A hybrid data assimilation method based on real-time Ensemble Kalman filtering and KNN for COVID-19 prediction

This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF)...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 15; no. 1; pp. 2454 - 14
Main Authors Zhang, SongTao, Yang, LiHong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.01.2025
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi’an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies.
AbstractList Abstract This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi’an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies.
This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi'an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies.
This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi'an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies.This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent Susceptible-Exposed-Asymptomatic-Infected-Quarantined-Removed (SEAIQR) model for epidemic forecasting. The approach integrates real-time Ensemble Kalman Filtering (EnKF) with the K-Nearest Neighbors (KNN) algorithm, combining dynamic real-time adjustments with pattern recognition techniques tailored to the specific dynamics of epidemics. This hybrid methodology overcomes the limitations of single-model predictions in the face of increasingly complex transmission pathways in modern society. Numerical experiments conducted using COVID-19 case data from Xi'an, Shaanxi Province, China (December 9, 2021, to January 8, 2022) demonstrate a marked improvement in forecasting accuracy relative to traditional models and other data assimilation approaches. These findings underscore the potential of the proposed method to enhance the accuracy and reliability of predictive models, providing valuable insights for future epidemic forecasting and disease control strategies.
ArticleNumber 2454
Author Yang, LiHong
Zhang, SongTao
Author_xml – sequence: 1
  givenname: SongTao
  surname: Zhang
  fullname: Zhang, SongTao
  organization: College of Mathematical Sciences, Harbin Engineering University
– sequence: 2
  givenname: LiHong
  surname: Yang
  fullname: Yang, LiHong
  email: lihongyang@hrbeu.edu.cn
  organization: College of Mathematical Sciences, Harbin Engineering University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39828742$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuEzEUHaEi2ob-AAtkiQ2bAT_nsUJVaCFq1W4qttad8XXiaMYO9gSp_XqcpJSWBV74cX3O8ZHvOS2OfPBYFO8Y_cSoaD4nyVTblJSrslGqFeXDq-KEU6lKLjg_erY_Ls5SWtM8FG8la98Ux6JteFNLflL4c7K676IzxMAEBFJyoxtgcsGTEadVMKSDhIbkc0QYysmNSC58wrEbkFzBMIIn1g0TRueXBLwhVzc3xIZI5rc_Fl9L1pJNROP6nebb4rWFIeHZ4zor7i4v7ubfy-vbb4v5-XXZy5ZPpWUKURlBUVoBFVacc9YbU0PTS4ROWSqhg4o10tS9klWdC8zwtquFtZWYFYuDrAmw1pvoRoj3OoDT-0KISw1xcv2AGiuLFlouoJESLYWOdb2tbQ95ZrXNWl8OWpttN6Lp0U8RhheiL2-8W-ll-KUZq6Wom52bj48KMfzcYpr06FKPwwAewzZpwVStpKK5i7Piwz_QddhGn79qj6KKspZl1Pvnlp68_GlrBvADoI8hpYj2CcKo3sVHH-Kjc3z0Pj76IZPEgZQ2u1Zi_Pv2f1i_AeDZyLY
Cites_doi 10.1016/j.jobb.2022.06.002
10.1007/s10654-020-00676-7
10.1016/j.chaos.2022.112914
10.1038/s41598-024-61730-y
10.1111/j.1600-0870.2010.00461.x
10.1056/NEJMoa2001316
10.1007/BF02464422
10.1016/j.jtbi.2009.02.017
10.1186/s12889-023-17327-7
10.1007/s11517-022-02661-6
10.1016/S0140-6736(20)30260-9
10.1007/978-3-540-72608-1_8
10.1371/journal.pone.0256227
10.1007/s40121-024-00954-x
10.1016/j.physa.2022.127915
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-025-85593-z
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
Publicly Available Content Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_e6fefa923a844ef0ab1bcf7fcacf717f
PMC11743786
39828742
10_1038_s41598_025_85593_z
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c492t-f15ee5d30e4f3a6e62221cdd7a8c4eab5f04aba6184d7c5467f041d29b73ff63
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:40 EDT 2025
Thu Aug 21 18:40:09 EDT 2025
Fri Jul 11 06:48:24 EDT 2025
Wed Aug 13 06:05:53 EDT 2025
Mon Jul 21 06:01:35 EDT 2025
Tue Jul 01 02:06:47 EDT 2025
Fri Feb 21 02:37:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords KNN
Hybrid Data Assimilation
EnKF
COVID-19 Forecasting
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c492t-f15ee5d30e4f3a6e62221cdd7a8c4eab5f04aba6184d7c5467f041d29b73ff63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-025-85593-z
PMID 39828742
PQID 3157050191
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e6fefa923a844ef0ab1bcf7fcacf717f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11743786
proquest_miscellaneous_3157545059
proquest_journals_3157050191
pubmed_primary_39828742
crossref_primary_10_1038_s41598_025_85593_z
springer_journals_10_1038_s41598_025_85593_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-19
PublicationDateYYYYMMDD 2025-01-19
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References 85593_CR14
85593_CR11
85593_CR8
M Arfan (85593_CR19) 2022; 60
85593_CR7
Y Ma (85593_CR17) 2022; 4
85593_CR10
85593_CR21
M Yu (85593_CR16) 2020; 36
85593_CR2
M Riaz (85593_CR20) 2024; 14
85593_CR1
RM Anderson (85593_CR5) 1991; 53
P Nadler (85593_CR4) 2020; 35
CJ Rhodes (85593_CR6) 2009; 258
M Yifei (85593_CR13) 2024; 41
N Papadakis (85593_CR9) 2010; 62
K Shah (85593_CR18) 2022; 604
JT Wu (85593_CR3) 2020; 395
85593_CR15
YY Wang (85593_CR12) 2024; 13
References_xml – ident: 85593_CR15
– ident: 85593_CR14
– volume: 4
  start-page: 105
  year: 2022
  ident: 85593_CR17
  publication-title: Journal of Biosafety and Biosecurity
  doi: 10.1016/j.jobb.2022.06.002
– volume: 35
  start-page: 749
  year: 2020
  ident: 85593_CR4
  publication-title: European Journal of Epidemiology
  doi: 10.1007/s10654-020-00676-7
– ident: 85593_CR1
– ident: 85593_CR8
  doi: 10.1016/j.chaos.2022.112914
– volume: 14
  start-page: 12238
  year: 2024
  ident: 85593_CR20
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-61730-y
– volume: 62
  start-page: 673
  year: 2010
  ident: 85593_CR9
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
  doi: 10.1111/j.1600-0870.2010.00461.x
– ident: 85593_CR2
  doi: 10.1056/NEJMoa2001316
– ident: 85593_CR21
– volume: 53
  start-page: 1
  year: 1991
  ident: 85593_CR5
  publication-title: Bulletin of Mathematical Biology
  doi: 10.1007/BF02464422
– volume: 258
  start-page: 591
  year: 2009
  ident: 85593_CR6
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2009.02.017
– ident: 85593_CR11
  doi: 10.1186/s12889-023-17327-7
– volume: 41
  start-page: 207
  year: 2024
  ident: 85593_CR13
  publication-title: Chinese Journal of Health Statistics
– volume: 60
  start-page: 3169
  year: 2022
  ident: 85593_CR19
  publication-title: Medical Biological Engineering Computing
  doi: 10.1007/s11517-022-02661-6
– volume: 395
  start-page: 689
  year: 2020
  ident: 85593_CR3
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)30260-9
– volume: 36
  start-page: 507
  year: 2020
  ident: 85593_CR16
  publication-title: Chinese Journal of Public Health
– ident: 85593_CR7
  doi: 10.1007/978-3-540-72608-1_8
– ident: 85593_CR10
  doi: 10.1371/journal.pone.0256227
– volume: 13
  start-page: 813
  year: 2024
  ident: 85593_CR12
  publication-title: Infectious Diseases and Therapy
  doi: 10.1007/s40121-024-00954-x
– volume: 604
  year: 2022
  ident: 85593_CR18
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2022.127915
SSID ssj0000529419
Score 2.4549417
Snippet This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent...
Abstract This study introduces a hybrid data assimilation method that significantly improves the predictive accuracy of the time-dependent...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2454
SubjectTerms 631/114
631/114/1305
631/114/1314
631/114/2397
631/114/2401
Accuracy
Algorithms
Asymptomatic
China - epidemiology
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - transmission
COVID-19 Forecasting
Data assimilation
Data collection
Disease control
Disease transmission
EnKF
Epidemics
Epidemiology
Forecasting
Forecasting - methods
Health surveillance
Humanities and Social Sciences
Humans
Hybrid Data Assimilation
Infectious diseases
Kalman filters
KNN
Methods
multidisciplinary
Pattern recognition
Prediction models
Quarantine
SARS-CoV-2 - isolation & purification
Science
Science (multidisciplinary)
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9wgEEZVpEq9VH3XbVJRqbfWChhs8DFJE6WNur2kVW4IDCgr7ZIouzkkv74z4N1m-1AvvVgyIBvNDMyHhvmGkHfcBS0cU_UQMSUHPBJS3iITpuzaEJqBZyqlL5Pu-Jv8fNae3Sn1hXfCCj1wEdxu6GKIFmCI1VKGyKzjbogqDhaeXEXcfeEPdw5ThdW76SXvxywZJvTuAjwVZpM1ba0BRYv6dsMTZcL-P6HM3y9L_hIxzY7o6BF5OCJIuldm_pjcC-kJuV9qSt48JWmPnt9gGhbFy58UsPF0Pi0X3mgpF03Rc3kK7wAYZzVWl6eHaRHmbhboiZ3NbaJxilF0-D-1ydOTyYQCuKUHX79_-ljznl5eYXwHv_mMnB4dnh4c12NRhXqQfbOsIwcVtF6wIKOwXegAIPDBe2X1IIN1bWTSOot1YLwaWthHoYH7pndKxNiJ52QrXaTwklDAHkhoZ-HIhYcyry2zkgnBvQpdH0VF3q_kay4LdYbJIW-hTdGGAW2YrA1zW5F9VMF6JNJe5wYwBjMag_mXMVRke6VAM67FhRG8VawFKMsr8nbdDasIQyM2hYvrMgawJGDNirwo-l7PRPS5KEBTEb1hCRtT3exJ0_PM1M3xvKd0V5EPK6P5Oa-_y-LV_5DFa_KgQWtnHOxim2wtr67DDgCopXuT18oP4PMZTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXquXV0IKMxA2ixrETJydU-lChYrkUtDfLju12pd3ssrs9tL-eGSe71fK6REocJU6-seezx_4G4B23vhI2U2kTaEsOeiSSvCUlTFkW3ucNj1JKXwfl-Xf5ZVgM-wm3Rb-sctUnxo7aTRuaIz8UvFBZgYSEf5z9TClrFEVX-xQaD-ERSZeRVauhWs-xUBRL8rrfK5OJ6nCB_or2lOVFWiGXFundhj-Ksv1_45p_Lpn8LW4a3dHZDmz3PJIddcDvwgPfPoXHXWbJ22fQHrHrW9qMxWgJKEOGPJqMumVvrEsazch_OYbnSBvHKeWYZ6ftwk_s2LMLM56YloURxdLx_cy0jl0MBgwpLjv-9uPzScprNptTlIee-Rwuz04vj8_TPrVC2sg6X6aBIxCFE5mXQZjSl0gTeOOcMlUjvbFFyKSxhrLBONUU2JviBe7y2ioRQilewFY7bf0eMGQgJGtncOBFQzNXmczITAjulC_rIBJ4v_q_etYJaOgY-BaV7tDQiIaOaOi7BD4RBOs7Sfw6XpjOr3TflrQvgw8GmamppPQhM5bbJqjQGDxyFRI4WAGo-xa50Pf2k8DbdTG2JQqQmNZPb7p7kFEi40zgZYf3uiaijqkB8gSqDUvYqOpmSTu6jnrdnEZ9qioT-LAymvt6_ftfvPr_Z-zDk5zsOOOI-AFsLec3_jUSpKV9E1vBL7MWDf8
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG8CLTISN4iIYydxjksfKluxHCioN8tObLrSrrfa3R7aX8-MkyxaKAcukRI7ieUZZz5nZr4BeMetU8JmVdp4SslBi0SUt8SEKcvCubzhkUrpy6Q8_S7HF8XFDuRDLkwM2o-UlvEzPUSHfVyhoaFksLxIFYJgkd7egz2iakfd3huNxt_Gmz8r5LuSvO4zZDKh7rh5ywpFsv67EObfgZJ_eEujETp5BA979MhG3Xgfw44LT-B-V0_y5imEEbu8oRQsRoGfDHHxdD7tgt1YVyqakdVqGZ4jWJylVFmeHYeVm9uZY2dmNjeB-Sl50PH9zISWnU0mDIEtO_z64_NRymt2tSTfDj3zGZyfHJ8fnqZ9QYW0kXW-Tj3H6S9akTnphSldieCAN21bGdVIZ2zhM2msoRowbdUU-A3FC7zNa1sJ70vxHHbDIriXwBB3EJmdwe0WbchaZTIjMyF4W7my9iKB98P86quONkNHd7dQupOGRmnoKA19m8AnEsGmJ1FexwuL5U_dq4B2pXfeIB41SkrnM2O5bXzlG4NHXvkE9gcB6n4drrTgRZUVCGN5Am83zbiCyC1igltcd30QRyLOTOBFJ-_NSEQdCwLkCagtTdga6nZLmF5Glm5Oe71KlQl8GJTm97j-PRev_q_7a3iQk15nHDVgH3bXy2t3gDBpbd_06-IX1voN4g
  priority: 102
  providerName: Springer Nature
Title A hybrid data assimilation method based on real-time Ensemble Kalman filtering and KNN for COVID-19 prediction
URI https://link.springer.com/article/10.1038/s41598-025-85593-z
https://www.ncbi.nlm.nih.gov/pubmed/39828742
https://www.proquest.com/docview/3157050191
https://www.proquest.com/docview/3157545059
https://pubmed.ncbi.nlm.nih.gov/PMC11743786
https://doaj.org/article/e6fefa923a844ef0ab1bcf7fcacf717f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7th5B4QfwmbFRG4g0CcZzEyQNCXek0Oq0g2FDfIiexWaU23dpOovvrubOTokJ54KVRnSixfOfc55zv-wBe8UKnogikXxoqycGIRJS3xIQZJbHWYcktldLZMDm5iAajeLQDrdxRM4CLrUs70pO6mE_e_rxefcAJ_96VjKfvFhiEqFAsjP0UAbLwb3dhHyOTJEWDswbuO67vMIus1geRsPsIJsKmjmb7bTZilaX034ZD_95O-UdO1Yaq4_twr8GYrOuc4gHs6Poh3HGqk6tHUHfZ5YoKtRhtD2WInsfTsdsSx5ygNKPYVjH8j5By4pP-POvXCz0tJpqdqslU1cyMKc-Oz2eqrtjpcMgQ_rLe5--fPvo8Y1dzygDRPR_D-XH_vHfiN7ILfhll4dI3HI0UVyLQkREq0QlCCF5WlVRpGWlVxCaIVKFIKaaSZYxvWmzgVZgVUhiTiCewV89q_QwYohOivFO4KKNlW5WqQEWBELySOsmM8OB1O775lSPXyG1SXKS5s0aO1sitNfJbD47IBOsriRjbNszmP_JmnuU6MdooRK0qjSJtAlXwojTSlAp_uTQeHLYGzFtnywWPZRAj2OUevFyfxnlGyRNV69mNuwbRJqJRD546e697IjIrGxB6kG54wkZXN8_U40vL5c1pRSjTxIM3rdP87te_x-L5f43cAdwNya0Djg5wCHvL-Y1-gVhqWXRgV45kB_a73cG3AR6P-sMvX7G1l_Q69vtEx06hX4_jHWY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgSXimdxKbBIcAKru17bax8QKn0oIW24BJTbam3v0kiJE5JUKP1P_Edm_EgVXrdeLPkhe70zu_PNzs58AK9FZhOZceXnjlJy0CJRyVuqhBnGkbVBLqpSSuf9uPMl_DSMhlvws82FoW2V7ZxYTdTFNKc18gMpIsUjBCTiw-y7T6xRFF1tKTRqtejZ1Q902Rbvu8co3zdBcHoyOOr4DauAn4dpsPSdwDZEheQ2dNLENkYLKfKiUCbJQ2uyyPHQZIaIUAqVRziR4AVRBGmmpHOxxNfegttodzn5emqo1ks6FDQLRdqk5nCZHCzQPFIKWxD5CUJ36V9tmL-KJeBv0PbPHZq_hWkr63d6H3Ya2MoOaz17AFu2fAh3aiLL1SMoD9nFinK_GO04ZQjIR5NRvcuO1RzVjMxlwfAcUerYJ0p7dlIu7CQbW9Yz44kpmRtR6B6_z0xZsF6_zxBRs6PPX7vHvkjZbE5BJXrnYxjcRJ8_ge1yWtqnwBDwUBU9g34eeYJFYrgJuZSiUDZOnfTgbdu_elbX69BVnF0mupaGRmnoShr6yoOPJIL1k1Rru7ownX_TzdDVNnbWGQTCJglD67jJRJY75XKDR6GcB_utAHUzASz0tbp68Gp9G4cuxWNMaaeX9TMIYBHgerBby3vdEplWTASBB8mGJmw0dfNOObqoyoMLcjJVEnvwrlWa63b9uy_2_v8bL-FuZ3B-ps-6_d4zuBeQTnOB0t-H7eX80j5HbLbMXlQjgoG-4RH4C2lJS0o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVCBeEDeGAosET2DF6_X5gFDbJGoImAoV1LfV2rtLIyVOSFKh9J_x75jxkSpcb32x5EP2emdm55udC-Alz00ici92C0spOaiRqOQtVcIMotAYv-BVKaWPWXT0JXh_Gp7uwM82F4bCKts1sVqo9aygPfKu4GHshQhIeNc2YRHHvcG7-XeXOkiRp7Vtp1GzyMisf6D5tnw77CGtX_n-oH9yeOQ2HQbcIkj9lWs5jifUwjOBFSoyEWpLXmgdq6QIjMpD6wUqV9QURcdFiIsKXuDaT_NYWBsJfO012I3JKOrA7kE_O_682eAhF1rA0yZRxxNJd4nKkhLa_NBNEMgL92JLGVY9A_4GdP-M1_zNaVvpwsFtuNWAWLZfc90d2DHlXbhet7Vc34Nyn52tKROMUfwpQ3g-no7rmDtWd6xmpDw1w3PErBOXGtyzfrk003xi2EhNpqpkdkyOfPw-U6VmoyxjiK_Z4aevw57LUzZfkIuJ3nkfTq5i1h9Ap5yV5hEwhD9UU0-h1Ud2oU6UpwJPCK5jE6VWOPC6nV85r6t3yMrrLhJZU0MiNWRFDXnhwAGRYPMkVd6uLswW32QjyNJE1liFsFglQWCsp3KeFza2hcIjj60Dey0BZbMcLOUl8zrwYnMbBZm8M6o0s_P6GYSzCHcdeFjTezMSkVZ9CXwHki1O2Brq9p1yfFYVC-dkcsZJ5MCblmkux_XvuXj8_994DjdQ-uSHYTZ6Ajd9YmmPI_H3oLNanJunCNRW-bNGJBjIKxbCX3KCUOU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+data+assimilation+method+based+on+real-time+Ensemble+Kalman+filtering+and+KNN+for+COVID-19+prediction&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+SongTao&rft.au=Yang%2C+LiHong&rft.date=2025-01-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-025-85593-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_025_85593_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon