Multidrug efflux transporter, AcrB—the pumping mechanism

Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have...

Full description

Saved in:
Bibliographic Details
Published inCurrent opinion in structural biology Vol. 18; no. 4; pp. 459 - 465
Main Author Murakami, Satoshi
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.
AbstractList Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.
Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.
Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics out of the cell by proton motive force. AcrB is the major RND transporter in Escherichia coli. Recently, the crystal structures of AcrB have been determined by different space groups. All these structures are consistent with asymmetric trimer. Each monomer has different conformation corresponding to one of the three functional states of the transport cycle. Transporting hydrophobic drug was bound in the periplasmic domain on one of the three monomers. The transport pathway with alternating access mechanism is located at the hydrophilic domain protruded into the periplasmic space while this mechanism of other transporter families like ATP binding cassette (ABC) and major facilitator superfamily (MFS) transporter is located in the membrane-embedded region. For the RND, protonation might also take place asymmetrically at the functionally important charged residues in the transmembrane (TM) region. The structures indicate that drugs are transported by a three-step functional rotation in which substrates undergo ordered binding change.
Author Murakami, Satoshi
Author_xml – sequence: 1
  givenname: Satoshi
  surname: Murakami
  fullname: Murakami, Satoshi
  email: murakami@bio.titech.ac.jp
  organization: Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18644451$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1u1UAQRlcoiNwEHoAGuaLCZsbeXXuhChF_UhANSOlW9ng22Sv_sbtG0PEQPCFPgqMbKChCNc05U3znRBxN88RCPEYoEFA_3xex80UJ0BSgC4D6nthhU5scqurySOzAKJNLCZfH4iTGPQBolM0DcYyNllIq3IkXH9Yh-T6sVxk7N6zfshTaKS5zSByeZWcUXv368TNdc7as4-Knq2xkum4nH8eH4r5rh8iPbu-p-Pzm9afzd_nFx7fvz88ucpKmTLmTui5L1Wmp-h4NSUVaonbGaWlqrHXVqLphQjLcAUHLUjtHtexU70hRdSqeHv4uYf6yckx29JF4GNqJ5zVabaQyWMF_QTQNYIlmA5_cgms3cm-X4Mc2fLd_ZtmA-gBQmGMM7Cz51CY_T9s6frAI9iaA3dstgL0JYEHbLcBm4j_m3-d3OC8PDm8rfvUcbCTPE3HvA1Oy_ezvsH8DaIueCw
CitedBy_id crossref_primary_10_1371_journal_pbio_1000146
crossref_primary_10_1002_prot_24632
crossref_primary_10_1002_1873_3468_13929
crossref_primary_10_1021_cr900077w
crossref_primary_10_1038_s41598_017_08747_8
crossref_primary_10_3390_antibiotics10050593
crossref_primary_10_1021_jp2015758
crossref_primary_10_1146_annurev_biophys_051013_022855
crossref_primary_10_1007_s10534_010_9393_2
crossref_primary_10_1128_JB_01437_08
crossref_primary_10_2217_fmb_14_87
crossref_primary_10_1016_j_resmic_2018_05_003
crossref_primary_10_1002_med_21591
crossref_primary_10_1016_j_copbio_2011_11_015
crossref_primary_10_7717_peerj_9643
crossref_primary_10_1073_pnas_2215072120
crossref_primary_10_3390_antibiotics10070830
crossref_primary_10_1074_jbc_M114_547794
crossref_primary_10_1038_nature10641
crossref_primary_10_3390_ijms10020629
crossref_primary_10_1002_ptr_4623
crossref_primary_10_1016_j_febslet_2011_04_054
crossref_primary_10_1093_nar_gkt1374
crossref_primary_10_2165_11317030_000000000_00000
crossref_primary_10_1074_jbc_M114_581199
crossref_primary_10_1038_s41467_021_25679_0
crossref_primary_10_1099_mic_0_045716_0
crossref_primary_10_1146_annurev_genet_42_110807_091449
crossref_primary_10_1371_journal_pcbi_1000806
crossref_primary_10_1128_mbio_02183_24
crossref_primary_10_1021_ja202666x
crossref_primary_10_1016_j_mib_2009_01_011
crossref_primary_10_1021_bi900446j
crossref_primary_10_1007_s12275_019_8520_1
crossref_primary_10_3109_10409238_2014_925420
crossref_primary_10_1515_BC_2009_090
crossref_primary_10_1002_prot_23122
crossref_primary_10_1007_s12275_014_3578_2
crossref_primary_10_1021_acs_jctc_7b00874
crossref_primary_10_1021_acsomega_0c02921
crossref_primary_10_1080_08927022_2014_907492
crossref_primary_10_1111_j_1758_2229_2011_00255_x
crossref_primary_10_3390_membranes10090242
crossref_primary_10_1111_mmi_13406
crossref_primary_10_1038_s41598_017_16497_w
crossref_primary_10_1039_c2mb25184a
crossref_primary_10_1016_j_resmic_2018_02_002
crossref_primary_10_1016_j_bbapap_2008_12_018
crossref_primary_10_1128_AAC_03229_14
crossref_primary_10_1128_CMR_00117_14
crossref_primary_10_1074_jbc_M900837200
crossref_primary_10_1016_j_bbapap_2008_12_015
crossref_primary_10_1016_j_biotechadv_2020_107658
crossref_primary_10_1021_jp212221v
crossref_primary_10_1038_ncomms1116
crossref_primary_10_1111_j_1574_6976_2011_00290_x
crossref_primary_10_1242_dev_043547
crossref_primary_10_1016_j_bbapap_2008_12_011
crossref_primary_10_2174_1874285801307010022
crossref_primary_10_1371_journal_pone_0159154
crossref_primary_10_1128_AAC_02733_13
crossref_primary_10_1016_j_bioorg_2020_104394
crossref_primary_10_1021_bi400119v
crossref_primary_10_1016_j_ijantimicag_2010_03_027
crossref_primary_10_1128_AAC_00594_10
crossref_primary_10_1021_acssynbio_0c00507
crossref_primary_10_3390_microorganisms11082043
crossref_primary_10_1016_j_tvjl_2014_05_045
crossref_primary_10_2217_fmb_09_62
crossref_primary_10_1016_j_bbapap_2017_11_003
crossref_primary_10_1186_s13099_022_00498_w
crossref_primary_10_1016_j_envres_2022_113356
crossref_primary_10_1002_pro_2764
crossref_primary_10_1016_j_bbabio_2010_10_014
crossref_primary_10_1016_j_jmb_2009_04_001
crossref_primary_10_1073_pnas_0900693106
crossref_primary_10_1128_aem_01447_24
crossref_primary_10_1146_annurev_micro_092412_155718
crossref_primary_10_1016_j_bbapap_2009_02_017
crossref_primary_10_1016_j_ijmm_2015_03_005
crossref_primary_10_3390_ijms22179278
crossref_primary_10_1080_09687680802552257
crossref_primary_10_1063_1_4832896
crossref_primary_10_1038_nchembio_794
crossref_primary_10_1186_s12934_022_01874_6
crossref_primary_10_1021_ja310548h
Cites_doi 10.1016/0966-842X(94)90654-8
10.1126/science.154.3748.475
10.1038/nrd2200
10.1128/JB.01276-07
10.1146/annurev.biochem.66.1.717
10.2165/00003495-200464020-00004
10.1038/nsmb.1379
10.1080/09687680410001666345
10.1038/nature01050
10.1126/science.1066020
10.1016/j.bbabio.2005.11.003
10.1016/S1369-5274(00)00242-3
10.1073/pnas.0610160104
10.1038/370621a0
10.1126/science.1151343
10.1016/j.tips.2006.02.008
10.1126/science.1088196
10.1073/pnas.0700969104
10.1038/nbt1202-1210
10.1038/nature05155
10.1096/fasebj.10.7.8635687
10.1016/j.sbi.2004.07.005
10.1126/science.1110064
10.1016/j.sbi.2007.07.003
10.1128/jb.175.22.7363-7372.1993
10.1074/jbc.M402230200
10.1038/35016007
10.1038/211969a0
10.1073/pnas.96.13.7190
10.1371/journal.pbio.0050007
10.1046/j.1365-2958.2000.01926.x
10.1074/jbc.M308893200
10.1128/JB.00471-07
10.1128/JB.183.5.1734-1739.2001
10.1128/jb.178.1.306-308.1996
10.1038/nature05076
10.1093/jac/dkl426
10.1128/AAC.45.4.1126-1136.2001
10.1111/j.1574-6976.1997.tb00345.x
10.1128/JB.01127-07
10.1016/j.str.2005.11.015
10.1128/jb.176.13.3825-3831.1994
10.1016/j.sbi.2004.10.003
10.1021/bi050452u
10.1128/JB.187.6.1879-1883.2005
10.1126/science.1131542
10.1016/S0959-440X(00)00147-0
10.1016/S0378-1097(97)00379-0
10.1016/S0959-440X(03)00109-X
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
7X8
DOI 10.1016/j.sbi.2008.06.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1879-033X
EndPage 465
ExternalDocumentID 18644451
10_1016_j_sbi_2008_06_007
S0959440X08000900
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IH2
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
WUQ
XPP
Y6R
ZKB
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
EFKBS
7X8
ID FETCH-LOGICAL-c492t-f467225b645dd19c45c6416f9f649717638578ec1c9eb0c0ae46ffc74b5dfc5c3
IEDL.DBID AIKHN
ISSN 0959-440X
IngestDate Fri Jul 11 08:11:02 EDT 2025
Mon Jul 21 09:44:09 EDT 2025
Wed Feb 19 01:42:40 EST 2025
Thu Apr 24 23:05:43 EDT 2025
Tue Jul 01 02:44:00 EDT 2025
Fri Feb 23 02:30:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-f467225b645dd19c45c6416f9f649717638578ec1c9eb0c0ae46ffc74b5dfc5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 18644451
PQID 19801219
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_69459130
proquest_miscellaneous_19801219
pubmed_primary_18644451
crossref_citationtrail_10_1016_j_sbi_2008_06_007
crossref_primary_10_1016_j_sbi_2008_06_007
elsevier_sciencedirect_doi_10_1016_j_sbi_2008_06_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in structural biology
PublicationTitleAlternate Curr Opin Struct Biol
PublicationYear 2008
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Boyer (bib26) 1997; 66
Mikolosko, Bobyk, Zgurskaya, Ghosh (bib14) 2006; 14
Furuike, Hossain, Maki, Adachi, Suzuki, Kohori, Itoh, Yoshida, Kinosita (bib37) 2008; 319
Koronakis, Sharff, Koronakis, Luisi, Hughes (bib12) 2000; 405
Sulavik, Houseweart, Cramer, Jiwani, Murgolo, Greene, DiDomenico, Shaw, Miller, Hare, Shimer (bib10) 2001; 45
Sennhauser, Amstutz, Briand, Storchenegger, Grütter (bib24) 2007; 5
Abramson, Kaback, Iwata (bib45) 2004; 14
Murakami, Yamaguchi (bib17) 2003; 13
Bolhuis, van Veen, Poolman, Driessen, Konings (bib33) 1997; 21
Lanyi (bib41) 2006; 1757
Schumacher, Miller, Grkovic, Brown, Skurray, Brennan (bib22) 2001; 294
Bohnert, Schuster, Fähnrich, Trittler, Kern (bib23) 2007; 59
Zgurskaya, Nikaido (bib11) 1999; 96
Guan, Nakae (bib38) 2001; 183
Lanyi (bib42) 2004; 21
Krishnamoorthy, Tikhonova, Zgurskaya (bib29) 2008; 190
Seeger, von Ballmoos, Eicher, Brandstätter, Verrey, Diederichs, Pos (bib27) 2008; 15
Abrahams, Leslie, Lutter, Walker (bib35) 1994; 370
Paulsen, Park, Choi, Saier (bib7) 1997; 156
Eswaran, Koronakis, Higgins, Hughes, Koronakis (bib13) 2004; 14
Lomovskaya, Zgurskaya, Nikaido (bib18) 2002; 20
Tikhonova, Zgurskaya (bib8) 2004; 279
Takatsuka, Nikaido (bib28) 2007; 189
Jardetzky (bib48) 1966; 211
Murakami, Nakashima, Yamashita, Matsumoto, Yamaguchi (bib19) 2006; 443
Majumdar, Smirnova, Kasho, Nir, Kong, Weiss, Kaback (bib44) 2007; 104
Dawson, Locher (bib46) 2006; 443
Shilling, Venter, Velamakanni, Bapna, Woebking, Shahi, van Veen (bib49) 2006; 27
Li, Nikaido (bib1) 2004; 64
Monod (bib31) 1966; 154
Hollenstein, Dawson, Locher (bib47) 2007; 17
Tamura, Murakami, Oyama, Ishiguro, Yamaguchi (bib9) 2005; 44
Zgurskaya, Nikaido (bib15) 2000; 37
Abramson, Smirnova, Kasho, Verner, Kaback, Iwata (bib43) 2003; 301
Lomovskaya, Totrov (bib34) 2005; 187
Lobedanz, Bokma, Symmons, Koronakis, Hughes, Koronakis (bib50) 2007; 104
Seeger, Schiefner, Eicher, Verrey, Diederichs, Pos (bib20) 2006; 313
Poole, Krebes, McNally, Neshat (bib2) 1993; 175
Okusu, Ma, Nikaido (bib5) 1996; 178
Murata, Yamato, Kakinuma, Leslie, Walker (bib39) 2005; 308
Dinh, Paulsen, Saier (bib6) 1994; 176
Murakami, Nakashima, Yamashita, Yamaguchi (bib16) 2002; 419
Lanyi (bib40) 2007; 12
Dastidar, Mao, Lomovskaya, Zgurskaya (bib30) 2007; 189
Goldsmith (bib32) 1996; 10
Stock, Gibbons, Arechaga, Leslie, Walker (bib36) 2000; 10
Lomovskaya, Zgurskaya, Totrov, Watkins (bib21) 2007; 6
Murakami, Tamura, Saito, Hirata, Yamaguchi (bib25) 2004; 279
Ma, Cook, Hearst, Nikaido (bib4) 1994; 2
Poole (bib3) 2001; 4
Schumacher (10.1016/j.sbi.2008.06.007_bib22) 2001; 294
Ma (10.1016/j.sbi.2008.06.007_bib4) 1994; 2
Koronakis (10.1016/j.sbi.2008.06.007_bib12) 2000; 405
Shilling (10.1016/j.sbi.2008.06.007_bib49) 2006; 27
Krishnamoorthy (10.1016/j.sbi.2008.06.007_bib29) 2008; 190
Sennhauser (10.1016/j.sbi.2008.06.007_bib24_1) 2007; 5
Murakami (10.1016/j.sbi.2008.06.007_bib25) 2004; 279
Monod (10.1016/j.sbi.2008.06.007_bib31) 1966; 154
Hollenstein (10.1016/j.sbi.2008.06.007_bib47) 2007; 17
Murata (10.1016/j.sbi.2008.06.007_bib39) 2005; 308
Abramson (10.1016/j.sbi.2008.06.007_bib43) 2003; 301
Majumdar (10.1016/j.sbi.2008.06.007_bib44_1) 2007; 104
Paulsen (10.1016/j.sbi.2008.06.007_bib7) 1997; 156
Li (10.1016/j.sbi.2008.06.007_bib1) 2004; 64
Zgurskaya (10.1016/j.sbi.2008.06.007_bib15) 2000; 37
Boyer (10.1016/j.sbi.2008.06.007_bib26) 1997; 66
Mikolosko (10.1016/j.sbi.2008.06.007_bib14) 2006; 14
Goldsmith (10.1016/j.sbi.2008.06.007_bib32) 1996; 10
Stock (10.1016/j.sbi.2008.06.007_bib36) 2000; 10
Seeger (10.1016/j.sbi.2008.06.007_bib27_1) 2008; 15
Jardetzky (10.1016/j.sbi.2008.06.007_bib48) 1966; 211
Murakami (10.1016/j.sbi.2008.06.007_bib19_1) 2006; 443
Eswaran (10.1016/j.sbi.2008.06.007_bib13) 2004; 14
Seeger (10.1016/j.sbi.2008.06.007_bib20_1) 2006; 313
Poole (10.1016/j.sbi.2008.06.007_bib3) 2001; 4
Takatsuka (10.1016/j.sbi.2008.06.007_bib28) 2007; 189
Sulavik (10.1016/j.sbi.2008.06.007_bib10) 2001; 45
Lomovskaya (10.1016/j.sbi.2008.06.007_bib18) 2002; 20
Abrahams (10.1016/j.sbi.2008.06.007_bib35) 1994; 370
Bolhuis (10.1016/j.sbi.2008.06.007_bib33) 1997; 21
Poole (10.1016/j.sbi.2008.06.007_bib2) 1993; 175
Guan (10.1016/j.sbi.2008.06.007_bib38) 2001; 183
Dastidar (10.1016/j.sbi.2008.06.007_bib30) 2007; 189
Lanyi (10.1016/j.sbi.2008.06.007_bib41) 2006; 1757
Murakami (10.1016/j.sbi.2008.06.007_bib16_1) 2002; 419
Abramson (10.1016/j.sbi.2008.06.007_bib45) 2004; 14
Dinh (10.1016/j.sbi.2008.06.007_bib6) 1994; 176
Furuike (10.1016/j.sbi.2008.06.007_bib37_1) 2008; 319
Lanyi (10.1016/j.sbi.2008.06.007_bib40) 2007; 12
Lanyi (10.1016/j.sbi.2008.06.007_bib42) 2004; 21
Bohnert (10.1016/j.sbi.2008.06.007_bib23) 2007; 59
Zgurskaya (10.1016/j.sbi.2008.06.007_bib11) 1999; 96
Lobedanz (10.1016/j.sbi.2008.06.007_bib50) 2007; 104
Okusu (10.1016/j.sbi.2008.06.007_bib5) 1996; 178
Lomovskaya (10.1016/j.sbi.2008.06.007_bib21) 2007; 6
Dawson (10.1016/j.sbi.2008.06.007_bib46_1) 2006; 443
Lomovskaya (10.1016/j.sbi.2008.06.007_bib34) 2005; 187
Murakami (10.1016/j.sbi.2008.06.007_bib17) 2003; 13
Tikhonova (10.1016/j.sbi.2008.06.007_bib8) 2004; 279
Tamura (10.1016/j.sbi.2008.06.007_bib9) 2005; 44
References_xml – volume: 6
  start-page: 56
  year: 2007
  end-page: 65
  ident: bib21
  article-title: Waltzing transporters and ‘the dance macabre’ between humans and bacteria
  publication-title: Nat Rev Drug Discov
– volume: 154
  start-page: 475
  year: 1966
  end-page: 483
  ident: bib31
  article-title: From enzymatic adaptation to allosteric transitions
  publication-title: Science
– volume: 370
  start-page: 621
  year: 1994
  end-page: 628
  ident: bib35
  article-title: Structure at 2.8
  publication-title: Nature
– volume: 45
  start-page: 1126
  year: 2001
  end-page: 1136
  ident: bib10
  article-title: Antibiotic susceptibility profiles of
  publication-title: Antimicrob Agents Chemother
– volume: 13
  start-page: 443
  year: 2003
  end-page: 452
  ident: bib17
  article-title: Multidrug-exporting secondary transporters
  publication-title: Curr Opin Struct Biol
– volume: 405
  start-page: 914
  year: 2000
  end-page: 919
  ident: bib12
  article-title: Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export
  publication-title: Nature
– volume: 443
  start-page: 173
  year: 2006
  end-page: 179
  ident: bib19
  article-title: Crystal structures of a multidrug transporter reveal a functionally rotating mechanism
  publication-title: Nature
– volume: 279
  start-page: 3743
  year: 2004
  end-page: 3748
  ident: bib25
  article-title: Extramembrane central pore of multidrug exporter AcrB in
  publication-title: J Biol Chem
– volume: 313
  start-page: 1295
  year: 2006
  end-page: 1298
  ident: bib20
  article-title: Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism
  publication-title: Science
– volume: 176
  start-page: 3825
  year: 1994
  end-page: 3831
  ident: bib6
  article-title: A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of Gram-negative bacteria
  publication-title: J Bacteriol
– volume: 294
  start-page: 2158
  year: 2001
  end-page: 2163
  ident: bib22
  article-title: Structural mechanisms of QacR induction and multidrug recognition
  publication-title: Science
– volume: 5
  start-page: e7
  year: 2007
  ident: bib24
  article-title: Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors
  publication-title: PLoS Biol
– volume: 190
  start-page: 691
  year: 2008
  end-page: 698
  ident: bib29
  article-title: Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable
  publication-title: J Bacteriol
– volume: 21
  start-page: 55
  year: 1997
  end-page: 84
  ident: bib33
  article-title: Mechanisms of multidrug transporters
  publication-title: FEMS Microbiol Rev
– volume: 189
  start-page: 5550
  year: 2007
  end-page: 5558
  ident: bib30
  article-title: Drug-induced conformational changes in multidrug efflux transporter AcrB from
  publication-title: J Bacteriol
– volume: 443
  start-page: 180
  year: 2006
  end-page: 185
  ident: bib46
  article-title: Structure of a bacterial multidrug ABC transporter
  publication-title: Nature
– volume: 10
  start-page: 672
  year: 2000
  end-page: 679
  ident: bib36
  article-title: The rotary mechanism of ATP synthase
  publication-title: Curr Opin Struct Biol
– volume: 14
  start-page: 413
  year: 2004
  end-page: 419
  ident: bib45
  article-title: Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily
  publication-title: Curr Opin Struct Biol
– volume: 15
  start-page: 199
  year: 2008
  end-page: 205
  ident: bib27
  article-title: Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB
  publication-title: Nat Struct Mol Biol
– volume: 178
  start-page: 306
  year: 1996
  end-page: 308
  ident: bib5
  article-title: AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of
  publication-title: J Bacteriol
– volume: 104
  start-page: 4612
  year: 2007
  end-page: 4617
  ident: bib50
  article-title: A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  start-page: 702
  year: 1996
  end-page: 708
  ident: bib32
  article-title: Allosteric enzymes as models for chemomechanical energy transducing assemblies
  publication-title: FASEB J
– volume: 301
  start-page: 610
  year: 2003
  end-page: 615
  ident: bib43
  article-title: Structure and mechanism of the lactose permease of
  publication-title: Science
– volume: 44
  start-page: 11115
  year: 2005
  end-page: 11121
  ident: bib9
  article-title: Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking
  publication-title: Biochemistry
– volume: 104
  start-page: 12640
  year: 2007
  end-page: 12645
  ident: bib44
  article-title: Single-molecule FRET reveals sugar-induced conformational dynamics in LacY
  publication-title: Proc Natl Acad Sci U S A
– volume: 187
  start-page: 1879
  year: 2005
  end-page: 1883
  ident: bib34
  article-title: Vacuuming the periplasm
  publication-title: J Bacteriol
– volume: 14
  start-page: 577
  year: 2006
  end-page: 587
  ident: bib14
  article-title: Conformational flexibility in the multidrug efflux system protein AcrA
  publication-title: Structure
– volume: 1757
  start-page: 1012
  year: 2006
  end-page: 1018
  ident: bib41
  article-title: Proton transfers in the bacteriorhodopsin photocycle
  publication-title: Biochim Biophys Acta
– volume: 27
  start-page: 195
  year: 2006
  end-page: 203
  ident: bib49
  article-title: New light on multidrug binding by an ATP-binding-cassette transporter
  publication-title: Trends Pharmacol Sci
– volume: 175
  start-page: 7363
  year: 1993
  end-page: 7372
  ident: bib2
  article-title: Multiple antibiotic resistance in
  publication-title: J Bacteriol
– volume: 14
  start-page: 741
  year: 2004
  end-page: 747
  ident: bib13
  article-title: Three's company: component structures bring a closer view of tripartite drug efflux pumps
  publication-title: Curr Opin Struct Biol
– volume: 20
  start-page: 1210
  year: 2002
  end-page: 1212
  ident: bib18
  article-title: It takes three to tango
  publication-title: Nat Biotechnol
– volume: 64
  start-page: 159
  year: 2004
  end-page: 204
  ident: bib1
  article-title: Efflux-mediated drug resistance in bacteria
  publication-title: Drugs
– volume: 308
  start-page: 654
  year: 2005
  end-page: 659
  ident: bib39
  article-title: Structure of the rotor of the V-Type Na
  publication-title: Science
– volume: 2
  start-page: 489
  year: 1994
  end-page: 493
  ident: bib4
  article-title: Efflux pumps and drug resistance in Gram-negative bacteria
  publication-title: Trends Microbiol
– volume: 21
  start-page: 143
  year: 2004
  end-page: 150
  ident: bib42
  article-title: X-ray diffraction of bacteriorhodopsin photocycle intermediates
  publication-title: Mol Membr Biol
– volume: 37
  start-page: 219
  year: 2000
  end-page: 225
  ident: bib15
  article-title: Multidrug resistance mechanisms: drug efflux across two membranes
  publication-title: Mol Microbiol
– volume: 419
  start-page: 587
  year: 2002
  end-page: 593
  ident: bib16
  article-title: Crystal structure of bacterial multidrug efflux transporter AcrB
  publication-title: Nature
– volume: 189
  start-page: 8677
  year: 2007
  end-page: 8684
  ident: bib28
  article-title: Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of
  publication-title: J Bacteriol
– volume: 211
  start-page: 969
  year: 1966
  end-page: 970
  ident: bib48
  article-title: Simple allosteric model for membrane pumps
  publication-title: Nature
– volume: 4
  start-page: 500
  year: 2001
  end-page: 508
  ident: bib3
  article-title: Multidrug resistance in Gram-negative bacteria
  publication-title: Curr Opin Microbiol
– volume: 183
  start-page: 1734
  year: 2001
  end-page: 1739
  ident: bib38
  article-title: Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of
  publication-title: J Bacteriol
– volume: 319
  start-page: 955
  year: 2008
  end-page: 958
  ident: bib37
  article-title: Axle-less F
  publication-title: Science
– volume: 96
  start-page: 7190
  year: 1999
  end-page: 7195
  ident: bib11
  article-title: Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of
  publication-title: Proc Natl Acad Sci U S A
– volume: 279
  start-page: 32116
  year: 2004
  end-page: 32124
  ident: bib8
  article-title: AcrA, AcrB, and TolC of
  publication-title: J Biol Chem
– volume: 156
  start-page: 1
  year: 1997
  end-page: 8
  ident: bib7
  article-title: A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria
  publication-title: FEMS Microbiol Lett
– volume: 17
  start-page: 412
  year: 2007
  end-page: 418
  ident: bib47
  article-title: Structure and mechanism of ABC transporter proteins
  publication-title: Curr Opin Struct Biol
– volume: 59
  start-page: 1216
  year: 2007
  end-page: 1222
  ident: bib23
  article-title: Altered spectrum of multidrug resistance associated with a single point mutation in the
  publication-title: J Antimicrob Chemother
– volume: 66
  start-page: 717
  year: 1997
  end-page: 749
  ident: bib26
  article-title: The ATP synthase—a splendid molecular machine
  publication-title: Annu Rev Biochem
– volume: 12
  start-page: 210
  year: 2007
  end-page: 217
  ident: bib40
  article-title: Studies of the bacteriorhodopsin photocycle without the use of light: clues to proton transfer coupled reactions
  publication-title: J Mol Microbiol Biotechnol
– volume: 2
  start-page: 489
  year: 1994
  ident: 10.1016/j.sbi.2008.06.007_bib4
  article-title: Efflux pumps and drug resistance in Gram-negative bacteria
  publication-title: Trends Microbiol
  doi: 10.1016/0966-842X(94)90654-8
– volume: 154
  start-page: 475
  year: 1966
  ident: 10.1016/j.sbi.2008.06.007_bib31
  article-title: From enzymatic adaptation to allosteric transitions
  publication-title: Science
  doi: 10.1126/science.154.3748.475
– volume: 6
  start-page: 56
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib21
  article-title: Waltzing transporters and ‘the dance macabre’ between humans and bacteria
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd2200
– volume: 190
  start-page: 691
  year: 2008
  ident: 10.1016/j.sbi.2008.06.007_bib29
  article-title: Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB
  publication-title: J Bacteriol
  doi: 10.1128/JB.01276-07
– volume: 66
  start-page: 717
  year: 1997
  ident: 10.1016/j.sbi.2008.06.007_bib26
  article-title: The ATP synthase—a splendid molecular machine
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.66.1.717
– volume: 64
  start-page: 159
  year: 2004
  ident: 10.1016/j.sbi.2008.06.007_bib1
  article-title: Efflux-mediated drug resistance in bacteria
  publication-title: Drugs
  doi: 10.2165/00003495-200464020-00004
– volume: 15
  start-page: 199
  year: 2008
  ident: 10.1016/j.sbi.2008.06.007_bib27_1
  article-title: Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1379
– volume: 21
  start-page: 143
  year: 2004
  ident: 10.1016/j.sbi.2008.06.007_bib42
  article-title: X-ray diffraction of bacteriorhodopsin photocycle intermediates
  publication-title: Mol Membr Biol
  doi: 10.1080/09687680410001666345
– volume: 419
  start-page: 587
  year: 2002
  ident: 10.1016/j.sbi.2008.06.007_bib16_1
  article-title: Crystal structure of bacterial multidrug efflux transporter AcrB
  publication-title: Nature
  doi: 10.1038/nature01050
– volume: 294
  start-page: 2158
  year: 2001
  ident: 10.1016/j.sbi.2008.06.007_bib22
  article-title: Structural mechanisms of QacR induction and multidrug recognition
  publication-title: Science
  doi: 10.1126/science.1066020
– volume: 1757
  start-page: 1012
  year: 2006
  ident: 10.1016/j.sbi.2008.06.007_bib41
  article-title: Proton transfers in the bacteriorhodopsin photocycle
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2005.11.003
– volume: 4
  start-page: 500
  year: 2001
  ident: 10.1016/j.sbi.2008.06.007_bib3
  article-title: Multidrug resistance in Gram-negative bacteria
  publication-title: Curr Opin Microbiol
  doi: 10.1016/S1369-5274(00)00242-3
– volume: 104
  start-page: 4612
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib50
  article-title: A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0610160104
– volume: 370
  start-page: 621
  year: 1994
  ident: 10.1016/j.sbi.2008.06.007_bib35
  article-title: Structure at 2.8Å resolution of F1-ATPase from bovine heart mitochondria
  publication-title: Nature
  doi: 10.1038/370621a0
– volume: 319
  start-page: 955
  year: 2008
  ident: 10.1016/j.sbi.2008.06.007_bib37_1
  article-title: Axle-less F1-ATPase rotates in the correct direction
  publication-title: Science
  doi: 10.1126/science.1151343
– volume: 27
  start-page: 195
  year: 2006
  ident: 10.1016/j.sbi.2008.06.007_bib49
  article-title: New light on multidrug binding by an ATP-binding-cassette transporter
  publication-title: Trends Pharmacol Sci
  doi: 10.1016/j.tips.2006.02.008
– volume: 301
  start-page: 610
  year: 2003
  ident: 10.1016/j.sbi.2008.06.007_bib43
  article-title: Structure and mechanism of the lactose permease of Escherichia coli
  publication-title: Science
  doi: 10.1126/science.1088196
– volume: 104
  start-page: 12640
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib44_1
  article-title: Single-molecule FRET reveals sugar-induced conformational dynamics in LacY
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0700969104
– volume: 20
  start-page: 1210
  year: 2002
  ident: 10.1016/j.sbi.2008.06.007_bib18
  article-title: It takes three to tango
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt1202-1210
– volume: 443
  start-page: 180
  year: 2006
  ident: 10.1016/j.sbi.2008.06.007_bib46_1
  article-title: Structure of a bacterial multidrug ABC transporter
  publication-title: Nature
  doi: 10.1038/nature05155
– volume: 10
  start-page: 702
  year: 1996
  ident: 10.1016/j.sbi.2008.06.007_bib32
  article-title: Allosteric enzymes as models for chemomechanical energy transducing assemblies
  publication-title: FASEB J
  doi: 10.1096/fasebj.10.7.8635687
– volume: 14
  start-page: 413
  year: 2004
  ident: 10.1016/j.sbi.2008.06.007_bib45
  article-title: Structural comparison of lactose permease and the glycerol-3-phosphate antiporter: members of the major facilitator superfamily
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2004.07.005
– volume: 308
  start-page: 654
  year: 2005
  ident: 10.1016/j.sbi.2008.06.007_bib39
  article-title: Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae
  publication-title: Science
  doi: 10.1126/science.1110064
– volume: 17
  start-page: 412
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib47
  article-title: Structure and mechanism of ABC transporter proteins
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2007.07.003
– volume: 175
  start-page: 7363
  year: 1993
  ident: 10.1016/j.sbi.2008.06.007_bib2
  article-title: Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon
  publication-title: J Bacteriol
  doi: 10.1128/jb.175.22.7363-7372.1993
– volume: 279
  start-page: 32116
  year: 2004
  ident: 10.1016/j.sbi.2008.06.007_bib8
  article-title: AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M402230200
– volume: 405
  start-page: 914
  year: 2000
  ident: 10.1016/j.sbi.2008.06.007_bib12
  article-title: Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export
  publication-title: Nature
  doi: 10.1038/35016007
– volume: 211
  start-page: 969
  year: 1966
  ident: 10.1016/j.sbi.2008.06.007_bib48
  article-title: Simple allosteric model for membrane pumps
  publication-title: Nature
  doi: 10.1038/211969a0
– volume: 96
  start-page: 7190
  year: 1999
  ident: 10.1016/j.sbi.2008.06.007_bib11
  article-title: Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.13.7190
– volume: 5
  start-page: e7
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib24_1
  article-title: Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0050007
– volume: 37
  start-page: 219
  year: 2000
  ident: 10.1016/j.sbi.2008.06.007_bib15
  article-title: Multidrug resistance mechanisms: drug efflux across two membranes
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2000.01926.x
– volume: 279
  start-page: 3743
  year: 2004
  ident: 10.1016/j.sbi.2008.06.007_bib25
  article-title: Extramembrane central pore of multidrug exporter AcrB in Escherichia coli plays an important role in drug transport
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M308893200
– volume: 189
  start-page: 5550
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib30
  article-title: Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae
  publication-title: J Bacteriol
  doi: 10.1128/JB.00471-07
– volume: 183
  start-page: 1734
  year: 2001
  ident: 10.1016/j.sbi.2008.06.007_bib38
  article-title: Identification of essential charged residues in transmembrane segments of the multidrug transporter MexB of Pseudomonas aeruginosa
  publication-title: J Bacteriol
  doi: 10.1128/JB.183.5.1734-1739.2001
– volume: 178
  start-page: 306
  year: 1996
  ident: 10.1016/j.sbi.2008.06.007_bib5
  article-title: AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants
  publication-title: J Bacteriol
  doi: 10.1128/jb.178.1.306-308.1996
– volume: 443
  start-page: 173
  year: 2006
  ident: 10.1016/j.sbi.2008.06.007_bib19_1
  article-title: Crystal structures of a multidrug transporter reveal a functionally rotating mechanism
  publication-title: Nature
  doi: 10.1038/nature05076
– volume: 59
  start-page: 1216
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib23
  article-title: Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF)
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkl426
– volume: 45
  start-page: 1126
  year: 2001
  ident: 10.1016/j.sbi.2008.06.007_bib10
  article-title: Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.45.4.1126-1136.2001
– volume: 21
  start-page: 55
  year: 1997
  ident: 10.1016/j.sbi.2008.06.007_bib33
  article-title: Mechanisms of multidrug transporters
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.1997.tb00345.x
– volume: 189
  start-page: 8677
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib28
  article-title: Site-directed disulfide cross-linking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli
  publication-title: J Bacteriol
  doi: 10.1128/JB.01127-07
– volume: 14
  start-page: 577
  year: 2006
  ident: 10.1016/j.sbi.2008.06.007_bib14
  article-title: Conformational flexibility in the multidrug efflux system protein AcrA
  publication-title: Structure
  doi: 10.1016/j.str.2005.11.015
– volume: 12
  start-page: 210
  year: 2007
  ident: 10.1016/j.sbi.2008.06.007_bib40
  article-title: Studies of the bacteriorhodopsin photocycle without the use of light: clues to proton transfer coupled reactions
  publication-title: J Mol Microbiol Biotechnol
– volume: 176
  start-page: 3825
  year: 1994
  ident: 10.1016/j.sbi.2008.06.007_bib6
  article-title: A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of Gram-negative bacteria
  publication-title: J Bacteriol
  doi: 10.1128/jb.176.13.3825-3831.1994
– volume: 14
  start-page: 741
  year: 2004
  ident: 10.1016/j.sbi.2008.06.007_bib13
  article-title: Three's company: component structures bring a closer view of tripartite drug efflux pumps
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2004.10.003
– volume: 44
  start-page: 11115
  year: 2005
  ident: 10.1016/j.sbi.2008.06.007_bib9
  article-title: Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking
  publication-title: Biochemistry
  doi: 10.1021/bi050452u
– volume: 187
  start-page: 1879
  year: 2005
  ident: 10.1016/j.sbi.2008.06.007_bib34
  article-title: Vacuuming the periplasm
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.6.1879-1883.2005
– volume: 313
  start-page: 1295
  year: 2006
  ident: 10.1016/j.sbi.2008.06.007_bib20_1
  article-title: Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism
  publication-title: Science
  doi: 10.1126/science.1131542
– volume: 10
  start-page: 672
  year: 2000
  ident: 10.1016/j.sbi.2008.06.007_bib36
  article-title: The rotary mechanism of ATP synthase
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/S0959-440X(00)00147-0
– volume: 156
  start-page: 1
  year: 1997
  ident: 10.1016/j.sbi.2008.06.007_bib7
  article-title: A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria
  publication-title: FEMS Microbiol Lett
  doi: 10.1016/S0378-1097(97)00379-0
– volume: 13
  start-page: 443
  year: 2003
  ident: 10.1016/j.sbi.2008.06.007_bib17
  article-title: Multidrug-exporting secondary transporters
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/S0959-440X(03)00109-X
SSID ssj0006148
Score 2.2683733
SecondaryResourceType review_article
Snippet Resistance nodulation cell division (RND) transporters are one of the main causes of the bacterial multidrug resistance. They pump a wide range of antibiotics...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 459
SubjectTerms Catalysis
Crystallography, X-Ray
Escherichia coli
Ion Transport
Multidrug Resistance-Associated Proteins - chemistry
Multidrug Resistance-Associated Proteins - physiology
Protein Conformation
Protons
Title Multidrug efflux transporter, AcrB—the pumping mechanism
URI https://dx.doi.org/10.1016/j.sbi.2008.06.007
https://www.ncbi.nlm.nih.gov/pubmed/18644451
https://www.proquest.com/docview/19801219
https://www.proquest.com/docview/69459130
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLYGCMEF8WY8Rg-cEGVt56YNtzExDRBcAGm3qkkTNARj2kOCC-JH8Av5JThrOsRhO3CNYimyE_tL8tkGOGIZV0GQCjfyWGpSctBNMY3cMJZBqliUBZl5Gri5Za0HvGqH7RI0ilwYQ6u0vj_36WNvbUeqVpvVXqdTvTMvWIhe22Aej3t0b18IapzR1l6oX163bicO2dS6zEvucdcIFJ-bY5rXQHQso9L8SkTTwtM0-DkOQ81VWLH40annS1yDkuquw2LeUfJ9HZYaRQO3DTgbJ9dm_dGjo7R-Hr05w0kl8_6JU5f98-_PLwKATo9sSiHMeVEmD7gzeNmEh-bFfaPl2lYJrkQeDF1N_o5OpmAYZpnPJYaSEdTSXDPkdGOjU0ZHU0lfciU86aUKmdYyQhFmWoaytgXz3deu2gHHj3WEcVaLA65QcCF8lDqlQK6EiKT2yuAVGkqkrSNu2lk8JwVh7Ckhpdr-loY0F5XheCLSy4tozJqMhdqTPzshISc_S-ywMFFCejbfHmlXvY4Gic9NFPb59BmMY8gpmJdhO7ft7ypjwosY-rv_W9QeLOf8EkMY3If5YX-kDgjEDEUF5k4__Irdqj8VLfBe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamIQQXxJvx7IEToqzt3LThBhNoPC8wabeqSRM0tI1pDwkuiB_BL-SX4PSxicN24BolkuXE9pfksw1wzBKuPC8WduCw2KTkoB1jHNh-KL1YsSDxEvM08PDIGk28bfmtEtSLXBhDq8x9f-bTU2-dj1RzbVb77Xb1ybxgITotg3kc7tC9fQHJfI11nn1OeR6m0mVWcI_bZnrxtZmSvIainfMpzZ9EMCs4zQKfaRC6XoWVHD1aF5mAa1BSvXVYzPpJfqzDUr1o37YB52lqbTIYv1hK68743RpN6pgPTq0LObj8-fom-Gf1aUcpgFldZbKA28PuJjSvr57rDTtvlGBL5N7I1uTtyC4FQz9JXC7Rl4yAluaaIaf7GtkYGaaSruRKONKJFTKtZYDCT7T0ZW0Lyr23ntoByw11gGFSCz2uUHAhXJQ6pjCuhAikdirgFBqKZF5F3DSz6EQFXew1IqXm3S0NZS6owMlkST8roTFvMhZqj_6cg4hc_LxlR8UWRaRn8-kR99TbeBi53MRgl8-ewTj6nEJ5BbazvZ1KGRJaRN_d_Z9QR7DUeH64j-5vHu_2YDljmhjq4D6UR4OxOiA4MxKH6XH9BQiw8SI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multidrug+efflux+transporter%2C+AcrB--the+pumping+mechanism&rft.jtitle=Current+opinion+in+structural+biology&rft.au=Murakami%2C+Satoshi&rft.date=2008-08-01&rft.issn=0959-440X&rft.volume=18&rft.issue=4&rft.spage=459&rft_id=info:doi/10.1016%2Fj.sbi.2008.06.007&rft_id=info%3Apmid%2F18644451&rft.externalDocID=18644451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-440X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-440X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-440X&client=summon