Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip
A biosensor chip integrated interdigital microelectrodes was proposed and applied to monitor the formation process of Salmonella and E. coli biofilms in this paper. The biosensor chip was composed of a glass substrate with interdigital microelectrodes and PDMS layer with micro cavities. The electroc...
Saved in:
Published in | Biosensors & bioelectronics Vol. 112; pp. 86 - 92 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
30.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A biosensor chip integrated interdigital microelectrodes was proposed and applied to monitor the formation process of Salmonella and E. coli biofilms in this paper. The biosensor chip was composed of a glass substrate with interdigital microelectrodes and PDMS layer with micro cavities. The electrochemical impedance spectroscopy (EIS) of Salmonella and E. coli biofilms was measured by the biosensor chip using alternating voltage of 100 mv in the frequency range from 1 Hz to 100 kHz for 48 h. It was illustrated that the changes of impedance spectroscopy of biofilms occurred with culture time. Furthermore, impedance spectroscopy of biofilms was fitted by an equivalent circuit model including the biofilms capacitance (Cb) and the biofilms resistance (Rb) parameters. The results indicated that the Cb presented a tendency to decrease first and then rise with culture time, while the Rb was in the opposite direction. These changing trends were consistent with the formation process of biofilms that bacteria adhered to electrodes surface, and then formed mature biofilms, finally escaped from biofilms. In addition, it was also demonstrated that the changing trends of Cb and Rb with culture time were quite different between Salmonella and E. coli. The results obtained by impedance detection were in accordance with the results of using crystal violet staining to analyze biofilms formation process, under the same conditions for bacterial culture. The biosensor chip provided a promising platform for further study of biofilms owing to its unique advantages of real time, continuity, and non-invasion for bacteria biofilms detection and in-situ monitoring.
•An impedance biosensor chip was designed to monitor biofilms forming process.•Periodic characteristics of biofilms were discriminated by changes of electrochemical parameters.•The method based on the biosensor chip had advantages of real time, continuity, and non-invasion. |
---|---|
AbstractList | A biosensor chip integrated interdigital microelectrodes was proposed and applied to monitor the formation process of Salmonella and E. coli biofilms in this paper. The biosensor chip was composed of a glass substrate with interdigital microelectrodes and PDMS layer with micro cavities. The electrochemical impedance spectroscopy (EIS) of Salmonella and E. coli biofilms was measured by the biosensor chip using alternating voltage of 100 mv in the frequency range from 1 Hz to 100 kHz for 48 h. It was illustrated that the changes of impedance spectroscopy of biofilms occurred with culture time. Furthermore, impedance spectroscopy of biofilms was fitted by an equivalent circuit model including the biofilms capacitance (C
) and the biofilms resistance (R
) parameters. The results indicated that the C
presented a tendency to decrease first and then rise with culture time, while the R
was in the opposite direction. These changing trends were consistent with the formation process of biofilms that bacteria adhered to electrodes surface, and then formed mature biofilms, finally escaped from biofilms. In addition, it was also demonstrated that the changing trends of C
and R
with culture time were quite different between Salmonella and E. coli. The results obtained by impedance detection were in accordance with the results of using crystal violet staining to analyze biofilms formation process, under the same conditions for bacterial culture. The biosensor chip provided a promising platform for further study of biofilms owing to its unique advantages of real time, continuity, and non-invasion for bacteria biofilms detection and in-situ monitoring. A biosensor chip integrated interdigital microelectrodes was proposed and applied to monitor the formation process of Salmonella and E. coli biofilms in this paper. The biosensor chip was composed of a glass substrate with interdigital microelectrodes and PDMS layer with micro cavities. The electrochemical impedance spectroscopy (EIS) of Salmonella and E. coli biofilms was measured by the biosensor chip using alternating voltage of 100 mv in the frequency range from 1 Hz to 100 kHz for 48 h. It was illustrated that the changes of impedance spectroscopy of biofilms occurred with culture time. Furthermore, impedance spectroscopy of biofilms was fitted by an equivalent circuit model including the biofilms capacitance (Cb) and the biofilms resistance (Rb) parameters. The results indicated that the Cb presented a tendency to decrease first and then rise with culture time, while the Rb was in the opposite direction. These changing trends were consistent with the formation process of biofilms that bacteria adhered to electrodes surface, and then formed mature biofilms, finally escaped from biofilms. In addition, it was also demonstrated that the changing trends of Cb and Rb with culture time were quite different between Salmonella and E. coli. The results obtained by impedance detection were in accordance with the results of using crystal violet staining to analyze biofilms formation process, under the same conditions for bacterial culture. The biosensor chip provided a promising platform for further study of biofilms owing to its unique advantages of real time, continuity, and non-invasion for bacteria biofilms detection and in-situ monitoring.A biosensor chip integrated interdigital microelectrodes was proposed and applied to monitor the formation process of Salmonella and E. coli biofilms in this paper. The biosensor chip was composed of a glass substrate with interdigital microelectrodes and PDMS layer with micro cavities. The electrochemical impedance spectroscopy (EIS) of Salmonella and E. coli biofilms was measured by the biosensor chip using alternating voltage of 100 mv in the frequency range from 1 Hz to 100 kHz for 48 h. It was illustrated that the changes of impedance spectroscopy of biofilms occurred with culture time. Furthermore, impedance spectroscopy of biofilms was fitted by an equivalent circuit model including the biofilms capacitance (Cb) and the biofilms resistance (Rb) parameters. The results indicated that the Cb presented a tendency to decrease first and then rise with culture time, while the Rb was in the opposite direction. These changing trends were consistent with the formation process of biofilms that bacteria adhered to electrodes surface, and then formed mature biofilms, finally escaped from biofilms. In addition, it was also demonstrated that the changing trends of Cb and Rb with culture time were quite different between Salmonella and E. coli. The results obtained by impedance detection were in accordance with the results of using crystal violet staining to analyze biofilms formation process, under the same conditions for bacterial culture. The biosensor chip provided a promising platform for further study of biofilms owing to its unique advantages of real time, continuity, and non-invasion for bacteria biofilms detection and in-situ monitoring. A biosensor chip integrated interdigital microelectrodes was proposed and applied to monitor the formation process of Salmonella and E. coli biofilms in this paper. The biosensor chip was composed of a glass substrate with interdigital microelectrodes and PDMS layer with micro cavities. The electrochemical impedance spectroscopy (EIS) of Salmonella and E. coli biofilms was measured by the biosensor chip using alternating voltage of 100 mv in the frequency range from 1 Hz to 100 kHz for 48 h. It was illustrated that the changes of impedance spectroscopy of biofilms occurred with culture time. Furthermore, impedance spectroscopy of biofilms was fitted by an equivalent circuit model including the biofilms capacitance (Cb) and the biofilms resistance (Rb) parameters. The results indicated that the Cb presented a tendency to decrease first and then rise with culture time, while the Rb was in the opposite direction. These changing trends were consistent with the formation process of biofilms that bacteria adhered to electrodes surface, and then formed mature biofilms, finally escaped from biofilms. In addition, it was also demonstrated that the changing trends of Cb and Rb with culture time were quite different between Salmonella and E. coli. The results obtained by impedance detection were in accordance with the results of using crystal violet staining to analyze biofilms formation process, under the same conditions for bacterial culture. The biosensor chip provided a promising platform for further study of biofilms owing to its unique advantages of real time, continuity, and non-invasion for bacteria biofilms detection and in-situ monitoring. A biosensor chip integrated interdigital microelectrodes was proposed and applied to monitor the formation process of Salmonella and E. coli biofilms in this paper. The biosensor chip was composed of a glass substrate with interdigital microelectrodes and PDMS layer with micro cavities. The electrochemical impedance spectroscopy (EIS) of Salmonella and E. coli biofilms was measured by the biosensor chip using alternating voltage of 100 mv in the frequency range from 1 Hz to 100 kHz for 48 h. It was illustrated that the changes of impedance spectroscopy of biofilms occurred with culture time. Furthermore, impedance spectroscopy of biofilms was fitted by an equivalent circuit model including the biofilms capacitance (Cb) and the biofilms resistance (Rb) parameters. The results indicated that the Cb presented a tendency to decrease first and then rise with culture time, while the Rb was in the opposite direction. These changing trends were consistent with the formation process of biofilms that bacteria adhered to electrodes surface, and then formed mature biofilms, finally escaped from biofilms. In addition, it was also demonstrated that the changing trends of Cb and Rb with culture time were quite different between Salmonella and E. coli. The results obtained by impedance detection were in accordance with the results of using crystal violet staining to analyze biofilms formation process, under the same conditions for bacterial culture. The biosensor chip provided a promising platform for further study of biofilms owing to its unique advantages of real time, continuity, and non-invasion for bacteria biofilms detection and in-situ monitoring. •An impedance biosensor chip was designed to monitor biofilms forming process.•Periodic characteristics of biofilms were discriminated by changes of electrochemical parameters.•The method based on the biosensor chip had advantages of real time, continuity, and non-invasion. |
Author | Mou, Xiaojing Lv, Junjiang Xia, Ye Chen, Li Xu, Yi Liu, Lulu Cui, Feiyun |
Author_xml | – sequence: 1 givenname: Lulu surname: Liu fullname: Liu, Lulu organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China – sequence: 2 givenname: Yi surname: Xu fullname: Xu, Yi email: xuyibbd@cqu.edu.cn organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China – sequence: 3 givenname: Feiyun surname: Cui fullname: Cui, Feiyun organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China – sequence: 4 givenname: Ye surname: Xia fullname: Xia, Ye organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China – sequence: 5 givenname: Li surname: Chen fullname: Chen, Li email: cl2009@cqu.edu.cn organization: Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400030, China – sequence: 6 givenname: Xiaojing surname: Mou fullname: Mou, Xiaojing organization: Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400030, China – sequence: 7 givenname: Junjiang surname: Lv fullname: Lv, Junjiang organization: School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29698812$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URLeFP8AB5cglwV-xY4kLqviSWvVCe7UcZwKzSuzF9iL13-NoCwcO5TSHeZ7R6H0vyFmIAQh5zWjHKFPv9t2IMXecsqGjsqPMPCM7NmjRSi76M7Kjpldtr5Q4Jxc57ymlmhn6gpxzo8wwML4j9zcxYIkJw_cmzs3ofIGErqmXZ1zW3MwxrdvykKKHnJvxocHQZizHBtcDTLhCSeg3IUPIMTX-Bx5ekuezWzK8epyX5O7Tx29XX9rr289frz5ct14aXlrQWgyUSc-o81rNs9eCgxNeS-MHqSUVFZhA6klCr4xmzrnR0N4z3yvnxCV5e7pb3_t5hFzsitnDsrgA8Zgt55xRwQfF_49WThgtDKvom0f0OK4w2UPC1aUH-ye2CvAT4FPMOcH8F2HUbt3Yvd0CsVs3lkpbu6nS8I_ksbiCMZTkcHlafX9SoWb5CyHZ7BGCr_En8MVOEZ_SfwOJm6nu |
CitedBy_id | crossref_primary_10_1557_s43578_022_00807_8 crossref_primary_10_1016_j_bioelechem_2022_108344 crossref_primary_10_1016_j_bios_2019_111993 crossref_primary_10_1016_j_bios_2023_115892 crossref_primary_10_1021_acsami_3c03599 crossref_primary_10_1002_adma_202307756 crossref_primary_10_1093_jimb_kuad022 crossref_primary_10_12677_AAC_2021_111003 crossref_primary_10_3389_fsens_2023_1242886 crossref_primary_10_1016_j_snb_2020_128945 crossref_primary_10_1007_s41742_022_00438_1 crossref_primary_10_1039_D0BM00648C crossref_primary_10_3389_fmicb_2020_592265 crossref_primary_10_1111_1541_4337_13089 crossref_primary_10_3389_fbioe_2019_00418 crossref_primary_10_1016_j_snb_2021_129669 crossref_primary_10_1007_s10800_023_01911_1 crossref_primary_10_1109_JMEMS_2020_3012420 crossref_primary_10_1016_j_aca_2019_09_026 crossref_primary_10_1016_j_biosx_2023_100326 crossref_primary_10_1016_j_jhazmat_2024_134764 crossref_primary_10_3390_mi10010055 crossref_primary_10_1016_j_bios_2019_111640 crossref_primary_10_1149_1945_7111_ac519e crossref_primary_10_1021_acssensors_1c02722 crossref_primary_10_1007_s12223_020_00774_9 crossref_primary_10_1016_j_apsusc_2023_156423 crossref_primary_10_1016_j_bios_2019_111623 crossref_primary_10_3389_fcimb_2024_1419570 crossref_primary_10_1016_j_ecoenv_2024_116709 crossref_primary_10_1016_j_electacta_2019_135390 crossref_primary_10_1109_TIM_2024_3379083 crossref_primary_10_1016_j_bioelechem_2019_107386 crossref_primary_10_1039_D4CC02272F crossref_primary_10_1016_j_copbio_2019_10_009 crossref_primary_10_1016_j_sbsr_2022_100493 crossref_primary_10_3390_bios13080777 crossref_primary_10_1016_j_bios_2020_112521 crossref_primary_10_1016_j_bioflm_2019_100015 crossref_primary_10_1109_TBME_2021_3066995 crossref_primary_10_1016_j_aca_2021_339176 crossref_primary_10_1016_j_trac_2020_116134 |
Cites_doi | 10.1126/science.284.5418.1318 10.1016/j.aca.2017.10.035 10.1016/j.elecom.2007.08.011 10.1080/09168451.2015.1058701 10.1007/s10544-017-0167-2 10.1016/j.electacta.2010.12.025 10.1186/gb-2003-4-6-219 10.1080/1040841X.2016.1208146 10.1016/j.mimet.2014.02.022 10.1016/S0167-7012(03)00034-4 10.1016/j.mimet.2013.12.011 10.1007/s00216-008-1970-7 10.1128/AAC.00216-12 10.1016/j.bcab.2016.05.002 10.1146/annurev.micro.54.1.49 10.1016/j.aca.2017.06.038 10.1016/j.watres.2011.06.010 10.1016/j.ijheh.2011.05.009 10.1016/j.porgcoat.2009.04.009 10.1007/s10068-012-0041-1 10.1016/j.tim.2008.07.004 10.1146/annurev.anchem.012809.102211 10.1016/j.bios.2008.10.001 10.1002/elan.200603855 10.1021/acs.langmuir.6b03889 10.1016/j.mimet.2007.11.010 10.3389/fmicb.2016.01641 10.1016/j.electacta.2012.05.131 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bios.2018.04.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Biology |
EISSN | 1873-4235 |
EndPage | 92 |
ExternalDocumentID | 29698812 10_1016_j_bios_2018_04_019 S0956566318302793 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH ADUVX AEBSH AECPX AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LX3 M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSK SST SSU SSZ T5K TN5 XPP Y6R YK3 ZMT ~G- ~KM .HR 53G AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLW HMU HVGLF HZ~ R2- SBG SCB SCH SEW SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c492t-e7738014c10ac76ffc732ea3c749c847403738de47d4e56971aaab905c1c56aa3 |
IEDL.DBID | .~1 |
ISSN | 0956-5663 1873-4235 |
IngestDate | Fri Jul 11 04:32:30 EDT 2025 Thu Jul 10 21:53:44 EDT 2025 Thu Apr 03 07:10:54 EDT 2025 Tue Jul 01 01:42:41 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Fri Feb 23 02:29:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biofilms formation E. coli biofilms Biosensor chip Salmonella biofilms Electrochemical impedance spectroscopy |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c492t-e7738014c10ac76ffc732ea3c749c847403738de47d4e56971aaab905c1c56aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29698812 |
PQID | 2032397391 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2221032862 proquest_miscellaneous_2032397391 pubmed_primary_29698812 crossref_primary_10_1016_j_bios_2018_04_019 crossref_citationtrail_10_1016_j_bios_2018_04_019 elsevier_sciencedirect_doi_10_1016_j_bios_2018_04_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-30 |
PublicationDateYYYYMMDD | 2018-07-30 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biosensors & bioelectronics |
PublicationTitleAlternate | Biosens Bioelectron |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Azeredo, Azevedo, Briandet, Cerca, Coenye, Costa, Desvaux, Di, Hébraud, Jaglic (bib1) 2017; 43 Retter, Lohse (bib22) 2010; 3 Verstraeten, Braeken, Debkumari, Fauvart, Fransaer, Vermant, Michiels (bib27) 2008; 16 Kim, Kang, Lee, Yoon (bib15) 2011; 45 Paredes, Becerro, Arana (bib19) 2014; 100 Chang, Park (bib3) 2010; 3 Peeters, Nelis, Coenye (bib20) 2008; 72 Wang, Xu, Liu, Peng, Irudayaraj, Cui (bib28) 2017; 19 Coughlan, Cotter, Hill, Alvarezordóñez (bib5) 2016; 7 Satpathy, Sen, Pattanaik, Raut (bib23) 2016; 7 Wingender, Flemming (bib30) 2011; 214 Efstathios, Even, Mickaël, Michel, Trond, Solveig, Agapi, George-John, Miroslava, Katarzyna (bib8) 2015; 6 Ben-Yoav, Freeman, Sternheim, Shacham-Diamand (bib2) 2011; 56 Muñoz-Berbel, Vigués, Mas, Jenkins, Muñoz (bib17) 2007; 9 Ward, Connolly, Tucker (bib29) 2014; 9 Lisdat, Schäfer (bib16) 2008; 391 Oubekka, Briandet, Fontaine-Aupart, Steenkeste (bib18) 2012; 56 Varshney, Li (bib26) 2009; 24 George, Kaplan, Kolter (bib10) 2000; 54 Pitts, Hamilton, Zelver, Stewart (bib21) 2003; 54 Toyofuku, Inaba, Kiyokawa, Obana, Yawata, Nomura (bib25) 2016; 80 Costerton, Stewart, Greenberg (bib4) 1999; 284 Sauer (bib24) 2003; 4 Jahid, Ha (bib13) 2012; 21 Kim, Yu, Kim, Shin, Yoon (bib14) 2012; 82 Daniels, Pourmand (bib6) 2007; 19 Zarabadi, Paquetmercier, Charette, Greener (bib31) 2017; 33 Hashemi, Bagheri, Afkhami, Ardakani, Madrakian (bib12) 2017; 996 Floyd, Avudaiappan, Gibson, Mehta, Smith, Provder, Escarsega (bib9) 2009; 66 Driessche, Rigole, Brackman, Coenye (bib7) 2014; 98 Hashemi, Afkhami, Bagheri, Amidi, Madrakian (bib11) 2017; 984 Verstraeten (10.1016/j.bios.2018.04.019_bib27) 2008; 16 Toyofuku (10.1016/j.bios.2018.04.019_bib25) 2016; 80 Floyd (10.1016/j.bios.2018.04.019_bib9) 2009; 66 Sauer (10.1016/j.bios.2018.04.019_bib24) 2003; 4 George (10.1016/j.bios.2018.04.019_bib10) 2000; 54 Wang (10.1016/j.bios.2018.04.019_bib28) 2017; 19 Costerton (10.1016/j.bios.2018.04.019_bib4) 1999; 284 Daniels (10.1016/j.bios.2018.04.019_bib6) 2007; 19 Driessche (10.1016/j.bios.2018.04.019_bib7) 2014; 98 Wingender (10.1016/j.bios.2018.04.019_bib30) 2011; 214 Muñoz-Berbel (10.1016/j.bios.2018.04.019_bib17) 2007; 9 Jahid (10.1016/j.bios.2018.04.019_bib13) 2012; 21 Lisdat (10.1016/j.bios.2018.04.019_bib16) 2008; 391 Retter (10.1016/j.bios.2018.04.019_bib22) 2010; 3 Azeredo (10.1016/j.bios.2018.04.019_bib1) 2017; 43 Hashemi (10.1016/j.bios.2018.04.019_bib12) 2017; 996 Ward (10.1016/j.bios.2018.04.019_bib29) 2014; 9 Ben-Yoav (10.1016/j.bios.2018.04.019_bib2) 2011; 56 Peeters (10.1016/j.bios.2018.04.019_bib20) 2008; 72 Varshney (10.1016/j.bios.2018.04.019_bib26) 2009; 24 Zarabadi (10.1016/j.bios.2018.04.019_bib31) 2017; 33 Hashemi (10.1016/j.bios.2018.04.019_bib11) 2017; 984 Chang (10.1016/j.bios.2018.04.019_bib3) 2010; 3 Pitts (10.1016/j.bios.2018.04.019_bib21) 2003; 54 Efstathios (10.1016/j.bios.2018.04.019_bib8) 2015; 6 Kim (10.1016/j.bios.2018.04.019_bib14) 2012; 82 Kim (10.1016/j.bios.2018.04.019_bib15) 2011; 45 Paredes (10.1016/j.bios.2018.04.019_bib19) 2014; 100 Satpathy (10.1016/j.bios.2018.04.019_bib23) 2016; 7 Coughlan (10.1016/j.bios.2018.04.019_bib5) 2016; 7 Oubekka (10.1016/j.bios.2018.04.019_bib18) 2012; 56 |
References_xml | – volume: 3 start-page: 207 year: 2010 end-page: 229 ident: bib3 publication-title: Annu. Rev. Anal. Chem. – volume: 19 start-page: 1239 year: 2007 end-page: 1257 ident: bib6 publication-title: Electroanalysis – volume: 996 start-page: 10 year: 2017 end-page: 19 ident: bib12 publication-title: Anal. Chim. Acta – volume: 43 start-page: 313 year: 2017 end-page: 351 ident: bib1 publication-title: Crc Crit. Rev. Microbiol. – volume: 24 start-page: 2951 year: 2009 end-page: 2960 ident: bib26 publication-title: Biosens. Bioelectron. – volume: 33 start-page: 2041 year: 2017 end-page: 2049 ident: bib31 publication-title: Langmuir – volume: 284 start-page: 1318 year: 1999 end-page: 1322 ident: bib4 publication-title: Science – volume: 7 start-page: 1641 year: 2016 ident: bib5 publication-title: Front. Microbiol. – volume: 9 start-page: 2654 year: 2007 end-page: 2660 ident: bib17 publication-title: Electrochem. Commun. – volume: 56 start-page: 7780 year: 2011 end-page: 7786 ident: bib2 publication-title: Electrochim. Acta – volume: 391 start-page: 1555 year: 2008 end-page: 1567 ident: bib16 publication-title: Anal. Bioanal. Chem. – volume: 7 start-page: 56 year: 2016 end-page: 66 ident: bib23 publication-title: Biocatal. Agric. Biotechnol. – volume: 54 start-page: 49 year: 2000 end-page: 79 ident: bib10 publication-title: Annu. Rev. Microbiol. – volume: 82 start-page: 126 year: 2012 end-page: 131 ident: bib14 publication-title: Electrochim. Acta – volume: 21 start-page: 299 year: 2012 end-page: 316 ident: bib13 publication-title: Food Sci. Biotechnol. – volume: 45 start-page: 4615 year: 2011 end-page: 4622 ident: bib15 publication-title: Water Res. – volume: 9 year: 2014 ident: bib29 publication-title: PLoS One – volume: 3 start-page: 207 year: 2010 end-page: 229 ident: bib22 publication-title: Annu. Rev. Anal. Chem. – volume: 214 start-page: 417 year: 2011 end-page: 423 ident: bib30 publication-title: Int. J. Hyg. Environ. Health – volume: 80 start-page: 7 year: 2016 end-page: 12 ident: bib25 publication-title: Biosci. Biotechnol. Biochem. – volume: 19 start-page: 34 year: 2017 ident: bib28 publication-title: Biomed. Microdev. – volume: 100 start-page: 77 year: 2014 end-page: 83 ident: bib19 publication-title: J. Microbiol. Methods – volume: 6 start-page: 841 year: 2015 ident: bib8 publication-title: Front. Microbiol. – volume: 66 start-page: 8 year: 2009 end-page: 34 ident: bib9 publication-title: Prog. Org. Coat. – volume: 54 start-page: 269 year: 2003 end-page: 276 ident: bib21 publication-title: J. Microbiol. Methods – volume: 56 start-page: 3349 year: 2012 end-page: 3358 ident: bib18 publication-title: Antimicrob. Agents Chemother. – volume: 98 start-page: 31 year: 2014 end-page: 34 ident: bib7 publication-title: J. Microbiol. Methods – volume: 16 start-page: 496 year: 2008 end-page: 506 ident: bib27 publication-title: Trends Microbiol. – volume: 72 start-page: 157 year: 2008 end-page: 165 ident: bib20 publication-title: J. Microbiol. Methods – volume: 984 start-page: 185 year: 2017 end-page: 192 ident: bib11 publication-title: Anal. Chim. Acta – volume: 4 start-page: 219 year: 2003 ident: bib24 publication-title: Genome Biol. – volume: 284 start-page: 1318 issue: 5418 year: 1999 ident: 10.1016/j.bios.2018.04.019_bib4 publication-title: Science doi: 10.1126/science.284.5418.1318 – volume: 996 start-page: 10 year: 2017 ident: 10.1016/j.bios.2018.04.019_bib12 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.10.035 – volume: 9 start-page: 2654 issue: 11 year: 2007 ident: 10.1016/j.bios.2018.04.019_bib17 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2007.08.011 – volume: 80 start-page: 7 issue: 1 year: 2016 ident: 10.1016/j.bios.2018.04.019_bib25 publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2015.1058701 – volume: 19 start-page: 34 year: 2017 ident: 10.1016/j.bios.2018.04.019_bib28 publication-title: Biomed. Microdev. doi: 10.1007/s10544-017-0167-2 – volume: 56 start-page: 7780 issue: 23 year: 2011 ident: 10.1016/j.bios.2018.04.019_bib2 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.12.025 – volume: 4 start-page: 219 issue: 6 year: 2003 ident: 10.1016/j.bios.2018.04.019_bib24 publication-title: Genome Biol. doi: 10.1186/gb-2003-4-6-219 – volume: 43 start-page: 313 issue: 3 year: 2017 ident: 10.1016/j.bios.2018.04.019_bib1 publication-title: Crc Crit. Rev. Microbiol. doi: 10.1080/1040841X.2016.1208146 – volume: 100 start-page: 77 issue: 5 year: 2014 ident: 10.1016/j.bios.2018.04.019_bib19 publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2014.02.022 – volume: 54 start-page: 269 issue: 2 year: 2003 ident: 10.1016/j.bios.2018.04.019_bib21 publication-title: J. Microbiol. Methods doi: 10.1016/S0167-7012(03)00034-4 – volume: 98 start-page: 31 issue: 3 year: 2014 ident: 10.1016/j.bios.2018.04.019_bib7 publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2013.12.011 – volume: 391 start-page: 1555 issue: 5 year: 2008 ident: 10.1016/j.bios.2018.04.019_bib16 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-008-1970-7 – volume: 56 start-page: 3349 issue: 6 year: 2012 ident: 10.1016/j.bios.2018.04.019_bib18 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00216-12 – volume: 7 start-page: 56 year: 2016 ident: 10.1016/j.bios.2018.04.019_bib23 publication-title: Biocatal. Agric. Biotechnol. doi: 10.1016/j.bcab.2016.05.002 – volume: 54 start-page: 49 issue: 1 year: 2000 ident: 10.1016/j.bios.2018.04.019_bib10 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.54.1.49 – volume: 984 start-page: 185 year: 2017 ident: 10.1016/j.bios.2018.04.019_bib11 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.06.038 – volume: 6 start-page: 841 issue: 841 year: 2015 ident: 10.1016/j.bios.2018.04.019_bib8 publication-title: Front. Microbiol. – volume: 45 start-page: 4615 issue: 15 year: 2011 ident: 10.1016/j.bios.2018.04.019_bib15 publication-title: Water Res. doi: 10.1016/j.watres.2011.06.010 – volume: 214 start-page: 417 issue: 6 year: 2011 ident: 10.1016/j.bios.2018.04.019_bib30 publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2011.05.009 – volume: 66 start-page: 8 issue: 1 year: 2009 ident: 10.1016/j.bios.2018.04.019_bib9 publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2009.04.009 – volume: 21 start-page: 299 issue: 2 year: 2012 ident: 10.1016/j.bios.2018.04.019_bib13 publication-title: Food Sci. Biotechnol. doi: 10.1007/s10068-012-0041-1 – volume: 9 issue: 3 year: 2014 ident: 10.1016/j.bios.2018.04.019_bib29 publication-title: PLoS One – volume: 16 start-page: 496 issue: 10 year: 2008 ident: 10.1016/j.bios.2018.04.019_bib27 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2008.07.004 – volume: 3 start-page: 207 issue: 1 year: 2010 ident: 10.1016/j.bios.2018.04.019_bib22 publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev.anchem.012809.102211 – volume: 24 start-page: 2951 issue: 10 year: 2009 ident: 10.1016/j.bios.2018.04.019_bib26 publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2008.10.001 – volume: 19 start-page: 1239 issue: 12 year: 2007 ident: 10.1016/j.bios.2018.04.019_bib6 publication-title: Electroanalysis doi: 10.1002/elan.200603855 – volume: 33 start-page: 2041 year: 2017 ident: 10.1016/j.bios.2018.04.019_bib31 publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03889 – volume: 3 start-page: 207 issue: 1 year: 2010 ident: 10.1016/j.bios.2018.04.019_bib3 publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev.anchem.012809.102211 – volume: 72 start-page: 157 issue: 2 year: 2008 ident: 10.1016/j.bios.2018.04.019_bib20 publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2007.11.010 – volume: 7 start-page: 1641 year: 2016 ident: 10.1016/j.bios.2018.04.019_bib5 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2016.01641 – volume: 82 start-page: 126 issue: 21 year: 2012 ident: 10.1016/j.bios.2018.04.019_bib14 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.05.131 |
SSID | ssj0007190 |
Score | 2.4451087 |
Snippet | A biosensor chip integrated interdigital microelectrodes was proposed and applied to monitor the formation process of Salmonella and E. coli biofilms in this... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 86 |
SubjectTerms | bacteria bacterial culture biofilm Biofilms - growth & development Biofilms formation Biosensing Techniques Biosensor chip biosensors capacitance Dielectric Spectroscopy E. coli biofilms Electric Capacitance electric potential difference Electrochemical impedance spectroscopy Escherichia coli Escherichia coli - growth & development Escherichia coli - isolation & purification gentian violet glass Microelectrodes monitoring Oligonucleotide Array Sequence Analysis Salmonella Salmonella - growth & development Salmonella - isolation & purification Salmonella biofilms staining |
Title | Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip |
URI | https://dx.doi.org/10.1016/j.bios.2018.04.019 https://www.ncbi.nlm.nih.gov/pubmed/29698812 https://www.proquest.com/docview/2032397391 https://www.proquest.com/docview/2221032862 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6tipDgUNHyWqCVkbihsLHj2OtjVVFti9gLFPVm2Y4jjLrJah-HXvrb8cRJAYnuocckY2k0Hns-OzPfAHyoqOeisDSTRZVnnDGTTZW32bSO6NhZISqBhcJf52J2yS-uyqsRnA61MJhW2e_9aU_vduv-zaS35mQZwuQbUuhFMIJOGc9WChk_OZfo5Z9u_6R5SJruWZBvD6X7wpmU42VDi5TddNrRnSLbzv-D033gswtCZ89gv0eP5CQpeAAj3xzC49RP8uYQnv7FLvgcfqT1ig-krYlNvMyGRHXqcL1YE8Sr-HGZigWIvSGhydZhsyUhoukqLLDdlsMB63jabVfE_QzLF3B59vn76Szr2yhkjiu2ybyUBXLEOJobJ0VdO1kwbwonuXIxOPEc2Y0qz2XFfSmUpMYYq_LSUVcKY4qXsNe0jX8NhDklKmMiBpEeWV5s5YwvkcGm9hFImjHQwX7a9Rzj2OriWg_JZL806qzR5jrnOtp8DB_vxiwTw8ZO6XKYFv2Pn-gYAnaOez_MoY4LCP-KmMa3WxQqWARlhaI7ZBjriAcFG8Or5AB3ujIl1DTCpDcP1OwtPMGn7r44fwd7m9XWH0Wgs7HHnScfw6OT8y-z-W91OfyU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEJTX8jQSnFDYxHHs9YEDAqotfVxoUW_GdhwR1Car7q7QXvhT_EFm4qSABHtA6jGxHY3G4_FnZ-YbgOdlFoTMXZaovEwTwblNJjq4ZFIhOvZOylJSovD-gZweiQ_HxfEG_BhyYSissvf90ad33rp_M-61OZ7V9fgjUeghGCGjxLOVHipY74bVNzy3zV_vvMNJfsH59vvDt9OkLy2QeKH5IglK5cSb4rPUeiWryqucB5t7JbRHhy1SYvwpg1ClCIXUKrPWOp0WPvOFtDbH716CywLdBZVNePX9V1yJyuLFDhH8kXh9pk4MKnN1Sxzh2aTjVyV6n7_vhv9Cu92ut30TbvRwlb2JGrkFG6HZgiuxgOVqC67_Rmd4Gz5FB0EPrK2Yi0TQlqE4VX1yOmcEkKlxFrMTmFuxuknm9WLJaoTvZX1K9b08DZjj8bo9Y_5LPbsDRxei3Luw2bRNuA-Mey1LaxH0qEC0Mq70NhREmVMFRK52BNmgP-N7UnOqrXFihui1r4ZkNqRzkwqDOh_By_Mxs0jpsbZ3MUyL-cMwDe45a8c9G-bQ4Iql3zC2Ce2SOuUcUWCuszV9OO-YDiUfwb1oAOeyci31BHHZg_-U7ClcnR7u75m9nYPdh3CNWrrL6vQRbC7OluExoqyFe9JZNYPPF72MfgLT7Dex |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+of+bacteria+biofilms+forming+process+by+in-situ+impedimetric+biosensor+chip&rft.jtitle=Biosensors+%26+bioelectronics&rft.au=Liu%2C+Lulu&rft.au=Xu%2C+Yi&rft.au=Cui%2C+Feiyun&rft.au=Xia%2C+Ye&rft.date=2018-07-30&rft.issn=0956-5663&rft.volume=112+p.86-92&rft.spage=86&rft.epage=92&rft_id=info:doi/10.1016%2Fj.bios.2018.04.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-5663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-5663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-5663&client=summon |