A hybrid data assimilation method based on real-time Ensemble Kalman filtering and KNN for COVID-19 prediction
This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF)...
Saved in:
Published in | Scientific reports Vol. 15; no. 1; pp. 2454 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.01.2025
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi’an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies. |
---|---|
AbstractList | Abstract This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi’an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies. This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi'an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies. This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi'an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies.This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi'an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies. |
ArticleNumber | 2454 |
Author | Yang, LiHong Zhang, SongTao |
Author_xml | – sequence: 1 givenname: SongTao surname: Zhang fullname: Zhang, SongTao organization: College of Mathematical Sciences, Harbin Engineering University – sequence: 2 givenname: LiHong surname: Yang fullname: Yang, LiHong email: lihongyang@hrbeu.edu.cn organization: College of Mathematical Sciences, Harbin Engineering University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39828742$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuEzEUHaEi2ob-AAtkiQ2bAT_nsUJVaCFq1W4qttad8XXiaMYO9gSp_XqcpJSWBV74cX3O8ZHvOS2OfPBYFO8Y_cSoaD4nyVTblJSrslGqFeXDq-KEU6lKLjg_erY_Ls5SWtM8FG8la98Ux6JteFNLflL4c7K676IzxMAEBFJyoxtgcsGTEadVMKSDhIbkc0QYysmNSC58wrEbkFzBMIIn1g0TRueXBLwhVzc3xIZI5rc_Fl9L1pJNROP6nebb4rWFIeHZ4zor7i4v7ubfy-vbb4v5-XXZy5ZPpWUKURlBUVoBFVacc9YbU0PTS4ROWSqhg4o10tS9klWdC8zwtquFtZWYFYuDrAmw1pvoRoj3OoDT-0KISw1xcv2AGiuLFlouoJESLYWOdb2tbQ95ZrXNWl8OWpttN6Lp0U8RhheiL2-8W-ll-KUZq6Wom52bj48KMfzcYpr06FKPwwAewzZpwVStpKK5i7Piwz_QddhGn79qj6KKspZl1Pvnlp68_GlrBvADoI8hpYj2CcKo3sVHH-Kjc3z0Pj76IZPEgZQ2u1Zi_Pv2f1i_AeDZyLY |
Cites_doi | 10.1016/j.jobb.2022.06.002 10.1007/s10654-020-00676-7 10.1016/j.chaos.2022.112914 10.1038/s41598-024-61730-y 10.1111/j.1600-0870.2010.00461.x 10.1056/NEJMoa2001316 10.1007/BF02464422 10.1016/j.jtbi.2009.02.017 10.1186/s12889-023-17327-7 10.1007/s11517-022-02661-6 10.1016/S0140-6736(20)30260-9 10.1007/978-3-540-72608-1_8 10.1371/journal.pone.0256227 10.1007/s40121-024-00954-x 10.1016/j.physa.2022.127915 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-025-85593-z |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_e6fefa923a844ef0ab1bcf7fcacf717f PMC11743786 39828742 10_1038_s41598_025_85593_z |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c492t-f15ee5d30e4f3a6e62221cdd7a8c4eab5f04aba6184d7c5467f041d29b73ff63 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:27:40 EDT 2025 Thu Aug 21 18:40:09 EDT 2025 Fri Jul 11 06:48:24 EDT 2025 Wed Aug 13 06:05:53 EDT 2025 Mon Jul 21 06:01:35 EDT 2025 Tue Jul 01 02:06:47 EDT 2025 Fri Feb 21 02:37:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | KNN Hybrid Data Assimilation EnKF COVID-19 Forecasting |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-f15ee5d30e4f3a6e62221cdd7a8c4eab5f04aba6184d7c5467f041d29b73ff63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-025-85593-z |
PMID | 39828742 |
PQID | 3157050191 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e6fefa923a844ef0ab1bcf7fcacf717f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11743786 proquest_miscellaneous_3157545059 proquest_journals_3157050191 pubmed_primary_39828742 crossref_primary_10_1038_s41598_025_85593_z springer_journals_10_1038_s41598_025_85593_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-19 |
PublicationDateYYYYMMDD | 2025-01-19 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | 85593_CR14 85593_CR11 85593_CR8 M Arfan (85593_CR19) 2022; 60 85593_CR7 Y Ma (85593_CR17) 2022; 4 85593_CR10 85593_CR21 M Yu (85593_CR16) 2020; 36 85593_CR2 M Riaz (85593_CR20) 2024; 14 85593_CR1 RM Anderson (85593_CR5) 1991; 53 P Nadler (85593_CR4) 2020; 35 CJ Rhodes (85593_CR6) 2009; 258 M Yifei (85593_CR13) 2024; 41 N Papadakis (85593_CR9) 2010; 62 K Shah (85593_CR18) 2022; 604 JT Wu (85593_CR3) 2020; 395 85593_CR15 YY Wang (85593_CR12) 2024; 13 |
References_xml | – ident: 85593_CR15 – ident: 85593_CR14 – volume: 4 start-page: 105 year: 2022 ident: 85593_CR17 publication-title: Journal of Biosafety and Biosecurity doi: 10.1016/j.jobb.2022.06.002 – volume: 35 start-page: 749 year: 2020 ident: 85593_CR4 publication-title: European Journal of Epidemiology doi: 10.1007/s10654-020-00676-7 – ident: 85593_CR1 – ident: 85593_CR8 doi: 10.1016/j.chaos.2022.112914 – volume: 14 start-page: 12238 year: 2024 ident: 85593_CR20 publication-title: Scientific Reports doi: 10.1038/s41598-024-61730-y – volume: 62 start-page: 673 year: 2010 ident: 85593_CR9 publication-title: Tellus A: Dynamic Meteorology and Oceanography doi: 10.1111/j.1600-0870.2010.00461.x – ident: 85593_CR2 doi: 10.1056/NEJMoa2001316 – ident: 85593_CR21 – volume: 53 start-page: 1 year: 1991 ident: 85593_CR5 publication-title: Bulletin of Mathematical Biology doi: 10.1007/BF02464422 – volume: 258 start-page: 591 year: 2009 ident: 85593_CR6 publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2009.02.017 – ident: 85593_CR11 doi: 10.1186/s12889-023-17327-7 – volume: 41 start-page: 207 year: 2024 ident: 85593_CR13 publication-title: Chinese Journal of Health Statistics – volume: 60 start-page: 3169 year: 2022 ident: 85593_CR19 publication-title: Medical Biological Engineering Computing doi: 10.1007/s11517-022-02661-6 – volume: 395 start-page: 689 year: 2020 ident: 85593_CR3 publication-title: The Lancet doi: 10.1016/S0140-6736(20)30260-9 – volume: 36 start-page: 507 year: 2020 ident: 85593_CR16 publication-title: Chinese Journal of Public Health – ident: 85593_CR7 doi: 10.1007/978-3-540-72608-1_8 – ident: 85593_CR10 doi: 10.1371/journal.pone.0256227 – volume: 13 start-page: 813 year: 2024 ident: 85593_CR12 publication-title: Infectious Diseases and Therapy doi: 10.1007/s40121-024-00954-x – volume: 604 year: 2022 ident: 85593_CR18 publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2022.127915 |
SSID | ssj0000529419 |
Score | 2.4549417 |
Snippet | This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent... Abstract This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2454 |
SubjectTerms | 631/114 631/114/1305 631/114/1314 631/114/2397 631/114/2401 Accuracy Algorithms Asymptomatic China - epidemiology Coronaviruses COVID-19 COVID-19 - epidemiology COVID-19 - transmission COVID-19 Forecasting Data assimilation Data collection Disease control Disease transmission EnKF Epidemics Epidemiology Forecasting Forecasting - methods Health surveillance Humanities and Social Sciences Humans Hybrid Data Assimilation Infectious diseases Kalman filters KNN Methods multidisciplinary Pattern recognition Prediction models Quarantine SARS-CoV-2 - isolation & purification Science Science (multidisciplinary) Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVpEq9VH3XbVJRqbfWChhs8DFJE6WNur2kVW4IDCgr7ZIouzkkv74z4N1m-1AvvVgyIBvNDMyHhvmGkHfcBS0cU_UQMSUHPBJS3iITpuzaEJqBZyqlL5Pu-Jv8fNae3Sn1hXfCCj1wEdxu6GKIFmCI1VKGyKzjbogqDhaeXEXcfeEPdw5ThdW76SXvxywZJvTuAjwVZpM1ba0BRYv6dsMTZcL-P6HM3y9L_hIxzY7o6BF5OCJIuldm_pjcC-kJuV9qSt48JWmPnt9gGhbFy58UsPF0Pi0X3mgpF03Rc3kK7wAYZzVWl6eHaRHmbhboiZ3NbaJxilF0-D-1ydOTyYQCuKUHX79_-ljznl5eYXwHv_mMnB4dnh4c12NRhXqQfbOsIwcVtF6wIKOwXegAIPDBe2X1IIN1bWTSOot1YLwaWthHoYH7pndKxNiJ52QrXaTwklDAHkhoZ-HIhYcyry2zkgnBvQpdH0VF3q_kay4LdYbJIW-hTdGGAW2YrA1zW5F9VMF6JNJe5wYwBjMag_mXMVRke6VAM67FhRG8VawFKMsr8nbdDasIQyM2hYvrMgawJGDNirwo-l7PRPS5KEBTEb1hCRtT3exJ0_PM1M3xvKd0V5EPK6P5Oa-_y-LV_5DFa_KgQWtnHOxim2wtr67DDgCopXuT18oP4PMZTQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXquXV0IKMxA2ixrETJydU-lChYrkUtDfLju12pd3ssrs9tL-eGSe71fK6REocJU6-seezx_4G4B23vhI2U2kTaEsOeiSSvCUlTFkW3ucNj1JKXwfl-Xf5ZVgM-wm3Rb-sctUnxo7aTRuaIz8UvFBZgYSEf5z9TClrFEVX-xQaD-ERSZeRVauhWs-xUBRL8rrfK5OJ6nCB_or2lOVFWiGXFundhj-Ksv1_45p_Lpn8LW4a3dHZDmz3PJIddcDvwgPfPoXHXWbJ22fQHrHrW9qMxWgJKEOGPJqMumVvrEsazch_OYbnSBvHKeWYZ6ftwk_s2LMLM56YloURxdLx_cy0jl0MBgwpLjv-9uPzScprNptTlIee-Rwuz04vj8_TPrVC2sg6X6aBIxCFE5mXQZjSl0gTeOOcMlUjvbFFyKSxhrLBONUU2JviBe7y2ioRQilewFY7bf0eMGQgJGtncOBFQzNXmczITAjulC_rIBJ4v_q_etYJaOgY-BaV7tDQiIaOaOi7BD4RBOs7Sfw6XpjOr3TflrQvgw8GmamppPQhM5bbJqjQGDxyFRI4WAGo-xa50Pf2k8DbdTG2JQqQmNZPb7p7kFEi40zgZYf3uiaijqkB8gSqDUvYqOpmSTu6jnrdnEZ9qioT-LAymvt6_ftfvPr_Z-zDk5zsOOOI-AFsLec3_jUSpKV9E1vBL7MWDf8 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG8CLTISN4iIYydxjksfKluxHCioN8tObLrSrrfa3R7aX8-MkyxaKAcukRI7ieUZZz5nZr4BeMetU8JmVdp4SslBi0SUt8SEKcvCubzhkUrpy6Q8_S7HF8XFDuRDLkwM2o-UlvEzPUSHfVyhoaFksLxIFYJgkd7egz2iakfd3huNxt_Gmz8r5LuSvO4zZDKh7rh5ywpFsv67EObfgZJ_eEujETp5BA979MhG3Xgfw44LT-B-V0_y5imEEbu8oRQsRoGfDHHxdD7tgt1YVyqakdVqGZ4jWJylVFmeHYeVm9uZY2dmNjeB-Sl50PH9zISWnU0mDIEtO_z64_NRymt2tSTfDj3zGZyfHJ8fnqZ9QYW0kXW-Tj3H6S9akTnphSldieCAN21bGdVIZ2zhM2msoRowbdUU-A3FC7zNa1sJ70vxHHbDIriXwBB3EJmdwe0WbchaZTIjMyF4W7my9iKB98P86quONkNHd7dQupOGRmnoKA19m8AnEsGmJ1FexwuL5U_dq4B2pXfeIB41SkrnM2O5bXzlG4NHXvkE9gcB6n4drrTgRZUVCGN5Am83zbiCyC1igltcd30QRyLOTOBFJ-_NSEQdCwLkCagtTdga6nZLmF5Glm5Oe71KlQl8GJTm97j-PRev_q_7a3iQk15nHDVgH3bXy2t3gDBpbd_06-IX1voN4g priority: 102 providerName: Springer Nature |
Title | A hybrid data assimilation method based on real-time Ensemble Kalman filtering and KNN for COVID-19 prediction |
URI | https://link.springer.com/article/10.1038/s41598-025-85593-z https://www.ncbi.nlm.nih.gov/pubmed/39828742 https://www.proquest.com/docview/3157050191 https://www.proquest.com/docview/3157545059 https://pubmed.ncbi.nlm.nih.gov/PMC11743786 https://doaj.org/article/e6fefa923a844ef0ab1bcf7fcacf717f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7th5B4QfwmbFRG4g0CcZzEyQNCXek0Oq0g2FDfIiexWaU23dpOovvrubOTokJ54KVRnSixfOfc55zv-wBe8UKnogikXxoqycGIRJS3xIQZJbHWYcktldLZMDm5iAajeLQDrdxRM4CLrUs70pO6mE_e_rxefcAJ_96VjKfvFhiEqFAsjP0UAbLwb3dhHyOTJEWDswbuO67vMIus1geRsPsIJsKmjmb7bTZilaX034ZD_95O-UdO1Yaq4_twr8GYrOuc4gHs6Poh3HGqk6tHUHfZ5YoKtRhtD2WInsfTsdsSx5ygNKPYVjH8j5By4pP-POvXCz0tJpqdqslU1cyMKc-Oz2eqrtjpcMgQ_rLe5--fPvo8Y1dzygDRPR_D-XH_vHfiN7ILfhll4dI3HI0UVyLQkREq0QlCCF5WlVRpGWlVxCaIVKFIKaaSZYxvWmzgVZgVUhiTiCewV89q_QwYohOivFO4KKNlW5WqQEWBELySOsmM8OB1O775lSPXyG1SXKS5s0aO1sitNfJbD47IBOsriRjbNszmP_JmnuU6MdooRK0qjSJtAlXwojTSlAp_uTQeHLYGzFtnywWPZRAj2OUevFyfxnlGyRNV69mNuwbRJqJRD546e697IjIrGxB6kG54wkZXN8_U40vL5c1pRSjTxIM3rdP87te_x-L5f43cAdwNya0Djg5wCHvL-Y1-gVhqWXRgV45kB_a73cG3AR6P-sMvX7G1l_Q69vtEx06hX4_jHWY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgSXimdxKbBIcAKru17bax8QKn0oIW24BJTbam3v0kiJE5JUKP1P_Edm_EgVXrdeLPkhe70zu_PNzs58AK9FZhOZceXnjlJy0CJRyVuqhBnGkbVBLqpSSuf9uPMl_DSMhlvws82FoW2V7ZxYTdTFNKc18gMpIsUjBCTiw-y7T6xRFF1tKTRqtejZ1Q902Rbvu8co3zdBcHoyOOr4DauAn4dpsPSdwDZEheQ2dNLENkYLKfKiUCbJQ2uyyPHQZIaIUAqVRziR4AVRBGmmpHOxxNfegttodzn5emqo1ks6FDQLRdqk5nCZHCzQPFIKWxD5CUJ36V9tmL-KJeBv0PbPHZq_hWkr63d6H3Ya2MoOaz17AFu2fAh3aiLL1SMoD9nFinK_GO04ZQjIR5NRvcuO1RzVjMxlwfAcUerYJ0p7dlIu7CQbW9Yz44kpmRtR6B6_z0xZsF6_zxBRs6PPX7vHvkjZbE5BJXrnYxjcRJ8_ge1yWtqnwBDwUBU9g34eeYJFYrgJuZSiUDZOnfTgbdu_elbX69BVnF0mupaGRmnoShr6yoOPJIL1k1Rru7ownX_TzdDVNnbWGQTCJglD67jJRJY75XKDR6GcB_utAHUzASz0tbp68Gp9G4cuxWNMaaeX9TMIYBHgerBby3vdEplWTASBB8mGJmw0dfNOObqoyoMLcjJVEnvwrlWa63b9uy_2_v8bL-FuZ3B-ps-6_d4zuBeQTnOB0t-H7eX80j5HbLbMXlQjgoG-4RH4C2lJS0o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVCBeEDeGAosET2DF6_X5gFDbJGoImAoV1LfV2rtLIyVOSFKh9J_x75jxkSpcb32x5EP2emdm55udC-Alz00ici92C0spOaiRqOQtVcIMotAYv-BVKaWPWXT0JXh_Gp7uwM82F4bCKts1sVqo9aygPfKu4GHshQhIeNc2YRHHvcG7-XeXOkiRp7Vtp1GzyMisf6D5tnw77CGtX_n-oH9yeOQ2HQbcIkj9lWs5jifUwjOBFSoyEWpLXmgdq6QIjMpD6wUqV9QURcdFiIsKXuDaT_NYWBsJfO012I3JKOrA7kE_O_682eAhF1rA0yZRxxNJd4nKkhLa_NBNEMgL92JLGVY9A_4GdP-M1_zNaVvpwsFtuNWAWLZfc90d2DHlXbhet7Vc34Nyn52tKROMUfwpQ3g-no7rmDtWd6xmpDw1w3PErBOXGtyzfrk003xi2EhNpqpkdkyOfPw-U6VmoyxjiK_Z4aevw57LUzZfkIuJ3nkfTq5i1h9Ap5yV5hEwhD9UU0-h1Ud2oU6UpwJPCK5jE6VWOPC6nV85r6t3yMrrLhJZU0MiNWRFDXnhwAGRYPMkVd6uLswW32QjyNJE1liFsFglQWCsp3KeFza2hcIjj60Dey0BZbMcLOUl8zrwYnMbBZm8M6o0s_P6GYSzCHcdeFjTezMSkVZ9CXwHki1O2Brq9p1yfFYVC-dkcsZJ5MCblmkux_XvuXj8_994DjdQ-uSHYTZ6Ajd9YmmPI_H3oLNanJunCNRW-bNGJBjIKxbCX3KCUOU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+data+assimilation+method+based+on+real-time+Ensemble+Kalman+filtering+and+KNN+for+COVID-19+prediction&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+SongTao&rft.au=Yang%2C+LiHong&rft.date=2025-01-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-85593-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_85593_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |