Learning a common dictionary for subject-transfer decoding with resting calibration
Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performa...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 111; pp. 167 - 178 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2015
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain–machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual–spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments.
•Novel method for extracting spatial bases of brain signals shared by multisubjects.•Subject-transfer decoding using activities on the common spatial bases.•Calibration of the decoders for target subjects using resting-state recordings.•Robust EEG analysis results based on a dataset of more than forty subjects.•Better subject-transfer decoding performance than existing methods. |
---|---|
AbstractList | Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments.Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain–machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual–spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. •Novel method for extracting spatial bases of brain signals shared by multisubjects.•Subject-transfer decoding using activities on the common spatial bases.•Calibration of the decoders for target subjects using resting-state recordings.•Robust EEG analysis results based on a dataset of more than forty subjects.•Better subject-transfer decoding performance than existing methods. |
Author | Morioka, Hiroshi Kawanabe, Motoaki Ikeda, Shigeyuki Shikauchi, Manabu Ishii, Shin Hirayama, Jun-ichiro Kanemura, Atsunori Ogawa, Takeshi |
Author_xml | – sequence: 1 givenname: Hiroshi surname: Morioka fullname: Morioka, Hiroshi organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan – sequence: 2 givenname: Atsunori surname: Kanemura fullname: Kanemura, Atsunori organization: National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan – sequence: 3 givenname: Jun-ichiro surname: Hirayama fullname: Hirayama, Jun-ichiro organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan – sequence: 4 givenname: Manabu surname: Shikauchi fullname: Shikauchi, Manabu organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan – sequence: 5 givenname: Takeshi surname: Ogawa fullname: Ogawa, Takeshi organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan – sequence: 6 givenname: Shigeyuki surname: Ikeda fullname: Ikeda, Shigeyuki organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan – sequence: 7 givenname: Motoaki surname: Kawanabe fullname: Kawanabe, Motoaki organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan – sequence: 8 givenname: Shin surname: Ishii fullname: Ishii, Shin email: ishii@i.kyoto-u.ac.jp organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25682943$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU2L1TAYhYOMOB_6F6Tgxk3rm6822YjO4BdccKGuQ5u-HVPbZExa5f57U--ocDfe1UngOYfknEty5oNHQgoKFQVavxgrj2sMbm5vsWJAZQWsyvKAXFDQstSyYWfbWfJSUarPyWVKIwBoKtQjcs5krZgW_IJ82mEbvfO3RVvYMM_BF72ziwu-jftiCLFIazeiXcoltj4NGIsebeg3x0-3fC0ipmW72HZyXWw352PycGinhE_u9Yp8efvm8837cvfx3Yeb17vSCs2WcuAcahAdcDXUsu-ttLTmFgRSoW0jJK8RO6Y1QCM4RwSqpLWopKh7qRS_Is8PuXcxfF_zO8zsksVpaj2GNRna5EqAMQb_R-uGMtqwZkt9doSOYY0-f2SjhFBMSpmpp_fU2s3Ym7uYx4h786fZDKgDYGNIKeLwF6FgthHNaP6NaLYRDTCTJVtfHlmtW343mzdw0ykB14cAzO3_cBhNsg69xd7FPKXpgzsl5NVRiJ2cd3nnb7g_LeIX6vbTsw |
CitedBy_id | crossref_primary_10_3390_brainsci13020221 crossref_primary_10_3390_s23239588 crossref_primary_10_1016_j_bspc_2022_104433 crossref_primary_10_1016_j_neucom_2024_127648 crossref_primary_10_1088_1741_2552_aa5a98 crossref_primary_10_1109_LSP_2020_3020215 crossref_primary_10_1016_j_neucom_2024_127805 crossref_primary_10_1109_TCDS_2019_2949306 crossref_primary_10_1088_1741_2552_ad3eb3 crossref_primary_10_1109_ACCESS_2023_3339665 crossref_primary_10_1587_transinf_2019EDP7309 crossref_primary_10_11834_jig_230031 crossref_primary_10_3389_fncom_2024_1431815 crossref_primary_10_1109_ACCESS_2020_2971600 crossref_primary_10_1080_2326263X_2016_1275488 crossref_primary_10_1109_MCI_2015_2501545 crossref_primary_10_1109_TAFFC_2024_3433470 crossref_primary_10_3389_frsip_2022_1019253 crossref_primary_10_1016_j_procs_2015_08_350 crossref_primary_10_1016_j_jneumeth_2020_108855 crossref_primary_10_3389_fnhum_2022_841312 crossref_primary_10_1088_1741_2552_aab2f2 crossref_primary_10_1109_TNSRE_2016_2627016 crossref_primary_10_1038_s41598_018_30676_3 crossref_primary_10_1109_TCSS_2022_3153660 crossref_primary_10_1016_j_bspc_2015_05_007 crossref_primary_10_1002_adfm_202200457 crossref_primary_10_1016_j_compbiomed_2016_10_019 crossref_primary_10_1016_j_compbiomed_2023_107658 crossref_primary_10_3390_s17051014 crossref_primary_10_3389_frobt_2020_558531 crossref_primary_10_1145_3230632 crossref_primary_10_1109_JSTSP_2016_2599297 crossref_primary_10_1016_j_bspc_2019_01_006 crossref_primary_10_1016_j_brainres_2022_148001 crossref_primary_10_1016_j_neucom_2021_10_078 crossref_primary_10_1142_S0129065722500058 crossref_primary_10_1142_S0129065722500575 crossref_primary_10_1016_j_compbiomed_2021_105048 crossref_primary_10_3389_fpsyg_2021_721266 crossref_primary_10_3389_fpsyg_2022_899983 crossref_primary_10_1109_TNSRE_2019_2946625 crossref_primary_10_3389_fncom_2019_00087 crossref_primary_10_1142_S0218126619501238 crossref_primary_10_3390_app10051804 crossref_primary_10_1088_1741_2552_ac5eb7 crossref_primary_10_1587_transcom_2016SNI0002 crossref_primary_10_1016_j_neuroimage_2018_03_032 crossref_primary_10_3389_fnhum_2021_635777 crossref_primary_10_1016_j_neunet_2024_106844 crossref_primary_10_1109_JBHI_2021_3062335 crossref_primary_10_1016_j_bspc_2022_103687 crossref_primary_10_1109_TCYB_2019_2904052 crossref_primary_10_1109_TIFS_2016_2577551 crossref_primary_10_1088_1741_2552_ab6d89 crossref_primary_10_3389_fnins_2020_606949 crossref_primary_10_1016_j_neucom_2020_01_041 crossref_primary_10_1109_TITS_2018_2889962 crossref_primary_10_1088_1741_2552_ab92b2 crossref_primary_10_1088_1741_2552_ad546d |
Cites_doi | 10.1038/nn1444 10.1088/1741-2560/9/5/056002 10.1016/j.neunet.2014.05.012 10.1126/science.1212003 10.1109/78.258082 10.1038/nrn1931 10.1016/j.jneumeth.2013.02.001 10.1523/JNEUROSCI.5641-10.2011 10.1016/j.neuron.2012.03.031 10.1016/j.neuron.2012.12.028 10.1109/RBME.2013.2290621 10.1162/jocn.2010.21557 10.1016/S0042-6989(97)00169-7 10.1073/pnas.1307947110 10.1093/cercor/bhq279 10.1371/journal.pcbi.1003005 10.1523/JNEUROSCI.20-06-j0002.2000 10.1109/TSP.2012.2207117 10.1016/j.neuroimage.2014.01.026 10.1016/j.neuroimage.2013.12.035 10.1016/j.ijpsycho.2013.10.013 10.1109/TPAMI.2011.156 10.1016/j.neuron.2008.09.010 10.1126/science.1063736 10.1523/JNEUROSCI.4748-07.2008 10.1523/JNEUROSCI.0539-09.2009 10.1523/JNEUROSCI.0875-06.2006 10.1038/nature02078 10.1109/MSP.2008.4408441 10.1109/TBME.2013.2275751 10.1073/pnas.1112685108 10.1126/science.1234330 10.1016/j.neuroimage.2011.08.029 10.1073/pnas.0504136102 10.1093/cercor/bhs343 10.1016/j.neuron.2009.03.014 10.1523/JNEUROSCI.5228-04.2006 10.1073/pnas.1113148109 10.1093/cercor/bht030 10.1016/j.neuroimage.2011.09.087 10.1016/j.neunet.2009.06.003 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. Copyright © 2015 Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 1, 2015 |
Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright © 2015 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 1, 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2015.02.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 178 |
ExternalDocumentID | 3660605801 25682943 10_1016_j_neuroimage_2015_02_015 S1053811915001160 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c492t-f330604b038f65ddc5c163c04e149c74536eeb299007433ee0185cce8546d5883 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Fri Jul 11 02:06:51 EDT 2025 Fri Jul 11 04:34:51 EDT 2025 Wed Aug 13 04:51:11 EDT 2025 Thu Apr 03 06:57:38 EDT 2025 Tue Jul 01 03:01:41 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Fri Feb 23 02:25:07 EST 2024 Tue Aug 26 16:31:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dictionary learning and sparse coding Subject-transfer decoding Brain–machine interface (BMI) Electroencephalography (EEG) Spatial attention Multi-subject–session analysis |
Language | English |
License | Copyright © 2015 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-f330604b038f65ddc5c163c04e149c74536eeb299007433ee0185cce8546d5883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25682943 |
PQID | 1674482555 |
PQPubID | 2031077 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1701502220 proquest_miscellaneous_1671217278 proquest_journals_1674482555 pubmed_primary_25682943 crossref_primary_10_1016_j_neuroimage_2015_02_015 crossref_citationtrail_10_1016_j_neuroimage_2015_02_015 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_02_015 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_02_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-01 2015-05-00 2015-May-01 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Olshausen, Field (bb0230) 1997; 37 Dikmen, Févotte (bb0080) 2012; 60 Aihara, Takeda, Takeda, Yasuda, Sato, Otaka, Hanakawa, Honda, Liu, Kawato, Sato, Osu (bb0005) 2012; 59 Haynes, Rees (bb0145) 2006; 7 Mairal, Bach, Ponce, Sapiro (bb0190) 2010; 11 Tan, Anton (bb0260) 2010 Mueller, Wang, Fox, Yeo, Sepulcre, Sabuncu, Shafee, Lu, Liu (bb0225) 2013; 77 Gao, Tsang, Chia, Zhao (bb0110) 2010 Worden, Foxe, Wang, Simpson (bb0275) 2000; 20 Grent-'t Jong, Boehler, Kenemans, Woldorff (bb0125) 2011; 21 Mallat, Zhang (bb0205) 1993; 41 Carlson, Vogelstein, Wu, Lian, Zhou, Stoetzner, Kipke, Weber, Dunson, Carin (bb0050) 2014; 61 Zhang, Li (bb0295) 2010 Zhou, Yang, Yu (bb0305) 2012 Fazli, Popescu, Danóczy, Blankertz, Müller, Grozea (bb0100) 2009; 22 Capotosto, Babiloni, Romani, Corbetta (bb0045) 2009; 29 Mairal, Bach, Ponce (bb0195) 2012; 34 Hunt, Dayan, Goodhill (bb0155) 2013; 9 Shibata, Watanabe, Sasaki, Kawato (bb0245) 2011; 334 Dornhege, Millán, Hinterberger, McFarland, Müller (bb0085) 2007 Siegel, Donner, Oostenveld, Fries, Engel (bb0255) 2008; 60 Händel, Haarmeier, Jensen (bb0135) 2011; 23 Thut, Nietzel, Brandt, Pascual-Leone (bb0265) 2006; 26 Wolpaw, Wolpaw (bb0270) 2012 Barthélemy, Gouy-Pailler, Isaac, Souloumiac, Larue, Mars (bb0020) 2013; 215 Wu, Srinivasan, Kaur, Cramer (bb0280) 2014; 91 Garrett, Kovacevic, McIntosh, Grady (bb0115) 2011; 31 Daitch, Sharma, Roland, Astafiev, Bundy, Gaona, Snyder, Shulman, Leuthardt, Corbetta (bb0060) 2013; 110 Yoshimura, DaSalla, Hanakawa, Sato, Koike (bb0290) 2012; 59 Chevallier, Barthelemy, Atif (bb0055) 2014 Kamitani, Tong (bb0160) 2005; 8 Ang, Chin, Zhang, Guan (bb0010) 2008 de Pasquale, Penna, Snyder, Marzetti, Pizzella, Romani, Corbetta (bb0065) 2012; 74 Capilla, Schoffelen, Paterson, Thut, Gross (bb0040) 2014; 24 Haxby, Gobbini, Furey, Ishai, Schouten, Pietrini (bb0140) 2001; 293 Morioka, Kanemura, Morimoto, Yoshioka, Oba, Kawanabe, Ishii (bb0220) 2014; 90 Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bb0105) 2005; 102 Lotte, Guan (bb0175) 2010 Graimann, Allison, Pfurtscheller (bb0120) 2011 Baldassarre, Lewis, Committeri, Snyder, Romani, Corbetta (bb0015) 2012; 109 Horikawa, Tamaki, Miyawaki, Kamitani (bb0150) 2013; 340 Kenet, Bibitchkov, Tsodyks, Grinvald, Arieli (bb0170) 2003; 425 Wyart, Baudry (bb0285) 2008; 28 Devlaminck, Wyns, Grosse-Wentrup, Otte, Santens (bb0070) 2011 Dikmen, Févotte (bb0075) 2011 Patel, Chellappa (bb0235) 2013 Bauer, Oostenveld, Peeters, Fries (bb0025) 2006; 26 McIntosh, Vakorin, Kovacevic, Wang, Diaconescu, Protzner (bb0215) 2014; 24 Zhou, Chen, Paisley, Ren, Sapiro, Carin (bb0300) 2009; vol. 22 Blankertz, Tomioka, Lemm, Kawanabe, Muller (bb0030) 2008; 25 Mairal, Bach, Ponce, Sapiro, Zisserman (bb0185) 2008; vol. 21 Massar, Kenemans, Schutter (bb0210) 2014; 91 Samek, Kawanabe, Muller (bb0240) 2014; 7 Eavani, Filipovych, Davatzikos, Satterthwaite, Gur, Gur (bb0090) 2012 Elad (bb0095) 2010 Luczak, Barthó, Harris (bb0180) 2009; 62 Hammer, Chavarriage, Millán (bb0130) 2011 Shin, Lee, Lee, Lee (bb0250) 2012; 9 Mallat (bb0200) 2008 Brookes, Woolrich, Luckhoo, Price, Hale, Stephenson, Barnes, Smith, Morris (bb0035) 2011; 108 Kang, Choi (bb0165) 2014; 57 Händel (10.1016/j.neuroimage.2015.02.015_bb0135) 2011; 23 Aihara (10.1016/j.neuroimage.2015.02.015_bb0005) 2012; 59 Haynes (10.1016/j.neuroimage.2015.02.015_bb0145) 2006; 7 Kenet (10.1016/j.neuroimage.2015.02.015_bb0170) 2003; 425 Grent-'t Jong (10.1016/j.neuroimage.2015.02.015_bb0125) 2011; 21 Capotosto (10.1016/j.neuroimage.2015.02.015_bb0045) 2009; 29 Fox (10.1016/j.neuroimage.2015.02.015_bb0105) 2005; 102 Wyart (10.1016/j.neuroimage.2015.02.015_bb0285) 2008; 28 Dornhege (10.1016/j.neuroimage.2015.02.015_bb0085) 2007 Wolpaw (10.1016/j.neuroimage.2015.02.015_bb0270) 2012 Dikmen (10.1016/j.neuroimage.2015.02.015_bb0075) 2011 Mairal (10.1016/j.neuroimage.2015.02.015_bb0195) 2012; 34 Gao (10.1016/j.neuroimage.2015.02.015_bb0110) 2010 Samek (10.1016/j.neuroimage.2015.02.015_bb0240) 2014; 7 Morioka (10.1016/j.neuroimage.2015.02.015_bb0220) 2014; 90 Zhou (10.1016/j.neuroimage.2015.02.015_bb0305) 2012 Tan (10.1016/j.neuroimage.2015.02.015_bb0260) 2010 Blankertz (10.1016/j.neuroimage.2015.02.015_bb0030) 2008; 25 Thut (10.1016/j.neuroimage.2015.02.015_bb0265) 2006; 26 Elad (10.1016/j.neuroimage.2015.02.015_bb0095) 2010 Worden (10.1016/j.neuroimage.2015.02.015_bb0275) 2000; 20 Barthélemy (10.1016/j.neuroimage.2015.02.015_bb0020) 2013; 215 Hammer (10.1016/j.neuroimage.2015.02.015_bb0130) 2011 Zhang (10.1016/j.neuroimage.2015.02.015_bb0295) 2010 Fazli (10.1016/j.neuroimage.2015.02.015_bb0100) 2009; 22 Mairal (10.1016/j.neuroimage.2015.02.015_bb0185) 2008; vol. 21 Brookes (10.1016/j.neuroimage.2015.02.015_bb0035) 2011; 108 Bauer (10.1016/j.neuroimage.2015.02.015_bb0025) 2006; 26 Ang (10.1016/j.neuroimage.2015.02.015_bb0010) 2008 Baldassarre (10.1016/j.neuroimage.2015.02.015_bb0015) 2012; 109 Mueller (10.1016/j.neuroimage.2015.02.015_bb0225) 2013; 77 Devlaminck (10.1016/j.neuroimage.2015.02.015_bb0070) 2011 Hunt (10.1016/j.neuroimage.2015.02.015_bb0155) 2013; 9 Yoshimura (10.1016/j.neuroimage.2015.02.015_bb0290) 2012; 59 Lotte (10.1016/j.neuroimage.2015.02.015_bb0175) 2010 Massar (10.1016/j.neuroimage.2015.02.015_bb0210) 2014; 91 Patel (10.1016/j.neuroimage.2015.02.015_bb0235) 2013 Mallat (10.1016/j.neuroimage.2015.02.015_bb0205) 1993; 41 McIntosh (10.1016/j.neuroimage.2015.02.015_bb0215) 2014; 24 Wu (10.1016/j.neuroimage.2015.02.015_bb0280) 2014; 91 Luczak (10.1016/j.neuroimage.2015.02.015_bb0180) 2009; 62 de Pasquale (10.1016/j.neuroimage.2015.02.015_bb0065) 2012; 74 Shibata (10.1016/j.neuroimage.2015.02.015_bb0245) 2011; 334 Graimann (10.1016/j.neuroimage.2015.02.015_bb0120) 2011 Garrett (10.1016/j.neuroimage.2015.02.015_bb0115) 2011; 31 Chevallier (10.1016/j.neuroimage.2015.02.015_bb0055) 2014 Capilla (10.1016/j.neuroimage.2015.02.015_bb0040) 2014; 24 Carlson (10.1016/j.neuroimage.2015.02.015_bb0050) 2014; 61 Olshausen (10.1016/j.neuroimage.2015.02.015_bb0230) 1997; 37 Mallat (10.1016/j.neuroimage.2015.02.015_bb0200) 2008 Zhou (10.1016/j.neuroimage.2015.02.015_bb0300) 2009; vol. 22 Dikmen (10.1016/j.neuroimage.2015.02.015_bb0080) 2012; 60 Kang (10.1016/j.neuroimage.2015.02.015_bb0165) 2014; 57 Haxby (10.1016/j.neuroimage.2015.02.015_bb0140) 2001; 293 Kamitani (10.1016/j.neuroimage.2015.02.015_bb0160) 2005; 8 Mairal (10.1016/j.neuroimage.2015.02.015_bb0190) 2010; 11 Siegel (10.1016/j.neuroimage.2015.02.015_bb0255) 2008; 60 Eavani (10.1016/j.neuroimage.2015.02.015_bb0090) 2012 Shin (10.1016/j.neuroimage.2015.02.015_bb0250) 2012; 9 Daitch (10.1016/j.neuroimage.2015.02.015_bb0060) 2013; 110 Horikawa (10.1016/j.neuroimage.2015.02.015_bb0150) 2013; 340 |
References_xml | – volume: 215 start-page: 19 year: 2013 end-page: 28 ident: bb0020 article-title: Multivariate temporal dictionary learning for EEG publication-title: J. Neurosci. Methods – year: 2007 ident: bb0085 article-title: Toward brain–computer interfacing – volume: 77 start-page: 586 year: 2013 end-page: 595 ident: bb0225 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron – volume: 28 start-page: 2667 year: 2008 end-page: 2679 ident: bb0285 article-title: Neural dissociation between visual awareness and spatial attention publication-title: J. Neurosci. – volume: 31 start-page: 4496 year: 2011 end-page: 4503 ident: bb0115 article-title: The importance of being variable publication-title: J. Neurosci. – volume: 340 start-page: 639 year: 2013 end-page: 642 ident: bb0150 article-title: Neural decoding of visual imagery during sleep publication-title: Science – volume: 26 start-page: 490 year: 2006 end-page: 501 ident: bb0025 article-title: Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas publication-title: J. Neurosci. – start-page: 1992 year: 2011 end-page: 1995 ident: bb0075 article-title: Maximum marginal likelihood estimation for nonnegative dictionary learning publication-title: IEEE Int. Conf. Acoust. Speech, Signal Process. (ICASSP) – volume: vol. 21 year: 2008 ident: bb0185 article-title: Supervised dictionary learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 61 start-page: 41 year: 2014 end-page: 54 ident: bb0050 article-title: Multichannel electrophysiological spike sorting via joint dictionary learning and mixture modeling publication-title: IEEE Trans. Biomed. Eng. – volume: 74 start-page: 753 year: 2012 end-page: 764 ident: bb0065 article-title: A cortical core for dynamic integration of functional networks in the resting human brain publication-title: Neuron – volume: 34 start-page: 791 year: 2012 end-page: 804 ident: bb0195 article-title: Task-driven dictionary learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 425 start-page: 954 year: 2003 end-page: 956 ident: bb0170 article-title: Spontaneously emerging cortical representations of visual attributes publication-title: Nature – volume: 62 start-page: 413 year: 2009 end-page: 425 ident: bb0180 article-title: Spontaneous events outline the realm of possible sensory responses in neocortical populations publication-title: Neuron – volume: 59 start-page: 1324 year: 2012 end-page: 1337 ident: bb0290 article-title: Reconstruction of flexor and extensor muscle activities from electroencephalography cortical currents publication-title: NeuroImage – start-page: 1582 year: 2012 end-page: 1585 ident: bb0305 article-title: Discriminative dictionary learning for EEG signal classification in brain–computer interface publication-title: Int. Conf. Control Autom. Robot. Vis. (ICARCV) 2012 – volume: 60 start-page: 709 year: 2008 end-page: 719 ident: bb0255 article-title: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention publication-title: Neuron – volume: 21 start-page: 2204 year: 2011 end-page: 2216 ident: bb0125 article-title: Differential functional roles of slow-wave and oscillatory-alpha activity in visual sensory cortex during anticipatory visual–spatial attention publication-title: Cereb. Cortex – start-page: 2691 year: 2010 end-page: 2698 ident: bb0295 article-title: Discriminative K-SVD for dictionary learning in face recognition publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) – volume: 41 start-page: 3397 year: 1993 end-page: 3415 ident: bb0205 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Signal Process. – start-page: 7178 year: 2014 end-page: 7182 ident: bb0055 article-title: Subspace metrics for multivariate dictionaries and application to EEG publication-title: Int. Conf. Acoust. Speech Signal Process. (ICASSP) 2014 – volume: 25 start-page: 41 year: 2008 end-page: 56 ident: bb0030 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. – volume: 60 start-page: 5163 year: 2012 end-page: 5175 ident: bb0080 article-title: Maximum marginal likelihood estimation for nonnegative dictionary learning in the gamma-Poisson model publication-title: IEEE Trans. Signal Process. – volume: 37 start-page: 3311 year: 1997 end-page: 3325 ident: bb0230 article-title: Sparse coding with an overcomplete basis set: a strategy employed by v1? publication-title: Vis. Res. – volume: 20 start-page: RC63 year: 2000 ident: bb0275 article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific publication-title: J. Neurosci. – volume: 29 start-page: 5863 year: 2009 end-page: 5872 ident: bb0045 article-title: Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms publication-title: J. Neurosci. – volume: 23 start-page: 2494 year: 2011 end-page: 2502 ident: bb0135 article-title: Alpha oscillations correlate with the successful inhibition of unattended stimuli publication-title: J. Cogn. Neurosci. – volume: 7 start-page: 50 year: 2014 end-page: 72 ident: bb0240 article-title: Divergence-based framework for common spatial patterns algorithms publication-title: IEEE Rev. Biomed. Eng. – volume: 108 start-page: 16783 year: 2011 end-page: 16788 ident: bb0035 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proc. Natl. Acad. Sci. – year: 2011 ident: bb0130 article-title: Learning dictionaries of spatial and temporal EEG primitives for brain–computer interfaces publication-title: Workshop Structured Sparsity: Learning and Inference, ICML – volume: 110 start-page: 19585 year: 2013 end-page: 19590 ident: bb0060 article-title: Frequency-specific mechanism links human brain networks for spatial attention publication-title: Proc. Natl. Acad. Sci. – volume: 8 start-page: 679 year: 2005 end-page: 685 ident: bb0160 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nat. Neurosci. – year: 2011 ident: bb0120 article-title: Brain–computer interfaces: revolutionizing human–computer interaction – year: 2012 ident: bb0270 article-title: Brain–computer interfaces: principles and practice – volume: vol. 22 year: 2009 ident: bb0300 article-title: Non-parametric Bayesian dictionary learning for sparse image representations publication-title: Adv. Neural Inf. Process. Syst. – volume: 11 start-page: 19 year: 2010 end-page: 60 ident: bb0190 article-title: Online learning for matrix factorization and sparse coding publication-title: J. Mach. Learn. Res. – year: 2010 ident: bb0260 article-title: Brain–computer interfaces: applying our minds to human–computer interaction – volume: 334 start-page: 1413 year: 2011 end-page: 1415 ident: bb0245 article-title: Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation publication-title: Science – start-page: 73 year: 2012 end-page: 76 ident: bb0090 article-title: Sparse dictionary learning of resting state fMRI networks publication-title: Int. Workshop Pattern Recognit. Neuroimaging (PRNI) 2012 – start-page: 3555 year: 2010 end-page: 3561 ident: bb0110 article-title: Local features are not lonely—Laplacian sparse coding for image classification publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) – volume: 24 start-page: 1806 year: 2014 end-page: 1817 ident: bb0215 article-title: Spatiotemporal dependency of age-related changes in brain signal variability publication-title: Cereb. Cortex – volume: 109 start-page: 3516 year: 2012 end-page: 3521 ident: bb0015 article-title: Individual variability in functional connectivity predicts performance of a perceptual task publication-title: Proc. Natl. Acad. Sci. – year: 2010 ident: bb0095 article-title: Sparse and redundant representations: from theory to applications in signal and image processing – year: 2008 ident: bb0200 article-title: A wavelet tour of signal processing: the sparse way – volume: 59 start-page: 4006 year: 2012 end-page: 4021 ident: bb0005 article-title: Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior publication-title: NeuroImage – volume: 24 start-page: 550 year: 2014 end-page: 561 ident: bb0040 article-title: Dissociated a-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception publication-title: Cereb. Cortex – volume: 9 start-page: e1003005 year: 2013 ident: bb0155 article-title: Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input publication-title: PLoS Comput. Biol. – volume: 26 start-page: 9494 year: 2006 end-page: 9502 ident: bb0265 article-title: -band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection publication-title: J. Neurosci. – volume: 91 start-page: 172 year: 2014 end-page: 177 ident: bb0210 article-title: Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment? publication-title: Int. J. Psychophysiol. – year: 2013 ident: bb0235 article-title: Sparse representations and compressive sensing for imaging and vision – volume: 57 start-page: 39 year: 2014 end-page: 50 ident: bb0165 article-title: Bayesian common spatial patterns for multi-subject EEG classification publication-title: Neural Netw. – start-page: 2390 year: 2008 end-page: 2397 ident: bb0010 article-title: Filter bank common spatial pattern (FBCSP) in brain–computer interface publication-title: Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on – volume: 90 start-page: 128 year: 2014 end-page: 139 ident: bb0220 article-title: Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information publication-title: NeuroImage – year: 2011 ident: bb0070 article-title: Multisubject learning for common spatial patterns in motor-imagery BCI publication-title: Comput. Intell. Neurosci. – volume: 22 start-page: 1305 year: 2009 end-page: 1312 ident: bb0100 article-title: Subject-independent mental state classification in single trials publication-title: Neural Netw. – volume: 7 start-page: 523 year: 2006 end-page: 534 ident: bb0145 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. – volume: 9 year: 2012 ident: bb0250 article-title: Sparse representation-based classification scheme for motor imagery-based brain–computer interface systems publication-title: J. Neural Eng. – volume: 91 start-page: 84 year: 2014 end-page: 90 ident: bb0280 article-title: Resting-state cortical connectivity predicts motor skill acquisition publication-title: NeuroImage – volume: 102 start-page: 9673 year: 2005 end-page: 9678 ident: bb0105 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. – start-page: 614 year: 2010 end-page: 617 ident: bb0175 article-title: Learning from other subjects helps reducing brain–computer interface calibration time publication-title: IEEE Int. Conf. Acoust. Speech, Signal Process. (ICASSP) – volume: 293 start-page: 2425 year: 2001 end-page: 2430 ident: bb0140 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science – volume: 8 start-page: 679 year: 2005 ident: 10.1016/j.neuroimage.2015.02.015_bb0160 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nat. Neurosci. doi: 10.1038/nn1444 – volume: vol. 22 year: 2009 ident: 10.1016/j.neuroimage.2015.02.015_bb0300 article-title: Non-parametric Bayesian dictionary learning for sparse image representations – volume: 9 issue: 5 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0250 article-title: Sparse representation-based classification scheme for motor imagery-based brain–computer interface systems publication-title: J. Neural Eng. doi: 10.1088/1741-2560/9/5/056002 – volume: 57 start-page: 39 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0165 article-title: Bayesian common spatial patterns for multi-subject EEG classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.05.012 – start-page: 73 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0090 article-title: Sparse dictionary learning of resting state fMRI networks – year: 2013 ident: 10.1016/j.neuroimage.2015.02.015_bb0235 – volume: 334 start-page: 1413 issue: 6061 year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0245 article-title: Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation publication-title: Science doi: 10.1126/science.1212003 – volume: 41 start-page: 3397 issue: 12 year: 1993 ident: 10.1016/j.neuroimage.2015.02.015_bb0205 article-title: Matching pursuits with time-frequency dictionaries publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.258082 – start-page: 1582 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0305 article-title: Discriminative dictionary learning for EEG signal classification in brain–computer interface – volume: 7 start-page: 523 year: 2006 ident: 10.1016/j.neuroimage.2015.02.015_bb0145 article-title: Decoding mental states from brain activity in humans publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn1931 – volume: 215 start-page: 19 issue: 1 year: 2013 ident: 10.1016/j.neuroimage.2015.02.015_bb0020 article-title: Multivariate temporal dictionary learning for EEG publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.02.001 – start-page: 2691 year: 2010 ident: 10.1016/j.neuroimage.2015.02.015_bb0295 article-title: Discriminative K-SVD for dictionary learning in face recognition – volume: vol. 21 year: 2008 ident: 10.1016/j.neuroimage.2015.02.015_bb0185 article-title: Supervised dictionary learning – volume: 31 start-page: 4496 issue: 12 year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0115 article-title: The importance of being variable publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5641-10.2011 – year: 2010 ident: 10.1016/j.neuroimage.2015.02.015_bb0095 – volume: 74 start-page: 753 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0065 article-title: A cortical core for dynamic integration of functional networks in the resting human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.03.031 – volume: 77 start-page: 586 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2015.02.015_bb0225 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.12.028 – year: 2008 ident: 10.1016/j.neuroimage.2015.02.015_bb0200 – volume: 7 start-page: 50 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0240 article-title: Divergence-based framework for common spatial patterns algorithms publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2013.2290621 – volume: 23 start-page: 2494 issue: 9 year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0135 article-title: Alpha oscillations correlate with the successful inhibition of unattended stimuli publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn.2010.21557 – start-page: 614 year: 2010 ident: 10.1016/j.neuroimage.2015.02.015_bb0175 article-title: Learning from other subjects helps reducing brain–computer interface calibration time – volume: 37 start-page: 3311 issue: 23 year: 1997 ident: 10.1016/j.neuroimage.2015.02.015_bb0230 article-title: Sparse coding with an overcomplete basis set: a strategy employed by v1? publication-title: Vis. Res. doi: 10.1016/S0042-6989(97)00169-7 – year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0130 article-title: Learning dictionaries of spatial and temporal EEG primitives for brain–computer interfaces – volume: 110 start-page: 19585 issue: 48 year: 2013 ident: 10.1016/j.neuroimage.2015.02.015_bb0060 article-title: Frequency-specific mechanism links human brain networks for spatial attention publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1307947110 – volume: 21 start-page: 2204 issue: 10 year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0125 article-title: Differential functional roles of slow-wave and oscillatory-alpha activity in visual sensory cortex during anticipatory visual–spatial attention publication-title: Cereb. Cortex doi: 10.1093/cercor/bhq279 – volume: 9 start-page: e1003005 issue: 5 year: 2013 ident: 10.1016/j.neuroimage.2015.02.015_bb0155 article-title: Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1003005 – volume: 20 start-page: RC63 year: 2000 ident: 10.1016/j.neuroimage.2015.02.015_bb0275 article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.20-06-j0002.2000 – volume: 60 start-page: 5163 issue: 10 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0080 article-title: Maximum marginal likelihood estimation for nonnegative dictionary learning in the gamma-Poisson model publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2012.2207117 – volume: 91 start-page: 84 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0280 article-title: Resting-state cortical connectivity predicts motor skill acquisition publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.01.026 – volume: 90 start-page: 128 issue: 15 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0220 article-title: Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.035 – volume: 91 start-page: 172 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0210 article-title: Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment? publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2013.10.013 – volume: 34 start-page: 791 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0195 article-title: Task-driven dictionary learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.156 – volume: 60 start-page: 709 year: 2008 ident: 10.1016/j.neuroimage.2015.02.015_bb0255 article-title: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention publication-title: Neuron doi: 10.1016/j.neuron.2008.09.010 – volume: 293 start-page: 2425 issue: 5539 year: 2001 ident: 10.1016/j.neuroimage.2015.02.015_bb0140 article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex publication-title: Science doi: 10.1126/science.1063736 – issue: 8 year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0070 article-title: Multisubject learning for common spatial patterns in motor-imagery BCI publication-title: Comput. Intell. Neurosci. – volume: 28 start-page: 2667 year: 2008 ident: 10.1016/j.neuroimage.2015.02.015_bb0285 article-title: Neural dissociation between visual awareness and spatial attention publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4748-07.2008 – volume: 29 start-page: 5863 year: 2009 ident: 10.1016/j.neuroimage.2015.02.015_bb0045 article-title: Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0539-09.2009 – start-page: 1992 year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0075 article-title: Maximum marginal likelihood estimation for nonnegative dictionary learning – volume: 26 start-page: 9494 year: 2006 ident: 10.1016/j.neuroimage.2015.02.015_bb0265 article-title: α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0875-06.2006 – volume: 425 start-page: 954 year: 2003 ident: 10.1016/j.neuroimage.2015.02.015_bb0170 article-title: Spontaneously emerging cortical representations of visual attributes publication-title: Nature doi: 10.1038/nature02078 – volume: 25 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2015.02.015_bb0030 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0120 – volume: 61 start-page: 41 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0050 article-title: Multichannel electrophysiological spike sorting via joint dictionary learning and mixture modeling publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2275751 – year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0270 – volume: 108 start-page: 16783 issue: 40 year: 2011 ident: 10.1016/j.neuroimage.2015.02.015_bb0035 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1112685108 – volume: 340 start-page: 639 issue: 6132 year: 2013 ident: 10.1016/j.neuroimage.2015.02.015_bb0150 article-title: Neural decoding of visual imagery during sleep publication-title: Science doi: 10.1126/science.1234330 – start-page: 3555 year: 2010 ident: 10.1016/j.neuroimage.2015.02.015_bb0110 article-title: Local features are not lonely—Laplacian sparse coding for image classification – volume: 59 start-page: 1324 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0290 article-title: Reconstruction of flexor and extensor muscle activities from electroencephalography cortical currents publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.029 – volume: 102 start-page: 9673 issue: 27 year: 2005 ident: 10.1016/j.neuroimage.2015.02.015_bb0105 article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0504136102 – year: 2010 ident: 10.1016/j.neuroimage.2015.02.015_bb0260 – volume: 11 start-page: 19 year: 2010 ident: 10.1016/j.neuroimage.2015.02.015_bb0190 article-title: Online learning for matrix factorization and sparse coding publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 550 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0040 article-title: Dissociated a-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception publication-title: Cereb. Cortex doi: 10.1093/cercor/bhs343 – volume: 62 start-page: 413 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2015.02.015_bb0180 article-title: Spontaneous events outline the realm of possible sensory responses in neocortical populations publication-title: Neuron doi: 10.1016/j.neuron.2009.03.014 – start-page: 2390 year: 2008 ident: 10.1016/j.neuroimage.2015.02.015_bb0010 article-title: Filter bank common spatial pattern (FBCSP) in brain–computer interface – volume: 26 start-page: 490 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2015.02.015_bb0025 article-title: Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5228-04.2006 – volume: 109 start-page: 3516 issue: 9 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0015 article-title: Individual variability in functional connectivity predicts performance of a perceptual task publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1113148109 – start-page: 7178 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0055 article-title: Subspace metrics for multivariate dictionaries and application to EEG – volume: 24 start-page: 1806 issue: 7 year: 2014 ident: 10.1016/j.neuroimage.2015.02.015_bb0215 article-title: Spatiotemporal dependency of age-related changes in brain signal variability publication-title: Cereb. Cortex doi: 10.1093/cercor/bht030 – volume: 59 start-page: 4006 year: 2012 ident: 10.1016/j.neuroimage.2015.02.015_bb0005 article-title: Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.087 – year: 2007 ident: 10.1016/j.neuroimage.2015.02.015_bb0085 – volume: 22 start-page: 1305 issue: 9 year: 2009 ident: 10.1016/j.neuroimage.2015.02.015_bb0100 article-title: Subject-independent mental state classification in single trials publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.06.003 |
SSID | ssj0009148 |
Score | 2.4747727 |
Snippet | Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | Adult Brain Brain - physiology Brain-Computer Interfaces Brain–machine interface (BMI) Calibration Dictionary learning and sparse coding Electroencephalography Electroencephalography (EEG) Electroencephalography - methods Functional Neuroimaging - methods Humans Multi-subject–session analysis Neurosciences Signal processing Signal Processing, Computer-Assisted Spatial attention Studies Subject-transfer decoding |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86QXwRv61OieBrsF2SNsUHEXEMYb7oYG-h-ZhMdJv7ePC_965NtxeVPZXSHKSX3N3vLpc7Qq4dOMZJbiRLvVRMwI5hapAL5n0hXWE8YHYMDXSf005PPPVlPwTcZiGtstaJpaJ2Y4sx8hvMlhfgzkh5N_li2DUKT1dDC41NsoWlyzClK-tnq6K7iaiuwknOFAwImTxVfldZL3L4CVKLCV6yrNyJzXF_N09_wc_SDLX3yG7Aj_S-WvB9suFHB2S7G07ID8lLKJj6RgsKPwazpm5Y3l0opt8UECqdLQzGXti8hKx-Sh14oGjBKMZkKfbqwBdYO_SkkfKI9NqPrw8dFhonMCvy1pwNOMeaOCbmapBK56y0ALtsLDz4QzYTkqcePGowRAgguPcxWG2LDUxF6qRS_Jg0RuORPyV04Jwx3vOkMDl4KtaYIlUWBuUi45l0Eclqfmkbqopjc4sPXaePvesVpzVyWsctDY-IJEvKSVVZYw2avF4SXd8cBV2nQf2vQXu7pA3ookINa1I36x2gg5TP9GpPRuRq-RnkEw9dipEfL8oxCTYBy9Q_YzKMOwFSiyNyUu2uJUsAkqpWLvjZ_xM4Jzs42yoVs0ka8-nCXwBcmpvLUiZ-AEzcFIs priority: 102 providerName: ProQuest |
Title | Learning a common dictionary for subject-transfer decoding with resting calibration |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915001160 https://dx.doi.org/10.1016/j.neuroimage.2015.02.015 https://www.ncbi.nlm.nih.gov/pubmed/25682943 https://www.proquest.com/docview/1674482555 https://www.proquest.com/docview/1671217278 https://www.proquest.com/docview/1701502220 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYmhZBLSZumdfNAgVwV71rSapecEpPgPGxMHuCbWD0cXFonOPYhl_z2zGi1NoUmGHpZsbsa0M6ONN9I8yDk0IFhnBZGsszLnAmQGJaPCsG8L6UrjQfMjlsDvX7WvReXQzlskE4dC4NulXHtr9b0sFrHJ63IzdbTeNy6BWQA6gbsDRlOE9BuF0KhlB-9Lt08ilRU4XCSM-wdvXkqH6-QM3L8B2YuOnnJkL0TC-T-W0W9B0GDKjrfJJ8jhqQn1TC_kIaffCXrvXhKvkVuY9LUB1pS-C4QNOrGIX6hnL5QQKn0eW5w_4XNAmz1U-rACkUtRnFflmK9DryB_4fWNFJ-I_fnZ3edLovFE5gVRXvGRpxjXhyT8HyUSeestAC9bCI82ERWCckzD1Y1KCMEEdz7BDS3xSKmInMyz_k2WZs8TvwPQkfOGeM9T0tTgLVijSmz3EKnQiiupGsSVfNL25hZHAtc_Na1C9kvveS0Rk7rpK2haZJ0QflUZddYgaaof4muo0dhvdOgAlagPV7Q_iVlK1Lv1hKg40x_1hjFIcDMlvD6YPEa5igevJQT_zgPfVIsBKbyD_oo3HsCtJY0yfdKuhYsAViatwvBf_7X8HfIBt5V3pq7ZG02nfs9QFQzsx-mDFzVUO2TTyedm-sBthdX3T60p2f9wc0bBU8lcw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuFe8GCjUSHC121_auVxVC0IdS2kQIWqk3s36kKoKk5CHUP8VvZGbXm1xolUtPURRPtJodz3zfeDwD8MYjMU5Lq3gelOYSLYbrYSl5CJXylQ2I2Sk10B_kvVP5-UydrcHf9i4MlVW2PrF21H7sKEf-jqrlJdIZpT5c_uY0NYpOV9sRGo1ZHIWrP0jZpu8P9_D9vs2yg_2T3R6PUwW4k2U240Nk8HkibSL0MFfeO-UQk7hEBiQLrpBK5AHpJnppiq4ihARDmqPpnjL3SmuB_3sH1qVAKtOB9U_7gy9fl21-U9lcvlOC6zQtY-1QU1FWd6i8-IV-gkrKVN0rlMbx_j8gXgd468B38AA2ImJlHxsTewhrYfQI7vbjmfxj-BZbtJ6ziqEqUU_MX9S3JarJFUNMzKZzS9kePqtBcpgwj5yXYiajLDCj6SD0Ba2FuDtJPoHTW1HqU-iMxqOwCWzovbUhiLSyJXIjZ22Va4eLSlmIQvkuFK2-jIt9zGmcxk_TFqz9MEtNG9K0STKDH11IF5KXTS-PFWTK9pWY9q4qeleDAWcF2Z2FbMQzDU5ZUXqrtQAT_crULHdBF14vfkaPQMc81SiM5_WalMaOFfqGNQVluhAbJl141ljXQiUIgnVWSvH85gfYhnu9k_6xOT4cHL2A-_TkTSHoFnRmk3l4iWBtZl_FHcLg-21vyn9EmlDC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qheKL1O-zra6gj0uT7G52g4gU69FaWwQt3Nua_YhU9K7eB9J_zb_OmWRz96LlXvoUQnZCmMzHb2ZnZwBeBgyM88opXkZluESJ4aapJI-xVqF2ETE7pQZOz8qjc_lhpEYb8Kc_C0Nllb1NbA11mHjKke9TtbzEcEap_SaVRXw6HL69_MVpghTttPbjNDoROYlXvzF8m705PsR__aoohu-_vDviacIA97Iq5rzBaL7MpMuEaUoVglce8YnPZMTAwWupRBkx9ESLTZ5WxJihe_M06VOWQRkj8L234LYWKicd0yO9aviby-4YnhLc5HmVqoi62rK2V-XFT7QYVFym2q6hNJj3367xf9C3dYHDbbibsCs76ITtHmzE8X3YOk278w_gc2rW-o3VDJmKXGLhoj03UU-vGKJjNls4yvvweQuX45QFjH7JezLKBzOaE0I3KDcUxRPlQzi_EZY-gs3xZByfAGtCcC5GkdeuwijJO1eXxuOiSmqhVRiA7vllfepoToM1fti-dO27XXHaEqdtVli8DCBfUl52XT3WoKn6X2L7U6toZy26njVoXy9pE7LpEMua1Lu9BNhkYWZ2pQ8DeLF8jLaBNnzqcZws2jU5DSDT5po1mnJeiBKzATzupGvJEoTDpqikeHr9BzyHLVRF-_H47GQH7tCHdxWhu7A5ny7iHqK2uXvWqgeDrzetj38BPQ5Tkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+common+dictionary+for+subject-transfer+decoding+with+resting+calibration&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Morioka%2C+Hiroshi&rft.au=Kanemura%2C+Atsunori&rft.au=Hirayama%2C+Jun-ichiro&rft.au=Shikauchi%2C+Manabu&rft.date=2015-05-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=111&rft.spage=167&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.02.015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |