Learning a common dictionary for subject-transfer decoding with resting calibration

Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performa...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 111; pp. 167 - 178
Main Authors Morioka, Hiroshi, Kanemura, Atsunori, Hirayama, Jun-ichiro, Shikauchi, Manabu, Ogawa, Takeshi, Ikeda, Shigeyuki, Kawanabe, Motoaki, Ishii, Shin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2015
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain–machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual–spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. •Novel method for extracting spatial bases of brain signals shared by multisubjects.•Subject-transfer decoding using activities on the common spatial bases.•Calibration of the decoders for target subjects using resting-state recordings.•Robust EEG analysis results based on a dataset of more than forty subjects.•Better subject-transfer decoding performance than existing methods.
AbstractList Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments.
Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments.Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments.
Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain–machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual–spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. •Novel method for extracting spatial bases of brain signals shared by multisubjects.•Subject-transfer decoding using activities on the common spatial bases.•Calibration of the decoders for target subjects using resting-state recordings.•Robust EEG analysis results based on a dataset of more than forty subjects.•Better subject-transfer decoding performance than existing methods.
Author Morioka, Hiroshi
Kawanabe, Motoaki
Ikeda, Shigeyuki
Shikauchi, Manabu
Ishii, Shin
Hirayama, Jun-ichiro
Kanemura, Atsunori
Ogawa, Takeshi
Author_xml – sequence: 1
  givenname: Hiroshi
  surname: Morioka
  fullname: Morioka, Hiroshi
  organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan
– sequence: 2
  givenname: Atsunori
  surname: Kanemura
  fullname: Kanemura, Atsunori
  organization: National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
– sequence: 3
  givenname: Jun-ichiro
  surname: Hirayama
  fullname: Hirayama, Jun-ichiro
  organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan
– sequence: 4
  givenname: Manabu
  surname: Shikauchi
  fullname: Shikauchi, Manabu
  organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan
– sequence: 5
  givenname: Takeshi
  surname: Ogawa
  fullname: Ogawa, Takeshi
  organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan
– sequence: 6
  givenname: Shigeyuki
  surname: Ikeda
  fullname: Ikeda, Shigeyuki
  organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan
– sequence: 7
  givenname: Motoaki
  surname: Kawanabe
  fullname: Kawanabe, Motoaki
  organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan
– sequence: 8
  givenname: Shin
  surname: Ishii
  fullname: Ishii, Shin
  email: ishii@i.kyoto-u.ac.jp
  organization: ATR Cognitive Mechanisms Laboratories, Kyoto 619-0288, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25682943$$D View this record in MEDLINE/PubMed
BookMark eNqNkU2L1TAYhYOMOB_6F6Tgxk3rm6822YjO4BdccKGuQ5u-HVPbZExa5f57U--ocDfe1UngOYfknEty5oNHQgoKFQVavxgrj2sMbm5vsWJAZQWsyvKAXFDQstSyYWfbWfJSUarPyWVKIwBoKtQjcs5krZgW_IJ82mEbvfO3RVvYMM_BF72ziwu-jftiCLFIazeiXcoltj4NGIsebeg3x0-3fC0ipmW72HZyXWw352PycGinhE_u9Yp8efvm8837cvfx3Yeb17vSCs2WcuAcahAdcDXUsu-ttLTmFgRSoW0jJK8RO6Y1QCM4RwSqpLWopKh7qRS_Is8PuXcxfF_zO8zsksVpaj2GNRna5EqAMQb_R-uGMtqwZkt9doSOYY0-f2SjhFBMSpmpp_fU2s3Ym7uYx4h786fZDKgDYGNIKeLwF6FgthHNaP6NaLYRDTCTJVtfHlmtW343mzdw0ykB14cAzO3_cBhNsg69xd7FPKXpgzsl5NVRiJ2cd3nnb7g_LeIX6vbTsw
CitedBy_id crossref_primary_10_3390_brainsci13020221
crossref_primary_10_3390_s23239588
crossref_primary_10_1016_j_bspc_2022_104433
crossref_primary_10_1016_j_neucom_2024_127648
crossref_primary_10_1088_1741_2552_aa5a98
crossref_primary_10_1109_LSP_2020_3020215
crossref_primary_10_1016_j_neucom_2024_127805
crossref_primary_10_1109_TCDS_2019_2949306
crossref_primary_10_1088_1741_2552_ad3eb3
crossref_primary_10_1109_ACCESS_2023_3339665
crossref_primary_10_1587_transinf_2019EDP7309
crossref_primary_10_11834_jig_230031
crossref_primary_10_3389_fncom_2024_1431815
crossref_primary_10_1109_ACCESS_2020_2971600
crossref_primary_10_1080_2326263X_2016_1275488
crossref_primary_10_1109_MCI_2015_2501545
crossref_primary_10_1109_TAFFC_2024_3433470
crossref_primary_10_3389_frsip_2022_1019253
crossref_primary_10_1016_j_procs_2015_08_350
crossref_primary_10_1016_j_jneumeth_2020_108855
crossref_primary_10_3389_fnhum_2022_841312
crossref_primary_10_1088_1741_2552_aab2f2
crossref_primary_10_1109_TNSRE_2016_2627016
crossref_primary_10_1038_s41598_018_30676_3
crossref_primary_10_1109_TCSS_2022_3153660
crossref_primary_10_1016_j_bspc_2015_05_007
crossref_primary_10_1002_adfm_202200457
crossref_primary_10_1016_j_compbiomed_2016_10_019
crossref_primary_10_1016_j_compbiomed_2023_107658
crossref_primary_10_3390_s17051014
crossref_primary_10_3389_frobt_2020_558531
crossref_primary_10_1145_3230632
crossref_primary_10_1109_JSTSP_2016_2599297
crossref_primary_10_1016_j_bspc_2019_01_006
crossref_primary_10_1016_j_brainres_2022_148001
crossref_primary_10_1016_j_neucom_2021_10_078
crossref_primary_10_1142_S0129065722500058
crossref_primary_10_1142_S0129065722500575
crossref_primary_10_1016_j_compbiomed_2021_105048
crossref_primary_10_3389_fpsyg_2021_721266
crossref_primary_10_3389_fpsyg_2022_899983
crossref_primary_10_1109_TNSRE_2019_2946625
crossref_primary_10_3389_fncom_2019_00087
crossref_primary_10_1142_S0218126619501238
crossref_primary_10_3390_app10051804
crossref_primary_10_1088_1741_2552_ac5eb7
crossref_primary_10_1587_transcom_2016SNI0002
crossref_primary_10_1016_j_neuroimage_2018_03_032
crossref_primary_10_3389_fnhum_2021_635777
crossref_primary_10_1016_j_neunet_2024_106844
crossref_primary_10_1109_JBHI_2021_3062335
crossref_primary_10_1016_j_bspc_2022_103687
crossref_primary_10_1109_TCYB_2019_2904052
crossref_primary_10_1109_TIFS_2016_2577551
crossref_primary_10_1088_1741_2552_ab6d89
crossref_primary_10_3389_fnins_2020_606949
crossref_primary_10_1016_j_neucom_2020_01_041
crossref_primary_10_1109_TITS_2018_2889962
crossref_primary_10_1088_1741_2552_ab92b2
crossref_primary_10_1088_1741_2552_ad546d
Cites_doi 10.1038/nn1444
10.1088/1741-2560/9/5/056002
10.1016/j.neunet.2014.05.012
10.1126/science.1212003
10.1109/78.258082
10.1038/nrn1931
10.1016/j.jneumeth.2013.02.001
10.1523/JNEUROSCI.5641-10.2011
10.1016/j.neuron.2012.03.031
10.1016/j.neuron.2012.12.028
10.1109/RBME.2013.2290621
10.1162/jocn.2010.21557
10.1016/S0042-6989(97)00169-7
10.1073/pnas.1307947110
10.1093/cercor/bhq279
10.1371/journal.pcbi.1003005
10.1523/JNEUROSCI.20-06-j0002.2000
10.1109/TSP.2012.2207117
10.1016/j.neuroimage.2014.01.026
10.1016/j.neuroimage.2013.12.035
10.1016/j.ijpsycho.2013.10.013
10.1109/TPAMI.2011.156
10.1016/j.neuron.2008.09.010
10.1126/science.1063736
10.1523/JNEUROSCI.4748-07.2008
10.1523/JNEUROSCI.0539-09.2009
10.1523/JNEUROSCI.0875-06.2006
10.1038/nature02078
10.1109/MSP.2008.4408441
10.1109/TBME.2013.2275751
10.1073/pnas.1112685108
10.1126/science.1234330
10.1016/j.neuroimage.2011.08.029
10.1073/pnas.0504136102
10.1093/cercor/bhs343
10.1016/j.neuron.2009.03.014
10.1523/JNEUROSCI.5228-04.2006
10.1073/pnas.1113148109
10.1093/cercor/bht030
10.1016/j.neuroimage.2011.09.087
10.1016/j.neunet.2009.06.003
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright © 2015 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 1, 2015
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright © 2015 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 1, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2015.02.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE
MEDLINE - Academic

ProQuest One Psychology

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 178
ExternalDocumentID 3660605801
25682943
10_1016_j_neuroimage_2015_02_015
S1053811915001160
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c492t-f330604b038f65ddc5c163c04e149c74536eeb299007433ee0185cce8546d5883
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Fri Jul 11 02:06:51 EDT 2025
Fri Jul 11 04:34:51 EDT 2025
Wed Aug 13 04:51:11 EDT 2025
Thu Apr 03 06:57:38 EDT 2025
Tue Jul 01 03:01:41 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Fri Feb 23 02:25:07 EST 2024
Tue Aug 26 16:31:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Dictionary learning and sparse coding
Subject-transfer decoding
Brain–machine interface (BMI)
Electroencephalography (EEG)
Spatial attention
Multi-subject–session analysis
Language English
License Copyright © 2015 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-f330604b038f65ddc5c163c04e149c74536eeb299007433ee0185cce8546d5883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25682943
PQID 1674482555
PQPubID 2031077
PageCount 12
ParticipantIDs proquest_miscellaneous_1701502220
proquest_miscellaneous_1671217278
proquest_journals_1674482555
pubmed_primary_25682943
crossref_primary_10_1016_j_neuroimage_2015_02_015
crossref_citationtrail_10_1016_j_neuroimage_2015_02_015
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2015_02_015
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2015_02_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-01
2015-05-00
2015-May-01
20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2015
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Olshausen, Field (bb0230) 1997; 37
Dikmen, Févotte (bb0080) 2012; 60
Aihara, Takeda, Takeda, Yasuda, Sato, Otaka, Hanakawa, Honda, Liu, Kawato, Sato, Osu (bb0005) 2012; 59
Haynes, Rees (bb0145) 2006; 7
Mairal, Bach, Ponce, Sapiro (bb0190) 2010; 11
Tan, Anton (bb0260) 2010
Mueller, Wang, Fox, Yeo, Sepulcre, Sabuncu, Shafee, Lu, Liu (bb0225) 2013; 77
Gao, Tsang, Chia, Zhao (bb0110) 2010
Worden, Foxe, Wang, Simpson (bb0275) 2000; 20
Grent-'t Jong, Boehler, Kenemans, Woldorff (bb0125) 2011; 21
Mallat, Zhang (bb0205) 1993; 41
Carlson, Vogelstein, Wu, Lian, Zhou, Stoetzner, Kipke, Weber, Dunson, Carin (bb0050) 2014; 61
Zhang, Li (bb0295) 2010
Zhou, Yang, Yu (bb0305) 2012
Fazli, Popescu, Danóczy, Blankertz, Müller, Grozea (bb0100) 2009; 22
Capotosto, Babiloni, Romani, Corbetta (bb0045) 2009; 29
Mairal, Bach, Ponce (bb0195) 2012; 34
Hunt, Dayan, Goodhill (bb0155) 2013; 9
Shibata, Watanabe, Sasaki, Kawato (bb0245) 2011; 334
Dornhege, Millán, Hinterberger, McFarland, Müller (bb0085) 2007
Siegel, Donner, Oostenveld, Fries, Engel (bb0255) 2008; 60
Händel, Haarmeier, Jensen (bb0135) 2011; 23
Thut, Nietzel, Brandt, Pascual-Leone (bb0265) 2006; 26
Wolpaw, Wolpaw (bb0270) 2012
Barthélemy, Gouy-Pailler, Isaac, Souloumiac, Larue, Mars (bb0020) 2013; 215
Wu, Srinivasan, Kaur, Cramer (bb0280) 2014; 91
Garrett, Kovacevic, McIntosh, Grady (bb0115) 2011; 31
Daitch, Sharma, Roland, Astafiev, Bundy, Gaona, Snyder, Shulman, Leuthardt, Corbetta (bb0060) 2013; 110
Yoshimura, DaSalla, Hanakawa, Sato, Koike (bb0290) 2012; 59
Chevallier, Barthelemy, Atif (bb0055) 2014
Kamitani, Tong (bb0160) 2005; 8
Ang, Chin, Zhang, Guan (bb0010) 2008
de Pasquale, Penna, Snyder, Marzetti, Pizzella, Romani, Corbetta (bb0065) 2012; 74
Capilla, Schoffelen, Paterson, Thut, Gross (bb0040) 2014; 24
Haxby, Gobbini, Furey, Ishai, Schouten, Pietrini (bb0140) 2001; 293
Morioka, Kanemura, Morimoto, Yoshioka, Oba, Kawanabe, Ishii (bb0220) 2014; 90
Fox, Snyder, Vincent, Corbetta, Van Essen, Raichle (bb0105) 2005; 102
Lotte, Guan (bb0175) 2010
Graimann, Allison, Pfurtscheller (bb0120) 2011
Baldassarre, Lewis, Committeri, Snyder, Romani, Corbetta (bb0015) 2012; 109
Horikawa, Tamaki, Miyawaki, Kamitani (bb0150) 2013; 340
Kenet, Bibitchkov, Tsodyks, Grinvald, Arieli (bb0170) 2003; 425
Wyart, Baudry (bb0285) 2008; 28
Devlaminck, Wyns, Grosse-Wentrup, Otte, Santens (bb0070) 2011
Dikmen, Févotte (bb0075) 2011
Patel, Chellappa (bb0235) 2013
Bauer, Oostenveld, Peeters, Fries (bb0025) 2006; 26
McIntosh, Vakorin, Kovacevic, Wang, Diaconescu, Protzner (bb0215) 2014; 24
Zhou, Chen, Paisley, Ren, Sapiro, Carin (bb0300) 2009; vol. 22
Blankertz, Tomioka, Lemm, Kawanabe, Muller (bb0030) 2008; 25
Mairal, Bach, Ponce, Sapiro, Zisserman (bb0185) 2008; vol. 21
Massar, Kenemans, Schutter (bb0210) 2014; 91
Samek, Kawanabe, Muller (bb0240) 2014; 7
Eavani, Filipovych, Davatzikos, Satterthwaite, Gur, Gur (bb0090) 2012
Elad (bb0095) 2010
Luczak, Barthó, Harris (bb0180) 2009; 62
Hammer, Chavarriage, Millán (bb0130) 2011
Shin, Lee, Lee, Lee (bb0250) 2012; 9
Mallat (bb0200) 2008
Brookes, Woolrich, Luckhoo, Price, Hale, Stephenson, Barnes, Smith, Morris (bb0035) 2011; 108
Kang, Choi (bb0165) 2014; 57
Händel (10.1016/j.neuroimage.2015.02.015_bb0135) 2011; 23
Aihara (10.1016/j.neuroimage.2015.02.015_bb0005) 2012; 59
Haynes (10.1016/j.neuroimage.2015.02.015_bb0145) 2006; 7
Kenet (10.1016/j.neuroimage.2015.02.015_bb0170) 2003; 425
Grent-'t Jong (10.1016/j.neuroimage.2015.02.015_bb0125) 2011; 21
Capotosto (10.1016/j.neuroimage.2015.02.015_bb0045) 2009; 29
Fox (10.1016/j.neuroimage.2015.02.015_bb0105) 2005; 102
Wyart (10.1016/j.neuroimage.2015.02.015_bb0285) 2008; 28
Dornhege (10.1016/j.neuroimage.2015.02.015_bb0085) 2007
Wolpaw (10.1016/j.neuroimage.2015.02.015_bb0270) 2012
Dikmen (10.1016/j.neuroimage.2015.02.015_bb0075) 2011
Mairal (10.1016/j.neuroimage.2015.02.015_bb0195) 2012; 34
Gao (10.1016/j.neuroimage.2015.02.015_bb0110) 2010
Samek (10.1016/j.neuroimage.2015.02.015_bb0240) 2014; 7
Morioka (10.1016/j.neuroimage.2015.02.015_bb0220) 2014; 90
Zhou (10.1016/j.neuroimage.2015.02.015_bb0305) 2012
Tan (10.1016/j.neuroimage.2015.02.015_bb0260) 2010
Blankertz (10.1016/j.neuroimage.2015.02.015_bb0030) 2008; 25
Thut (10.1016/j.neuroimage.2015.02.015_bb0265) 2006; 26
Elad (10.1016/j.neuroimage.2015.02.015_bb0095) 2010
Worden (10.1016/j.neuroimage.2015.02.015_bb0275) 2000; 20
Barthélemy (10.1016/j.neuroimage.2015.02.015_bb0020) 2013; 215
Hammer (10.1016/j.neuroimage.2015.02.015_bb0130) 2011
Zhang (10.1016/j.neuroimage.2015.02.015_bb0295) 2010
Fazli (10.1016/j.neuroimage.2015.02.015_bb0100) 2009; 22
Mairal (10.1016/j.neuroimage.2015.02.015_bb0185) 2008; vol. 21
Brookes (10.1016/j.neuroimage.2015.02.015_bb0035) 2011; 108
Bauer (10.1016/j.neuroimage.2015.02.015_bb0025) 2006; 26
Ang (10.1016/j.neuroimage.2015.02.015_bb0010) 2008
Baldassarre (10.1016/j.neuroimage.2015.02.015_bb0015) 2012; 109
Mueller (10.1016/j.neuroimage.2015.02.015_bb0225) 2013; 77
Devlaminck (10.1016/j.neuroimage.2015.02.015_bb0070) 2011
Hunt (10.1016/j.neuroimage.2015.02.015_bb0155) 2013; 9
Yoshimura (10.1016/j.neuroimage.2015.02.015_bb0290) 2012; 59
Lotte (10.1016/j.neuroimage.2015.02.015_bb0175) 2010
Massar (10.1016/j.neuroimage.2015.02.015_bb0210) 2014; 91
Patel (10.1016/j.neuroimage.2015.02.015_bb0235) 2013
Mallat (10.1016/j.neuroimage.2015.02.015_bb0205) 1993; 41
McIntosh (10.1016/j.neuroimage.2015.02.015_bb0215) 2014; 24
Wu (10.1016/j.neuroimage.2015.02.015_bb0280) 2014; 91
Luczak (10.1016/j.neuroimage.2015.02.015_bb0180) 2009; 62
de Pasquale (10.1016/j.neuroimage.2015.02.015_bb0065) 2012; 74
Shibata (10.1016/j.neuroimage.2015.02.015_bb0245) 2011; 334
Graimann (10.1016/j.neuroimage.2015.02.015_bb0120) 2011
Garrett (10.1016/j.neuroimage.2015.02.015_bb0115) 2011; 31
Chevallier (10.1016/j.neuroimage.2015.02.015_bb0055) 2014
Capilla (10.1016/j.neuroimage.2015.02.015_bb0040) 2014; 24
Carlson (10.1016/j.neuroimage.2015.02.015_bb0050) 2014; 61
Olshausen (10.1016/j.neuroimage.2015.02.015_bb0230) 1997; 37
Mallat (10.1016/j.neuroimage.2015.02.015_bb0200) 2008
Zhou (10.1016/j.neuroimage.2015.02.015_bb0300) 2009; vol. 22
Dikmen (10.1016/j.neuroimage.2015.02.015_bb0080) 2012; 60
Kang (10.1016/j.neuroimage.2015.02.015_bb0165) 2014; 57
Haxby (10.1016/j.neuroimage.2015.02.015_bb0140) 2001; 293
Kamitani (10.1016/j.neuroimage.2015.02.015_bb0160) 2005; 8
Mairal (10.1016/j.neuroimage.2015.02.015_bb0190) 2010; 11
Siegel (10.1016/j.neuroimage.2015.02.015_bb0255) 2008; 60
Eavani (10.1016/j.neuroimage.2015.02.015_bb0090) 2012
Shin (10.1016/j.neuroimage.2015.02.015_bb0250) 2012; 9
Daitch (10.1016/j.neuroimage.2015.02.015_bb0060) 2013; 110
Horikawa (10.1016/j.neuroimage.2015.02.015_bb0150) 2013; 340
References_xml – volume: 215
  start-page: 19
  year: 2013
  end-page: 28
  ident: bb0020
  article-title: Multivariate temporal dictionary learning for EEG
  publication-title: J. Neurosci. Methods
– year: 2007
  ident: bb0085
  article-title: Toward brain–computer interfacing
– volume: 77
  start-page: 586
  year: 2013
  end-page: 595
  ident: bb0225
  article-title: Individual variability in functional connectivity architecture of the human brain
  publication-title: Neuron
– volume: 28
  start-page: 2667
  year: 2008
  end-page: 2679
  ident: bb0285
  article-title: Neural dissociation between visual awareness and spatial attention
  publication-title: J. Neurosci.
– volume: 31
  start-page: 4496
  year: 2011
  end-page: 4503
  ident: bb0115
  article-title: The importance of being variable
  publication-title: J. Neurosci.
– volume: 340
  start-page: 639
  year: 2013
  end-page: 642
  ident: bb0150
  article-title: Neural decoding of visual imagery during sleep
  publication-title: Science
– volume: 26
  start-page: 490
  year: 2006
  end-page: 501
  ident: bb0025
  article-title: Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas
  publication-title: J. Neurosci.
– start-page: 1992
  year: 2011
  end-page: 1995
  ident: bb0075
  article-title: Maximum marginal likelihood estimation for nonnegative dictionary learning
  publication-title: IEEE Int. Conf. Acoust. Speech, Signal Process. (ICASSP)
– volume: vol. 21
  year: 2008
  ident: bb0185
  article-title: Supervised dictionary learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 61
  start-page: 41
  year: 2014
  end-page: 54
  ident: bb0050
  article-title: Multichannel electrophysiological spike sorting via joint dictionary learning and mixture modeling
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 74
  start-page: 753
  year: 2012
  end-page: 764
  ident: bb0065
  article-title: A cortical core for dynamic integration of functional networks in the resting human brain
  publication-title: Neuron
– volume: 34
  start-page: 791
  year: 2012
  end-page: 804
  ident: bb0195
  article-title: Task-driven dictionary learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 425
  start-page: 954
  year: 2003
  end-page: 956
  ident: bb0170
  article-title: Spontaneously emerging cortical representations of visual attributes
  publication-title: Nature
– volume: 62
  start-page: 413
  year: 2009
  end-page: 425
  ident: bb0180
  article-title: Spontaneous events outline the realm of possible sensory responses in neocortical populations
  publication-title: Neuron
– volume: 59
  start-page: 1324
  year: 2012
  end-page: 1337
  ident: bb0290
  article-title: Reconstruction of flexor and extensor muscle activities from electroencephalography cortical currents
  publication-title: NeuroImage
– start-page: 1582
  year: 2012
  end-page: 1585
  ident: bb0305
  article-title: Discriminative dictionary learning for EEG signal classification in brain–computer interface
  publication-title: Int. Conf. Control Autom. Robot. Vis. (ICARCV) 2012
– volume: 60
  start-page: 709
  year: 2008
  end-page: 719
  ident: bb0255
  article-title: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention
  publication-title: Neuron
– volume: 21
  start-page: 2204
  year: 2011
  end-page: 2216
  ident: bb0125
  article-title: Differential functional roles of slow-wave and oscillatory-alpha activity in visual sensory cortex during anticipatory visual–spatial attention
  publication-title: Cereb. Cortex
– start-page: 2691
  year: 2010
  end-page: 2698
  ident: bb0295
  article-title: Discriminative K-SVD for dictionary learning in face recognition
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: bb0205
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
– start-page: 7178
  year: 2014
  end-page: 7182
  ident: bb0055
  article-title: Subspace metrics for multivariate dictionaries and application to EEG
  publication-title: Int. Conf. Acoust. Speech Signal Process. (ICASSP) 2014
– volume: 25
  start-page: 41
  year: 2008
  end-page: 56
  ident: bb0030
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 60
  start-page: 5163
  year: 2012
  end-page: 5175
  ident: bb0080
  article-title: Maximum marginal likelihood estimation for nonnegative dictionary learning in the gamma-Poisson model
  publication-title: IEEE Trans. Signal Process.
– volume: 37
  start-page: 3311
  year: 1997
  end-page: 3325
  ident: bb0230
  article-title: Sparse coding with an overcomplete basis set: a strategy employed by v1?
  publication-title: Vis. Res.
– volume: 20
  start-page: RC63
  year: 2000
  ident: bb0275
  article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific
  publication-title: J. Neurosci.
– volume: 29
  start-page: 5863
  year: 2009
  end-page: 5872
  ident: bb0045
  article-title: Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms
  publication-title: J. Neurosci.
– volume: 23
  start-page: 2494
  year: 2011
  end-page: 2502
  ident: bb0135
  article-title: Alpha oscillations correlate with the successful inhibition of unattended stimuli
  publication-title: J. Cogn. Neurosci.
– volume: 7
  start-page: 50
  year: 2014
  end-page: 72
  ident: bb0240
  article-title: Divergence-based framework for common spatial patterns algorithms
  publication-title: IEEE Rev. Biomed. Eng.
– volume: 108
  start-page: 16783
  year: 2011
  end-page: 16788
  ident: bb0035
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proc. Natl. Acad. Sci.
– year: 2011
  ident: bb0130
  article-title: Learning dictionaries of spatial and temporal EEG primitives for brain–computer interfaces
  publication-title: Workshop Structured Sparsity: Learning and Inference, ICML
– volume: 110
  start-page: 19585
  year: 2013
  end-page: 19590
  ident: bb0060
  article-title: Frequency-specific mechanism links human brain networks for spatial attention
  publication-title: Proc. Natl. Acad. Sci.
– volume: 8
  start-page: 679
  year: 2005
  end-page: 685
  ident: bb0160
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nat. Neurosci.
– year: 2011
  ident: bb0120
  article-title: Brain–computer interfaces: revolutionizing human–computer interaction
– year: 2012
  ident: bb0270
  article-title: Brain–computer interfaces: principles and practice
– volume: vol. 22
  year: 2009
  ident: bb0300
  article-title: Non-parametric Bayesian dictionary learning for sparse image representations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 19
  year: 2010
  end-page: 60
  ident: bb0190
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– year: 2010
  ident: bb0260
  article-title: Brain–computer interfaces: applying our minds to human–computer interaction
– volume: 334
  start-page: 1413
  year: 2011
  end-page: 1415
  ident: bb0245
  article-title: Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation
  publication-title: Science
– start-page: 73
  year: 2012
  end-page: 76
  ident: bb0090
  article-title: Sparse dictionary learning of resting state fMRI networks
  publication-title: Int. Workshop Pattern Recognit. Neuroimaging (PRNI) 2012
– start-page: 3555
  year: 2010
  end-page: 3561
  ident: bb0110
  article-title: Local features are not lonely—Laplacian sparse coding for image classification
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)
– volume: 24
  start-page: 1806
  year: 2014
  end-page: 1817
  ident: bb0215
  article-title: Spatiotemporal dependency of age-related changes in brain signal variability
  publication-title: Cereb. Cortex
– volume: 109
  start-page: 3516
  year: 2012
  end-page: 3521
  ident: bb0015
  article-title: Individual variability in functional connectivity predicts performance of a perceptual task
  publication-title: Proc. Natl. Acad. Sci.
– year: 2010
  ident: bb0095
  article-title: Sparse and redundant representations: from theory to applications in signal and image processing
– year: 2008
  ident: bb0200
  article-title: A wavelet tour of signal processing: the sparse way
– volume: 59
  start-page: 4006
  year: 2012
  end-page: 4021
  ident: bb0005
  article-title: Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior
  publication-title: NeuroImage
– volume: 24
  start-page: 550
  year: 2014
  end-page: 561
  ident: bb0040
  article-title: Dissociated a-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception
  publication-title: Cereb. Cortex
– volume: 9
  start-page: e1003005
  year: 2013
  ident: bb0155
  article-title: Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input
  publication-title: PLoS Comput. Biol.
– volume: 26
  start-page: 9494
  year: 2006
  end-page: 9502
  ident: bb0265
  article-title: -band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection
  publication-title: J. Neurosci.
– volume: 91
  start-page: 172
  year: 2014
  end-page: 177
  ident: bb0210
  article-title: Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment?
  publication-title: Int. J. Psychophysiol.
– year: 2013
  ident: bb0235
  article-title: Sparse representations and compressive sensing for imaging and vision
– volume: 57
  start-page: 39
  year: 2014
  end-page: 50
  ident: bb0165
  article-title: Bayesian common spatial patterns for multi-subject EEG classification
  publication-title: Neural Netw.
– start-page: 2390
  year: 2008
  end-page: 2397
  ident: bb0010
  article-title: Filter bank common spatial pattern (FBCSP) in brain–computer interface
  publication-title: Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). IEEE International Joint Conference on
– volume: 90
  start-page: 128
  year: 2014
  end-page: 139
  ident: bb0220
  article-title: Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information
  publication-title: NeuroImage
– year: 2011
  ident: bb0070
  article-title: Multisubject learning for common spatial patterns in motor-imagery BCI
  publication-title: Comput. Intell. Neurosci.
– volume: 22
  start-page: 1305
  year: 2009
  end-page: 1312
  ident: bb0100
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Netw.
– volume: 7
  start-page: 523
  year: 2006
  end-page: 534
  ident: bb0145
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
– volume: 9
  year: 2012
  ident: bb0250
  article-title: Sparse representation-based classification scheme for motor imagery-based brain–computer interface systems
  publication-title: J. Neural Eng.
– volume: 91
  start-page: 84
  year: 2014
  end-page: 90
  ident: bb0280
  article-title: Resting-state cortical connectivity predicts motor skill acquisition
  publication-title: NeuroImage
– volume: 102
  start-page: 9673
  year: 2005
  end-page: 9678
  ident: bb0105
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 614
  year: 2010
  end-page: 617
  ident: bb0175
  article-title: Learning from other subjects helps reducing brain–computer interface calibration time
  publication-title: IEEE Int. Conf. Acoust. Speech, Signal Process. (ICASSP)
– volume: 293
  start-page: 2425
  year: 2001
  end-page: 2430
  ident: bb0140
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
– volume: 8
  start-page: 679
  year: 2005
  ident: 10.1016/j.neuroimage.2015.02.015_bb0160
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1444
– volume: vol. 22
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.015_bb0300
  article-title: Non-parametric Bayesian dictionary learning for sparse image representations
– volume: 9
  issue: 5
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0250
  article-title: Sparse representation-based classification scheme for motor imagery-based brain–computer interface systems
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/9/5/056002
– volume: 57
  start-page: 39
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0165
  article-title: Bayesian common spatial patterns for multi-subject EEG classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.05.012
– start-page: 73
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0090
  article-title: Sparse dictionary learning of resting state fMRI networks
– year: 2013
  ident: 10.1016/j.neuroimage.2015.02.015_bb0235
– volume: 334
  start-page: 1413
  issue: 6061
  year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0245
  article-title: Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation
  publication-title: Science
  doi: 10.1126/science.1212003
– volume: 41
  start-page: 3397
  issue: 12
  year: 1993
  ident: 10.1016/j.neuroimage.2015.02.015_bb0205
  article-title: Matching pursuits with time-frequency dictionaries
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.258082
– start-page: 1582
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0305
  article-title: Discriminative dictionary learning for EEG signal classification in brain–computer interface
– volume: 7
  start-page: 523
  year: 2006
  ident: 10.1016/j.neuroimage.2015.02.015_bb0145
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn1931
– volume: 215
  start-page: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.015_bb0020
  article-title: Multivariate temporal dictionary learning for EEG
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.02.001
– start-page: 2691
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.015_bb0295
  article-title: Discriminative K-SVD for dictionary learning in face recognition
– volume: vol. 21
  year: 2008
  ident: 10.1016/j.neuroimage.2015.02.015_bb0185
  article-title: Supervised dictionary learning
– volume: 31
  start-page: 4496
  issue: 12
  year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0115
  article-title: The importance of being variable
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5641-10.2011
– year: 2010
  ident: 10.1016/j.neuroimage.2015.02.015_bb0095
– volume: 74
  start-page: 753
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0065
  article-title: A cortical core for dynamic integration of functional networks in the resting human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.031
– volume: 77
  start-page: 586
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.015_bb0225
  article-title: Individual variability in functional connectivity architecture of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.12.028
– year: 2008
  ident: 10.1016/j.neuroimage.2015.02.015_bb0200
– volume: 7
  start-page: 50
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0240
  article-title: Divergence-based framework for common spatial patterns algorithms
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2013.2290621
– volume: 23
  start-page: 2494
  issue: 9
  year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0135
  article-title: Alpha oscillations correlate with the successful inhibition of unattended stimuli
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2010.21557
– start-page: 614
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.015_bb0175
  article-title: Learning from other subjects helps reducing brain–computer interface calibration time
– volume: 37
  start-page: 3311
  issue: 23
  year: 1997
  ident: 10.1016/j.neuroimage.2015.02.015_bb0230
  article-title: Sparse coding with an overcomplete basis set: a strategy employed by v1?
  publication-title: Vis. Res.
  doi: 10.1016/S0042-6989(97)00169-7
– year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0130
  article-title: Learning dictionaries of spatial and temporal EEG primitives for brain–computer interfaces
– volume: 110
  start-page: 19585
  issue: 48
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.015_bb0060
  article-title: Frequency-specific mechanism links human brain networks for spatial attention
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1307947110
– volume: 21
  start-page: 2204
  issue: 10
  year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0125
  article-title: Differential functional roles of slow-wave and oscillatory-alpha activity in visual sensory cortex during anticipatory visual–spatial attention
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq279
– volume: 9
  start-page: e1003005
  issue: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.015_bb0155
  article-title: Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1003005
– volume: 20
  start-page: RC63
  year: 2000
  ident: 10.1016/j.neuroimage.2015.02.015_bb0275
  article-title: Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.20-06-j0002.2000
– volume: 60
  start-page: 5163
  issue: 10
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0080
  article-title: Maximum marginal likelihood estimation for nonnegative dictionary learning in the gamma-Poisson model
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2012.2207117
– volume: 91
  start-page: 84
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0280
  article-title: Resting-state cortical connectivity predicts motor skill acquisition
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.01.026
– volume: 90
  start-page: 128
  issue: 15
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0220
  article-title: Decoding spatial attention by using cortical currents estimated from electroencephalography with near-infrared spectroscopy prior information
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.035
– volume: 91
  start-page: 172
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0210
  article-title: Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment?
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2013.10.013
– volume: 34
  start-page: 791
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0195
  article-title: Task-driven dictionary learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.156
– volume: 60
  start-page: 709
  year: 2008
  ident: 10.1016/j.neuroimage.2015.02.015_bb0255
  article-title: Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.09.010
– volume: 293
  start-page: 2425
  issue: 5539
  year: 2001
  ident: 10.1016/j.neuroimage.2015.02.015_bb0140
  article-title: Distributed and overlapping representations of faces and objects in ventral temporal cortex
  publication-title: Science
  doi: 10.1126/science.1063736
– issue: 8
  year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0070
  article-title: Multisubject learning for common spatial patterns in motor-imagery BCI
  publication-title: Comput. Intell. Neurosci.
– volume: 28
  start-page: 2667
  year: 2008
  ident: 10.1016/j.neuroimage.2015.02.015_bb0285
  article-title: Neural dissociation between visual awareness and spatial attention
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4748-07.2008
– volume: 29
  start-page: 5863
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.015_bb0045
  article-title: Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0539-09.2009
– start-page: 1992
  year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0075
  article-title: Maximum marginal likelihood estimation for nonnegative dictionary learning
– volume: 26
  start-page: 9494
  year: 2006
  ident: 10.1016/j.neuroimage.2015.02.015_bb0265
  article-title: α-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0875-06.2006
– volume: 425
  start-page: 954
  year: 2003
  ident: 10.1016/j.neuroimage.2015.02.015_bb0170
  article-title: Spontaneously emerging cortical representations of visual attributes
  publication-title: Nature
  doi: 10.1038/nature02078
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2015.02.015_bb0030
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.4408441
– year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0120
– volume: 61
  start-page: 41
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0050
  article-title: Multichannel electrophysiological spike sorting via joint dictionary learning and mixture modeling
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2275751
– year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0270
– volume: 108
  start-page: 16783
  issue: 40
  year: 2011
  ident: 10.1016/j.neuroimage.2015.02.015_bb0035
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1112685108
– volume: 340
  start-page: 639
  issue: 6132
  year: 2013
  ident: 10.1016/j.neuroimage.2015.02.015_bb0150
  article-title: Neural decoding of visual imagery during sleep
  publication-title: Science
  doi: 10.1126/science.1234330
– start-page: 3555
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.015_bb0110
  article-title: Local features are not lonely—Laplacian sparse coding for image classification
– volume: 59
  start-page: 1324
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0290
  article-title: Reconstruction of flexor and extensor muscle activities from electroencephalography cortical currents
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.029
– volume: 102
  start-page: 9673
  issue: 27
  year: 2005
  ident: 10.1016/j.neuroimage.2015.02.015_bb0105
  article-title: The human brain is intrinsically organized into dynamic, anticorrelated functional networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0504136102
– year: 2010
  ident: 10.1016/j.neuroimage.2015.02.015_bb0260
– volume: 11
  start-page: 19
  year: 2010
  ident: 10.1016/j.neuroimage.2015.02.015_bb0190
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 550
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0040
  article-title: Dissociated a-band modulations in the dorsal and ventral visual pathways in visuospatial attention and perception
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhs343
– volume: 62
  start-page: 413
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.015_bb0180
  article-title: Spontaneous events outline the realm of possible sensory responses in neocortical populations
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.014
– start-page: 2390
  year: 2008
  ident: 10.1016/j.neuroimage.2015.02.015_bb0010
  article-title: Filter bank common spatial pattern (FBCSP) in brain–computer interface
– volume: 26
  start-page: 490
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2015.02.015_bb0025
  article-title: Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5228-04.2006
– volume: 109
  start-page: 3516
  issue: 9
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0015
  article-title: Individual variability in functional connectivity predicts performance of a perceptual task
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1113148109
– start-page: 7178
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0055
  article-title: Subspace metrics for multivariate dictionaries and application to EEG
– volume: 24
  start-page: 1806
  issue: 7
  year: 2014
  ident: 10.1016/j.neuroimage.2015.02.015_bb0215
  article-title: Spatiotemporal dependency of age-related changes in brain signal variability
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bht030
– volume: 59
  start-page: 4006
  year: 2012
  ident: 10.1016/j.neuroimage.2015.02.015_bb0005
  article-title: Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.087
– year: 2007
  ident: 10.1016/j.neuroimage.2015.02.015_bb0085
– volume: 22
  start-page: 1305
  issue: 9
  year: 2009
  ident: 10.1016/j.neuroimage.2015.02.015_bb0100
  article-title: Subject-independent mental state classification in single trials
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.06.003
SSID ssj0009148
Score 2.4747727
Snippet Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 167
SubjectTerms Adult
Brain
Brain - physiology
Brain-Computer Interfaces
Brain–machine interface (BMI)
Calibration
Dictionary learning and sparse coding
Electroencephalography
Electroencephalography (EEG)
Electroencephalography - methods
Functional Neuroimaging - methods
Humans
Multi-subject–session analysis
Neurosciences
Signal processing
Signal Processing, Computer-Assisted
Spatial attention
Studies
Subject-transfer decoding
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86QXwRv61OieBrsF2SNsUHEXEMYb7oYG-h-ZhMdJv7ePC_965NtxeVPZXSHKSX3N3vLpc7Qq4dOMZJbiRLvVRMwI5hapAL5n0hXWE8YHYMDXSf005PPPVlPwTcZiGtstaJpaJ2Y4sx8hvMlhfgzkh5N_li2DUKT1dDC41NsoWlyzClK-tnq6K7iaiuwknOFAwImTxVfldZL3L4CVKLCV6yrNyJzXF_N09_wc_SDLX3yG7Aj_S-WvB9suFHB2S7G07ID8lLKJj6RgsKPwazpm5Y3l0opt8UECqdLQzGXti8hKx-Sh14oGjBKMZkKfbqwBdYO_SkkfKI9NqPrw8dFhonMCvy1pwNOMeaOCbmapBK56y0ALtsLDz4QzYTkqcePGowRAgguPcxWG2LDUxF6qRS_Jg0RuORPyV04Jwx3vOkMDl4KtaYIlUWBuUi45l0Eclqfmkbqopjc4sPXaePvesVpzVyWsctDY-IJEvKSVVZYw2avF4SXd8cBV2nQf2vQXu7pA3ookINa1I36x2gg5TP9GpPRuRq-RnkEw9dipEfL8oxCTYBy9Q_YzKMOwFSiyNyUu2uJUsAkqpWLvjZ_xM4Jzs42yoVs0ka8-nCXwBcmpvLUiZ-AEzcFIs
  priority: 102
  providerName: ProQuest
Title Learning a common dictionary for subject-transfer decoding with resting calibration
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811915001160
https://dx.doi.org/10.1016/j.neuroimage.2015.02.015
https://www.ncbi.nlm.nih.gov/pubmed/25682943
https://www.proquest.com/docview/1674482555
https://www.proquest.com/docview/1671217278
https://www.proquest.com/docview/1701502220
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEBYmhZBLSZumdfNAgVwV71rSapecEpPgPGxMHuCbWD0cXFonOPYhl_z2zGi1NoUmGHpZsbsa0M6ONN9I8yDk0IFhnBZGsszLnAmQGJaPCsG8L6UrjQfMjlsDvX7WvReXQzlskE4dC4NulXHtr9b0sFrHJ63IzdbTeNy6BWQA6gbsDRlOE9BuF0KhlB-9Lt08ilRU4XCSM-wdvXkqH6-QM3L8B2YuOnnJkL0TC-T-W0W9B0GDKjrfJJ8jhqQn1TC_kIaffCXrvXhKvkVuY9LUB1pS-C4QNOrGIX6hnL5QQKn0eW5w_4XNAmz1U-rACkUtRnFflmK9DryB_4fWNFJ-I_fnZ3edLovFE5gVRXvGRpxjXhyT8HyUSeestAC9bCI82ERWCckzD1Y1KCMEEdz7BDS3xSKmInMyz_k2WZs8TvwPQkfOGeM9T0tTgLVijSmz3EKnQiiupGsSVfNL25hZHAtc_Na1C9kvveS0Rk7rpK2haZJ0QflUZddYgaaof4muo0dhvdOgAlagPV7Q_iVlK1Lv1hKg40x_1hjFIcDMlvD6YPEa5igevJQT_zgPfVIsBKbyD_oo3HsCtJY0yfdKuhYsAViatwvBf_7X8HfIBt5V3pq7ZG02nfs9QFQzsx-mDFzVUO2TTyedm-sBthdX3T60p2f9wc0bBU8lcw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuFe8GCjUSHC121_auVxVC0IdS2kQIWqk3s36kKoKk5CHUP8VvZGbXm1xolUtPURRPtJodz3zfeDwD8MYjMU5Lq3gelOYSLYbrYSl5CJXylQ2I2Sk10B_kvVP5-UydrcHf9i4MlVW2PrF21H7sKEf-jqrlJdIZpT5c_uY0NYpOV9sRGo1ZHIWrP0jZpu8P9_D9vs2yg_2T3R6PUwW4k2U240Nk8HkibSL0MFfeO-UQk7hEBiQLrpBK5AHpJnppiq4ihARDmqPpnjL3SmuB_3sH1qVAKtOB9U_7gy9fl21-U9lcvlOC6zQtY-1QU1FWd6i8-IV-gkrKVN0rlMbx_j8gXgd468B38AA2ImJlHxsTewhrYfQI7vbjmfxj-BZbtJ6ziqEqUU_MX9S3JarJFUNMzKZzS9kePqtBcpgwj5yXYiajLDCj6SD0Ba2FuDtJPoHTW1HqU-iMxqOwCWzovbUhiLSyJXIjZ22Va4eLSlmIQvkuFK2-jIt9zGmcxk_TFqz9MEtNG9K0STKDH11IF5KXTS-PFWTK9pWY9q4qeleDAWcF2Z2FbMQzDU5ZUXqrtQAT_crULHdBF14vfkaPQMc81SiM5_WalMaOFfqGNQVluhAbJl141ljXQiUIgnVWSvH85gfYhnu9k_6xOT4cHL2A-_TkTSHoFnRmk3l4iWBtZl_FHcLg-21vyn9EmlDC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qheKL1O-zra6gj0uT7G52g4gU69FaWwQt3Nua_YhU9K7eB9J_zb_OmWRz96LlXvoUQnZCmMzHb2ZnZwBeBgyM88opXkZluESJ4aapJI-xVqF2ETE7pQZOz8qjc_lhpEYb8Kc_C0Nllb1NbA11mHjKke9TtbzEcEap_SaVRXw6HL69_MVpghTttPbjNDoROYlXvzF8m705PsR__aoohu-_vDviacIA97Iq5rzBaL7MpMuEaUoVglce8YnPZMTAwWupRBkx9ESLTZ5WxJihe_M06VOWQRkj8L234LYWKicd0yO9aviby-4YnhLc5HmVqoi62rK2V-XFT7QYVFym2q6hNJj3367xf9C3dYHDbbibsCs76ITtHmzE8X3YOk278w_gc2rW-o3VDJmKXGLhoj03UU-vGKJjNls4yvvweQuX45QFjH7JezLKBzOaE0I3KDcUxRPlQzi_EZY-gs3xZByfAGtCcC5GkdeuwijJO1eXxuOiSmqhVRiA7vllfepoToM1fti-dO27XXHaEqdtVli8DCBfUl52XT3WoKn6X2L7U6toZy26njVoXy9pE7LpEMua1Lu9BNhkYWZ2pQ8DeLF8jLaBNnzqcZws2jU5DSDT5po1mnJeiBKzATzupGvJEoTDpqikeHr9BzyHLVRF-_H47GQH7tCHdxWhu7A5ny7iHqK2uXvWqgeDrzetj38BPQ5Tkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+a+common+dictionary+for+subject-transfer+decoding+with+resting+calibration&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Morioka%2C+Hiroshi&rft.au=Kanemura%2C+Atsunori&rft.au=Hirayama%2C+Jun-ichiro&rft.au=Shikauchi%2C+Manabu&rft.date=2015-05-01&rft.issn=1095-9572&rft.eissn=1095-9572&rft.volume=111&rft.spage=167&rft_id=info:doi/10.1016%2Fj.neuroimage.2015.02.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon