givenname: Dan J. L.
  surname: Brett
  fullname: Brett, Dan J. L.
  organization: Hanwei Co., Ltd., Building A6, Guoke Artificial Intelligence Innovation Center
– sequence: 10
  givenname: Ivan P.
  orcidid: 0000-0002-4072-6610
  surname: Parkin
  fullname: Parkin, Ivan P.
  organization: Christopher Ingold Laboratory, Department of Chemistry, University College London
– sequence: 11
  givenname: Guanjie
  orcidid: 0000-0002-7365-9645
  surname: He
  fullname: He, Guanjie
  email: g.he@ucl.ac.uk
  organization: Christopher Ingold Laboratory, Department of Chemistry, University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40057473$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vEzEQhleoiJbSP8ABrcSFy4I_Zv1xQqiiUKkSB-DCxfLujpONHDvYDij_vk5SSssBXzxjP_N6NH6fNychBmyal5S8pYSrdxkoCNkR1ne9FEJ05ElzxgjQjkrGTx7Ep81FzitSF9dUATxrToGQXoLkZ43_it51NmdcDx6ndhP9Dj2OJdWgYG5_z2XZzjF0GTc22VLD1o5jZfZJWLTj0oaAPrcupnY5L5Z-1-Ziq1r7I3R7fLClYJoxv2ieOuszXtzt5833q4_fLj93N18-XV9-uOlG0Kx0TgtUwAkTk5uocJLpXlg5DhpQM80k77UGSq3gnDMlp0G7gQ4KudPaMcvPm-uj7hTtymzSvLZpZ6KdzeEgpoWxqcyjRwMCHJODEsgUKCcHzfuBcaG0G3tQqmq9P2pttsMapxFDSdY_En18E-alWcRfhlKliQSoCm_uFFL8ucVczHrOdYDeBozbbDiVvVCEA6vo63_QVdymUGd1oBgAaFGpVw9buu_lz69WgB2BMcWcE7p7hBKzd485usdU95iDewypRfxYlCscFpj-vv2fqlvansc3
Cites_doi 10.1088/0957-4484/16/9/068
10.1016/j.ensm.2020.01.032
10.1002/adma.202003021
10.1002/pssb.201000435
10.1002/aenm.201903977
10.1039/C9EE00596J
10.1002/ange.202215552
10.1038/s42004-019-0111-x
10.1126/science.aaa2491
10.1016/j.polymer.2011.01.033
10.1002/ange.202302583
10.1002/adma.202307727
10.1002/adfm.202103227
10.1073/pnas.1101144108
10.1021/acs.chemrev.6b00627
10.1002/ange.202218452
10.1155/2015/320631
10.1002/aenm.202200665
10.1016/j.esci.2023.100120
10.1039/D0TA08638J
10.1039/D2EE02931F
10.1002/adfm.201908528
10.1002/adma.200502444
10.1016/j.ensm.2022.04.010
10.1016/j.cis.2014.02.014
10.1002/smll.202101728
10.1021/acs.chemrev.3c00791
10.1002/ange.202311268
10.1016/j.addr.2011.05.011
10.1016/j.esci.2023.100093
10.1002/adfm.202302293
10.1002/aenm.202302707
10.5012/bkcs.2008.29.1.104
10.1039/D1EE00308A
10.1038/s41467-023-39877-5
10.1021/ma034516p
10.1002/anie.201907830
10.1002/adfm.201401050
10.1002/aenm.201801090
10.1002/aenm.202102780
10.1016/j.nanoen.2020.104880
10.1002/adma.202007388
10.1002/adfm.202108533
10.1021/acsnano.5b01832
10.1021/acsaem.9b01932
10.3390/ma14112889
10.1002/adfm.202209642
10.1002/adfm.202311773
10.1039/C3PY01262J
10.1039/C9EE03545A
10.1016/j.ijbiomac.2020.02.216
10.1002/anie.202005472
10.1002/adfm.202001263
10.1021/cm071260j
10.1007/s10934-020-00870-8
10.3390/polym13213728
10.1021/la404337d
10.1039/D2TA04875B
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-025-57666-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_464f27b86e2848f7b935b23689fc5488
PMC11890744
40057473
10_1038_s41467_025_57666_0
Genre Journal Article
GrantInformation_xml – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: EP/Y008707/1
  funderid: https://doi.org/10.13039/100010661
– fundername: RCUK | Science and Technology Facilities Council (STFC)
  grantid: ST/R006873/1
  funderid: https://doi.org/10.13039/501100000271
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/V027433/3
  funderid: https://doi.org/10.13039/501100000266
– fundername: RCUK | Science and Technology Facilities Council (STFC)
  grantid: ST/R006873/1
– fundername: RCUK | Engineering and Physical Sciences Research Council (EPSRC)
  grantid: EP/V027433/3
– fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: EP/Y008707/1
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
SNYQT
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
M48
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
AARCD
5PM
PUEGO
ID FETCH-LOGICAL-c492t-f96e843026dfd16f72956a7cb94e929273599411a6333287db9fb1b8e3f99f2a3
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:09:35 EDT 2025
Thu Aug 21 18:34:53 EDT 2025
Tue Aug 05 08:42:41 EDT 2025
Sat Aug 23 14:55:27 EDT 2025
Thu Apr 03 06:54:25 EDT 2025
Tue Jul 01 05:24:23 EDT 2025
Sun Mar 09 01:29:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-f96e843026dfd16f72956a7cb94e929273599411a6333287db9fb1b8e3f99f2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8445-6758
0000-0002-7365-9645
0000-0001-6278-8997
0000-0002-4072-6610
OpenAccessLink https://doaj.org/article/464f27b86e2848f7b935b23689fc5488
PMID 40057473
PQID 3175244496
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_464f27b86e2848f7b935b23689fc5488
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11890744
proquest_miscellaneous_3175680342
proquest_journals_3175244496
pubmed_primary_40057473
crossref_primary_10_1038_s41467_025_57666_0
springer_journals_10_1038_s41467_025_57666_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-08
PublicationDateYYYYMMDD 2025-03-08
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References R Yao (57666_CR42) 2022; 12
Z Shen (57666_CR2) 2023; 135
P Liang (57666_CR3) 2020; 30
AI Petrov (57666_CR34) 2003; 36
HM Tóháti (57666_CR51) 2010; 247
X Xie (57666_CR47) 2020; 13
S Wu (57666_CR6) 2023; 3
C Han (57666_CR18) 2020; 74
K Wu (57666_CR17) 2020; 10
Y Wang (57666_CR40) 2023; 13
M Bandeira (57666_CR36) 2021; 14
N Hu (57666_CR58) 2024; 34
BP Thapaliya (57666_CR31) 2019; 3
JJ Richardson (57666_CR24) 2015; 348
J Yang (57666_CR39) 2022; 32
T Kavitha (57666_CR35) 2014; 30
L Kang (57666_CR10) 2018; 8
HI Meléndez-Ortiz (57666_CR37) 2020; 27
H Zhang (57666_CR7) 2022; 12
H Dong (57666_CR1) 2023; 135
Y Ma (57666_CR32) 2007; 19
Y Chu (57666_CR44) 2021; 14
SR Lewis (57666_CR20) 2011; 108
Y Zhang (57666_CR19) 2015; 9
N Joseph (57666_CR21) 2014; 5
J Hao (57666_CR46) 2020; 32
Y Cui (57666_CR4) 2020; 59
H Qin (57666_CR55) 2022; 10
J Borges (57666_CR26) 2014; 24
MM De Villiers (57666_CR27) 2011; 63
C Jiang (57666_CR23) 2006; 18
T Iwano (57666_CR52) 2019; 2
JJ Richardson (57666_CR22) 2016; 116
P Lin (57666_CR38) 2022; 49
L Wang (57666_CR9) 2022; 32
C Deng (57666_CR43) 2021; 31
TC Li (57666_CR5) 2021; 17
X Ni (57666_CR16) 2023; 33
J Park (57666_CR50) 2008; 29
Y Yang (57666_CR11) 2021; 33
S Fujita (57666_CR29) 2005; 16
N Peng (57666_CR33) 2011; 52
Y Jiao (57666_CR54) 2020; 8
Z Hu (57666_CR41) 2023; 15
S Roy (57666_CR49) 2020; 153
U Baig (57666_CR30) 2021; 13
57666_CR53
Z Zhao (57666_CR13) 2019; 12
F Wang (57666_CR57) 2023; 14
Z Cai (57666_CR12) 2023; 3
J Hao (57666_CR48) 2020; 30
Y Wang (57666_CR56) 2023; 135
LL Del Mercato (57666_CR25) 2014; 207
M Li (57666_CR59) 2023; 135
Y Dai (57666_CR28) 2024; 124
Q Zhang (57666_CR14) 2019; 58
X Cai (57666_CR15) 2024; 36
Z Cai (57666_CR8) 2020; 27
A Chen (57666_CR45) 2023; 16
References_xml – volume: 16
  start-page: 1821
  year: 2005
  ident: 57666_CR29
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/9/068
– volume: 27
  start-page: 205
  year: 2020
  ident: 57666_CR8
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.032
– volume: 32
  year: 2020
  ident: 57666_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003021
– volume: 247
  start-page: 2884
  year: 2010
  ident: 57666_CR51
  publication-title: Phys. status solidi (b)
  doi: 10.1002/pssb.201000435
– volume: 10
  start-page: 1903977
  year: 2020
  ident: 57666_CR17
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903977
– volume: 12
  start-page: 1938
  year: 2019
  ident: 57666_CR13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00596J
– volume: 135
  year: 2023
  ident: 57666_CR59
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202215552
– volume: 2
  start-page: 9
  year: 2019
  ident: 57666_CR52
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-019-0111-x
– volume: 348
  start-page: aaa2491
  year: 2015
  ident: 57666_CR24
  publication-title: Science
  doi: 10.1126/science.aaa2491
– volume: 52
  start-page: 1256
  year: 2011
  ident: 57666_CR33
  publication-title: Polymer
  doi: 10.1016/j.polymer.2011.01.033
– volume: 135
  year: 2023
  ident: 57666_CR56
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202302583
– volume: 36
  year: 2024
  ident: 57666_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202307727
– volume: 31
  year: 2021
  ident: 57666_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103227
– volume: 108
  start-page: 8577
  year: 2011
  ident: 57666_CR20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1101144108
– volume: 116
  start-page: 14828
  year: 2016
  ident: 57666_CR22
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00627
– volume: 135
  year: 2023
  ident: 57666_CR2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202218452
– ident: 57666_CR53
  doi: 10.1155/2015/320631
– volume: 12
  year: 2022
  ident: 57666_CR7
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200665
– volume: 3
  year: 2023
  ident: 57666_CR6
  publication-title: EScience
  doi: 10.1016/j.esci.2023.100120
– volume: 8
  start-page: 22075
  year: 2020
  ident: 57666_CR54
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08638J
– volume: 16
  start-page: 275
  year: 2023
  ident: 57666_CR45
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE02931F
– volume: 30
  year: 2020
  ident: 57666_CR3
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908528
– volume: 18
  start-page: 829
  year: 2006
  ident: 57666_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502444
– volume: 49
  start-page: 172
  year: 2022
  ident: 57666_CR38
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.04.010
– volume: 207
  start-page: 139
  year: 2014
  ident: 57666_CR25
  publication-title: Adv. colloid interface Sci.
  doi: 10.1016/j.cis.2014.02.014
– volume: 17
  year: 2021
  ident: 57666_CR5
  publication-title: Small
  doi: 10.1002/smll.202101728
– volume: 124
  start-page: 5795
  year: 2024
  ident: 57666_CR28
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00791
– volume: 135
  year: 2023
  ident: 57666_CR1
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202311268
– volume: 63
  start-page: 701
  year: 2011
  ident: 57666_CR27
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.05.011
– volume: 3
  start-page: 100093
  year: 2023
  ident: 57666_CR12
  publication-title: eScience
  doi: 10.1016/j.esci.2023.100093
– volume: 33
  year: 2023
  ident: 57666_CR16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302293
– volume: 13
  year: 2023
  ident: 57666_CR40
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202302707
– volume: 29
  start-page: 104
  year: 2008
  ident: 57666_CR50
  publication-title: Bull. Korean Chem. Soc.
  doi: 10.5012/bkcs.2008.29.1.104
– volume: 14
  start-page: 3609
  year: 2021
  ident: 57666_CR44
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00308A
– volume: 14
  year: 2023
  ident: 57666_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39877-5
– volume: 36
  start-page: 10079
  year: 2003
  ident: 57666_CR34
  publication-title: Macromolecules
  doi: 10.1021/ma034516p
– volume: 58
  start-page: 15841
  year: 2019
  ident: 57666_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201907830
– volume: 24
  start-page: 5624
  year: 2014
  ident: 57666_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401050
– volume: 8
  year: 2018
  ident: 57666_CR10
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801090
– volume: 12
  year: 2022
  ident: 57666_CR42
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102780
– volume: 74
  start-page: 104880
  year: 2020
  ident: 57666_CR18
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104880
– volume: 33
  year: 2021
  ident: 57666_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007388
– volume: 32
  year: 2022
  ident: 57666_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108533
– volume: 9
  start-page: 7124
  year: 2015
  ident: 57666_CR19
  publication-title: ACS nano
  doi: 10.1021/acsnano.5b01832
– volume: 3
  start-page: 1265
  year: 2019
  ident: 57666_CR31
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01932
– volume: 14
  start-page: 2889
  year: 2021
  ident: 57666_CR36
  publication-title: Materials
  doi: 10.3390/ma14112889
– volume: 32
  year: 2022
  ident: 57666_CR39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209642
– volume: 34
  year: 2024
  ident: 57666_CR58
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202311773
– volume: 5
  start-page: 1817
  year: 2014
  ident: 57666_CR21
  publication-title: Polym. Chem.
  doi: 10.1039/C3PY01262J
– volume: 13
  start-page: 503
  year: 2020
  ident: 57666_CR47
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03545A
– volume: 153
  start-page: 931
  year: 2020
  ident: 57666_CR49
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.02.216
– volume: 59
  start-page: 16594
  year: 2020
  ident: 57666_CR4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202005472
– volume: 30
  year: 2020
  ident: 57666_CR48
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001263
– volume: 19
  start-page: 5058
  year: 2007
  ident: 57666_CR32
  publication-title: Chem. Mater.
  doi: 10.1021/cm071260j
– volume: 15
  year: 2023
  ident: 57666_CR41
  publication-title: Nanomicro Lett.
– volume: 27
  start-page: 929
  year: 2020
  ident: 57666_CR37
  publication-title: J. Porous Mater.
  doi: 10.1007/s10934-020-00870-8
– volume: 13
  start-page: 3728
  year: 2021
  ident: 57666_CR30
  publication-title: Polymers
  doi: 10.3390/polym13213728
– volume: 30
  start-page: 402
  year: 2014
  ident: 57666_CR35
  publication-title: Langmuir
  doi: 10.1021/la404337d
– volume: 10
  start-page: 17440
  year: 2022
  ident: 57666_CR55
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA04875B
SSID ssj0000391844
Score 2.5332613
Snippet Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However, challenges...
Abstract Aqueous zinc-ion batteries offer a sustainable alternative to lithium-ion batteries due to their abundance, safety, and eco-friendliness. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2316
SubjectTerms 140/133
140/146
147/135
147/137
639/4077/4079/891
639/638/675
Acrylic acid
Ammonia
Anions
Antifungal agents
Batteries
Cations
Commercialization
Dendrites
Deposition
Diffusion
Electrolytes
Electrolytic cells
Electrostatic properties
Fabrication
Humanities and Social Sciences
Hydrogen evolution
Ion channels
Lithium
Lithium-ion batteries
multidisciplinary
Nucleation
Polyacrylic acid
Polyelectrolytes
Science
Science (multidisciplinary)
Self-assembly
Separation
Side reactions
Zinc
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXqrzTFmQkbmC1iR3HPiFAVBUSXKDSiotlO3apFJJtd3vYf98ZJ7vV8jommUSOZ-z5Zmx_A_DaaOIATxV3wXguy-S5c23gwYia6NPLlOjs8Jev6vRMfp7Vsynhtpi2Va7nxDxRt0OgHPkR-Tl0RdKod_NLTlWjaHV1KqFxF-4RdRlt6WpmzSbHQuznWsrprMyx0EcLmWcGquGKQFthML3ljzJt_9-w5p9bJn9bN83u6GQPdiccyd6Pin8Id2L_CO6PlSVXj6H7FrvEERjHX76LLZsP3WqqeNOtEF0yyr8y1AlfxJH9e-iZCwFl6KI_Z3QiuEfHyRDVMiI17lYMkSR-jf3oOYn7TM2JkfYTODv59P3jKZ8KK_AgTbXkyaiopcDwq01tqRIC7Fq5JngjI8IlRDS1MbIsnRJCYEjVepN86XUUyZhUOfEUdvqhj8-BlbWrRSvx7Qb9YatdpKo3MTjVihrFC3iz7l47H_kzbF73FtqOyrCoDJuVYY8L-EAa2EgS93W-MVyd22koWanQthqvVUTXqlPj0ax8JZQ2KWD8pQs4XOvPTgNyYW_Np4BXm8c4lGh9xPVxuB5llCZOxAKejeretETSqV3ZiAL0liFsNXX7SX_xM9N1YwhHGQhZwNu1zdy26999sf__3ziABxWZMW2H04ews7y6ji8QHy39yzwIbgDE5g6Y
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VIiQuFd-kLchI3MCiiR3HPtIVVYUEF6hUcbHsxC5Iwam628P--844yVYL5cAx8TiyPOPMG9vzBuCt0cQBHivuWuO5LKPnznUtb42oiT69jJFyh798Vadn8vN5fb4D1ZwLky_tZ0rL_Jueb4d9WMq8pKn4KiJkhVHwPbhP1O1k1Qu12OyrEOO5lnLKjzkS-o6uWz4oU_XfhS__vib5x1lpdkEnj2Bvwo7s4zjax7AT0hN4MFaTXD-F_lvoI0cwHH77PnTscujXU5Wbfo2IktGeK0M98GUYGb-HxFzbogw9pAtGWcAJnSVDJMuIyLhfM0SP-DX2I3ES95mOE6PrZ3B28un74pRPxRR4K0214tGooKXAkKuLXakigupauab1RgaESIhiamNkWTolhMAwqvMm-tLrIKIxsXLiOeymIYWXwMra1aKT2LtBH9hpF6jSTWid6kSN4gW8m6fXXo6cGTafdQttR2VYVIbNyrBHBRyTBjaSxHedXwxXF3bSv5UK7anxWgV0pzo2Hk3JV0JpE1uMuXQBh7P-7LQIl5agEaIXaVQBbzbNuHzoTMSlMFyPMkoTD2IBL0Z1b0YiKVNXNqIAvWUIW0Pdbkm_fmaKbgzbaNdBFvB-tpnbcf17Lvb_T_wAHlZk1nQlTh_C7urqOrxCjLTyr_OiuAFPUgxo
  priority: 102
  providerName: Springer Nature
Title Self-assembled polyelectrolytes with ion-separation accelerating channels for highly stable Zn-ion batteries
URI https://link.springer.com/article/10.1038/s41467-025-57666-0
https://www.ncbi.nlm.nih.gov/pubmed/40057473
https://www.proquest.com/docview/3175244496
https://www.proquest.com/docview/3175680342
https://pubmed.ncbi.nlm.nih.gov/PMC11890744
https://doaj.org/article/464f27b86e2848f7b935b23689fc5488
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBIviG8yRmUk3sDaEjuO_dhVK1MlJsSYVPFi2YkNSCGd1u6h_z13TlpWPsQLL42aXCzLd_b9Lvb9DuC10cQBHgvuauO5zKPnzjU1r40oiT49j5Fyh9-fqdMLOZuX8xulvuhMWE8P3A_coVTYUuW1CriQ6lh5bMQXQmkTa0TbKc0Xfd6NYCqtwcJg6CKHLJkjoQ-XMq0JVL0VIbbCMHrHEyXC_j-hzN8PS_6yY5oc0fQB3B8QJBv3PX8It0L3CO72NSXXj6E9D23kCInDd9-Ghl0u2vVQ66ZdI65k9OWVoTb4MvS834uOubpGGfrTfWGUC9yhy2SIZxnRGbdrhhgSW2OfO07iPpFyYoz9BC6mJ58mp3woqcBraYoVj0YFLQUGXk1schURWpfKVbU3MiBQQixTGiPz3CkhBAZTjTfR514HEY2JhRNPYa9bdOE5sLx0pWgkvl2hJ2y0C1TvJtRONaJE8QzebIbXXvbMGTbteAtte2VYVIZNyrBHGRyTBraSxHqdbqAt2MEW7L9sIYODjf7sMBWXlgASYhhpVAavto9xEtHOiOvC4rqXUZrYEDN41qt72xNJ-bqyEhnoHUPY6eruk-7b10TUjcEbfXuQGbzd2MzPfv19LPb_x1i8gHsFGTsdl9MHsLe6ug4vET-t_AhuV_MKf_X03QjujMez8xlej0_OPnzEuxM1GaXJ9AN1qRvD
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxJuFAkaCE1jtrr2OfUCIV0jp40IrVVyMvWsXpGU3NKlQ_hS_kZl9pAqvW4_JTlaOZ8bzje35BuCJ0cQBHjPuCuO5TKPnzpUFL4zIiT49jZFqh_f21eRQfjjKj9bg51ALQ9cqhzWxXajLpqA98k2KcxiKpFEvp985dY2i09WhhUZnFjth8QNTttmL7beo36dZNn538GbC-64CvJAmm_NoVNBSYO5RxjJVEdFlrtyo8EYGxAoYznNjZJo6JYTAfKL0JvrU6yCiMTFzAt97AS5KIQx5lB6_X-7pENu6lrKvzdkSenMm25WIesYisFeYvK_Ev7ZNwN-w7Z9XNH87p23D3_gaXO1xK3vVGdp1WAv1DbjUdbJc3ITqY6giRyAevvkqlGzaVIu-w061QDTLaL-XoQ3wWejYxpuauaJAGfpQHzOqQK4xUDNE0YxIlKsFQ-SKb2Ofak7ivqUCxcz-Fhyey5TfhvW6qcNdYGnuclFK_PUI42-pXaAuO6FwqhQ5iifwbJheO-34Omx7zi607ZRhURm2VYbdSuA1aWApSVzb7RfNybHtXddKhbY88loFDOU6jjyasc-E0iYWmO_pBDYG_dl-AZjZM3NN4PHyMbounce4OjSnnYzSxMGYwJ1O3cuRSKoSliORgF4xhJWhrj6pv35p6cExZaQdD5nA88Fmzsb177m49_-_8QguTw72du3u9v7OfbiSkUnTVTy9Aevzk9PwALHZ3D9sHYLB5_P2wF82TUoe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaxtYsexDwgBZdVSqJCg0oqLiRO7IIVk6W6F8tf4dczksdXyuvW4m9nI65nxfGN7vgF4ZDRxgIeE54VxXMbB8TwvC14YkRJ9ehwC1Q6_O1C7h_LNLJ1twM-xFoauVY5rYrdQl01Be-QTinMYiqRRkzBci3i_M30-_86pgxSdtI7tNHoT2fftD0zfFs_2dlDXj5Nk-vrjq10-dBjghTTJkgejvJYC85AylLEKiDRTlWeFM9IjbsDQnhoj4zhXQgjMLUpngoud9iIYE5Jc4HvPwXkUi8nHslm22t8h5nUt5VCnsy30ZCG7VYn6xyLIV5jIr8XCrmXA33Dun9c1fzuz7ULh9ApcHjAse9Eb3VXY8PU1uNB3tWyvQ_XBV4EjKPffXOVLNm-qdui2U7WIbBnt_TK0B77wPfN4U7O8KFCGPtRHjKqRawzaDBE1I0LlqmWIYvFt7FPNSdx1tKCY5d-AwzOZ8puwWTe1vw0sTvNUlBJ_nWEsLnXuqeOOL3JVihTFI3gyTq-d99wdtjtzF9r2yrCoDNspw25H8JI0sJIk3u3ui-b4yA5ubKVCu86cVh7Dug6ZQ5N2iVDahAJzPx3B1qg_OywGC3tquhE8XD1GN6azmbz2zUkvozTxMUZwq1f3aiSSKoZlJiLQa4awNtT1J_XXLx1VOKaPtPshI3g62szpuP49F3f-_zcewEX0Pft272D_LlxKyKLpVp7egs3l8Ym_hzBt6e53_sDg81k74C-F0E5L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembled+polyelectrolytes+with+ion-separation+accelerating+channels+for+highly+stable+Zn-ion+batteries&rft.jtitle=Nature+communications&rft.au=Xueying+Hu&rft.au=Haobo+Dong&rft.au=Nan+Gao&rft.au=Tianlei+Wang&rft.date=2025-03-08&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-025-57666-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_464f27b86e2848f7b935b23689fc5488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon